644 research outputs found

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    Building Manufacturing Deep Learning Models with Minimal and Imbalanced Training Data Using Domain Adaptation and Data Augmentation

    Full text link
    Deep learning (DL) techniques are highly effective for defect detection from images. Training DL classification models, however, requires vast amounts of labeled data which is often expensive to collect. In many cases, not only the available training data is limited but may also imbalanced. In this paper, we propose a novel domain adaptation (DA) approach to address the problem of labeled training data scarcity for a target learning task by transferring knowledge gained from an existing source dataset used for a similar learning task. Our approach works for scenarios where the source dataset and the dataset available for the target learning task have same or different feature spaces. We combine our DA approach with an autoencoder-based data augmentation approach to address the problem of imbalanced target datasets. We evaluate our combined approach using image data for wafer defect prediction. The experiments show its superior performance against other algorithms when the number of labeled samples in the target dataset is significantly small and the target dataset is imbalanced

    Deep learning for automobile predictive maintenance under Industry 4.0

    Get PDF
    Industry 4.0 refers to the fourth industrial revolution, which has boosted the development of the world. An important target of Industry 4.0 is to maximize the asset uptime so to improve productivity and reduce the production and maintenance cost. The emerging techniques such as artificial intelligence (AI), industrial Internet of things (IIoT) and cyber-physical system (CPS) have accelerated the development of data-orientated application such as predictive maintenance (PdM). Maintenance is a big concern for an automobile fleet management company. An accurate maintenance prediction can be helpful to avoid critical failure and avoid further loss. Deep learning is a type of prevailing machine learning algorithm which has been widely used in big data analytics. However, how to establish a maintenance prediction model based on historical maintenance data using deep learning has not been investigated. Moreover, it is worthwhile to study how to build a prediction model when the labelled data is insufficient. Furthermore, surrounding factors which may impact automobile lifecycle have not been concerned in the state-of-the-art. Hence, this thesis will focus on how to pave the way for automobile PdM under Industry 4.0. This research is structured according to four themes. Firstly, different from the conventional PdM research that only focuses on modelling based on sensor data or historical maintenance data, a framework for automobile PdM based on multi-source data is proposed. The proposed framework aims at automobile TBF modelling, prediction, and decision support based on the multi-source data. There are five layers designed in this framework, which are data collection, cloud data transmission and storage, data mapping, pre-processing and integration, deep learning for automobile TBF modelling, and decision support for PdM. This framework covers the entire knowledge discovery process from data collection to decision support. Secondly, one of the purposes of this thesis is to establish a Time-Between-Failure (TBF) prediction model through a data-driven approach. An accurate automobile TBF iv Abstract prediction can bring tangible benefits to a fleet management company. Different from the existing studies that adopted sensor data for failure time prediction, a new approach called Cox proportional hazard deep learning (CoxPHDL) is proposed based on the historical maintenance data for TBF modelling and prediction. CoxPHDL is able to tackle the data sparsity and data censoring issues that are common in the analysis of historical maintenance data. Firstly, an autoencoder is adopted to convert the nominal data into a robust representation. Secondly, a Cox PHM is researched to estimate the TBF of the censored data. A long-short-term memory (LSTM) network is then established to train the TBF prediction model based on the pre-processed maintenance data. Experimental results have demonstrated the merits of the proposed approach. Thirdly, a large amount of labelled data is one of the critical factors to the satisfactory algorithm performance of deep learning. However, labelled data is expensive to collect in the real world. In order to build a TBF prediction model using deep learning when the labelled data is limited, a new semi-supervised learning algorithm called deep learning embedded semi-supervised learning (DLeSSL) is proposed. Based on DLeSSL, unlabelled data can be estimated using a semi-supervised learning approach that has a deep learning technique embedded so to expand the labelled dataset. Results derived using the proposed method reveal that deep learning (DLeSSL based) outperforms the benchmarking algorithms when the labelled data is limited. In addition, different from existing studies, the effect on algorithm performance due to the size of labelled data and unlabelled data is reported to offer insights for the deployment of DLeSSL. Finally, automobile lifecycle can be impacted by surrounding factors such as weather, traffic, and terrain. The data contains these factors can be collected and processed via geographical information system (GIS). To introduce these GIS data into automobile TBF modelling, an integrated approach is proposed. This is the first time that the surrounding factors are considered in the study of automobile TBF modelling. Meanwhile, in order to build a TBF prediction model based on multi-source data, a new deep learning architecture called merged-LSTM (M-LSTM) network is designed. Abstract v Experimental results derived using the proposed approach and M-LSTM network reveal the impacts of the GIS factors. This thesis aims to research automobile PdM using deep learning, which provides a feasibility study for achieving Industry 4.0. As such, it offers great potential as a route to achieving a more profitable, efficient, and sustainable fleet management

    Failure Detection and Isolation by LSTM Autoencoder

    Get PDF
    Failure diagnosis on some system is often preferred even the data of the system is not designed for the condition monitoring and does not contain any or contains little example cases of failures. For this kind of system, it is unrealistic to directly observe condition from single feature or neither to build a machine learning system that has been trained to detect known failures. Still if any data describing the system exists, it is possible to provide some level of diagnosis on the system. Here we present an LSTM (Long Short Term Memory) autoencoder approach for detecting and isolating system failures with insufficient data conditions. Here we also illustrate how the failure isolation capability is effected by the choice of input feature space. The approach is tested with the flight data of F-18 aircraft and the applicability is validated against several leading edge flap (LEF) control surface seizure failures. The method shows a potential for not only detecting a potential failure in advance but also to isolate the failure by allocating the anomaly on the data to the features that are related to the operation of LEFs. The approach presented here provides diagnostic value from the data than is not designed for condition monitoring neither contain any example case failures.acceptedVersionPeer reviewe

    Survey on Deep Learning applied to predictive maintenance

    Get PDF
    Prognosis Health Monitoring (PHM) plays an increasingly important role in the management of machines and manufactured products in today’s industry, and deep learning plays an important part by establishing the optimal predictive maintenance policy. However, traditional learning methods such as unsupervised and supervised learning with standard architectures face numerous problems when exploiting existing data. Therefore, in this essay, we review the significant improvements in deep learning made by researchers over the last 3 years in solving these difficulties. We note that researchers are striving to achieve optimal performance in estimating the remaining useful life (RUL) of machine health by optimizing each step from data to predictive diagnostics. Specifically, we outline the challenges at each level with the type of improvement that has been made, and we feel that this is an opportunity to try to select a state-of-the-art architecture that incorporates these changes so each researcher can compare with his or her model. In addition, post-RUL reasoning and the use of distributed computing with cloud technology is presented, which will potentially improve the classification accuracy in maintenance activities. Deep learning will undoubtedly prove to have a major impact in upgrading companies at the lowest cost in the new industrial revolution, Industry 4.0

    Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions

    Full text link
    Artificial intelligence (AI) is rapidly emerging as an enabling tool for solving various complex materials design problems. This paper aims to review recent advances in AI-driven materials-by-design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro-morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials-by-design, namely representation learning of microstructure morphology (i.e., shape descriptors), structure-property-performance (S-P-P) linkage estimation, and optimization/design exploration. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials-by-design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning, to bridge the gap between machine learning research and EM research
    • …
    corecore