94 research outputs found

    NETWORK TRAFFIC CHARACTERIZATION AND INTRUSION DETECTION IN BUILDING AUTOMATION SYSTEMS

    Get PDF
    The goal of this research was threefold: (1) to learn the operational trends and behaviors of a realworld building automation system (BAS) network for creating building device models to detect anomalous behaviors and attacks, (2) to design a framework for evaluating BA device security from both the device and network perspectives, and (3) to leverage new sources of building automation device documentation for developing robust network security rules for BAS intrusion detection systems (IDSs). These goals were achieved in three phases, first through the detailed longitudinal study and characterization of a real university campus building automation network (BAN) and with the application of machine learning techniques on field level traffic for anomaly detection. Next, through the systematization of literature in the BAS security domain to analyze cross protocol device vulnerabilities, attacks, and defenses for uncovering research gaps as the foundational basis of our proposed BA device security evaluation framework. Then, to evaluate our proposed framework the largest multiprotocol BAS testbed discussed in the literature was built and several side-channel vulnerabilities and software/firmware shortcomings were exposed. Finally, through the development of a semi-automated specification gathering, device documentation extracting, IDS rule generating framework that leveraged PICS files and BIM models.Ph.D

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats

    Digital twin-enabled human-robot collaborative teaming towards sustainable and healthy built environments

    Get PDF
    Development of sustainable and healthy built environments (SHBE) is highly advocated to achieve collective societal good. Part of the pathway to SHBE is the engagement of robots to manage the ever-complex facilities for tasks such as inspection and disinfection. However, despite the increasing advancements of robot intelligence, it is still “mission impossible” for robots to independently undertake such open-ended problems as facility management, calling for a need to “team up” the robots with humans. Leveraging digital twin's ability to capture real-time data and inform decision-making via dynamic simulation, this study aims to develop a human-robot teaming framework for facility management to achieve sustainability and healthiness in the built environments. A digital twin-enabled prototype system is developed based on the framework. Case studies showed that the framework can safely and efficiently incorporate robotics into facility management tasks (e.g., patrolling, inspection, and cleaning) by allowing humans to plan, oversee, manage, and cooperate with the robot via the digital twin's bi-directional mechanism. The study lays out a high-level framework, under which purposeful efforts can be made to unlock digital twin's full potential in collaborating humans and robots in facility management towards SHBE

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Collaborative Networks, Decision Systems, Web Applications and Services for Supporting Engineering and Production Management

    Get PDF
    This book focused on fundamental and applied research on collaborative and intelligent networks and decision systems and services for supporting engineering and production management, along with other kinds of problems and services. The development and application of innovative collaborative approaches and systems are of primer importance currently, in Industry 4.0. Special attention is given to flexible and cyber-physical systems, and advanced design, manufacturing and management, based on artificial intelligence approaches and practices, among others, including social systems and services

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    New Multidisciplinary Approaches for Reducing Food Waste in Agribusiness Supply Chains

    Get PDF
    This reprint is a collection of research articles that highlight the achievements of the team of the European project called REAMIT. REAMIT was funded by Interreg North-West Europe and ERDF. The term REAMIT stands for “Improving Resource Efficiency of Agribusiness supply chains by Minimising waste using Big Data and Internet of Things sensors.” The main aim of the REAMIT project was to reduce food waste in agrifood supply chains by using the power of modern, digital technologies (e.g., the Internet of Things (IoT), sensors, big data, cloud computing and analytics). The chapters in this reprint provide detailed information of the activities of the project team.The chapters of this reprint were published as articles in the Special Issue titled ”New Multidisciplinary Approaches for Reducing Food Waste in Agribusiness Supply Chains” published in the journal Sustainability. For ease of readability and flow, the book is divided into four distinct parts.In Part 1, the project members provided a comprehensive review of the existing literature. Part 2 is devoted to the in-depth discussions of the development, adaptation, and applications of these technologies for specific food companies. While the project team worked with a number of food companies including human milk, fresh vegetables and fruits, meat production, this part discusses four different applications.Part 3 presents a detailed analysis of our case studies. A general life-cycle analysis tool for implementing technology for reducing food waste (REAMIT-type activities) is presented in Chapter 7. A specific application of this tool for the case study on a human milk bank is presented in Chapter 8. In Chapter 9, we developed a novel mathematical programming model to identify the conditions when food businesses will prefer the use of modern technologies for helping to reduce food waste.The final part, Part 4, is devoted to summarising learnings from the project and developing some policy-oriented guidelines. Chapter 10 reviews the current state of corporate reporting guidelines for reporting on food waste. Chapter 11 presents the important leanings from the REAMIT project on the motivations for food companies in reducing waste and the associated challenges. Business models are discussed, and some policy guidelines were developed.We gratefully acknowledge the generous funding received from the Interreg North-West Europe for carrying out our activities. The content of Chapter 10 was funded additional funding received from the University of Essex. We believe that the reprint and individual chapters will be of interest to a wide and various audience and will kindle interest in food companies, technology companies, business support organisations, policy-makers and members of the academic community in finding ways to reduce food waste with and without the use of technology

    The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences

    Get PDF
    This doctoral thesis describes the journey of ideation, prototyping and empirical testing of the Multimodal Tutor, a system designed for providing digital feedback that supports psychomotor skills acquisition using learning and multimodal data capturing. The feedback is given in real-time with machine-driven assessment of the learner's task execution. The predictions are tailored by supervised machine learning models trained with human annotated samples. The main contributions of this thesis are: a literature survey on multimodal data for learning, a conceptual model (the Multimodal Learning Analytics Model), a technological framework (the Multimodal Pipeline), a data annotation tool (the Visual Inspection Tool) and a case study in Cardiopulmonary Resuscitation training (CPR Tutor). The CPR Tutor generates real-time, adaptive feedback using kinematic and myographic data and neural networks
    • …
    corecore