561 research outputs found

    A Survey on Emotion Recognition for Human Robot Interaction

    Get PDF
    With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined

    Automatic Emotion Recognition from Mandarin Speech

    Get PDF

    GM-TCNet: Gated Multi-scale Temporal Convolutional Network using Emotion Causality for Speech Emotion Recognition

    Full text link
    In human-computer interaction, Speech Emotion Recognition (SER) plays an essential role in understanding the user's intent and improving the interactive experience. While similar sentimental speeches own diverse speaker characteristics but share common antecedents and consequences, an essential challenge for SER is how to produce robust and discriminative representations through causality between speech emotions. In this paper, we propose a Gated Multi-scale Temporal Convolutional Network (GM-TCNet) to construct a novel emotional causality representation learning component with a multi-scale receptive field. GM-TCNet deploys a novel emotional causality representation learning component to capture the dynamics of emotion across the time domain, constructed with dilated causal convolution layer and gating mechanism. Besides, it utilizes skip connection fusing high-level features from different gated convolution blocks to capture abundant and subtle emotion changes in human speech. GM-TCNet first uses a single type of feature, mel-frequency cepstral coefficients, as inputs and then passes them through the gated temporal convolutional module to generate the high-level features. Finally, the features are fed to the emotion classifier to accomplish the SER task. The experimental results show that our model maintains the highest performance in most cases compared to state-of-the-art techniques.Comment: The source code is available at: https://github.com/Jiaxin-Ye/GM-TCNe

    Emotion-aware voice interfaces based on speech signal processing

    Get PDF
    Voice interfaces (VIs) will become increasingly widespread in current daily lives as AI techniques progress. VIs can be incorporated into smart devices like smartphones, as well as integrated into autos, home automation systems, computer operating systems, and home appliances, among other things. Current speech interfaces, however, are unaware of users’ emotional states and hence cannot support real communication. To overcome these limitations, it is necessary to implement emotional awareness in future VIs. This thesis focuses on how speech signal processing (SSP) and speech emotion recognition (SER) can enable VIs to gain emotional awareness. Following an explanation of what emotion is and how neural networks are implemented, this thesis presents the results of several user studies and surveys. Emotions are complicated, and they are typically characterized using category and dimensional models. They can be expressed verbally or nonverbally. Although existing voice interfaces are unaware of users’ emotional states and cannot support natural conversations, it is possible to perceive users’ emotions by speech based on SSP in future VIs. One section of this thesis, based on SSP, investigates mental restorative effects on humans and their measures from speech signals. SSP is less intrusive and more accessible than traditional measures such as attention scales or response tests, and it can provide a reliable assessment for attention and mental restoration. SSP can be implemented into future VIs and utilized in future HCI user research. The thesis then moves on to present a novel attention neural network based on sparse correlation features. The detection accuracy of emotions in the continuous speech was demonstrated in a user study utilizing recordings from a real classroom. In this section, a promising result will be shown. In SER research, it is unknown if existing emotion detection methods detect acted emotions or the genuine emotion of the speaker. Another section of this thesis is concerned with humans’ ability to act on their emotions. In a user study, participants were instructed to imitate five fundamental emotions. The results revealed that they struggled with this task; nevertheless, certain emotions were easier to replicate than others. A further study concern is how VIs should respond to users’ emotions if SER techniques are implemented in VIs and can recognize users’ emotions. The thesis includes research on ways for dealing with the emotions of users. In a user study, users were instructed to make sad, angry, and terrified VI avatars happy and were asked if they would like to be treated the same way if the situation were reversed. According to the results, the majority of participants tended to respond to these unpleasant emotions with neutral emotion, but there is a difference among genders in emotion selection. For a human-centered design approach, it is important to understand what the users’ preferences for future VIs are. In three distinct cultures, a questionnaire-based survey on users’ attitudes and preferences for emotion-aware VIs was conducted. It was discovered that there are almost no gender differences. Cluster analysis found that there are three fundamental user types that exist in all cultures: Enthusiasts, Pragmatists, and Sceptics. As a result, future VI development should consider diverse sorts of consumers. In conclusion, future VIs systems should be designed for various sorts of users as well as be able to detect the users’ disguised or actual emotions using SER and SSP technologies. Furthermore, many other applications, such as restorative effects assessments, can be included in the VIs system

    Affective computing for smart operations: a survey and comparative analysis of the available tools, libraries and web services

    Get PDF
    In this paper, we make a deep search of the available tools in the market, at the current state of the art of Sentiment Analysis. Our aim is to optimize the human response in Datacenter Operations, using a combination of research tools, that allow us to decrease human error in general operations, managing Complex Infrastructures. The use of Sentiment Analysis tools is the first step for extending our capabilities for optimizing the human interface. Using different data collections from a variety of data sources, our research provides a very interesting outcome. In our final testing, we have found that the three main commercial platforms (IBM Watson, Google Cloud and Microsoft Azure) get the same accuracy (89-90%). for the different datasets tested, based on Artificial Neural Network and Deep Learning techniques. The other stand-alone Applications or APIs, like Vader or MeaninCloud, get a similar accuracy level in some of the datasets, using a different approach, semantic Networks, such as Concepnet1, but the model can easily be optimized above 90% of accuracy, just adjusting some parameter of the semantic model. This paper points to future directions for optimizing DataCenter Operations Management and decreasing human error in complex environments

    A Review on Emotion Recognition Algorithms using Speech Analysis

    Get PDF
    In recent years, there is a growing interest in speech emotion recognition (SER) by analyzing input speech. SER can be considered as simply pattern recognition task which includes features extraction, classifier, and speech emotion database. The objective of this paper is to provide a comprehensive review on various literature available on SER. Several audio features are available, including linear predictive coding coefficients (LPCC), Mel-frequency cepstral coefficients (MFCC), and Teager energy based features. While for classifier, many algorithms are available including hidden Markov model (HMM), Gaussian mixture model (GMM), vector quantization (VQ), artificial neural networks (ANN), and deep neural networks (DNN). In this paper, we also reviewed various speech emotion database. Finally, recent related works on SER using DNN will be discussed

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc

    Critical Analysis on Multimodal Emotion Recognition in Meeting the Requirements for Next Generation Human Computer Interactions

    Get PDF
    Emotion recognition is the gap in today’s Human Computer Interaction (HCI). These systems lack the ability to effectively recognize, express and feel emotion limits in their human interaction. They still lack the better sensitivity to human emotions. Multi modal emotion recognition attempts to addresses this gap by measuring emotional state from gestures, facial expressions, acoustic characteristics, textual expressions. Multi modal data acquired from video, audio, sensors etc. are combined using various techniques to classify basis human emotions like happiness, joy, neutrality, surprise, sadness, disgust, fear, anger etc. This work presents a critical analysis of multi modal emotion recognition approaches in meeting the requirements of next generation human computer interactions. The study first explores and defines the requirements of next generation human computer interactions and critically analyzes the existing multi modal emotion recognition approaches in addressing those requirements

    Energy-Efficient Joint Resource Allocation Algorithms for MEC-Enabled Emotional Computing in Urban Communities

    Get PDF
    This paper considers a mobile edge computing (MEC) system, where the MEC server first collects data from emotion sensors and then computes the emotion of each user. We give the formula of the emotional prediction accuracy. In order to improve the energy efficiency of the system, we propose resources allocation algorithms. We aim to minimize the total energy consumption of the MEC server and sensors by jointly optimizing the computing resources allocation and the data transmitting time. The formulated problem is a non-convex problem, which is very difficult to solve in general. However, we transform it into convex problems and apply convex optimization techniques to address it. The optimal solution is given in closed form. Simulation results show that the total energy consumption of our system can be effectively reduced by the proposed scheme compared with the benchmark
    • …
    corecore