2,791 research outputs found

    Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

    Get PDF
    Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Erythropoietin enhances hippocampal long-term potentiation and memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity.</p> <p>Results</p> <p>We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses.</p> <p>Conclusion</p> <p>We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.</p

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems like the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges, and give perspectives on future research directions, looking to inspire interdisciplinary approaches.Comment: 46 pages, 9 figure

    Effect of space conditions on neuronal plasticity and connectivity

    Get PDF
    Looking for opportunities to explore new frontiers and developing new technologies have always been in the nature of mankind. In 1957, the first rocket in space opened a new era for space traveling towards other planets. Concomitantly, a wide range of concerns related to human health risks that could occur during spaceflight was raised. Up to now, a large number of experiments has been performed to determine the biological effects of space conditions on human health, in order to develop appropriate countermeasures. However, extensive investigations still need to be performed before considering long-term spaceflight towards other planets such as Mars. Since the first human space flight, it has been observed that in weightlessness conditions, equilibrium sense organs can send misleading inputs to the central nervous system which is forced to develop new strategies and adapt to adequately translate these messages. Furthermore, cosmic radiations are known to induce oxidative stress as well as genomic damages. In this thesis, we studied concomitant microgravity and radiation exposures as models for space conditions and developed various methods to analyse their specific and combined effects on in vitro neuronal network models. In vitro primary neuronal network cultures were established and exposed to simulated space conditions to investigate neuronal network remodelling (plasticity and connectivity) as well as genomic damage/repair dynamics. This work was performed to address questions on neuronal network disorders occurring during spaceflights and, in the future, to develop strategies against these effects

    Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics.

    Get PDF
    Individuals with 22q11.2 microdeletion syndrome (22q11.2 DS) show cognitive and behavioral dysfunctions, developmental delays in childhood and risk of developing schizophrenia and autism. Despite extensive previous studies in adult animal models, a possible embryonic root of this syndrome has not been determined. Here, in neurons from a 22q11.2 DS mouse model (Lgdel +/-), we found embryonic-premature alterations in the neuronal chloride cotransporters indicated by dysregulated NKCC1 and KCC2 protein expression levels. We demonstrate with large-scale spiking activity recordings a concurrent deregulation of the spontaneous network activity and homeostatic network plasticity. Additionally, Lgdel +/- networks at early development show abnormal neuritogenesis and void of synchronized spontaneous activity. Furthermore, parallel experiments on Dgcr8 +/- mouse cultures reveal a significant, yet not exclusive contribution of the dgcr8 gene to our phenotypes of Lgdel +/- networks. Finally, we show that application of bumetanide, an inhibitor of NKCC1, significantly decreases the hyper-excitable action of GABAA receptor signaling and restores network homeostatic plasticity in Lgdel +/- networks. Overall, by exploiting an on-a-chip 22q11.2 DS model, our results suggest a delayed GABA-switch in Lgdel +/- neurons, which may contribute to a delayed embryonic development. Prospectively, acting on the GABA-polarity switch offers a potential target for 22q11.2 DS therapeutic intervention
    • …
    corecore