7 research outputs found

    Deep Structured Features for Semantic Segmentation

    Full text link
    We propose a highly structured neural network architecture for semantic segmentation with an extremely small model size, suitable for low-power embedded and mobile platforms. Specifically, our architecture combines i) a Haar wavelet-based tree-like convolutional neural network (CNN), ii) a random layer realizing a radial basis function kernel approximation, and iii) a linear classifier. While stages i) and ii) are completely pre-specified, only the linear classifier is learned from data. We apply the proposed architecture to outdoor scene and aerial image semantic segmentation and show that the accuracy of our architecture is competitive with conventional pixel classification CNNs. Furthermore, we demonstrate that the proposed architecture is data efficient in the sense of matching the accuracy of pixel classification CNNs when trained on a much smaller data set.Comment: EUSIPCO 2017, 5 pages, 2 figure

    HR-SAR-Net: A Deep Neural Network for Urban Scene Segmentation from High-Resolution SAR Data

    Full text link
    Synthetic aperture radar (SAR) data is becoming increasingly available to a wide range of users through commercial service providers with resolutions reaching 0.5m/px. Segmenting SAR data still requires skilled personnel, limiting the potential for large-scale use. We show that it is possible to automatically and reliably perform urban scene segmentation from next-gen resolution SAR data (0.15m/px) using deep neural networks (DNNs), achieving a pixel accuracy of 95.19% and a mean IoU of 74.67% with data collected over a region of merely 2.2km2{}^2. The presented DNN is not only effective, but is very small with only 63k parameters and computationally simple enough to achieve a throughput of around 500Mpx/s using a single GPU. We further identify that additional SAR receive antennas and data from multiple flights massively improve the segmentation accuracy. We describe a procedure for generating a high-quality segmentation ground truth from multiple inaccurate building and road annotations, which has been crucial to achieving these segmentation results

    A Deep Neural Network Model for Realtime Semantic-Segmentation Video Processing supported to Autonomous Vehicles

    Get PDF
    Traffic congestion has been a huge problem, especially in urban area during peak hours, which causes a major problem for any unmanned/autonomous vehicles and also accumulate environmental pollution. The solutions for managing and monitoring the traffic flow is challenging that not only asks for performing accurately and flexibly on routes but also requires the lowest installation costs. In this paper, we propose a synthetic method that uses deep learning-based video processing to derive density of traffic object over infrastructure which can support usefull information for autonomous vehicles in a smart control system. The idea is using the semantic segmentation, which is the process of linking each pixel in an image to a class label to produce masked map that support collecting class distribution among each frame. Moreover, an aerial dataset named Saigon Aerial with more than 110 samples is also created in this paper to support unique observation in a biggest city in Vietnam, HoChiMinh city. To present our idea, we evaluated different semantic segmentation models on 2 datasets: Saigon Aerial and UAVid. Also to track our model’s performance, F1 and Mean Intersection over Union metrics are also taken into account. The code and dataset are uploaded to Github and Kaggle repository respectively as follow: Saigon Aerial Code, Saigon Aerial dataset

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    corecore