9,825 research outputs found

    Composable Deep Reinforcement Learning for Robotic Manipulation

    Full text link
    Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained using soft Q-learning can be applied to real-world robotic manipulation. The application of this method to real-world manipulation is facilitated by two important features of soft Q-learning. First, soft Q-learning can learn multimodal exploration strategies by learning policies represented by expressive energy-based models. Second, we show that policies learned with soft Q-learning can be composed to create new policies, and that the optimality of the resulting policy can be bounded in terms of the divergence between the composed policies. This compositionality provides an especially valuable tool for real-world manipulation, where constructing new policies by composing existing skills can provide a large gain in efficiency over training from scratch. Our experimental evaluation demonstrates that soft Q-learning is substantially more sample efficient than prior model-free deep reinforcement learning methods, and that compositionality can be performed for both simulated and real-world tasks.Comment: Videos: https://sites.google.com/view/composing-real-world-policies

    Vision-based Robotic Grasping in Simulation using Deep Reinforcement Learning

    Get PDF
    This thesis will investigate different robotic manipulation and grasping approaches. It will present an overview of robotic simulation environments, and offer an evaluation of PyBullet, CoppeliaSim, and Gazebo, comparing various features. The thesis further presents a background for current approaches to robotic manipulation and grasping by describing how the robotic movement and grasping can be organized. State-of-the-Art approaches for learning robotic grasping, both using supervised methods and reinforcement learning methods are presented. Two set of experiments will be conducted in PyBullet, illustrating how Deep Reinforcement Learning methods could be applied to train a 7 degrees of freedom robotic arm to grasp objects

    A survey and tutorial on deep reinforcement learning algorithms for robotic manipulation

    Get PDF
    Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor–critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject

    Real-Time Hybrid Visual Servoing of a Redundant Manipulator via Deep Reinforcement Learning

    Get PDF
    Fixtureless assembly may be necessary in some manufacturing tasks and environ-ments due to various constraints but poses challenges for automation due to non-deterministic characteristics not favoured by traditional approaches to industrial au-tomation. Visual servoing methods of robotic control could be effective for sensitive manipulation tasks where the desired end-effector pose can be ascertained via visual cues. Visual data is complex and computationally expensive to process but deep reinforcement learning has shown promise for robotic control in vision-based manipu-lation tasks. However, these methods are rarely used in industry due to the resources and expertise required to develop application-specific systems and prohibitive train-ing costs. Training reinforcement learning models in simulated environments offers a number of benefits for the development of robust robotic control algorithms by reducing training time and costs, and providing repeatable benchmarks for which algorithms can be tested, developed and eventually deployed on real robotic control environments. In this work, we present a new simulated reinforcement learning envi-ronment for developing accurate robotic manipulation control systems in fixtureless environments. Our environment incorporates a contemporary collaborative industrial robot, the KUKA LBR iiwa, with the goal of positioning its end effector in a generic fixtureless environment based on a visual cue. Observational inputs are comprised of the robotic joint positions and velocities, as well as two cameras, whose positioning reflect hybrid visual servoing with one camera attached to the robotic end-effector, and another observing the workspace respectively. We propose a state-of-the-art deep reinforcement learning approach to solving the task environment and make prelimi-nary assessments of the efficacy of this approach to hybrid visual servoing methods for the defined problem environment. We also conduct a series of experiments ex-ploring the hyperparameter space in the proposed reinforcement learning method. Although we could not prove the efficacy of a deep reinforcement approach to solving the task environment with our initial results, we remain confident that such an ap-proach could be feasible to solving this industrial manufacturing challenge and that our contributions in this work in terms of the novel software provide a good basis for the exploration of reinforcement learning approaches to hybrid visual servoing in accurate manufacturing contexts

    A Review on Robot Manipulation Methods in Human-Robot Interactions

    Full text link
    Robot manipulation is an important part of human-robot interaction technology. However, traditional pre-programmed methods can only accomplish simple and repetitive tasks. To enable effective communication between robots and humans, and to predict and adapt to uncertain environments, this paper reviews recent autonomous and adaptive learning in robotic manipulation algorithms. It includes typical applications and challenges of human-robot interaction, fundamental tasks of robot manipulation and one of the most widely used formulations of robot manipulation, Markov Decision Process. Recent research focusing on robot manipulation is mainly based on Reinforcement Learning and Imitation Learning. This review paper shows the importance of Deep Reinforcement Learning, which plays an important role in manipulating robots to complete complex tasks in disturbed and unfamiliar environments. With the introduction of Imitation Learning, it is possible for robot manipulation to get rid of reward function design and achieve a simple, stable and supervised learning process. This paper reviews and compares the main features and popular algorithms for both Reinforcement Learning and Imitation Learning

    TIAGo RL: Simulated Reinforcement Learning Environments with Tactile Data for Mobile Robots

    Full text link
    Tactile information is important for robust performance in robotic tasks that involve physical interaction, such as object manipulation. However, with more data included in the reasoning and control process, modeling behavior becomes increasingly difficult. Deep Reinforcement Learning (DRL) produced promising results for learning complex behavior in various domains, including tactile-based manipulation in robotics. In this work, we present our open-source reinforcement learning environments for the TIAGo service robot. They produce tactile sensor measurements that resemble those of a real sensorised gripper for TIAGo, encouraging research in transfer learning of DRL policies. Lastly, we show preliminary training results of a learned force control policy and compare it to a classical PI controller
    • …
    corecore