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Introduction 

 Human spaceflight 1.

On October 4, 1957, the Soviet satellite Sputnik was launched from the cosmodrome of 

Baikonur. Opening the space exploration age, the Sputnik was the world's first artificial satellite 

and the first man-made object to be placed into the Earth's orbit.  

On November of the same year, the dog Laika was the first animal in orbit on board the 

Sputnik II, launched from the cosmodrome of Baikonur. On April 12, 1961, Yuri Gagarin, a 

Soviet cosmonaut, took off to the space aboard the Vostok for the first human space flight, 

closing the mission 108 minutes later. As the first human being in space, doing a full turn of the 

Earth, he showed that humans can fly over the atmosphere. 

Although the first human space flight was in 1961, space biology is a relatively young 

discipline. It was born with the first dedicated space missions and the use of space vectors 

designed for the biological experiments to be performed in weightlessness conditions: 

 SpaceLab SL-1, first American space lab placed aboard the Space Shuttle (1983)  

 Salyut 7, first Russian space laboratory aboard the automated bio-satellite (1983) 

 Sounding rockets, Maser (1989) and Maxus (1991) 

The building of space stations as Salyut (1971-1986), Skylab (1973-1979), Mir (1986-

2000) and the International Space Station (ISS; 2000 - Present) offered new opportunities for 

space research since these allowed to increase the permanence in space until six or more months. 

During the permanence in space, astronauts are exposed to the two main space conditions, 

known as microgravity and cosmic radiations. Since the first human space flight, researchers 

tried to understand the effects of space environment on human physiology and to develop 

appropriate countermeasures. These effects can be really deleterious for human health, in 
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particular in future long term space missions, such as towards Mars, during which astronauts will 

be exposed to the deep space radiations and microgravity for more than one year.  

1.1. Low gravity conditions 

To demonstrate that the falling time of bodies was independent of their mass, Galileo 

dropped balls of the same material, but of different masses, from the Leaning Tower of Pisa. 

Later he determined the gravity acceleration, namely the “attraction force of bodies” which is the 

fall towards the Earth centre. The estimated gravitational acceleration was, and still is 9,82 m/s
2
.  

The “gravitational field” law, deduced by Isaac Newton in 1666, stated that forces which 

keep planets in their orbits must be reciprocal to the squares of their distances from the centres 

about which they revolve [1]. Therefore, the further away bodies are situated from the Earth the 

least they feel gravity acceleration; indeed, in deep space the gravitational acceleration is 

theoretically close to 0.  

1.1.1. Real and simulated microgravity facilities and instruments 

To presume the presence of weightlessness condition in orbiting spacecrafts because they 

are “in space” or “outside the Earth‟s atmosphere” is a common mistake. Indeed, although it 

might seem that they are “far” away enough from the Earth, they are actually only 300-500 km 

in orbit around the planet surface. 

All the satellites, which orbit around our planet, are continuously attracted by the Earth and 

if they did not have any motion of their own, they would fall back to the ground. Practically, 

satellites move along a linear trajectory that keeps them away from the Earth, pushed by a certain 

power (e.g. ISS speed is about 28000 km/h) proportional to their mass and the distance from the 

planet centre: the trajectory is constantly curved towards the Earth allowing satellites to orbit 

around the planet. The typical gravity on board satellites or spacecrafts at an altitude of 350 km 

is still 9.08 m/s
2
, 8% less than the gravitational acceleration on the Earth, but since they move 
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along the propulsion trajectory, with the centrifugal force making the condition created aboard, a 

continuous free fall, known also as “microgravity” or “low gravity” condition is taking place 

(Fig. 1). Therefore, the gravity condition generated into the spacecraft or the ISS is similar but 

not equal to the weightlessness condition, which is available only in deep space where gravity 

forces are absent [2]. The first thought which expressed the “free fall condition” was made by 

Albert Einstein in 1907. As written in "the happiest thought of my life", he realized that a body 

which is falling down experiences no gravitational field, therefore, gravitation was exactly 

equivalent to acceleration. 

 More than 200 European experiments have been carried aboard the ISS until 2008. That 

year, a new ESA module, the Columbus laboratory, was connected to the station. The Columbus 

module is equipped with a suite of flexible multiuser facilities that offer extensive research 

capabilities to perform medical, biological and physics experiments [3]. ESA developed for the 

Columbus module a range of research racks to offer European scientists full access to a low 

gravity environment which cannot be reproduced on Earth. Furthermore, other facilities from 

NASA, Canadian, Russian and Japanese agencies are available aboard the Station. 

Other orbital research platforms used also for biological experiments are the Russian 

Foton and Bion types of recoverable unmanned capsules [4]. A typical Foton mission lasts about 

12–18 days and all experiments on board have to be fully automated with telemetry allowing for 

up and downlink capabilities for command and control of payloads as well as experiment 

parameters. All the experiments are placed in the spacecraft‟s Re-entry Module [4]. 

Figure 1: Scheme representing the gravitational force (green arrow) and propulsion force (blue arrow) which both 

act on satellites to generate the satellite orbit (red arrow). (Drawn by G. Pani) 
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Non-orbital low gravity platforms like sounding rockets, parabolic flight airplanes and 

drop towers are also available to conduct experiments on reduced gravity conditions. The 

sounding rockets were originally developed to “sound” the upper atmosphere and are used since 

the late 1950‟s. The rocket goes up until the moment it falls back to the Earth. The low gravity 

period, between 6 and 15 minutes, is just before the re-entry phase and the free fall ends when it 

re-enters into the atmosphere. Here as well, all the experiments should be partially or fully 

automated [4]. The parabolic flights are performed by airplanes which perform up to 30 

parabolas, reproducing the gravitational acceleration of 0.16 g for approximately 23 s or 0.38 g 

for approximately 30 s per parabola. Each low gravity period is preceded and followed by 20 s of 

hypergravity (1.8-2 g). These parabolic flights are used not only to train astronauts or test 

instruments before spaceflights but also to allow researchers to directly perform medical, 

biological or physical experiments in such environment [4]. Drop towers give the opportunity to 

perform a variety of experiments requiring only a limited exposure (few seconds) to low gravity. 

In this facility, a capsule falls down into a 146 m dropping tower [4]. 

To model the gravity on Earth, methods, like bed rest or tail suspension, or facilities, like 

free fall machines or clinostats, have been developed to provide reproducible and low cost 

alternatives. In particular, the bed rest method is used to simulate the effect of microgravity on 

the human body. The physiological effects, like bone or muscle mass loss or fluid shift are 

obtained in bed tilted at 6° for a long period with the feet higher than the head, and are 

simulating microgravity effects observed in astronauts during space flight [5, 6]. The tail 

suspension is a method to replace the bed rest where the study is performed on rodents. Rodents 

are partially suspended for a long period by their tails wrapped with adhesive tape [7]. 

Experiments on small animals or cell cultures can also be performed using 2D or 3D clinostats. 

These facilities continuously and randomly change the gravity vectors modifying the direction of 

rotation. The 2D clinostat rotates only along one axis and can reproduce, like in the Rotating 

Wall Vessel (RWV), a continuous free fall condition of sedimentation and of gravity. The 3D 
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Random Positioning Machine (RPM) (Dutch Space) (Fig. 2) allows to modify the gravity 

vector by random rotations along 2 axes. The RPM is based on the principle of 'gravity-vector-

averaging' and in its centre, the gravity vector (resulting from such random rotation) is reduced 

by a factor around 10
-3

-10
-4

. A broad number of experiments performed with RPM or RWV have 

similar results as in space conditions [8]. The selection of the device to perform experiments in 

simulated microgravity is related to the experiment itself [8].  

1.1.2. Human body response to the gravitational change 

During space journeys in spacecraft‟s, astronauts are constantly exposed to space 

conditions (cosmic rays and microgravity). Exposure to microgravity has been shown to 

adversely affect several aspects of human physiology. To identify physiological disorders that it 

can induce, astronaut‟s health was monitored throughout daily work or under routinely physical 

exercises. Specific tests on muscles, bones, heart, lungs, immune system, neuronal system and 

the sense organs have been performed to better understand the human body response to 

microgravity conditions. 

The first response of human body to space environment is Space Motion Sickness (SMS), 

which is experienced by more than 70% of astronauts during their first spaceflights and less in 

trained astronauts [9]. SMS is a cumulative response of body changes. It occurs from the first 

hours of spaceflight onwards and it shows several symptoms as postural illusion, visual 

Figure 2: Desktop Random Positioning Machine.  

Left: the RPM inside the incubator. Right: sketch of the 3D rotation along 2 axes. (picture taken and drawing by G. 

Pani) 
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disturbances, nausea and headaches, neuromuscular fatigue and weakness as well as postural 

imbalance and ataxis 
1
[10]. After 3-5 days, most astronauts have recovered or begun to recover 

from the “acute symptoms” that appeared during short-term exposure, and are able to move 

without feeling weakened [10]. Throughout the long spaceflight missions, “sopite symptoms” as 

chronic drowsiness, fatigue, mood and personality changes persist. After acute space sickness 

symptoms disappear, these sopite ones might affect for a long time the astronaut‟s skills to 

execute sophisticated tasks [11].  

Throughout spaceflights, several systems (out of which musculoskeletal, sensory-motor, 

cardiovascular and immune systems) are affected due to the reduced gravity (Table 1 page 13). 

1.1.2.1. Musculoskeletal system. 

In the past decades, the musculoskeletal system represented one of the most studied 

microgravity research topics. Since the first spaceflights, muscular atrophy and decreased bone 

mass (which lead to the early onset of osteoporosis) were reported in astronauts [12-15].  

Within the first days in microgravity, a reduction in muscle activity is already detectable 

and progresses throughout the whole duration in space [16]. Microgravity affects muscles that 

play a postural role in ground gravity condition, and are known as antigravity muscles [17-19]. 

Other studies showed that also extensor [19] and flexor [20] muscles are affected by 

microgravity. However, all the skeletal muscles appeared to be proportionally affected by low 

gravity during long space missions [21]. Although the level of muscle reduction is dependent to 

the muscle activity, microgravity affects muscle fibres with different proportion [16]. Studies on 

animals and humans reported that type I fibres (slow and resistant to fatigue) as well as type II 

fibres (type IIa, fast and resistant to fatigue, and type IIb, fast and sensitive to fatigue) are 

affected by microgravity [17, 19, 20, 22]. Kalb and Solomon [19] proposed that the observed 

muscle reduction in microgravity can be induced by three sets of factors. The first is the probable 

decrease of muscle gene expression and protein production due to the reduction of the gravity 

                                                 
1
 Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements. 
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load. The second is the impairment in neural drive to the muscle. The third set is represented by 

systemic factors as hormone alteration and changes in metabolism [19, 23]. Upon return to Earth, 

astronauts need time to recover from a space environment experiencing weakness and delayed 

onset muscle soreness. Myopathology of muscles as interstitial oedema, macrophage activities 

and fibre necrosis have also been reported several days after landing [19]. 

Bone is an active tissue in continuous remodelling, bone architecture being directly related 

to the mechanical stresses which are exerted on it. In reduced gravity conditions, these stresses 

are of less magnitude or non-existent and induce a severe instability between bone formation and 

bone resorption. It is approximately estimated that 1-2% of total bone mass is removed and lost 

in a month under low gravity conditions [15]. In long-term spaceflight (180 days) all bone 

formation parameters were decreased whilst bone resorption markers were increased [14]. 

Decrease of bone formation and increase of bone demineralization were primarily found on 

weight-bearing bones [13, 15]. Therefore, astronauts perform daily exercises with special 

gymnastic machines as countermeasure to muscle atrophy and bone mass reduction. 

1.1.2.2. Sensory-motor system 

The sensory motor neurons are one of the most critical systems affected by the reduction of 

gravity during spaceflight. Throughout long space travel, the sensory motor system partially 

recovers from exposure to low gravity and this may have some effects both on the astronauts and 

on the final result of the mission. The reorganization of the three main sources of spatial 

information (visual, somatosensory and vestibular systems) is necessary for human beings to 

adapt to the new space environment. 

It was reported that in reduced gravity conditions, signals from the central vestibular 

system, peripheral pressure receptors and visual cues become misleading to a point where 

disorientation occurs. Therefore, visual reference aboard the spacecraft becomes important for 

astronaut orientation [24]. The incoming input conflict experienced by astronauts induces a 
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condition known as Space Adaptation Syndrome (SAS) which is the major cause of Space 

Motion Sickness (SMS). The perception of position and locomotion are the final result of the 

central nervous system ability to merge the auditory and visual signals with vestibular input and 

proprioceptive information as motion, temperature and pressure in muscles and skin [19, 25]. 

1.1.2.3. Cardiovascular system 

The cardiovascular system includes the heart, the circulatory system as well as blood and is 

linked to the lymphatic system. It is responsible for the supply of oxygen and energy to the 

organs and tissues and for the removal of the metabolic waste products [26]. Spaceflight induces 

significant effects on the cardiovascular system. The loss of gravitational forces that occurs 

throughout space travels causes a fluid shift from the lower to the upper part of the body which 

induces the characteristic facial oedema within the first days of microgravity conditions [26]. 

The head-ward fluid redistribution induces thin legs [26] (Fig. 3). Furthermore, due to the fluid 

shift, cranial veins dilate misleading the blood volume sensors which interpret this event as an 

increase of the blood volume followed by hypervolemia activation [27]. Indeed, decreased blood 

Figure 3: Fluid distribution in the human body during a spaceflight. 

(a) On Earth, gravity exerts a downward force to keep fluids flowing to the lower body. (b) In space, the fluid tends 

to redistribute towards the chest and the upper body. At this point, the body detects an "overflow" in and around the 

heart. (c) The body rids itself of this perceived "excess" fluid. The body functions with less fluid and the heart 

becomes smaller. (d) Upon return to Earth, gravity again pulls the fluid downward, but there is not enough fluid to 

function normally on Earth (Drawing modified from [26] by G. Pani). 
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volume (hypovolemia) was reported after spaceflight in conjunction with orthostatic intolerance 

[28] and the plasma volume was shown to be decreased of about 10-17 % [29]. In addition, 

studies in animals and astronauts found a consistent decrease in heart rate during spaceflight [30, 

31]. Finally, blood analysis showed reduction of plasma catecholamines which are linked to the 

muscle sympathetic activity and also correlated to diastolic pressure and heart rate [32, 33]. 

1.1.2.4. Immune system 

The immune system consists in immunological cells, lymph nodes and organs which are 

also altered under space conditions. Regulation and efficiency changes can have important 

effects on the ability to protect the human body from invasion of foreign pathogens. Impairment 

of the immune system can induce secondary immunodeficiency and raise the risk of developing 

bacterial or viral infections [34]. In the last 30 years a large variety of experiments on 

lymphocytes reported that immune system cells are influenced by space environment with a 

reduction in proliferation and cytokine production [35, 36]. An impaired mitogenic activation in 

microgravity was also reported [35, 37]. The cell-to-cell interaction of lymphocytes with 

associated cells as monocytes plays an important role in their activation. Indeed, the reduced 

activation of lymphocytes might be due to the impaired monocyte motility under low gravity 

[38]. Furthermore, an increase in apoptosis level was observed in T-lymphocytes exposed to real 

or simulated low gravity [39]. Gene expression and proteomic analysis underline a decreased 

secretion of IL-1 and IL-2, interferon and other cytokines [40-42] and a reduced production of α-

chain of interleukin 2 receptor [36]. Studies on rats and mice exposed to microgravity reported a 

hypoplasia
2
 of lymphoid organs like thymus, lymph nodes and spleen, subsequently associated 

with a reduced number of lymphocytes and erythrocytes [41, 43, 44]. 

The immune system is also involved in repeated wounds. During these events, blood enters 

the wound site and brings with it cellular elements and plasmic constituents [45-47]. Studies on 

                                                 
2
 Hypoplasia is underdevelopment or incomplete development of a tissue or organ. Sometimes it refers to an 

inadequate or below-normal number of cells. 
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intrinsic wound healing in rats reported that matrix formation in induced subcutaneous injuries 

was significantly inhibited under spaceflight conditions [48]. Additionally, an altered capacity to 

produce an adequate population of macrophages and a reduced collagen concentration in the 

wound has been reported. Due to the importance of collagen for wound strength, migration of 

certain cell types and angiogenesis, the reduced wound collagen content might affect the ability 

of a wound to heal successfully under spaceflight conditions [48].  

In addition to microgravity, immune system impairment can be increased by other stress 

factors such as radiation, anxiety, heavy work load and sleep deprivation [41, 49]. Modified diet 

and physical exercises are considered as a countermeasure to immune deficiency induced by 

spaceflight environment and in a group of female volunteers subjected for 60 days to the bed rest 

test, an increased production of primary antibody was observed [50]. 

1.1.3. Cell response to the gravitational change 

Since basic life is developed in a gravitational environment and that the majority of cell 

processes are influenced by gravitational field, an adaptive process is expected in cells exposed 

to microgravity. One of the aims of space cell biology programs is to understand the mechanisms 

involved in the perception and the translation of mechanical signals as gravity.  

Several investigations performed in real or simulated microgravity reported morphological 

and functional changes in cells. As observed, microgravity can induce a certain variety of 

changes related to proliferation, differentiation, adhesion, cytoskeleton, migration and cell death 

[35, 38, 51, 52]. The first biological experiments took place in 1985 aboard the SpaceLab and 

reported a drastic reduction in lymphocyte proliferation [35, 53]. Further studies on other cell 

types, adherent and non-adherent, exposed to real or simulated microgravity confirmed a general 

reduction in proliferation [12, 54, 55].  

In all adherent cells, cell shape, adhesion and motility are important for growth and cell-to-

cell interaction. Furthermore, these three processes are cytoskeleton-dependent. The organization 
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and the production of the three main structures of cytoskeleton, microfilaments, microtubules 

and intermediate filaments, are altered in low gravity [38, 51, 56] and it induces several changes 

in cell shape, adhesion and motility [57-59]. Therefore, it has been hypothesized that 

cytoskeleton is one of the sensing cell systems directly linked to gravitational changes [60]. 

Moreover, it seems that microgravity plays an important role in the signalling pathways activated 

by growth factors, adhesion integrin‟s and Rho signalling [61-63]. Additionally, Rho Gases 

regulate motility related functions as well as proliferation and gene expression. 

Another important factor observed in low gravity is the increased cell death [64-66], 

described in both in vivo and in vitro studies [67, 68]. Cell death has also been reported to be 

induced by oxidative stress [66] and development of premature senescence [69-71] in 

microgravity conditions. 

1.2. Space radiations 

1.2.1. Cosmic and solar radiations 

In the 1960‟s scientists became aware of ionizing space radiation generated from three 

different origins: cosmos, sun and Earth. The early developments of electroscopes described in 

the pioneering works of Pierre Curie allowed the assessment of microcurrents of particles 

Table 1. Effects of microgravity on systems and cells 

Systems Cells 

 Decreased bone mass 

 Decreased muscle mass  

 Deconditioning of posture and gait control 

 Deconditioning of motion sensors and loss of 

balance  

 Deconditioning of the somatosensory system 

 Changes of cardiovascular activity and 

decreased plasma volume followed by 

hypovolemia 

 Head-ward fluid redistribution 

 Impaired immune system 

 Impaired wound healing  

 

 Impaired proliferation  

 Changes in differentiation 

 Reduced cell motility  

 Cytoskeletal alterations 

 Apoptosis 

 Down- and up-regulation of genes 
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crossing the atmosphere. In 1910, the Italian physicist Pacini suggested that electroscopes 

measured the background noise due to the Earth ground [72]. In the following years, Wulf 

demonstrated that at the top of the Eiffel tower half of the radiation emitted by the Earth ground 

had disappeared. Later, with a balloon experiment, Hess reported that the natural radiation in the 

atmosphere gradually decreased up to 1 km and increased again above 1.8 km, suggesting an 

income of extra-terrestrial radiations. Furthermore, he demonstrated that the increase of 

radiations is time independent and almost absent during solar eclipse events. The existence of 

radiations generated by cosmos was demonstrated for the first time in 1947 and the term “cosmic 

rays” was used lately by Millikan [73].  

Gilbert, Gauss and Poincaré hypothesized that charged particles may be influenced by the 

Earth‟s magnetism and that it exists as a ring around the Earth. The experimental proofs came 

with the Explorer I satellite and thereafter Pioneer IV. In 1958, these experiments allowed Van 

Allen and Franck to point out the existence of the Earth‟s radiation belt named “Van Allen belt” 

and the fact that this belt acts as a shield against charged particles [74, 75]. 

It is actually known that the Earth is continuously hit by high-energy ionized particles 

coming from outer space and it is protected by the magnetic belt and the atmosphere. The 

average dose from cosmic radiation on Earth's surface is merely 0.3 mSv/year. This dose is 

relatively low compared to the average Belgian dose of 4.6 mSv/year generated by natural and 

man-made sources of radiation (medical exposures, atomic bombs, nuclear accidents, etc…) 

[76]. However, an elevated dose of ionizing radiation with high energy (0.2 mSv/day) is received 

by astronauts in space [77]. Therefore, cosmic rays represent an important barrier to exploration 

of the solar system by human beings, since high-energy space radiations may have deleterious 

biological effects. The environmental radiation in space is typified by a wide variety of primary 

particles covering an extended range of energies. When passing through the mass of a spacecraft 

and its contents, these particles can participate in a number of different types of nuclear 
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interactions, producing a complex complement of both charged and neutral secondary particles 

[78].  

The three principal sources of primary ionizing radiation in space are: (1) galactic cosmic 

rays (GCRs), (2) energetic electrons and protons of the Earth‟s trapped radiation belts, and (3) 

solar particle events (SPEs) [78]. Space radiations are composed of particles with a wide range 

of charges and energies which are produced mainly by GCRs (Fig. 4).  

Between 1960‟s and 1970‟s the technological developments of particle counters allowed to 

determine the composition of cosmic radiation reporting that primary cosmic rays consist in very 

energetic (10
8
-10

20
 eV) protons and nuclear particles of atomic numbers and heavy ions up to 40 

MeV [79-82].  

Galactic cosmic rays (GCRs) are high energy particles coming from far away in the 

galaxy flowing into our solar system. The intensity of the GCRs is partly decreased by the 

magnetic field associated with the Sun‟s solar wind and by the Earth‟s magnetic field. There is 

no information about their source direction since these particles are scrambled by irregular 

interstellar magnetic fields on their way towards our planet. Due to their high energies, up to 10
20

 

eV, they most probably originate from supernova explosions, neutron stars, pulsars or other 

sources where high energetic phenomena are involved [78, 83]. The energy spectrum of the 

Figure 4: The three principal sources of space radiation: galactic cosmic radiation, solar wind and solar flare.  

The Earth magnetic field affects space radiations protecting the Earth [82]. 
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GCRs peaks at about 85% of the speed of light, or 1 GeV per nucleon in energy units, and 

consequently these particles are so penetrating that shielding can only partially reduce the doses 

absorbed by the crew [84]. Approximately 87% of the particles composing the GCR are protons, 

12% are helium nuclei and 1% are particles heavier than helium as high-Z and high-energy 

(HZE) particles. Iron ions, with 18%, as well as protons, with 24%, make a major contribution to 

the equivalent dose and their energy spectrum goes from 100 to 1000 MeV/nucleon [83, 85].  

The Earth is surrounded by intense region of energetic protons and electrons known as Van 

Allen Belts or Earth’s trapped radiation belts. These particles are trapped by the geomagnetic 

field where they follow a complex motion named cyclotron motion. The particle motion is not 

uniform and the field lines converge close to the poles. This induces charged particles to move 

back and forth along the belt lines, changing their direction at the points close to the poles [78]. 

Trapped electrons are organized in two belts or zones; the inner belt electron energies are less 

than 5 MeV and the outer is above than 7 MeV. Most of the low energy electrons are stopped by 

the spacecraft shield. Electrons with energies about 10 MeV become very important due to their 

dangerousness but since they are in the outer belt, which is above the low-Earth‟s orbit (LEO; 

max altitude about 2000 km), it means that aboard the ISS trapped electrons represent a small 

risk for human health [78]. Trapped protons are disposed in a single belt where the intensity 

distribution decreases proportionally to the distance from Earth. The energy spectrum of trapped 

protons extends from several MeV up to several hundreds MeV, with a board peak between 150 

and 250 MeV and the majority of these protons is beyond the ISS orbit. However, due to the fact 

that the Earth magnetic field axis is displaced from its rotation axis, there is a region of the 

Brasilian coast, named South Atlantic Anomaly, where the geomagnetic field drops unusually 

close to the Earth. In this area, at the altitude of 400 km along the ISS orbit, half of the ionizing 

radiation dose is from trapped protons and the other half is from GCR‟s [78]. 

The solar wind is the continuous emission of particles from the sun and is mainly 

constituted by protons and electrons. The intensities of these particles are between 10
10 

and 10
12
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particles cm
-2

*s
-1

*sr
-1

 and they are characterized by a speed between 300 and 800 km*s
-1

. 

Furthermore, the energies are so low (100-3500 eV) that they can be blocked by the first 

micrometres of skin; therefore they do not have an impact on human health. Large amount of 

energies can be occasionally released from the sun surface as unexpected explosion of gamma 

rays, hard and soft X-rays and radio waves. These types of events are named solar particle events 

(SPEs) and the produced particles are trapped by the interplanetary magnetic field. The SPE 

particles emitted have a wide variability in number and energy spectrum of particles and they 

have the potential to expose space crew to life threatening doses [83].  

Most of the energy loss experienced by primary particles as they pass through a spacecraft 

will cause ionization. However, the energies of many of these particles are sufficiently high and 

the amount of shielding represented by the spacecraft is sufficiently large so that a fraction of 

these primary particles will undergo nuclear interactions with the constituent nuclei of the 

spacecraft and its contents, producing secondary particles. These secondaries can include 

knockout protons, neutrons and α-particles, as well as recoil heavy nuclei. While the number of 

different particle species is large and the energy spectrum which they occupy is quite broad, their 

fluxes are often low (Fig. 5). Rare events associated with solar flares and coronal mass ejections 

Figure 5: Primary and secondary particles inside the spacecraft. 

Primary particles (plain thick arrows) through the spacecraft structure skin and components (racks and boxes) and 

the generated secondary particles (dashed thick arrows). (Drawn by G. Pani) 

Boxes 
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(CMEs) can produce sudden and dramatic increase in flux. Spaceship shielding is thus one of the 

most important factors in determining the characteristics of the ionizing space radiation inside a 

spaceship [78]. 

1.2.2. Shielding materials (Target) 

Protecting the astronauts from cosmic radiations during space missions is of crucial 

importance but shielding a spacecraft is more complicated than shielding a nuclear reactor or 

particle accelerators, due to obvious mass constraints. The spacecraft hull is mainly made out of 

aluminium and polyethylene and the practical shielding thicknesses are insufficient to stop most 

of the incident GCR particles. Most of the energy loss experienced by primary particles causes 

ionization passing through a spacecraft skin. However, the energies of many of these particles 

are sufficiently high and the amount of shielding represented by the spacecraft is adequately 

large that only a fraction of these primary particles will undergo nuclear interactions with the 

constituent nuclei of the spacecraft hull and its components. These interactions cause 

fragmentation of the incident ions into lighter charged particles and neutrons, producing 

secondary particles [86, 87]. In many reactions, the resulting fragments have more biological 

significance than the incident ions [88]. In the last decade, several analyses and experiments on 

shielding materials of ISS have been performed. These investigations using 1 GeV/nucleon iron 

ions showed that for metallic targets and thin polymethylmethacrylate it was possible to measure 

the fluences of the primary beam and produced fragments, while for the metallic targets and 

thick polymethylmethacrylate (PMMA) targets it was only possible to measure the iron fluence 

[87]. In 2006 was launched Genesis 1, a new inflatable module designed and produced by 

Bigelow Aerospace. Due to the light material and the reduced space when is deflated it allows to 

be easily transported into space. Differently from traditional modules, primary envelope of this 

type of payload is made from non-metallic soft materials, therefore, into these habitats, the 
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radiation dose is lower due to the significant reduction of scattering effect and the secondary 

particle production. 

With the actual method used to shield spacecrafts, astronauts will be exposed to dangerous 

doses of radiation from cosmic rays during interplanetary voyages.  

The geomagnetic field produced by the Earth was a strong inspiration to design a new 

spacecraft shield. Innovative research has begun to examine the use of superconducting magnet 

technology to protect astronauts from radiation during long-duration spaceflights creating a 

magnetic field around the spacecraft. It could be that next generation of spacecraft will be 

implemented with this technology, allowing to build safer and lighter spaceships [89]. 

1.2.3. Space dosimetry 

Measurements of cosmic rays have been performed in space by using active and passive 

devices during all manned missions [90, 91]. During various shuttle flights, on Apollo, Skylab, 

MIR and ISS [20], the effective doses varied with altitude and inclination of each flight. Highest 

values were observed during the high altitude shuttle flights at low inclinations with a radiation 

dose up to 4 mSv/day, and during the Apollo Program, with about 3 mSv/day. Early 

measurements on the Mir Orbit Station taken during a period of eleven years (1986 to 1997) 

showed dose rates from 162 to 508 μGy/day [78]. For an ISS type orbit (51.6° inc., 320-450 km 

altitude), it was estimated that the neutron contribution to an astronaut's total equivalent dose 

was in a range from 30% to 60% [78]. In the BASE-A flight experiment performed in September 

2006, on board of ISS (ca. 400 km altitude) (Soyuz Mission 13S), were TLD dosimeters (passive 

dosimeters) placed that measured cosmic radiation for 11 days. These dosimeters indicated an 

average dose of 180 μGy/day [92]. The Matroshka-MOSFET dosimetry mission provided a large 

quantity of radiation dose data inside the ISS for the period of January 2006 to April 2007, 

showing an effective 30 days and annual doses of 18 and 219 mSv, respectively [93]. 
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1.2.4. Simulating accelerated space particles on Earth 

Cosmic rays are a pool of various accelerated particles and investigating the effects of 

space radiation is crucial for future deep long space travel. One of the methods used on Earth to 

study the effects of cosmic radiation is the use of a stratospheric balloon which allows to 

transport samples at an altitude up to 40 km for a few days and to expose them to the wide 

variety of accelerated particles coming from space.  

To obtain accelerated particles on the Earth, two ways are known: the use of natural 

sources or special facilities to produce and accelerate ions.  

The use of particle accelerators can deliver beams with high quality of many elements. 

Particle accelerators can be divided into two main groups: linear accelerators, which produce 

low energy beams (below 50 MeV), or synchrotron and cyclotron, which produce high energy 

beams (up to 2 GeV). These types of accelerators are available at the European centres GSI 

Helmholtz Centre for Heavy Ion Research (German: GSI Helmholtzzentrum für 

Schwerionenforschung GmbH; Darmstadt, Germany) and Grand Accélérateur National d'Ions 

Lourds (GANIL; Caen, France). Furthermore, many European centres, in collaboration with 

ESA are also able to perform experiments related to space radiations. Other irradiation facilities 

are located at ESA/ESTEC (Noordwijk, the Netherlands) and at the Belgian Nuclear Centre 

SCK•CEN in Mol, Belgium, where natural gamma sources, as Cobalt-60 and Cesium-137, and 

neutron sources, as Californium 252, are used as an alternative to the conventional particle 

accelerator to simulate cosmic radiation.  

1.2.5. Radiation protection 

1.2.5.1. Dose 

In radiation biology, it is crucial to be aware of the radiation dose. Indeed, the induced 

damage is proportional to the received dose, the energy and the number of ionizations. The Gray 

(Gy) is the reference unit for the absorbed dose which corresponds to the absorption of one 
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Joule of ionizing radiation by one kilogram of matter. A deterministic effect is induced by high 

doses; therefore, an increase for radiation dose induces a proportional change in the observed 

effect. However, the frequency and the intensity of the effects induced by low doses, below 0.5 

Sv, can also be stochastic. In its 1990 recommendations [94], the International Commission on 

Radiation Protection (ICRP) introduced another radiation unit used in radiation biology which is 

the Sievert (Sv), that is the International System of Units (SI) derived unit of equivalent 

radiation dose. Quantities that are measured in Sieverts are designed to represent the stochastic 

biological effects of ionizing radiation. In the same year ICRP also defined the quantity effective 

dose as the sum of the equivalent doses in the principal tissues and organs, each weighted by a 

tissue weighting factor (wT) [94]. Furthermore ICRP emphasises that the effective dose provides 

a measure of radiation detriment for protection purposes only; it should not be used for 

epidemiological evaluations and does not provide an individual-specific dose. 

Up to now, the risk related to ionising irradiation has been predominantly estimated by a 

linear non-threshold (LNT) model. For extrapolation on the effect of low doses, few models 

were proposed to estimate the induced effects. The LNT model was proposed to infer the best 

relationship between stochastic and deterministic effects. However, this model might under or 

over-estimate the radiation-induced effects [95]. Indeed, the observed phenomena of hyper-

radiosensitivity in the low dose range, the inducible radioresistance, the bystander effects [96], 

Figure 6: Graph of models proposed to evaluate the risks associated with low dose radiation. 

The linear non-threshold (LNT) model (continuous line), overestimation model (upper curve) and 

underestimation model (lower curve). (Drawn by G. Pani) 
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genomic instability and adaptive response show a differentiated relationship between the 

effective radiation risk and equivalent doses below 0.5 Sv (Fig. 6).  

1.2.5.2. Dose rate 

Another important notion in radiation biology is the dose rate. Indeed, it expresses the 

received dose (Sv or Gy) in a certain time period (seconds, minutes, hours, days, ……). 

Therefore, exposing an organism to a high dose for a short time induces effects that can be 

already observed within a short period and followed throughout a long time after irradiation. On 

the contrary, exposure to the same dose throughout longer time might allow the organism to 

activate different strategies to repair the induced damage [97] or to adapt to the new situation, if it 

does not undergo death process. 

1.2.5.3. Radiosensitivity 

It is known that patients can display hypersensitivity to ionising radiation after radiation 

therapies. Development of side-effects after radiation therapy in normal tissues has been reported 

in 5–7% of cancer patients and referred as “clinical radiation reactions”; such effects may be 

either acute or late [98]. Among the factors leading to severe normal tissue reactions after 

ionizing radiation exposure, the individual radiosensitivity is considered of utmost importance. 

The patients with equivalent radiotherapy treatment developed acute or late reactions in normal 

tissues underlying three types of sensitivity: low, moderate or high radiosensitivity. Different 

individual radiosensitivity might allow an adaptation to the maximal tolerable dose with an 

overall increase in the cure rate [99]. Moreover, a different radiosensitivity at the single organ 

level has been reported. Therefore, to provide a better basis for radioprotection purposes, the 

organ radiosensitivity (effective dose) was taken into account and the tissue weighting factors 

(equivalent dose) were introduced by the ICRP [100]. Furthermore, for organ radiosensitivity 

other factors such as cell type, age, organ proliferation status and microenvironment, all having a 

critical role should also be taken into account [101, 102]. 
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1.2.5.4. Linear energy transfer (LET) 

Another important parameter that should be taken into consideration is the linear energy 

transfer or LET. The LET of a heavy ion particle indicates the rate of energy deposition in the 

linear dimension of the absorbing material and it is a measure of the energy transferred to the 

material. A Bragg peak is produced when the transferred beam energy increases the passing 

through the material. In the Bragg peak the LET is defined as "high LET" and the biological 

effects of radiations are well observed. On the contrary, less biological effects are observed 

during the initial energy transfer, and in this case the LET is defined as low [103]. 

With regard to spaceflight, these varying track structures can arise when primary high LET 

particles in space interact with spacecraft-shielding material and the human body, resulting in 

secondary radiation like neutrons and charged particles [104]. 

1.2.6. Biological effects of ionizing radiations 

It is known that exposure to space radiations can affect human health, thus it is important 

for the safety of crew members to estimate the possible effects incurred during space missions. 

In fact, radiation exposure is one of the principal risks for astronauts on extended space missions, 

such as a long permanence aboard the ISS or future missions to Mars. After ionizing radiation 

exposure, several effects at the cellular level, as DNA damage, oxidative stress, arrest in cell 

cycle, apoptosis, change in cell motility and senescence, have been reported. 

1.2.6.1. Oxidative stress 

The cell damage induced by an excess of oxidants as reactive oxygen species (ROS, e.g., 

oxygen ions, free radicals, and peroxides) are known as oxidative stress. Low amounts of ROS 

are naturally produced in cells and are necessary for important cellular functions, but they are 

also harmful in excess. Certain cell types produce ROS to kill invading microbes; furthermore, 

ROS are also involved in cell signaling [105]. Finally, oxidative stress is known to play a role in 
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cellular processes, such as aging and apoptosis. It has also been linked to some diseases like 

Alzheimer‟s disease [106] or in atherosclerosis that can lead to cardiovascular diseases [107]. 

Ionizing radiations, as well as other factors, can induce a state of oxidative stress. Ionizing 

radiation can induce cellular damage and stress both directly, by energetic disruption of DNA 

integrity, and indirectly, as a result of the formation of intracellular free radicals from water. 

DNA damage can also be indirectly induced by cytoplasm irradiation, as demonstrated in an 

experiment with free radical scavengers, where the DNA damage is dependent on ROS 

generation [108, 109]. As a result of irradiation, ROS can be produced by cells for several 

minutes or even hours after exposure; in parallel to ROS production, cells are induced to raise 

their antioxidant expression [108]. The higher production of antioxidants may play a role in the 

radioadaptive response [108]. Indeed, it has been observed that the in vitro or in vivo use of 

exogenous antioxidants as N-acetylcysteine, ascorbic acid, sodium ascorbate, α-lipoic acid, co-

enzyme Q10, L-selenomethionine [110], or enzymes such as the manganese-containing 

superoxide dismutase (MnSOD) [111] reduce the indirect damage induced by radiation 

generated ROS, thus playing an important role in the radioprotection of organisms. 

Actually, the spacecraft shielding against space radiation is not fully efficient yet. Indeed, 

it has been suggested to integrate into the astronaut diet additional antioxidants to decrease the 

risk related to oxidative stress throughout long-term journeys in space [112, 113] . 

1.2.6.2. DNA damage 

Due to environmental factors and normal metabolic processes inside the cell, DNA damage 

occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day.  

Endogenous sources of DNA damage include hydrolysis, oxidation, alkylation, and 

mismatch of DNA bases, while sources of exogenous DNA damage include ionizing radiation, 

ultraviolet (UV) radiation, and various chemical agents. At the cellular level, damaged DNA that 

is not properly repaired can lead to genomic instability, apoptosis or senescence, which can 
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greatly affect the organism development and ageing processes. More importantly, loss of 

genomic integrity predisposes the organism to immunodeficiency, neurological disorders, 

cardiovascular diseases and cancer. Therefore, it is essential for cells to efficiently respond to 

DNA damage through coordinated and integrated DNA-damage checkpoints and repair 

pathways [103, 114]. The vast majority of DNA damage affects the primary structure of the 

double helix as single (SSBs) or double strand breaks (DSBs). The DNA damage repair 

pathways include the direct reversal, the mismatch repair (MMR), the nucleotide excision repair 

(NER), the base excision repair (BER), the homologous recombination (HR) as well as the non-

homologous end joining (NHEJ) pathways. 

Radiations can directly induce two major types of DNA damage, SSBs and DSBs [115], 

and are directly proportional to the radiation dose. When DSBs occur, H2AX histones in the 

vicinity of the break becomes phosphorylated on residue serine 139, leading to the formation of 

so-called -H2AX foci [116]. Phosphorylated histone 2AX (γ-H2AX) is used as marker of 

induced DSBs [114] and can be detected and estimated through immunofluorescence staining 

and image analysis [117]. The final effect can be related to the LET of the irradiation. In fact, 

samples exposed to low LET present less damage than biological samples exposed to high LET 

[103]. The distribution of H2AX foci is also related to the source or the facility used to irradiate 

(Fig. 7) [114]. X-ray tube and natural sources produce a beam cone inducing a homogenous 

distribution of DSBs into the nucleus (Fig, 7 A). On the contrary, particle accelerators produce 

lines of DSBs in exposed nuclei (Fig. 7 B-C). 

Figure 7: Different distributions of γ-H2AX related to the ionizing radiation sources.  

A) 2 Gy of gamma-rays, B) 0.5 Gy at 54 KeV/µm of accelerated silicon ions, C) 0.5 Gy at 176 KeV/µm of 

accelerated iron ions, D) Model of DNA damage induced by ionizing radiations [114]. 

A B C D 
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1.2.6.3. Cell cycle checkpoints  

Changes in DNA integrity activate the cell cycle checkpoint processes in order to allow 

time for repairing the damage before proceeding to mitosis. For successful long-term cell 

proliferation two processes should be performed correctly. First, the chromosome replication–

division cycle has to occur in a correct order. Second, the events of chromosomal synthesis have 

to be repeated with a period equal to the mass doubling time. The first processes are necessary to 

maintain the DNA integrity and the second processes are necessary to maintain the cell nucleo-

cytoplasmic ratio within viable bounds. The correct sequence of events is a robust characteristic 

of the chromosome cycle. The cell cycle arrest due to DNA damage suggests that cell replication 

steps are sequence dependent. Pre- and mitosis process can be stopped by deterrent factors like 

the DNA replication block due to drugs, the cell growth block induced by nutrient deprivation or 

the DNA damage caused by internal or external factors. 

The eukaryotic cell cycle has three main checkpoints: at the end of G1, at the end of G2 

and between metaphase and anaphase (Fig. 8). If the conditions for a successful cell division are 

not reached, the chromosome cycle can be blocked in one of the three checkpoints (Fig. 8). The 

core components of the eukaryotic cell cycle engine are cyclin-dependent protein kinases (Cdks) 

and their regulatory subunits (cyclin). Three different complexes as G1 cyclin–Cdk, S cyclin–

Cdk and M cyclin–Cdk complexes are important for progression through the next event. 

Furthermore, S cyclin–Cdk complexes are responsible for initiating and completing DNA 

replication and the M cyclin–Cdk complexes drive eukaryotes into mitosis and restrain re-entry 

into G1 phase.  
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The DNA damage modulates the signal arresting the cell cycle at specific checkpoints by 

inactivating Cdks [118, 119]. In mammalian cells, ionizing radiation generates double-stranded 

breaks in DNA, which modulates phosphorylation with following activation of ATM. Certain 

number of substrates involved in DNA repair, apoptotic death and cell cycle arrest are 

phosphorylated by ATM. ATM phosphorylates and inactivates MDM2, which is involved in the 

degradation of p53 protein by the ubiquitin–proteasome pathway. Therefore, p53 accumulates in 

response to DNA damage induced by radiation. p53 promotes the transcription of several genes, 

like the inhibitors of all cyclin–Cdk complexes and proteins involved in the DNA repair. Finally, 

p53 can also be involved in the cell suicide programme (apoptosis), presumably if the DNA 

damage is not repairable. Moreover, ATM activates protein kinases like Chk1 and Chk2, which 

then phosphorylate and stabilize p53, thereby enhancing the effects of p53 in response to DNA 

damage. Chk1 and Chk2 can also activate Cdc25, which is an activator of cyclin-Cdks (Fig. 8). 

The G1-arrest state is enhanced by the quick degradation of Cdc25A which is involved in the 

activation of CycA–Cdk2 and CycE–Cdk2 [120]. Another target of ATM is BASC (Brca1-

associated surveillance complex). The activation of this particular complex triggers the DNA 

repair and arrests DNA replication.  

Figure 8: Cell cycle checkpoint accelerators (green) and breaks (red) of the cell cycle engine.  

Checkpoint pathways (dashed lines) modulate the activities of the accelerators and breaks. Pro, prophase; Meta, 

metaphase; Ana, anaphase; Telo, telophase [118]. 
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Throughout these pathways, ATM plays an important role in cell cycle arrest, genome 

repair and apoptosis in response to DNA damage directly or indirectly induced by radiation. 

1.2.6.4. Apoptosis  

Apoptosis, or programmed cell death, is one of the major controlled cellular processes. 

During this event cells can undergo self-destruction in case of unrepairable damage. Apoptosis is 

also involved in modulating the cell number and proliferation in normal growth and 

development. When cell responses to DNA damage, hypoxia, or other types of stress are 

induced, p53 is partly responsible for leading to cell-cycle arrest, senescence and cell death. The 

levels and activities of p53 proteins are involved in apoptosis process and are carefully regulated 

in normal cells. 

All molecular processes involved in radiation-induced apoptosis are not completely 

known.  The involved mechanisms probably change according to the cell type or the received 

radiation dose [121-123]. Upon radiation-induced DNA damage, mechanisms involved in cell 

cycle arrest, as ATM and DNA-PK activation and reduced degradation of p53 due to MDM2 

inhibition, allow cells to repair the genome. On the contrary, if the genome is not repairable, p53 

concentration increases and induces p21
waf1/cip1

, a protein involved in cell-cycle arrest, to up-

regulate Bax, Noxa and p53 up-regulated apoptosis modulator (PUMA). In addition, p53 down-

regulates the expression of anti-apoptotic proteins as Bcl-2 and Bcl-XL. ATM is also involved in 

the phosphorylation of E2F1 which up-regulates pro-apoptotic proteins like through p73, Apaf-1 

and a few caspases. Apoptosis can be induced also by membrane-derived signals, as 

sphingomyelin, ceramide [124, 125] and Daxx, a CD95-binding protein [126] which can activate 

pro-apoptotic SAPK/JNK pathways. Targets of SAPK/JNK include p53, Bax, c-Jun and caspases 

[126-129] from which activation can lead to apoptosis. The total amount of cell damage seems to 

be an important element to lead the cell to repair the damage and survive, or to undergo 

apoptosis. 
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1.2.6.5.  Senescence 

In 1961, Hayflick and colleagues reported that normal human fibroblasts have limited 

number of replicative cycles [130]. Human fibroblasts arrested the cell cycle and exhibited 

different cell morphology. This stable cell state is known as replicative or cellular senescence. 

Generally cellular senescence reflects few changes that occur throughout the ageing of 

organisms. The difference between pre-senescent and senescent cells lies in multiple aspects of 

cellular physiology [131, 132]; for example, senescent cells present changes in gene expression 

[133]. Senescent cells frequently secrete enzymes and cytokines that can induce death of 

neighbouring cells or tissue damage contributing to the age-related decline in tissue and/or the 

genesis of certain age-related pathologies [134, 135]. 

At the molecular level, cellular senescence may involve various mechanisms which are not 

completely understood. Numerous studies suggest that telomere shortening is one of the main 

reason for replicative senescence [136]. It has been considered that telomere shortening over a 

certain point might modulate the DNA damage response activating one of the cell cycle 

checkpoints [132]. Another reported sign of senescence is an increase of lysosomal β-

galactosidase, observed by SA β-gal histochemical staining performed in tissues or cells [137]. 

Indeed, this method is used as a marker to detect senescence induced by oxidative stress. 

Cellular senescence can be induced by a variety of extrinsic factors, such as ionizing 

radiation, UV and hydrogen peroxide [138]. The extrinsic senescence occurs when cells still 

have functional telomeres and the potential to proliferate under suitable culture conditions. In 

this case, signals to senesce originate from sources independent of telomeres. In a few 

experiments it was reported that low doses of ionizing radiations can induce senescence in 

cultured cells [139, 140]. 

1.2.6.6. Cell motility  

Cell motility is required for many important physiological processes during development, 

such as cell migration during gastrulation, embryological development, tissue regeneration and 
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axon growth. The basis for most of the active movements exhibited by cells is the cytoskeleton. 

In some instances motility is simply generated by its regulated assembly and disassembly. In 

other cases, motility results from the activities of „motor‟ proteins which interact with the 

different cytoskeletal elements.  

Several investigations on cancer irradiation therapies reported that ionizing radiation can 

induce different effects on metastatic capabilities of malignant tumour cells. In these studies cell 

adhesion capability to extracellular matrix, cell migration and cell invasive capability were taken 

into account. High doses of X-rays and protons reduce human fibrosarcoma cell adherence to 

substrates like fibronectin, laminin, and vitronectin; on the contrary, cells exposed to 4Gy of 

carbon-ions showed a significantly higher attachment to fibronectin [141]. Furthermore, it was 

observed that migration capability of human fibrosarcoma cells decreased after proton as well as 

carbon ion low dose irradiations. On the other hand, low doses of X-rays (0.5Gy) increase cell 

motility in the same cell type [141]. In other cell types like AsPC-1, BxPC-3 and MIAPaCa-2, C-

ion irradiation (2 Gy) suppressed the migration of cells, and diminished MIAPaCa-2 cell 

invasion [102]. On the other hand 2 Gy C-irradiation induced invasiveness in the PANC-1 cells, 

without altering their migration ability [102]. Furthermore, changes in distribution and 

expression of cytoskeletal proteins were observed in cells exposed to ionizing radiation [142-

144]. Therefore, cell motility changes induced by ionizing radiation might be linked to the cell 

types and to the accelerated particle types used.  

1.3. Biological effectiveness of combined conditions 

In the previous sections, the two main space conditions, microgravity and cosmic 

radiations, and their respective effects, were separately described. In real space conditions both 

weightlessness and ionizing radiation are simultaneously experienced. Hence, it is important to 

understand the combined effects of the two conditions in order to estimate the risk for astronauts 
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during a long-term mission. Concerning the effects induced by both stressors, three main theories 

with supporting experiments have been developed and performed. 

The first hypothesis proposes a synergistic effect when the two stressors are combined. 

Within the studies on lymphocytes exposed to simulated low gravity combined with gamma 

radiations, it was observed that DNA repair dynamics were delayed following these stressors 

(Fig. 9) [145]; furthermore, an increase of apoptosis was observed in simulated low gravity after 

irradiation [145]. 

The second hypothesis proposes an antithetical effect due to combination of both space 

stressors. It is known that radiation or microgravity can induce apoptosis, on the contrary the 

combination of the two stressors showed a decrease in radiation-induced apoptosis [146] and cell 

cycle arrest in G2 phase [147] upon low gravity. A pertinent hypothesis was proposed by Manti 

[148] proposing that cells exposed to microgravity might tolerate higher DNA damage, inducing 

a better adaptation with lower level of radiation-induced apoptosis and cell cycle arrest. 

However, more damaged cells would survive but it might increase the mutation rate due to 

higher error during repair mechanisms and in absence of G2 phase block [149]. 

The third hypothesis proposes uncorrelated effects with the combined space conditions. 

Human fibroblasts exposed to 5-10 Gy of X-rays before spaceflight did not show any difference 

compared to the controls in the survival curves and in the DNA repair kinetics [150]. 

Figure 9: Kinetics of γ-H2AX foci in peripheral blood lymphocytes (PBLs) irradiated with 5 Gy of γ-rays and 

incubated at 1×g or in MMG (μg) during repair time.  

(A) Fraction of cells positive for γ-H2AX foci, determined by counting 300–500 cells for each experiment 

[149]. 

A B 



Introduction 

32 

 

 Central nervous system: a system in continuous reorganization. 2.

 The nervous system consists of two main divisions: the central nervous system (CNS), 

which is composed of the brain and the spinal cord, and the peripheral nervous system. The 

peripheral nervous system (PNS) consists in the nerves that bring information from the outside 

world via the sensory systems, and the nerves that carry information from the body's interior to 

the spinal cord and brain. The brain is the dominant structure of the nervous system. It is the 

master controller of all body functions, and the analyser and interpreter of complex information 

and behaviour patterns. Neurons are considered as the most important cells in the nervous system 

[151]. The main property that makes neurons unique is their capability to send signals to specific 

target cells over long distances. Observing neurons, three main morphological structures can be 

recognized: the soma or cell body, the surrounding short extensions named dendrites and a few 

long extensions named axons (Fig. 10 A). Axons and dendrites together are named neurites. The 

tips of developing axons are enlarged structures called outgrowth cones (Fig. 10 B). These 

exhibit a highly active, ameboid-like array of filamentous processes that extend and retract 

continuously. The direction of outgrowth of these processes determines the direction of the axon 

extension and hence the direction of axon pathway formation. The outgrowth cone motility and 

the direction of pathway formation is influenced by diffusible attractant or repellent substances 

secreted by their intermediate or final destinations. [152].  
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2.1. Neuronal network plasticity 

Throughout the developmental stages, neuron precursors are able to move and extend 

dendrites and axon to establish synapses with target cells and become mature neuron. Plasticity 

is the final phenomenon which occurs in the developing brain whereas neuronal network 

plasticity, or neuroplasticity, is an ability of the adult brain to reorganize connections between 

neurons. Basically, the term “neuroplasticity” is related to the neuronal capability to modify 

some functional processes in response to the alterations in incoming information [153]. 

Moreover, plasticity is an intrinsic property of the nervous system maintained throughout life 

enabling to include important physiological changes allowing modification of functions and 

structures in response to environmental changes via the strengthening, weakening, pruning, or 

adding of synaptic connections as well as by promoting neurogenesis [154]. Furthermore, it has 

been shown that environmental changes can alter cognition and behaviour by modifying 

connections between existing neurons in the hippocampus, cortex and other parts of the brain 

[155]. 

In the neuronal network, remodelling the outgrowth cone activities plays an important role 

in modifying and increasing the terminal arborisation of the axon. Modification in the axonal 

A 

Figure 10: Neuron morphology (http://www.superinterestingfacts.com/top-ten-neuron-facts/) (A) and neurite 

outgrowth cone (B).  

Stable microtubules are available in the neurite shaft and F-actin network, F-actin bundle and dynamic 

microtubules are available in the cortical zone (peripheral area of cells with high density of microfilaments) [152]. 

B 

http://www.superinterestingfacts.com/top-ten-neuron-facts/
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arborisation is not the only activity involved in the neuroplasticity; also formation of new 

dendritic spines is also important in this process. The dendritic spines are short extensions at the 

side of the dendrites which are involved in the process of synapsis creation. They are the 

postsynaptic sites to which the presynaptic buttons have contact. They have a complex 

ultrastructure and come in a large variety of shapes [156]. Furthermore, spines are not static but 

can undergo rapid shape changes [157, 158] that are influenced by neuronal activities [159]. 

As previously reported, space conditions can alter cell motility reducing the capability of 

cells to migrate on substrates and since the outgrowth cone is regulated by cell locomotion roles, 

hence, it might be that the remodelling of neuronal network is affected by reduced gravity and 

ionizing radiations. 

2.2. Synaptic plasticity or connectivity 

A single neuron generally receives multiple synaptic inputs from different neurons and 

processes these excitatory and inhibitory inputs through temporal and spatial summation. The 

number of neurons with a synaptic connection to a single neuron and the plasticity of these 

connections are the most basic features underlying the construction of neuronal circuits and 

circuit plasticity. The synaptic connections to one cell are, in general, highly selective. In 

addition to these selective mechanisms, the activity-dependent increase in synaptic connections 

is also indispensable to maintain the brain function over life.  

The adult brain is capable of remodelling its neuronal arborisation. The term synaptic 

plasticity refers to the neural activities which can also modify the behaviour of neural circuits by 

one of the three mechanisms: first by modifying the strength or efficacy of synaptic transmission 

at pre-existing synapses, second by eliciting the growth of new synaptic connections or the 

pruning away of existing ones and third by modulating the excitability properties of individual 

neurons. The neuronal network activity can enhance or depress the synaptic transmission and 

these changes can induce modifications that may persist for days or weeks or perhaps even 
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longer. Transient forms of synaptic plasticity have been associated with short-term adaptations to 

sensory inputs, transient changes in behavioural states, and short-lasting forms of memory. More 

lasting changes are thought to play important roles in the construction of neural circuits during 

development and with long-term forms of memory in the mature nervous system. Some of the 

forms of synaptic plasticity found at the excitatory synapses in the mammalian brain are short-

term mechanisms, long-term potentiation (LTP) and long-term depression (LTD) 

mechanisms [160-164].  

As reported in sections 4.1 and 4.2, experiments performed in real or modulated 

microgravity or using ionizing radiations showed activity and distribution changes in synapses. 

In particular, the potential action, the number of synapses, the signal wave and their propagation 

velocity were affected during or after exposure to space conditions [165-167]. Moreover, it has 

been observed that the SMS, which is also due to the misleading of information coming from the 

environment to the CNS, appears within the first hours of spaceflight with a decrease of 

symptoms over the permanence in space. Therefore, space conditions might induce initially 

long-term depression in the central nervous system followed by long-term potentiation in order 

to adapt to the new environment. 

2.3. Neurogenesis 

Adult neurogenesis is the process to generate new neurons which will integrate into formed 

neuronal networks after postnatal development. Investigations on rodents exposed to 

microgravity or ionizing radiations, as heavy ions, reported that both conditions influenced the 

neurogenesis and the migration of new neurons to the final destination during development as 

well as in adult stages [168, 169] reducing the capability of generating or regenerating processes 

in the CNS. 
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2.4. In vitro models 

Several studies on neuronal networks and synapsis plasticity, neurogenesis and their 

modulation by external stimuli or compounds have been performed on adult laboratory animals 

like mice, rats or rabbits. Today, these investigations can be partially performed using facilities 

such as magnetic resonance imaging (MRI) or computational tomography (CT) without 

sacrifying animals. Most of the time images obtained by CT and MRI have low resolution and 

these techniques require anaesthesia or markers inducing stress in animals, therefore histological 

methods for deeper investigations are required. To study certain events which occur in neurons, 

in vitro models should be used. To obtain an in vitro model two types of cells can be used: cell 

lines or primary neurons. Cell lines as human neuroblastoma (SH-SY5Y) and rat 

pheochromocytoma (PC12) cells can be differentiated in post-mitotic neurons and used to study 

phenomena linked to neuronal physiology and morphology or events involved in 

neurodegeneration induced by exogenous factors (drugs, infections, temperature or radiations) 

Figure 11: Neurogenesis in adult brain (http://www4.utsouthwestern.edu/HsiehLab/research.html). 

New neurons generate from stem cells in the ventricle and move towards the inner part until they reach the final 

destination. 

http://www4.utsouthwestern.edu/HsiehLab/research.html
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[170-172]. To study neuronal differentiation mesenchymal stem cells can be cultured and 

stimulated to differentiate into neurons [173]. Furthermore, primary neurons from hippocampus, 

cortex and cerebellum can be cultured after dissection and dissociation of tissues. This type of 

cell culture is more sensitive than cell lines, in particular if compounds are tested to determine 

their effect on the outgrowth cone [174].  

Most of the studies are performed on non-dense neuronal networks in which immature 

neurons are not yet well connected and that makes them easier to investigate processes linked to 

the outgrowth cone and the extension of neurites. In other cases, neurons need to be well 

connected in order to obtain mature neurons in culture. It was reported that immature neurons, 

available in non-dense neuronal networks, and mature neurons, available in dense neuronal 

networks, differ in action potential activities, spontaneous synaptic currents, number of synapses 

and neurite growth speed [175, 176]. It was also described that synaptic protein distribution and 

associated vesicles are partially dependent on the acquisition of functional synaptic transition 

[175]. Additionally, recent studies suggest that GABA and glycin neurotransmitters have 

inhibitory activity on mature but excitatory activity on immature cortical neurons [177, 178]. 

Furthermore, it was reported that mature neurons are less sensitive to external compounds or 

agents than immature neurons [179, 180]. It is also known that cognitive dysfunction and 

memory impairment at adult age can be induced by neurological disease as well as external 

events like toxic compounds or radiations.  

Investigations on neuron connectivity in cells cultured for a long period of time showed an 

increase of connections between neurons over time following a non-linear correlation. Indeed, 

the neuronal network and the number of connections increase fast until a reasonable stage of 

connectivity; thereafter, the growth rate slows down [176]. Therefore, to test several compounds 

or external events and evaluate the induced effects, long-term cultured neurons extending 

neurites much slower than young neuron cultures are preferable. 
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 Cytoskeleton and cell motility in adherent cells 3.

The motility is the major characteristic of living organisms, and it is expressed as 

movement of cells or movement of molecules within the cells themselves. The major part of the 

active movements exhibited by eukaryotic cells is mostly based on the cytoskeleton. In some 

instances motility (developed in section 4.2) is simply generated by regulation of assembly and 

disassembly of cytoskeletal structures. In other cases, motility is the result of “motor” proteins 

activities, interacting with cytoskeletal elements.  

Cytoskeleton plays an important role in cell adhesion, cell shape and cell migration as 

well as other cellular functions like internal organization, transport and cell division [181]. 

Cytoskeleton is composed of three main protein structures: microfilaments, microtubules and 

intermediate filaments. They are linked and connected to cellular organelles and cytoplasmic 

membranes by several associated proteins like vinculin, talin, myosin and others. Furthermore, it 

is known that cytoskeletal proteins are directly or indirectly associated to cell growth, 

metabolism and signal transduction [182].  

Microfilaments or actin filaments are the thinnest filaments of the cytoskeleton. Actin 

participates in many important cellular processes including muscle contraction, cell motility, 

cell division and cytokinesis, vesicle and organelle movement, cell signaling, and the 

establishment and maintenance of cell junctions and cell shape. Many of these processes are 

mediated by extensive and intimate interactions of actin with cellular membranes.  

Since the first cell imaging investigations on adherent cells, it has been observed that 

microfilament distribution is altered and the induced changes are related to the increase or 

decrease of gravity forces. As observed in experiments performed on adherent cells in 

hypergravity, the density of microfilaments increases in the cytosol [183]. On the contrary, 

experiments performed aboard the ISS and on RPM showed that the concentration of 
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microfilaments in the cytosol is drastically reduced [184] and an increase of gel-like network of 

microfilaments was observed in the proximity of the cell cortex [38, 59].  

Microtubules are long and cylindrical structures with 25 nm of external diameter and 15 

nm of internal diameter. They are composed of polymerised α- and β-tubulin dimers, globular 

proteins which polymerise in protofilaments by end-to-end junctions. Finally, protofilaments 

form a tube by the lateral association of 13 protofilaments. Microtubules are involved in the 

internal transport, locomotion and cell shape [185].  

Axons and dendrites extending from a cell body in nerve cells provide a good example of 

the role of stable microtubules in determining cell polarity (Fig. 12). However, the microtubules 

in axons and dendrites are organized differently. In axons, the microtubules are all oriented with 

their plus ends away from the cell body and in dendrites, the microtubules are oriented in both 

directions; some plus ends point towards the cell body and some point towards the cell 

periphery.  

Figure 12: Organization of microtubules in nerve cells.  

Two distinct types of processes extend from the cell body of nerve cells (neurons). Stable microtubules in both axons 

and dendrites terminate in the cytoplasm rather than being anchored in the centrosome. In dendrites, microtubules 

are oriented in both directions, with their plus ends pointing both towards and away from the cell body. In contrast, 

all of the axon microtubules are oriented with their plus ends pointing towards the tip of the axon [227] . 
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As reported in sections 1.1 and 4.1, microtubule distribution can be altered by changes of 

gravity. Within the first hour of RPM conditions, microtubules change in distribution moving 

towards the centrosome surrounding the nucleus and thereafter re-establishing the microtubular 

network in the cytosol appearing highly arborized without reaching the cell cortex [38]. Since 

stable microtubules are located in neuronal extensions (Fig. 12), their destabilisation due to 

gravity change might alter their morphology. 

Intermediate filaments have a diameter of about 10 nm, and are not directly involved in 

cell movement; on the contrary, they appear to play a structural role by providing mechanical 

strength to cells and tissues. Intermediate filaments are composed of a variety of proteins that are 

expressed in different types of cells. More than 50 different intermediate filament proteins have 

been identified and classified into different groups (type I to VI) [186].  

Cells exhibit a wide range of movements which are triggered by cytoskeleton changes. 

Examples of cell motility include movements of cells from one location to another during 

development or during wound healing, neurite outgrowth cone movements during neuron 

migration or neurite extension, contraction of a muscle cell, movements of chromosomes during 

mitosis and separation into two daughter cells during cell division or movements of membrane-

bound vesicles into cells.  

It has been reported that microgravity can also influence cell motility increasing it in 

suspension cells, as lymphocytes during sounding rocket experiments [187], or reducing cell 

motility in adherent cells, as monocytes exposed to ISS environment for 24 h [59]. Cell motility 

and the capability of cells to adhere to the matrix are directly linked to cytoskeleton. Indeed, 

experiments on cytoskeletal proteins have reported their alteration when cells are cultured in 

different gravity conditions [38, 51, 59, 183]. Moreover it has been reported that the organization 

of microtubules and microfilaments is altered by short exposure to simulated microgravity at the 

level of the outgrowth cone [188]. 
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 The central nervous system and in space conditions 4.

4.1. CNS and microgravity 

During spaceflights and immediately after landing, one of the first effects that astronauts 

experience is postural instability from which they gradually recover within the following days 

after landing [189]. Several studies illustrate that visual and proprioperceptive sensory feedback 

information is used for postural control with reliance to vestibular function [190-192]. Therefore, 

the perception of position and locomotion in reduced gravity is the result of the brain ability to 

integrate auditory and visual signs with vestibular input and proprioceptive information [19, 25]. 

If the input from these sensors is altered by the gravity condition changes, the central nervous 

system is forced to interpret the new stimuli and therefore develop alternative strategies to 

supplement the altered stimuli by increasing neuroplastic activity [10, 25]. However, if these 

strategies do not develop in a short time, astronauts are affected by SAS and, consequently, by 

SMS. 

Experiments performed within Biosatellite program and Space Shuttle missions reported 

changes in rodent CNS areas as somatosensory and visual cortex and caudate nucleus which 

receive extero-, proprioceptive and vestibular inputs. Other areas as the hypothalamus, the 

posterior cortex, the pons and the medulla werereported to also be changed [193]. Spaceflight 

and ground-based experiments made on rodents revealed functional and adaptive changes, in 

particular at the synapsis level. It was hypothesized that this synaptic response represents an 

adjustment of the CNS to the altered sensory input coming from the vestibular system [194]. 

Attention has been directed to suggest that the neural development can be affected by 

changes in gravity fields. Since these processes are regulated by both chemical and mechanical 

factors, gravity may play a crucial role as a stimulus for proper development of the nervous 

system. Therefore, during the Cosmos 1514 flight, pups were exposed to space conditions in 
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utero and brains were thereafter morphologically and histochemically examined [168]. 

Quantitative analysis of the cytoarchitecture of the neocortex showed signs of delayed migration 

of neuronal elements (neurogenesis). In addition, ultrastructural studies revealed some delay in 

neuroblastic differentiation as well as in cytoskeletal changes in unmyelinated fibres and in 

outgrowth cones of axons and dendrites in the hypothalamic supraoptic nuclei [168]. 

Furthermore, experiments performed on rats during the Space Flight Science 1 and 2 reported 

changes in ribbon synaptic plasticity. In particular, it was demonstrated that gravity sensor hair 

cells have an extraordinary ability to change number, type and distribution of synapses. 

Additionally, it was observed at the flight day 2 (FD2) that the number of synapsis increased in 

type I and II hair cells of the rat utricular macula, continuing to increase over the time as 

observed at the FD 14 [165] . Experiments on chicken eye-cup during parabolic flight revealed 

that the wave propagation velocity of spreading depression (SD) was reduced in low gravity and 

the latency between the stimulus and the start of the wave increased. On the contrary, the wave 

propagation velocity of SD increased in hypergravity, leading to the conclusion that the signal 

propagation in the CNS is gravity-dependent [166]. 

Since all organisms evolved and developed on Earth, the gravity plays and important role 

in cell motility. Several experiments on adherent cells exposed to real or simulated low gravity 

reported morphological alterations, reduced cell locomotion and cytoskeletal changes [15, 38, 

54-56, 59, 64, 195]. Therefore, modelled gravity may alter neuroplasticity acting mainly at the 

cytoskeleton level, reducing the outgrowth cone motility and inducing changes at the synapsis 

level. The lack of adequate flight hardware to sustain neurons in culture, and the complexity of 

studying neurons in such a complex situation are some of the causes of our extremely limited 

knowledge on the effects of microgravity on neurons. Nevertheless a few experiments were 

performed to increase this knowledge. In vitro experiments, performed with well-connected 

motor-neurons and myocytes exposed for 24 h to clinostat reported that neuromuscular synapses 

were affected by the reduced gravity [58]. Concomitantly, the similar setup showed a reduced 
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number of ex-novo synapses in co-culture exposed to modelled low gravity compared to controls 

[58]. Additionally, changes in neuron morphology such as altered cytoskeleton or neurite 

swelling were described [196]. Studies on outgrowth cone in altered gravity reported an 

enhancement of actin-dependent lamellar protrusion and cell spreading after parabolic flight or 

hypergravity [188]. On the contrary, neuroblastoma cells treated with taxol and exposed to 

simulated low gravity showed outgrowth cones with irregular microtubule structures appearing 

densely packed and forming loops [188]. Studies on primary cortical neurons reported that 

dissociated cells firstly exposed for 24 h to the RWV and plated thereafter on coverslips and 

cultured in ground conditions form cluster and develop more astrocytes than the controls. 

Moreover, no difference was observed in resting membrane potential between controls and RWV 

exposed neurons [57]. Ground-based experiments performed on mice using the hindlimb-upload 

method to simulate microgravity reported a down regulation of Itga3 in brain tissue. This gene 

encodes for the alpha3 subunit of the transmembrane heterodimeric complex (integrin) which is 

important for adhesion, locomotion and the organization of sub-membrane actin cytoskeleton 

[197]. Recent in vivo experiments on mice exposed to the ISS environment for 91 days into the 

new life support system for small animal named Mice Drawer System (MDS) (Fig. 13) [198] 

reported a possible reduced expression of neuron growth factor (NGF) and brain derived 

neurotrophic factor (BDNF) in brain tissues as in cortex and hippocampus in spaceflight wild 

Figure 13: Mice Drawer System (MDS). Left the MDS model; right the MDS installed aboard the ISS 
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type animal compared to the controls [199]. Furthermore, proteins involved in long-term 

potentiation or in neurotransmitter release were up-regulated in the whole brain of mice exposed 

to ISS environment [199].  

4.2. CNS and cosmic radiation 

During spaceflight astronauts being continuously exposed to radiations could be affected 

by the Acute Radiation Syndrome (ARS) due to acute radiations in space. Note that radiation 

syndromes can also appear after chronic exposure, although it is uncommon. It is named chronic 

radiation syndrome (CRS) [200]. ARS, on the other hand, manifests with different symptoms 

such as nausea, vomiting, fatigue, skin injury, etc. whereas CRS can lead to neuroregulatory 

disorders, moderate marked leukopenia, thrombocytopenia and to sometime severe anemia cases 

[200]. 

During a stay in the ISS, astronauts are exposed to around 160-200 µGy per day of cosmic 

radiations. For a travel to Mars, every cell nucleus of the astronaut body would be hit by a 

protons or secondary particles every few days and by an HZE ion about once a month [201]. 

Whole-body doses of 1–2 mSv per day accumulate in interplanetary space and about 0.5–1 mSv 

per day on planetary surfaces [202]. It has been estimated that the travel to and from Mars would 

take about 400 days and that the complete Mars mission would be around 560 days. Finally, the 

estimated total dose to which the astronauts would be exposed would be around 1400 mSv. 

Therefore, the exposure of the crew to cosmic radiations is one of the most important barriers for 

traveling to Mars.    

Due to the highly differentiated and non-cycling nature of neurons, it is assumed that they 

are more radioresistant than other cell types. Studies in this topic have reported effects of 

ionizing radiation on neurons at the cellular and molecular levels. Nevertheless, in vivo studies 

indicate that low doses of HZE particles such as Fe and Ar, are capable of producing 

morphological, neurochemical and behavioural alterations [203-206]. Investigations on 



Chapter I  | 

45 

 

dopaminergic functions in the CNS and correlated motor behaviour of rats reported an alteration 

after exposure to 0.1 Gy Fe particles [203]. Additionally, these data suggested that rats exposed 

to Fe ions showed important alterations in neuronal signal transduction in the striatum, and in the 

motor behaviour parameters [203]. These deficits were characterized by losses in sensitivity of 

muscarinic receptors to stimulation [203]. Finally, it appears that Fe exposure induces 

decrements in motor behaviour due to cell loss and deficits in signal transduction in the striatum, 

the mechanisms of this alteration being attributed to changes in membrane signal transduction 

parameters [203].  

Adult mice exposed to 1.5 Gy high-LET 
56

Fe beams showed memory impairment 30 days 

after irradiation [207]. Nevertheless, in behavioural tests (water maze) trained mice attained a 

baseline value of latencies and the score of success for mice trained to find a hidden platform, 

after 14 day training was about 45% [207]. Moreover, increase of cell death in Purkinje cells and 

increase of DNA fragmentation in cerebellum tissue was reported in irradiated mice [207]. 

Investigation on X-irradiated mice reported a substantial impairment of memory and motor 

activities [208]. Furthermore, encephalic oxidative stress was observed in mice irradiated with 

heavy particles or X-rays [207-209]. Investigations on hippocampal plasticity and post-synaptic 

potential reported an impairment after 
56

Fe irradiation [167]. Functional assessment of glutamate 

transport after proton irradiation revealed an increase uptake activity in neurons, whereas, on the 

contrary, transporter activity in astrocytes decreased [210]. Interestingly, as well, neurogenesis 

investigation in 
56

Fe radiation of rodents reported a dose-dependent reduction of neuron 

generation in the dentate subgranular zone [211].  

Finally, in vivo studies on radiation countermeasures reported that the use of molecules as 

lipopolysaccharides, melatonin, α-lipoic acid and superoxide dismutase can consistently reduce 

the previously described effect induced by radiation [208, 212]. 
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4.3. Concluding remarks 

Single cell studies reported morphological changes and motility reduction that occurred 

during exposure to space conditions. Furthermore, studies in the neuroscience field showed that 

the CNS is forced to change during spaceflights throughout a modification of its morphological 

as well as metabolic and functional activities. Therefore, it is important to characterise the 

neurological risks associated to spaceflight before a long-term space mission such as toward 

Mars to avoid neurological disorder to occur during or after long-term space mission. 
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Aim of the thesis 

 One of the main concerns in space research is to estimate the astronaut health risk during 

space travel, especially whether the CNS can be damaged by microgravity and/or cosmic 

radiations exposure inducing behavioural changes, neurodegenerative disorders and learning or 

memory impairments. As previously observed, real and simulated microgravity, as well as 

ionizing radiations, can affect cell motility and cytoskeletal protein organization. The 

remodelling of mature neuronal networks due to environmental changes includes neuroplasticity, 

synaptic plasticity and neurogenesis; these neuronal functions are regulated by cell motility roles 

in particular by the activity of the outgrowth cone at the extremity of neurites. Therefore, it 

might be that exposure of non-connected or well-connected neurons to space conditions could 

affect the plasticity of these cells inducing neuronal dysfunctions or, in extreme cases, 

neurodegeneration.  

In particular, the main aim of this thesis was to investigate the effects of space conditions 

on neuronal network remodelling by: 

I. studying cell motility in adherent cells (monocytes and neurons) exposed to 

microgravity;  

II. investigating gene expression in in vitro well-connected neurons exposed to 

microgravity;   

III. evaluating the correlation between the effects induced by exposure to single or 

combined space conditions in well-connected neuronal network; 

IV. determining the influence of microgravity on DNA repair dynamics in mature 

neurons during or after ionizing radiation exposure.  

The opportunity to perform biological experiments in space is scarce due to the limited 

access to ISS and associated high cost. Hence, ground based facilities like the Random 

Positioning Machine (RPM) to reproduce microgravity as well as X-rays for low and high acute 
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dose radiation exposures and Californium-252 as a source for low dose chronic radiations were 

used in our laboratories to simulate space conditions.  

The first part of this thesis was to select appropriate models and high content analysis 

methods to investigate neuronal plasticity in microgravity. To this end, this objective was 

divided into three main tasks. Firstly, we investigated the effects of real space conditions on 

adherent cell motility and cytoskeleton, using the monocyte/macrophage cell line J-111 as 

adherent cell model (chapter III). These experiments were performed within the “Motion and 

InterAct” (MIA) experiment carried out aboard the ISS in the framework of the Kubik Bio 1 

mission of the European Space Agency. Secondly, we analysed the effects of simulated 

microgravity on the neuronal network in well-connected neuron cultures after short-, middle- or 

long-term exposure and to monitor whether the induced changes were permanent or reversible 

after restoring ground gravitational force (chapter V). To this end, dense neuronal networks 

obtained by culturing mouse primary neurons for 10 days were selected as an in vitro model. 

Thirdly, we selected or developed a toolkit for high content analysis of dense neuronal networks 

in well-connected mature neuron cultures (chapter IV). Fourthly, gene expression was evaluated 

on well-connected primary mature neurons exposed for short- or long-term to simulated low 

gravity (chapter V). 

The second part of this PhD was to investigate the effects of simulated space 

conditions on neuronal networks and well-connected primary neurons with a particular 

emphasis on DNA damage/repair dynamics and neuroplasticity. To this end, X-rays were 

used as model of acute irradiation, while Californium-252 was used for low dose chronic 

irradiation with high LET neutrons and low LET γ-rays. Finally, we used the RPM as model of 

simulated microgravity. This particular investigation was divided into 4 tasks. In chapter VI, 

well-connected neuron cultures were exposed to simulated microgravity after X-irradiation to 

low and high doses with a high dose rate in order to investigate the neuronal network plasticity 

and mature neuron morphology. Then, in chapter VI, well-connected neurons were 
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concomitantly exposed to simulated low gravity and to chronic low doses of neutrons and γ-rays, 

simulating space conditions, to determine changes in neuronal network plasticity and neuron 

morphology. Thereafter, DNA repair efficiency was studied in altered gravity after acute, low or 

high doses of X-rays and, finally, during exposure to simulated space conditions (chapter VII). 

Combining all results obtained within this PhD helps to better evaluate correlations 

between in vitro adherent cell models, real and simulated space conditions as well as difference 

between single and combined space conditions. Additionally, it may help to decipher the effects 

of combined space conditions on neuroplasticity and connectivity in the brain and to better 

evaluate the health risks encountered by astronauts during long-term or interplanetary space 

missions.  
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Modified from “Meloni M., Galleri G., Pani G., Saba A., Pippia P., Cogoli-Greuter M. 

Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. 

In: Cytoskeleton, 68:2(2011), p. 125-137.- ISSN 1949-3592”. Meloni, Galleri, Pani have 

made equal contributions to this work. 
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Space flight affects motility and cytoskeletal structures in 

human monocyte cell line J-111 

 

Abstract  

  

Certain functions of immune cells in returning astronauts are known to be altered. A 

dramatic depression of the mitogenic in vitro activation of human lymphocytes was observed in 

low gravity. T-cell activation requires the interaction of different type of immune cells as  

T-lymphocytes and monocytes. Cell motility based on a continuous rearrangement of the 

cytoskeletal network within the cell is essential for cell-cell contacts. In this investigation on the 

International Space Station we studied the influence of low gravity on different cytoskeletal 

structures in adherent monocytes and their ability to migrate. J-111 monocytes were incubated 

on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid gold, 

leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was 

found in low gravity compared to 1g in-flight and ground controls. Cell shape appeared more 

contracted, whereas the control cells showed the typical morphology of migrating monocytes, 

i.e. elongated and with pseudopodia. A qualitative and quantitative analysis of the structures of 

F-actin, -tubulin and vinculin revealed that exposure of J-111 cells to low gravity affected the 

distribution of the different filaments and significantly reduced the fluorescence intensity of F-

actin fibers. Cell motility relies on an intact structure of different cytoskeletal elements. The 

highly reduced motility of monocytes in low gravity must be attributed to the observed severe 

disruption of the cytoskeletal structures and may be one of the reasons for the dramatic 

depression of the in vitro activation of human lymphocytes.  
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 Introduction 1.

Twenty five years of research in space and in modeled low gravity on ground, provided 

either by a fast rotating 2D clinostat or a Random Positioning Machine, have clearly shown that 

mammalian cells are showing alterations in their structure and function after exposure to altered 

gravity conditions [35, 213]. Cells of the immune system are the most severely affected. 

Investigations on the effect of gravity on peripheral blood lymphocytes have been triggered by 

reports in the early 70ties that the responsiveness of lymphocytes from cosmonauts and 

astronauts towards mitogens was remarkably reduced after spaceflight [214, 215].  

A first space experiment with isolated human lymphocytes in culture revealed that their 

proliferative response to the mitogen Concanavalin A (Con A) was suppressed by more than 

90% compared to the ground control [37]. An intensive follow-on research clearly showed that 

exposure of T lymphocytes in culture to low gravity conditions is accompanied by a major 

inhibitory effect, remarkably reducing their mitogenic activation process and severely altering 

growth rate, signal transduction, cytokines production, gene expression, cytoskeletal structures 

and motility [35, 40, 213, 216-218]. Human lymphocytes have been found to undergo apoptosis 

by exposure to modeled low gravity [39]. Furthermore it has been clearly demonstrated that 

factors other than low gravity (i.e. accelerations and vibrations during launch and cosmic 

radiation) can be excluded to be responsible for the depressed activation of lymphocytes.  

The mechanism of T cell activation is very complex and still not yet fully understood. 

Three signals are required for full T cell activation. The first signal is delivered to the TCR/CD3 

complex either by the antigen presenting cell, or by anti-CD3, or by the mitogen Con A. The 

second signal is a costimulatory signal delivered either by accessory cells - usually monocytes - 

via B7/CD28 interaction [219] or by anti CD28. Many cell surface receptors are able to enhance 

signaling through the TCR/CD3 complex, but CD 28 is the most efficient [Acuto and Michel, 

2003]. After stimulation of the TCR/CD3 complex and CD28 the signal is transferred to the 
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nucleus, resulting in the synthesis of Interleukin-2 (IL-2) [220]. IL-2, acting as third signal, is 

secreted and bound to its receptor (IL-2R). This induces further synthesis of IL-2 and its 

receptor, resulting finally in full activation [221].  

The activation process consists of several steps in which specific cytokines are secreted, 

locomotion of T cells is reduced and the structure of different cytoskeletal elements is altered 

before the onset of cell division. Conceivably, gravitational forces may interact with cell 

organelles and structures like the cytoskeleton, having significant density differences [222].  

So far it is still not known which structures or mechanisms might act as “gravity 

responders” in lymphocytes, but there is increasing evidence suggesting that inhibition of 

lymphocyte proliferation is due to alterations occurring within the first few hours of exposure to 

low gravity [223, 224]. Recently it has been discovered that an impaired induction of early genes 

regulated primarily by transcription factors NF-κB, CREB, ELK, AP-1 and STAT contribute to 

T cell inhibition in modeled low gravity [225]. Furthermore PKA signal transduction was found 

to be down-regulated in modeled low gravity, whereas the PI3-K and PKC signals were not 

inhibited.  

Cell-cell interaction and aggregate formation are important means of cell communication 

and signal delivery in the mitogenic in vitro activation of human T lymphocytes. Especially the 

interaction between T cells and monocytes is essential for the delivery of the costimulatory 

signal. Lack of the costimulatory signal results in anergy, a condition in which T cells can no 

more be stimulated. In earlier flight investigations we observed in real time that lymphocytes in 

the presence of Con A were highly motile and formed aggregates [226], but no dates are 

available so far on the motility of monocytes in low gravity. During locomotion, the cytoskeletal 

structures within the cells are subjected to repeated cycles of reassembly processes. The 

observed changes in activation and signal transduction as well as motility and aggregate 

formation of lymphocytes in low gravity may be related also to structural changes in the 

cytoskeleton due to gravity unloading. Marked alterations in the structure of the intermediate 
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filaments of vimentin [227] as well as in the microtubules network [228] were observed in Jurkat 

cells - a T cell line - after exposure to low gravity. 

In the present investigation on the International Space Station we studied the motility of 

adherent human monocytes J-111 and alterations in the cytoskeletal structures of F-actin, -

tubulin and vinculin in these cells in low gravity. As we had found that suspended T 

lymphocytes are highly motile in low gravity, we hypothesized that an impaired motility of 

human monocytes could hinder the delivery of the costimulatory signal to activate the B7/CD28 

pathway, and thus could be one of the reasons of the observed loss of T cell activation in low 

gravity. This hypothesis is further supported by the findings that a co-stimulation of CD3-

activated cells by CD28 antibodies in modeled low gravity results in a normal T cell activation 

[229].  

Monocytes play an important role in the adaptive immune defense, where they act as 

antigen-presenting cells and deliver the costimulatory signals essential for a full activation of T 

lymphocytes. Because of their phagocytic activity monocytes are also fundamental for the innate 

immune system. Furthermore monocytes migrate from the blood into other tissues and 

differentiate into macrophages and dendritic cells.  

In preparation for this experiment we have investigated the motility of monocytes and 

changes in their cytoskeletal structure, specifically F-actin, -tubulin and vinculin, in modeled 

low gravity conditions provided by the Random Positioning Machine using a similar protocol as 

for the flight experiment [38].  
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 Materials and methods  2.

The space experiment MIA has been performed on the International Space Station in the 

frame of the Kubik Bio 1 mission of the European Space Agency (ESA). Kubik is an incubator 

for space experiments manufactured by Comat Aerospace (Toulouse, France). A simultaneous 

control experiment was done at 1g in space (Kubik centrifuge). Furthermore a ground control 

experiment was performed with the same batch of cells.  

2.1. Experimental hardware  

The MIA Hardware has been developed and constructed by EMPA (Dübendorf, 

Switzerland) and Doctor Dany Lightweight (Urdorf, Switzerland). Each MIA unit (40x13.3x20 

mm) can hold one glass cover slide (23x12 mm) covering a culture chamber (volume: 980 μl) 

and contains culture medium and fixative in their respective special compartments (volume: 270 

μl each) [Cogoli-Greuter et al., 2005]. By a special manual mechanism the fixative was brought 

into contact with the medium in the culture chamber. All parts of the units have been proven to 

be fully biocompatible in tests with J-111 cells.  

2.2. Cell line and cell culture  

J-111 is a monocyte/macrophage cell line derived from human acute monocytic leukemia, 

obtained from “Sperimental Zooprofilatic Institute”, Brescia (Italy). The cells display a good 

adhesion capacity and a certain extent of epithelial morphological polymorphism related to 

different functional and metabolic status of the cell. The cells were grown in RPMI-1640 

medium GlutaMAX containing 10% FCS, HEPES 20mM, sodium bicarbonate 5mM, 

gentamycin 50 μg/ml and were subcultured every 3 days using 0.25% trypsin/EDTA (all 

obtained from GIBCO, Invitrogen, Carlsbad, CA). The cells for experiment MIA were 

transported in culture flasks at 37°C from Sassari to Baikonour.  
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2.3. “Experiment sequence test” 

In order to test the flight protocol proposed by the space agency we have performed an 

experiment sequence test in modeled low gravity using the Random Positioning Machine (RPM). 

Two identical set of samples (cells in the MIA hardware) were exposed at 25°C for 60h to 

modeled low gravity, simulating the transfer of the cells to the International Space Station, 

followed by 24h at 37°C either at modeled low g (simulating 0g in space) or 1g (simulating in-

flight 1g control; 1gSF). Ground Control samples (GC) were incubated first for 60h at 25°C 

followed by 24h at 37°C. Viability of the cells was evaluated with Trypan Blue and the state of 

nuclei with DAPI staining (Table II). All values, viability and state of nuclei of single cells, are 

expressed in percentage on total amount of cells. The counting was performed manually under 

inverted microscope for viability and on fluorescence images for state of nuclei. For the 

evaluation of the state of the nuclei we counted only cells with the correct circularity of nuclei. 

2.4. Locomotion assay  

A quantitative assay for the motility of spreading mammalian cells in culture, which are 

associated with large surface extensions i.e. lamellipodia and filopodia (microspikes) has been 

described by Albrecht-Buehler and Lancaster, 1976. In short, freshly suspended cells, plated on 

top of a gold particle-coated microscope glass slide, produce various surface protrusions and 

remove the particles within a ring around each cell [230]. During their spreading the cells begin 

to move while cleaning more particles out of their way. The particles around the cells are mostly 

cleaned out by surface protrusions during the 1st h after plating and become partly internalized 

(phagocytosed) and partly accumulated on the cell surface in big clumps without being 

phagocytosed [230]. To distinguish locomotion on plain surfaces from this combination of 

phagocytosis and cellular displacement we better indicate this phenomenon as “phagokinetics” 

and the particle free tracks conveniently visualized as “phagokinetic tracks”. In order to observe 
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and quantify the motile behavior of monocytes under different gravity conditions we plated J-

111 cells onto microscope glass cover slides coated with colloidal gold (according to Albrecht-

Buehler and Lancaster, 1976 [230]). Exposure of the cells to gold particles had no obvious toxic 

effects as proven by preliminary viability tests using trypan blue dye exclusion test (Sigma 

Aldrich, St. Louis, MO). J-111 cells showed normal growth and spreading on gold coated glass 

slides.  

2.5. Gold coating  

Glass cover slides were first incubated with BSA (10mg/ml tridistilled H2O) at room 

temperature for 10 min, then quickly washed with ethanol 100% and exposed to 85°C for 10 

min. Subsequently 5ml of the gold suspension (AuCl4H 1.45 mM, (Sigma Aldrich, St. Louis, 

MO)) at 60-80 °C were added. After 45 min of incubation, the slides were washed in normal salt 

solution (113 mM NaCl, 3 mM KCl, 1 mM MgCl2, 15 mM Na-phosphate, ph 7.8 in tridistilled 

H2O), and then inserted into the MIA units. The units were brought to Baikonour at room 

temperature.  

2.6. Pre-flight activities in Baikonour  

For the MIA experiment 3 identical sets have been prepared: one set for exposure to low 

gravity, the second for the 1g control in space and the third for the ground control. Each set 

contained 2 units with gold-coated glass cover slides for the evaluation of cell motility. The other 

4 units with uncoated glass cover slides were used for the investigation of the influence of low 

gravity on different cytoskeletal structures. The culture chambers of all MIA units were filled at 

launch-2 days with J-111 cells resuspended in RPMI-1640 with 10% FCS (units with gold 

coated slides contained 6.4x10
3
 cells, the other 4x10

4
), reservoir 1 with culture medium and 

reservoir 2 with fixative paraformaldehyde (22.65%). The units were than incubated for 24 h at 

37°C to allow the J-111 cells to adhere to the glass cover slide. The2 flight sets were handed over 
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14 h before launch and transferred into the Soyuz rocket. The samples were stored at room 

temperature during launch and ascent. The ground control set was brought to Moscow.  

2.7. In-flight operations  

On flight day 3, the samples were transferred into the Russian segment of the International 

Space Station and loaded into the KUBIK incubator, one set in static position (low gravity) and 

one on the centrifuge (in-flight 1g control). After an incubation of 24 h at 37°C all samples were 

fixed with paraformaldehyde (final concentration: 4%). The ground control experiment was 

performed in Moscow with a delay of 40 min. The samples were stored at 3-4°C (except for 

descent and landing) until analysis performed in Sassari. The temperature conditions of the space 

samples and of the ground controls were recorded with the help of a SmartButton data logger 

(Atal BV, The Netherlands) from launch-11 h (March 29, 2006) until sample return on April 9, 

2006.  

2.8. Post-flight processing  

After landing the samples were delivered at 4°C to Moscow and transported to Sassari 

together with the samples from the ground control. The glass cover slides were taken out from 

each MIA unit and analysed either for migration tracks or the cytoskeletal structures of F-actin, 

β-tubulin and vinculin.  

2.9. Quantitative analysis of migration tracks  

To analyze the motility of the J-111 cells, migration tracks were visualized by Bright-field 

illumination differential interference contrast (Normansky) microscope (Olympus Optical, 

Hamburg, Germany) magnified with a 20X objective. To evaluate the cell displacement image 

data were collected using an F View II Image camera with CCD coupled to the software 

“ANALYSIS” (both from Soft Imaging System GmbH, Münster, Germany). 
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2.10. Statistical analysis  

After grouping displacement ranks the frequency percentages (percentage of cells showing 

a displacement in the distinct group 1-11) and standard deviation have been calculated. Data 

were analysed by one-way analysis of variance following rank sum test using SIGMA STAT 

program (Systat software, San Jose, California). The presented data are the average from 50 cells 

per slide for each gravity condition (low gravity, 1g in-flight and ground control), whereby 2 

slides per condition have been evaluated. Statistical significance was accepted at the P ≤ 0.0001 

level.  

2.11. Analysis of cytoskeletal structures  

Cytoskeletal structures of β-tubulin and vinculin were detected by indirect 

immunofluorescence technique whereas F-actin was revealed by direct fluorescence. After 

extensive washing and cell permeabilization with Triton X-100 (Sigma) 0.1% in PBS for 3 min, 

fluorescent staining was performed by exposing the slides either to monoclonal anti- β-tubulin 

clone TUB 2.1, (diluted 1:100 in PBSO, Sigma) or to monoclonal Anti-Human Vinculin clone 

hVIN-1 (diluted 1:100 in BSA-PBS, Sigma), both at 37 °C for 1h in a moist chamber. After 

washing in PBSO and PBS respectively, a second layer of anti-Mouse IgG FITC conjugated 

(diluted 1:100 in BSA-PBSO or BSA-PBS respectively), was applied for 45 min, at room 

temperature in the dark. For the cytochemical labeling of F-actin, permeabilized cells were 

stained with 5μg/ml Phalloidin-FITC or -TRITC conjugated (Sigma) solution in PBS, at 37°C 

for 15 min. Nuclei were stained with 4‟,6‟-diamidine-2-phenylindole hydrochloride (DAPI, 

Böhringer Mannheim GmbH, Germany), (100 ng/ml in PBS) for 6 min. Slides were rinsed in 

PBS and mounted with Immu-Mount (Shandon, Pittsburgh, Pennsylvania, USA). Cytoskeletal 

structures were visualized by fluorescence inverted microscope (Olympus Optical, Hamburg, 

Germany) using an oil immersion 100X objective (NA 1.3-0.6). To support the qualitative 
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microscopic observations on cell morphology and cytoskeletal features quantitative analysis of 

cell surface area and fluorescence intensity of cytoskeleton components of F-actin and β-tubulin 

were performed on cell images in gray color (8 bit). To obtain not overexposed pictures with 

good depth of field for fluorescence intensity analysis, the objective iris diaphragm was set in 

order to have N.A. 1 and a statistical analysis about exposure time (data not shown) between all 

experimental points for β-tubulin and F-actin were fixed at 4.3 and 3.5 sec respectively. 

The morphometric analysis on cytoskeletal structures was based on algorithm applicable to 

fixed and immunolabeled cells expressing fluorescently tagged cytoskeletal proteins [231]. 

Fluorescence intensity of filaments of F-actin and β-tubulin were detected by Data Analysis-

algorithm, after background removal and cell perimetral and fluorochrome pixel selection. The 

data indicate the rate of labeled actin or tubulin filaments referred to the total cell surface and the 

quantitative extent of cytoskeletal filaments network. Simultaneously, on the same images, the 

surface areas of the cells were evaluated using a measurement function of the same software. 

The presented data were from at least 50 values per each experimental condition (low gravity, 1g 

in flight and ground control). Statistical analysis on the quantitative data consisted of a T- test to 

compare matched values and was supported by Mann Whitney test. 
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 Results  3.

For the MIA experiment 3 identical sets have been investigated. On the International Space 

Station one set was placed in the static position in the Kubik incubator and thus exposed to low 

gravity in order to evaluate the influence of weightlessness on the motility of J-111 cells and 

their different cytoskeletal structures. The second set was placed simultaneously on the Kubik 

centrifuge for the 1g control in space. The 1g control in space is very important in order to 

distinguish between the effect of low gravity and possible effects caused by other factors as 

accelerations and vibrations due to launch or cosmic radiation. The cells exposed to low gravity 

have the same history related to launch and cosmic radiation as the one at 1g in space. A ground 

control experiment with the same batch of cells (prepared in Baikonour) was performed in the 

MIA hardware with 40 min delay to the operations in space at the Institute of Biomedical 

Problems in Moscow.  

3.1. Cell motility 

The qualitative microscopic analysis of the migration tracks of J-111 monocytes on gold 

particle coated cover slides revealed a normal pattern of cell migration at 1g in-flight and in the 

ground control, similar to those described in the literature [232]. Cells had the typical 

morphology of migrating monocytes, elongated and with pseudopodia and areas around cells 

appeared completely cleaned out of gold particles (Fig. 14 b-c bottom). On the other hand, J-111 

cells exposed for 24 h to low gravity in space showed only very short migration tracks (Fig. 14 a 

bottom). Thus the motility of monocytes is very much reduced under this condition. 

A quantitative analysis of the migration tracks revealed a clear difference in the 

locomotion ability of the cells in low gravity compared to 1g in-flight and ground controls. Cells 

exposed for 24 h to low gravity moved with an average of 8 µm and the most frequent 

displacement (43%) was between 0-4 µm (Fig. 14a top), whereas in the in-flight 1g control an 
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average displacement of 31 µm was observed and the most frequent displacement (14%) was 

between 30-34 µm (Fig. 14b top). The cells in the ground control showed a displacement of 49 

µm on average with the most frequent displacement (40%) of > 50 µm (Fig. 14c top). 

 A remarkable difference of the motility of the cells in the in-flight 1g and the ground 

control was found. The most likely explanation for this discrepancy is that this is due to a 

memory effect of the cells as they have been exposed for 55.5 h to low gravity conditions during 

ascent and transfer into the International Space Station before they were placed on the 1g 

centrifuge. Similar phenomena have been observed by us [233] and other research teams [234] in 

human T lymphocytes and human monocyte cell line U937 in earlier spaceflight experiments.  

 

 

Figure 14: Migration tracks of J-111 on gold particle-coated slides.  

a-c bottom. Migration tracks on gold particle-coated glass cover slides of J-111 cells observed with bright-field 

illumination differential interference contrast (Normansky) microscope after 24h of exposure to low gravity (a), 

1g in-flight (b) and ground control (c). Very short migration tracks were observed at low gravity and cell shape 

appeared more contracted (a). Conversely 1g in-flight (b) and ground samples (c) showed areas around cell 

completely cleaned out of gold particles and the typical morphology of migrating cell, elongated and with 

pseudopodia. a-c top. Displacement frequencies (in %) of J-111 cells on gold particle-coated glass cover slides 

after 24 h of exposure to low gravity (a), to 1g in-flight (b) and in ground control (c). Cells exposed to low 

gravity moved between 0 and 4 µm with the most frequent displacement (43%) (a) compared to 1g in-flight 

control (b) with the most frequent displacement (14%) between 30 and 34 µm and to the ground control (c) with 

the most frequent displacement (40%) > 50 µm. The data are the average from 50 cells per slide for each gravity 

condition, whereby 2 slides per condition have been evaluated. Statistical significance was accepted at the P < 

0.0001 level. 
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The results from the MIA experiment on locomotion of J-111 monocytes exposed for 24 h 

to low gravity in space are comparable to those obtained in a previous ground based study in the 

Random Positioning Machine where the cells were exposed to modeled low gravity [38]. Again 

a normal pattern of monocyte locomotion was found in the control samples, whereas very short 

migration tracks were observed after 24 h of exposure to modeled low gravity (Table 2).  

 

The quantitative measurement of the surface area of J-111 cells showed a significant 

difference between low gravity samples v/s in-flight 1g (P = 0.0112) and low gravity samples v/s 

ground control (P = 0.0075) revealing that the areas of the cells exposed for 24 h to low gravity 

conditions are significantly smaller than those of the controls (Fig. 15 b). In fact, the shape of the 

cells exposed to low gravity appeared more contracted, whereas the cells of the in-flight 1g and 

ground controls showed the typical morphology of migrating monocytes, i.e. elongated and with 

pseudopodia. Cells exposed to low gravity showed only in some cases very short protrusions. 

Table 2. Migration tracks of J-111 monocytes observed in low gravity in space and in modeled low gravity 

obtained on the RPM and respective controls 

Gravity conditions Average displacement Most frequent displacement 

(%) 

Space experiment   

0g 8 µm 43% between 0-4 µm 

1gF 31 µm 14% between 30-34 µm 

GC 49 µm 40%  50 µm 

Experiment on RPM*   

0g 8.7 µm 37% between 0-4 µm 

GC 59.7 µm 62%  50 µm 

RPM - Random Positioning Machine 

0g - low gravity in space and modeled low gravity 

1gF - 1g in fight 

GC - ground control 

* Meloni et al., 2006 
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In order to assess cell adhesion and spreading of J-111 monocytes we examined visually 

samples from the different gravity conditions (Fig. 15, left panel). No significant differences 

concerning cell-substratum adhesion were observed between cells exposed to low gravity (Fig. 

15; a-0g) and control samples (Fig. 15 a-1gF and a-GC), but the cells at 0g appeared smaller and 

more contracted. This is in agreement with the quantitative analysis of cell surface area (Fig. 15 

b). In space no viability tests could be performed before fixation of the cells. Thus, in order to 

assess the state of the cells, we have analysed the morphology of the nuclei in the merged 

fluorescence images (Fig. 16). In all 3 experimental conditions, DAPI staining showed normal 

nuclei in about 80% ( 10% SE) of the cells. DAPI test performed on each culture supernatant 

showed a nearly total absence of detached cells. These findings are in agreement with the 

previous analysis on cell viability in the MIA units in an experiment sequence test performed in 

preparation of the space experiment (Table 3).  

 

 

 

 

 

Figure 15: Monolayer of J-111 monocytes and analyses of cell surface.  

a) Monolayer of J-111 monocytes from 3 different gravity conditions: low gravity (a-0g), 1g in-flight (a-1gF) and 

ground control (a-GC). Axiovert 25 Zeiss microscope with phase contrast. b) Quantitative analysis of J-111 cell 

surface area (µm2) after 24 h of exposure to low gravity (0g), 1g in-flight (1g) and in ground control (GC). 

Significant differences were observed, by digital fluorescent microscope, between 0g v/s 1g in-flight (P = 0.0112) 

and 0g v/s GC (P = 0.0075). All values are expressed as MEAN ± SEM. 
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3.2. Cytoskeletal architecture 

A 24 h exposure of J-111 cells to low gravity conditions in space resulted in severe 

alterations of the structures of F-actin, β-tubulin and vinculin. In 1g conditions (ground and in-

flight 1g controls) the structures of all 3 different cytoskeletal elements showed a normal and 

well organized network.  

3.2.1. Microfilaments: F-actin 

In the in-flight 1g and ground controls the architecture of F-actin appeared normal with a 

well organized network of cytosolic bundles and elongated and extended filopodia (Fig. 16  

a-1gF and a-GC). Conversely, a remarkable decrease of the density of the filamentous 

biopolymers of F-actin was observed in J-111 cells exposed to low gravity (Fig. 16 a-0g). The 

actin filaments showed a disappearance of the complex cytosolic network and appeared mostly 

localized close to the plasma membrane. Identical changes in the structure of F-actin were 

observed in cells exposed for 1 h to modeled low gravity on the Random Positioning Machine 

Table 3. Cell viability and state of nuclei of J-111 monocytes in space investigation and mission 

sequence test on RPM. 

Gravity conditions 

Viability 

Trypan blue test 

(%) 

State of nuclei 

DAPI staining 

(%) 

 

Space experiment   

0g ------- 76,3 

1gF ------- 81,2 

GC ------- 84,6 

 

Mission sequence test on RPM  

  

0g 78,5 79,2 

1gSF 80,5 85,4 

GC 85,4 87,8 

RPM, random positioning machine;  

0g, low gravity in space and modeled low gravity;  

1gF, 1g in flight;  

1gSF, 1g simulated flight;  

GC, ground control. 
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[38]. After 24 h in modeled low gravity an initial reorganization of the actin network was 

observed.  

3.2.2. Microtubules: -tubulin 

The microtubules of J-111 monocytes showed a normal structure in the ground as well as 

in the in-flight 1g control (Fig. 16 b-1gF and b-GC). They appeared orderly radiating from the 

perinuclear area throughout the cytoplasm toward the cell periphery. Incubation of J-111 cells in 

low gravity conditions resulted in a disruption of the -tubulin architecture (Fig. 16 b-0g). The 

microtubules, responsible for cell division, did not display their typical radial array; they were 

highly disorganized, and showed a more evident thickening in perinuclear position and a 

surrounding arborization that appeared organized but with short and incomplete prolongations 

towards the plasma membrane. Very similar changes in the structure of microtubules were 

observed in cells which experienced modeled low gravity for 1 and 24 h in the Random 

Positioning Machine [38]. 

3.2.3. Vinculin 

Vinculin is an anchor protein which specifically participates in the formation of a 

submembrane “plaque” structure (focal adhesion plaque) responsible for the attachment of actin 

filaments to the plasma membrane. Fluorescence images of J-111 monocytes provide profiles of 

vinculin spots localized in focal adhesion plaques. In the in-flight 1g and ground controls (Fig. 

16 c-1gF and c-GC) endogenous vinculin appeared concentrated as streak-like structures 

exhibiting a normal radial orientation towards the cell membrane according to cell spreading and 

connected to actin filaments. Samples exposed to low gravity (Fig. 16 c-0g) showed vinculin 

proteins thickened close to the cell membrane as globular clusters, losing radial orientation and 

arranging parallel to cell membrane, concomitantly to the altered redistribution of actin 

filaments. This is in correlation with the cell morphology showing more contracted and round 

cells, as a consequence of the decrease of cell spreading. Vinculin spots appeared to be larger 
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and the accumulation of fluorescent protein-tagged vinculin in the focal adhesions was usually 

more prominent in control cells (Fig. 16 c-1gF and c-GC) than in cells submitted to low gravity 

(Fig. 16 c-0g). The number of focal adhesions per single cell and the spatial extent of each 

individual adhesion plaque appeared to be reduced in low gravity as compared to those in cells 

exposed to normal gravity. The percentage of cells with altered vinculin location was 73.8%  

9% in low gravity, and was the average from 50 cells per slide, whereby 2 slides have been 

evaluated. On the contrary samples at in-flight 1g and in the ground control showed a normal 

vinculin distribution (93% ± 7% in-flight 1g and 97.8% ± 3% in the ground control, 

respectively). 

A quantitative analysis revealed that exposure of J-111 cells to low gravity conditions for 

24 h affected the cytoskeleton network not only in the distribution of the filaments but also in the 

fluorescence intensity of the cytoskeletal pattern of F-actin and -tubulin when compared to in-

flight 1g and ground controls. The morphometric analysis performed by measuring fluorescence 

intensity of F-actin or -tubulin filaments and referred to the total cell surface area, showed a 

significant statistical difference between F-actin fluorescence intensity of cells exposed to low 

gravity conditions compared to in-flight 1g controls (0g v/s 1g in-flight, P < 0.05) (Fig. 16 a-I). 

The difference was even more evident between low gravity samples compared to ground controls 

(0g v/s GC, P < 0.0001). On the other hand, the fluorescence intensity of -tubulin related to 

total cell surface area showed no statistical difference between -tubulin fluorescence intensity 

of samples exposed to low gravity conditions compared to in-flight 1g controls as well as 

between in-flight 1g compared to ground controls, whereas low gravity samples showed a slight 

difference versus ground controls (0g v/s GC, P < 0, 05) (Fig. 16 b-I).  

The data of this space experiment and the earlier one in the Random Positioning Machine 

[38] suggest that the reduced migration response in J-111 cells exposed to low gravity (real and 

modeled) is linked to changes of the cytoskeletal structures and focal adhesion plaques. 
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Figure 16: Immunofluorescence images of F-actin (a), β-tubulin (b) and vinculin (c) in J-111 cells cultured 

under different gravity conditions.  

a) F-actin monochromatic and merge immunofluorescence images with F-actin (green color) and nuclei (blue 

color) in J-111 cells after 24h of exposure to low gravity (a-0g), 1g in-flight (a-1gF) and in ground control (a-

GC). a-I) Fluorescence intensity of F-actin filaments at low gravity (0g), 1g in-flight (1gF) and in ground 

control (GC). A statistical significant difference was observed between F-actin fluorescence intensity of samples 

exposed to low gravity conditions compared to 1g in-flight (0g v/s 1gF, P=0.03) and mostly between 0g samples 

compared to ground controls (0g v/s GC, P<0.0001). All values are expressed as MEAN ± SEM. 3b) β-tubulin 

monochromatic and merge immunofluorescence images with β-tubulin (green color) and nuclei (blue color) in J-

111 cells after 24 h of exposure to low gravity (b-0g), 1g in-flight (b-1gF) and ground control (b-GC). b-I) 

Fluorescence intensity of β-tubulin at low gravity (0g), 1g in-flight (1gF) and in ground control (GC). Statistical 

difference was not observed between β-tubulin fluorescence intensity of samples exposed to low gravity 

conditions (0g) compared to 1g in-flight (1gF), as well as between 1g in-flight compared to ground controls 

(GC), whereas low gravity samples showed a slight difference versus ground controls (P = 0.03). All values are 

expressed as MEAN ± SEM. c) Vinculin monochromatic and merge immunofluorescence images with Vinculin 

(green color), F-actin (red color) and nuclei (blue color) in J-111 cells after 24 h of exposure to low gravity (c-

0g), 1g in-flight (c-1gF) and in ground control (c-GC). 
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 Discussion 4.

The response of any organisms to gravity depends ultimately on functions at the cellular 

level, as single cell functions may be affected by gravity themselves. Still little is known about 

the effect of gravity at the scale of single cells, as research in cell biology in space has been rare 

and frequently unrepeated. More insight on the influence of low gravity on single cells comes 

from investigations performed in modeled low gravity on Earth using different simulation 

devices. As cells are sensitive to mechanical forces, low gravity might act on stress-dependent 

cell changes and specifically on the cytoskeleton. The cytoskeleton has been described to be the 

structure through which the cells sense gravity [60]. The cytoskeleton has an important role in 

the maintenance of the cell structure, cell movement and migration. Cell migration is an essential 

characteristic of many biological processes within an organism. In previous studies in modeled 

low gravity, several type of cells, such as T lymphocytes [235], human mesenchymal stromal 

precursor cells [236], vascular endothelium cells [237-239] and malignant human MCF-7 cells 

[240] showed reduced cell motility and migration. So far the basic mechanisms responsible for 

these phenomena in low gravity are still unclear. 

On Earth, cells have evolved distinct mechanisms for generating cell movement. One 

mechanism responsible for cell motility and changes in the shape of a cell is a continuous 

rearrangement of cytoskeletal structures mostly by an assembly and disassembly of 

microfilaments and microtubules. Investigations in low gravity in space and in modeled gravity 

on ground revealed that different cytoskeletal structures, both in adherent and non-adherent cells, 

are highly sensitive to gravity changes. [56, 217, 228, 240-242].  

Monocytes play an important role in the immune defense. Because of their phagocytic 

activity and their ability to differentiate into antigen-presenting cells monocytes participate in the 

innate as well as the adaptive immune response. As antigen presenting cell monocytes are 

involved in the activation of T lymphocytes, but they are also delivering the second signal - a 
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costimulatory signal - via B7/CD28 interaction [219]. Furthermore monocytes migrate from the 

blood into other tissues and differentiate into macrophages.  

Migration of immune cells - lymphocytes and monocytes - is a crucial process during a 

multitude of physiological and pathophysiological conditions such as development, defense 

against infections and wound healing [232, 243].  

In the present investigation performed on the International Space Station we found by a 

quantitative analysis that in low gravity the locomotion capability of J-111 cells on gold particle 

coated cover slides is remarkably reduced compared to the in-flight 1g and ground controls. The 

cell shape appeared more contracted, whereas the cells of the 1g in-flight and ground controls 

showed the typical morphology of migrating monocytes.  

The different cytoskeletal structures are very important for cell motility. Recent findings 

highlight the cytoskeleton cross-talk during cell motility, coordination of membrane and actin 

cytoskeleton dynamics during filopodia protrusion and the importance of the intact networks of 

both cytoskeletal actin filaments and microtubule dynamics in cell movements [232, 244]. Cell 

migration begins with an initial protrusion or extension of the plasma membrane at the leading 

edge of the cell, driven by the polymerization of actin filaments, and stabilized through the 

formation of plasma membrane adhesive complexes, regulated by the combined microtubules 

activity. Actin polymerization plays also an important role in multiple and crucial aspects of the 

immune response including the antigen recognition, signal transduction, T cell proliferation, 

migration and adhesion [245]. Microtubules are also regulators of focal adhesion and turnover of 

focal complex. This is critical for the continued remodeling and reorganization of adhesion 

contacts during cell migration [246]. Microtubule fiber dynamics are required for the polarized 

protrusion of lamellipodia that drives the directional cell migration [247]. The acquisition of cell 

polarity induced by a reorganization of the different cytoskeletal elements is very important for 

migration, activation and apoptosis in leukocytes, i.e. in lymphocytes and monocytes [248].  
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The cytoskeleton is important for maintaining cell shape and coordinating cell motility. 

Furthermore it also locates organelles and cellular proteins in their proper spatial position with 

respect to each other and thus also plays a key role in signal transduction [182]. A disruption of 

the cytoskeletal network, caused for instance also by gravity changes, has an impact on signal 

transduction, cell growth and metabolism [249, 250]. In the present work we have observed 

severe alterations in the structure of F-actin, -tubulin and vinculin in J-111 monocytes exposed 

for 24 h to low gravity conditions compared to in-flight 1g and ground controls.  

The F-actin network showed a remarkable decrease in the filamentous biopolymers 

density. The microfilaments did not form into their usually strong bundles, with no preferential 

orientation and less lamellipodia. Concomitantly the normal polyhedral cell shape changed to a 

roundish one, the long filopodia were no longer present, and thus the cells appeared more 

contracted with only short protrusions. The layer of actin underneath the plasma membrane, 

responsible for the cell shape and the production of filopodia, was no longer continuous but 

interrupted at various places. The altered shape of the cells corresponded to the altered network 

of actin filaments. 

Similar changes in the actin network, especially a disorganization and reduction of the 

stress fibers, in cells exposed to low gravity are also found in osteoblasts [251], human vascular 

endothelial cells [252], glial cells [56], HUVEC cells [69] and several other cells (for a review 

see [249]). Microfilaments in MCF-7 cells were not organized in bundles and the cells lacked 

lamellipodia [240]. 

The changes observed in the microtubules network of J-111 cells in space and in modeled 

low gravity [38] were similar to those observed by Lewis et al. [228] in Jurkat cells exposed to 

low gravity in space, showing that microtubule organizing centers were poorly defined. The 

intermediate filament network, responsible for the shape and position of the nucleus, was found 

to be disorganized, and the microtubules, lost their radial disposition. After 24 h exposure to 

modeled low gravity conditions an initial reorganization of the actin and tubulin network in J-
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111 cells was taking place [38]. A similar reorganization of the microtubule network was also 

observed in Jurkat cells exposed to low gravity conditions [228]. But, despite the fact that the 

morphology of the microtubule network had a normal aspect, the functional state of the cells did 

not return to normal as the cells did not proliferate. In a cell free system, the self-assembly of 

microtubules was found to be inhibited in low gravity [253]. 

Vinculin is one of the most prominent membrane-cytoskeletal proteins in focal adhesion 

plaques and is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. 

These adhesion sites serve as traction points for impellent forces that push the cell moving 

forward. Vinculin appears to facilitate the assembly of focal adhesion plaques by crosslinking 

and recruiting its various partners [254]. Vinculin's ability to interact with integrins to the 

cytoskeleton at the focal adhesion appears to be critical for control of cytoskeletal mechanics, 

cell spreading, and lamellipodia formation. Thus, vinculin appears to play a key role in shape 

control based on its ability to modulate focal adhesion structure and function [255, 256].  

In J-111 cells exposed for 24 h to low gravity, we observed that the vinculin proteins are 

not evenly spread but thickened close to the cell membrane as globular clusters. Fewer and 

smaller focal adhesion plaques can induce a decrease of cell spreading and migration [257].  

It is interesting to note that the structures of F-actin and -tubulin of monocytes of the in-

flight 1g samples are similar to those in the ground control, despite the fact that these cells have 

been exposed for 55.5 h to low gravity before they have been loaded on the 1g reference 

centrifuge in Kubik. Thus the structures of F-actin and -tubulin in the J-111 cells have 

completely recovered within 24 h at 1g.  

Based on our results – alterations in the structures of F-actin, β-tubulin and vinculin - and 

those of other authors it can thus be speculated that the impaired motility of adherent monocytes 

in low gravity on gold particle coated cover slides might be due to the disruption of the 

cytoskeletal network. The fact that the monocytes lost their ability to migrate may also be 

responsible for a hindered delivery of the costimulatory signal in T cell activation, important for 
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a full activation. Indeed, in several investigations we have found that the mitogenic activation of 

human lymphocytes is suppressed by more than 90% in low gravity [218]. 

The cytoskeleton has been described to be the structure through which the cells sense 

gravity [60]. In most cells, shape is determined and maintained by cytoskeleton polymerization 

forces, weaker in some cell types than in others and extension of microtubules to the cell 

membrane [258] to maintain mostly uniform cell surface tension. In the absence of gravity, very 

subtle cell volume changes may result from hydrostatic pressure shifts, potentially causing 

disjunction between the membrane and critical cytoskeletal elements [259]. Mechanical changes 

may be transduced into biochemical responses through the cytoskeletal scaffolding within the 

cell [260]. If cytoskeletal structures as F-actin and microtubules but also the intermediate 

filaments of vimentin are disrupted, molecular transport by cytoskeletal elements would be 

affected and cell surface, receptor-dependent signal transduction reactions could not occur. 

Besides the changes in the structures of F-actin and microtubules in monocytes, lymphocytes and 

other cells, reported by us and other authors we also have found significant changes in the 

structure of vimentin in Jurkat cells [227]. These alterations were observed already after an 

exposure of 30 seconds in low gravity and consisted in the formation of thick bundles compared 

to the fine network in the 1g control.  

In the present investigation we have found that the motility of adherent monocytes is 

remarkably reduced in low gravity. Furthermore the cytoskeletal structures of F-actin, β-tubulin 

and vinculin are severely damaged. We thus speculate that the disruption of the 3 different 

cytoskeletal elements is the main reason for the loss of the ability of the J-111 cells to migrate. A 

disruption of the different cytoskeletal structures in monocytes may also have an influence on the 

differentiation of monocytes in low gravity and hence affect their role in the innate immune 

system.  

Different cells of the innate immune system including monocytes are known to be sensitive 

to gravity changes. In blood samples of astronauts returning from space changes in the number 
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of monocytes and natural killer cells were observed depending on mission duration. After a 9-

day missions, monocytes were increased while natural killer cells were decreased. However, 

monocytes were decreased after the 16-day missions whereas no change occurred in natural 

killer cells [261]. Furthermore, an increase in neutrophil granulocytes was found, but their 

phagocytic and oxidative functions significantly decreased [262]. In low gravity, monocytes lost 

their capability of secreting IL-1 [263] and expressing IL-2 receptor [223]. Space flight 

experiments revealed that the distribution, cellular quantity and kinetics of translocation of PKC- 

a key protein controlling growth and differentiation of monocytes into macrophages - are altered 

in U937 monocytes in low gravity [234, 264, 265]. Recently, the examination of gene expression 

of monocytes under low gravity demonstrated significant changes in gene induction associated 

with differentiation of monocytes into macrophages [266]. On the other hand, extensive studies 

in modeled and low gravity in space revealed that the cytotoxic effects of natural killer cells 

were not affected by gravity changes [267]. 

There are severe limitations in the number and type of experiments that can be conducted 

in low gravity in space. Therefore we have performed many studies with immune cells - 

lymphocytes and monocytes – in the Random Positioning Machine (RPM). The RPM is a device 

creating similar gravity conditions as obtained in space by randomizing the gravity vector. When 

we compare the data of the present investigation in space with the results obtained with the same 

cells - J-111 monocytes - in modeled low gravity [38] we can conclude that this is a suitable tool 

for gravity research on ground. Furthermore we also found a very good concordance of the 

results obtained with human lymphocytes in space as well as on ground in modeled low gravity 

[218].  

Qualitatively, the results from space-flown immune cells in cultures, and cells exposed to 

modeled low gravity, are often similar to the effects space flight exerts on functional aspects of 

immune cells obtained from cosmonauts/astronauts after their return to Earth. The extensive 

research on immune cells in culture under different gravity conditions contributes significantly to 
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the understanding of growth responsiveness during space flight and may help in predicting 

potential compromise to immune functions in humans during long duration missions.  
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Modified from “Pani G., De Vos W., Samari N., de Saint-Georges L., Baatout S., Van 

Oostveldt P., Benotmane M.A. MorphoNeuroNet, an automated method for dense neurite 

network analysis.” Conditionally accepted with major revision in Cytometry part A and revised 

version submitted in June 2013 
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MorphoNeuroNet, an automated method for dense neurite 

network analysis. 

Abstract 

High content cell-based screens are rapidly gaining popularity in the context of neuronal 

regeneration studies. To analyse neuronal morphology, automatic image analysis pipelines have 

been conceived, which accurately quantify the shape changes of neurons in cell cultures with 

non-dense neurite networks. However, most existing methods show poor performance for well-

connected and differentiated neuronal networks, which may serve as valuable models for i.e. 

synaptogenesis. 

Here, we propose a fully automated method for quantifying the morphology of neurons and 

the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 

days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically 

determines various morphological parameters of the soma and the neurites (size, shape, starting 

points, fractional occupation). The image analysis pipeline consists of a multi-tier approach 

whereby the somas are segmented by adaptive region growing using nuclei as seeds, and the 

neurites are delineated by a combination of various intensity and edge detection algorithms. 

Quantitative comparison showed a superior performance of MorphoNeuroNet to existing 

analysis tools, especially for revealing subtle changes in thin neurites, where the fluorescence 

intensity is low compared to the rest of the network.  

The proposed method will help determining the effects of compounds on cultures with 

dense neurite networks, thereby gaining physiological relevance for cell-based assays in the 

context of neuronal diseases.  

Keywords: Mature neuronal network, neurite tracing, neural morphology, ImageJ. 
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 Introduction 1.

The correct development of a neuronal network depends on neuron migration, regulated 

outgrowth of neurites (axon and dendrites) and connection with target cells (synaptogenesis) 

[268]. Cultured primary neurons are terminally differentiated and so they do not undergo mitosis. 

Neurogenesis can only occur if neuron progenitors are present in the culture and if they receive 

specific stimuli [269, 270]. Consequently, cultured neurons are able to create a network only by 

increasing neurite density and synaptic connections. The growth of the network is enhanced in 

the early stages of the culture until it reaches a plateau phase [176]. Based on the neurite density, 

two types of neuronal networks can be distinguished, non-dense and dense neurite networks. 

Non-dense neurite networks (NDN) are found in young cultures, grown for a max. of 3 days, 

with single immature neurons having short neurites with distinct tips and only a few connections. 

In dense neurite networks (DN) (after 8-10 days of culture), neurons have matured and they are 

intensively wired, with many neurites connecting various neuronal cells. Mature and immature 

neurons not only differ in structural aspects (number of synapses and neurite growth speed), but 

also in functional behaviour (action potential activities, spontaneous synaptic currents, synaptic 

protein distribution…) [175, 176]. Additionally, recent studies suggest that GABA and glycine 

neurotransmitters have inhibitory activity on mature but excitatory activity on immature cortical 

neurons [177, 178]. Furthermore, mature neurons are less sensitive to external compounds or 

agents than immature neurons [179, 180]. These differences can have important implications for 

clinical applications. 

Modification of neuronal structures in response to environmental changes via the 

strengthening, weakening, pruning, or adding of synaptic connections is an intrinsic property of 

the neuronal network known as neuronal plasticity [154]. Understanding how the central nervous 

system reacts to potential therapeutic compounds or external impulses is one of the major 

challenges in neurobiology. In vitro assays on neurite outgrowth offer an attractive model for 
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studying biological or pharmacological effects on neuronal differentiation and re- or 

degeneration [271, 272]. This is done by measuring morphological features that portray the 

complexity of the neuronal network such as the branching of neurites. Whereas manual outlining 

of neurites is highly accurate and has successfully been applied to various small-scale screenings 

[273, 274], it is very laborious and not compatible with high-throughput screening methods. 

Hence dedicated image analysis pipelines are required that allow fully automated segmentation 

of neuronal network structures in combination with morphological feature extraction. 

Commercial solutions have been conceived by inter alia Imaris (Bitplane), Amira (Visage 

Imaging), HCA-Vision (CSIRO Biotech Imaging) but they are usually not openly for user 

customization and they are mainly available to large neuroscience groups. Open-source tools 

offer a cost-efficient alternative and can be adjusted more easily to the user demand, which is 

why developments in this field are ample. Indeed, several open-source tools for neurite 

outgrowth analysis have been devised for ImageJ, a popular and powerful open-source image 

analysis program [275]; to give a few examples, NeuronJ [276], NeuriteTracer [277], 

NeuronMetrics [278] and NeurphologyJ [279] are able to reliably trace neurites in non-dense 

neurite network cultures (NDN) and estimate their length with a good approximation (Table 4).   

Given the important differences between mature and immature neuron cultures (cfr. above) 

and with an eye on gaining physiological relevance, one of the current challenges is to determine 

the effects of compounds/stressors on well-connected and differentiated neuronal cultures with 

DN (as opposed to routinely used early-stage NDN cultures). In vitro models with well-

connected neurons are useful in investigating adult neurological diseases where events such as 

neuronal degeneration or regeneration are involved. In DN culture, neuronal morphology, 

connectivity and neuroplasticity can be monitored upon genetic, electrical or chemical 

perturbation. Despite their wide availability, none of the existing neurite tracing software 

packages designed for 2D analysis allows for performing a reliable detection of neurites in 

neuronal cultures with DN, (e.g. cultured for at least 10 days). This is because in DN, dendrites 
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and axons start to intersect and it becomes much more difficult to distinguish thin neurites due to 

the high density of the network. Hence, the main aim of this study was to design a tool that is 

capable of performing segmentation of DN in 2D in a fully automated manner, with a high 

accuracy in both neurite tracing and soma segmentation. The finality of this effort is the 

MorphoNeuroNet (MNN) package, which was conceived as a script for ImageJ/Fiji.  

 

 

  

Table 4: Comparison of some features of ImageJ-based packages available for neurite tracing in two-

dimensional images of non-dense networks (NDN). 

Toolkit ImageJ 

based 
Operational mode Morphological measurement 

Required images/ 

Analysis speed per 

image 

NeuronJ  Manual 
Neurite length per neuron 

Neurite branching 

Neuron image/ 

Related to the image and 

the user 

NeuroMetrics Semi-automated 
Neurite length per single neuron 

Neurite branching 

Neuron image/ 

< 5 minutes 

NeuroTracer Automated 
Neurite length per frame 

Soma number per frame 

Neuron image stack 

Nuclei image stack 

/2.1 seconds 

NeurphologyJ Automated 

Neurite length per frame 

Soma number and size per frame 

Neurite attachment points 

Neurite ending point per frame 

Neuron image 

/1.7 seconds 

MeasureNeurons 
Automated 

 

Neurite length per frame 

Soma number and size per frame 

Neurite attachment points 

Neurite ending point per frame 

Neurite branching per frame 

Segment length between branch points  

Mask of soma 

Mask of neurites 

/ 2.5 seconds 

(time for generating 

masks is not included) 
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 Materials and Methods 2.

2.1. Primary cortical neuron cultures 

In this study, primary neuron cultures were initiated from brain cortex of 17 day-old mouse 

fetuses. All animal experiments were carried out in strict accordance with the recommendations 

of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. 

The protocol was approved by the SCK•CEN (Belgian Nuclear Research Centre, Mol, Belgium) 

and VITO (Flemish Institute for Technological Research, Geel, Belgium) joint Ethical 

Committee on Laboratory Animal Experiments. Pregnant mice were sacrificed by cervical 

dislocation on day 17 after conception. Subsequently, brains from mouse fetuses were dissected 

and cortices were extracted. Neuronal cells were isolated by trypsinization, mechanical 

dissociation of tissue and cell centrifugation. Thereafter, cells were re-suspended in MEM 

medium (Gibco, Gent, Belgium) supplemented with 10% foetal serum (Gibco) and (0.1%) 

penicillin-streptomycin (Gibco) and seeded onto poly-D-lysine coated 4-well plates (Thermo 

Scientific, Erembodegem - Aalst, Belgium) at a density of 50,000 cell per cm
2
. Neurons were 

incubated for 1 h at 37 °C and 5% CO2 to remove non-neuronal small cells and to allow 

adherence. Thereafter, the medium was exchanged with Neurobasal medium (Gibco) 

supplemented with 2% B27 supplement (Gibco), HEPES 20 mM (Gibco) and penicillin-

streptomycin (0.2%) (Gibco); this medium allowed selective growth of neuronal cells. In order to 

obtain a DN culture as an in vitro model, neurons were cultured for 20 days at 37 °C, 95% of 

humidity and 5% CO2. After 5 days of culture, two thirds of medium was replaced by fresh 

medium every 2 days.  

2.2. Immunofluorescence staining and image acquisition. 

Neuronal cultures were stained with the neuronal marker β-tubulin 3 (β-tub 3) by means of 

indirect immunofluorescence. Briefly, the following protocol was applied: after fixation with 4% 
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paraformaldehyde (PFA) for 15 min at 4°C, cells were washed with phosphate buffered saline 

(PBS), permeabilized with PBS containing 0.1% Triton X-100 (Sigma, Bornem, Belgium) for 3 

min and blocked for 30 min with 3% BSA. Next, samples were incubated with mouse 

monoclonal anti-β-tubulin 3 (T5076, Sigma-Aldrich), diluted 1:200 in 3% BSA in PBS, at 4 °C 

overnight. After washing three times in PBS, a secondary antibody FITC labelled anti-mouse 

(F2012, Sigma-Aldrich), diluted 1:200 in 3% BSA, was applied for 90 min in the dark at 37 °C. 

Nuclei were counterstained with Hoechst (B2883, Sigma-Aldrich), 1:400 in PBS, for 10 min. 

Wells were rinsed in PBS and finally in milliQ water. 

Images were acquired with an automated inverted wide-field epifluorescence microscope 

(Nikon Eclipse Ti, Nikon Instruments, Paris, France) equipped with a metal halide lamp, 

motorized XYZ stage, automatically controlled Shutter and filter wheels with emission filters 

(387/11 for Hoechst and 485/20 for FITC) and excitation filters (452/45 for Hoechst and 536/40 

for FITC) used in combination with a triple dichroic mirror (436/514/604) mounted in a filter 

cube at fixed position. Images were acquired with a 20x dry (Plan Fluor, NA 0.5) or a 40x oil (S 

Plan Fluor, ELWD, NA 0.6) objective using a Nikon DS-Qi1Mc camera and NIS-Elements 

software (Nikon Instrument Software; Nikon Instruments). To obtain a foreground/background 

between 5 and 10 for the healthy neuronal cells, the following acquisition settings were used: 

exposure time 100 ms for 20x and 150 ms for 40x. Pixel sizes were 0.320 µm x 0.320 µm for the 

20x objective and 0.160 µm x 0.160 µm for the 40x objective and multiple axial planes were 

sampled at 1.4 µm intervals. Mosaic images were acquired with the “large image” method 

implemented in NIS Elements, which does automatic blended stitching, with an overlap of 25%. 

For the temporal follow-up of neuronal growth in culture, images were acquired at set time 

points of 1, 5, 10, 14, 20, 23 days. Per time point, a data set of 4 images was acquired with 40x 

magnification in mosaic (2x2) and 5 Z-positions. 
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2.3. Image processing and analysis 

All image processing was performed in ImageJ freeware [280]. After acquisition, images 

were pre-processed to reduce background heterogeneity and artefacts generated during the 

acquisition by flat-field correction. In case of acquisition of a number of Z-slices, images were 

projected to a focused 2D image by an Extended Depth of Focus (EDF) algorithm available in 

NIS Elements software. 

MorphoNeuroNet is conceived as a macro set for NIH‟s ImageJ (version 1.45s or higher) 

expanded with 3 additional plugins “Particle remover” 

(http://rsbweb.nih.gov/ij/plugins/index.html ), “FeatureJ” 

(http://www.imagescience.org/meijering/software/featurej/ ) and “Analyze skeleton” 

(http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:analyzeskeleton:start). The software 

can be downloaded for free from the following URL: http://www.limid.ugent.be/downloads.htm. 

MorphoNeuroNet architecture 

MNN consists of four sequential analysis modules. The first step is the detection and 

sorting of nuclei, which are used in the second step as seeds for segmenting the cell bodies or 

somas. Subsequently, neurites are segmented, after which the different components of the 

neuronal network are connected and subsequently analysed to extract their morphological 

features. MNN is able to perform these operations in batch, making it ideally suited for high-

content applications. The only requirement is for images to be placed in a single folder. The 

calibration of images is allowed to differ since, scale-dependent operations in the image-

processing pipeline are expressed relative to the image calibration. 

2.3.1. Detection and sorting of nuclei 

Typically, in a DN culture 3 different cell populations are observed, which can be 

characterized by their nuclear signals (Figure 17A). The first population represents normal 

(presumably healthy) neurons with a well spread soma (area ~ 280 µm
2
) and several neurites. 
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These cells have ellipsoid nuclei that contain a speckled chromatin pattern with ~5 

chromocenters of ~1 µm in diameter. The second class of neurons has small somas (area < 150 

µm
2
) without any extensions. Their nuclei show more pronounced chromatin condensation with 

high fluorescence intensity concentrated in a few (3-4) blobs of large diameter (several microns). 

Finally the third class of cells demonstrates small (area < 35 µm
2
) and completely condensed 

nuclei without soma. The two latter classes represent non-neuronal cells or different stages of 

cells undergoing apoptosis [281-283]. The difference in (mean) nuclear intensity between the 

first class and the other two was at least a factor 3. The acquisition settings were adjusted to 

maximize the nuclear signals for the healthy neurons, causing the signals from the apoptotic 

nuclei to become saturated (cfr. Immunofluorescence staining and image acquisition). In order to 

segment only the healthy nuclei (the first population), all nuclei were first enhanced by means of 

a Laplacian of Gaussian (LoG) filter (sigma=0.5 µm), followed by an automated thresholding 

procedure according to Huang‟s algorithm [284], resulting in a binary mask of nuclear regions. 

In this mask, nearby nuclei were separated by applying a watershed algorithm after which all 

nuclei were analysed for morphological and intensity parameters. Occasionally the watershed 

procedure split up nuclei in multiple parts, but we found this unwanted effect to be minimal 

(2%). Nuclei with high fluorescence intensity (higher than the mean intensity of all nuclei in the 

image), with over 50% of the nucleus area having condensed chromatin (being over 50% 

saturated pixels) and with projected area < 40 µm
2
 were eliminated from the mask by filling the 

corresponding ROIs with background colour to obtain a final nuclei mask.  

2.3.2. Soma detection  

In a young neuronal culture, somas have higher (between 1.3 and 2 times) intensity than 

neurites. The most common method for segmenting somas is to apply a low pass filter such as a 

Gaussian blur filter followed by the application of an automated threshold [279]. In dense neurite 

network cultures, somas have different fluorescence intensities and neurons tend to cluster 
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making it difficult for such an approach to resolve adjacent somas. In order to discriminate 

touching somas, the nuclear masks are used as seeds in the segmentation process by applying an 

inverted skeletonization procedure. This allowed for obtaining discrete soma regions (Figure 

17B).  

To segment the actual somas, nuclear ROIs (region of interest) were isotropically 

expanded by 10-20 microns using the built-in „Enlarge Selection‟ option from ImageJ (the extent 

need to be previously defined by measuring the maximum distance between nucleus and soma 

border) using the soma regions mask as boundaries (to prevent merging of touching somas). 

Next, the image contrast was normalized (allowing 1% saturation), followed by a Gaussian 

filtering (sigma of about 2 µm for an image acquired with a 40x) and finally a combined 

thresholding procedure was applied. First, the enlarged nuclear ROI was globally thresholded 

according to the IsoData algorithm (based on average of mean intensity of background and 

objects) [285], yielding preliminary soma ROIs. Subsequently, a local thresholding was applied 

by determining the optimal threshold in the preliminary soma ROI according to the Intermodes 

algorithm (based on determination of two maximal intensity peaks) [286]. The combination of 

these individual ROIs yielded the final soma mask. This mask was used to extract morphological 

parameters of individual somas (Figure 17B). 

2.3.3. Neurite segmentation  

In early stage (2-5 days) neuronal cultures, neurons are usually isolated and neurites well 

defined making segmentation rather straightforward. However, neurons cultured for longer 

periods (more than 10 days) create a dense neuronal network with variable contrast levels, 

making segmentation more challenging. To be specific, some parts are well defined and 

demonstrate strong fluorescence intensity, while other parts are thin and only weakly stained, 

especially at the tip ends of the neurites. To allow segmentation of the complete network, a 

three-tier approach was used (Figure 17C). General background intensity gradients were 
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removed by means of a background subtraction (“Rolling Ball” method, radius = 8 µm) after 

which the image was duplicated twice for multi-scale segmentation. In the first copy the high 

intensity parts of the image were extracted by an automated thresholding procedure (Moments 

algorithm [287]), creating a first mask, i.e. the high intensity mask. In the second copy, edge 

information was enhanced by means of an unsharp mask (Gaussian Blur: sigma = 2 µm) and 

subsequent thresholding (Moments algorithm [287]), creating a second mask, the edge mask. 

Finally, the weakest parts, the thinnest neurites, were segmented in the third copy image by 

applying a LoG filter (sigma = 0.25 µm) and automated thresholding according to the Moments 

algorithm [287], creating a third mask: the LoG mask. The sum of these three different binary 

images subtracted with the soma mask, generated a neurite mask, which was used to quantify the 

relative neurite area per image (Figure 17C).  

2.3.4. Image reconstruction and analysis  

In a final step the soma mask and neurite mask were combined to generate a neuronal 

network mask. Next, the neurite mask was skeletonized, as suggested by Kegl [288], after which 

branching points, end of neurites and segment lengths between branch points were determined 

per image. Soma morphology measured on the soma mask takes into account shape parameters 

such as size, roundness and circularity. To count the number of neurite attachment sites at the 

level of the soma, soma masks were dilated (3 pixel) after which the dilated regions were 

intersected with the skeleton of the neurite mask. Unique attachment points per soma were 

identified using a „find maxima‟ operation (noise level=0) (Figure 17D).  

Finally all masks were used to perform the actual measurements, including nuclei number, 

total projected area of nuclei per image, soma number and total soma area per image, neuron 

area, neurite area and neurite length. Normalized metrics were obtained by dividing the original 

metric per image by the number of nuclei. These results were saved as xls. format per image 

sorted by sample/folder identity.  
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2.4. Validation and statistical analysis 

For the actual neuronal network analysis several ImageJ plugins were tested including 

NeuronJ, NeuroMetrics, NeuriteTracer, NeurphologyJ and CellProfiler‟s MeasureNeurons 

(Table 1). NeuronJ is a popular tool for manual neurite tracing and it has been used as reference 

package for testing 2D neuronal tracing automated software [276]. Given 2 points, one at the 

start and the other at the end of the neurite, NeuronJ traces the neurite by finding the optimal 

intensity path between them. NeurphologyJ is a package that can trace neurites automatically, 

but it does not provide any information on branching complexity. Additionally, NeurphologyJ 

measures number and size of somas, the total number of neurites attached to the somas 

(attachments points) and the total number of neurite tips (ending points) per image. CellProfiler, 

an open-source platform specifically conceived for high content image processing analyses 

[289], has a module named MeasureNeurons which allows to trace neurite and measure their 

length, as well as determine attachment points, end points, branching points and segment length 

between branch points. In contrast with ImageJ plugins, MeasureNeurons need to define a 

pipeline of functions to create soma and neurite masks before being applied (Supporting Table 

1), so essentially it still requires many of the steps that we have implemented in our analysis.  

Neuronal outlines obtained by NeuronJ-assisted manual tracing, were used as a ground 

truth. Based on a comparative analysis, NeurphologyJ proved to be the most useful and most 

accurate tool for automated tracing of neurites in NDN cultures (Table 5), which is why this tool 

was used as reference. Furthermore, the module MeasureNeurons, which requires a supporting 

pipeline of functions (Table 6) to generate soma and neurite masks, was used to evaluate the 

performance of this algorithm to skeletonize NDN as well as DN (Table 5).  

Statistical analyses were performed in GraphPad Prism (GraphPad Software Inc., San 

Diego, USA) software, using the Pearson‟s correlation and paired Students T-test to compare 

neurite length, soma area and soma number between the automated tools and ground truth. 
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Additionally, one-way Anova was performed to observe variations in neurite area estimated by 

automated tools. Error rate and accuracy were calculated for the detected number of attachment 

points per soma. The error rate was estimated by dividing the difference between manually 

counted points (ground truth, M) and the automatically detected points (A) by the number of 

automatically detected points (Error rate % = (M-A)/A = D/A). The accuracy was estimated 

dividing the correctly detected points (AC) by manual counted points (M) (Accuracy % = Ac/M) 

[279].  

To determine the accuracy of MNN in soma segmentation, relative area per soma was 

calculated for 200 somas as follows:  
     

  
 , whereby Aa represents the area of the 

automatically segmented soma and Am the area the manually segmented soma (ground-truth) 

[290].  

To test the robustness of MNN Gaussian noise and Salt & Pepper (S&P) noise were added 

to original images. In order to obtain images with specific signal-to-noise ratio (SNR, dB), data 

sets of 15 images with Gaussian noise were generated by increasing the standard deviation (SD). 

Afterward, related signal-to-noise ratios (SNRs; dB) [291, 292] of image were determined per 

each SD by ImageJ plugin [293] as follow:             [
∑ ∑ [ (   )] 

    

 
    
 

∑ ∑ [ (   )  (   )] 
    

 
    
 

], 

whereby r(x,y) and t(x,y) represent single pixels of reference and modified images respectively. 

Furthermore, the correlation between SD and SNR was determined and the SD for SNR 25, 15, 

7.5, 4 and 2 were calculated. Finally, Gaussian noise was applied to the original images and 

analyses performed (Fig. 22). 

Figure 17: Workflow of the MNN neuronal analysis toolbox (see text for details). 

Step A: Nuclei detection. Nuclei are segmented, using an automatic threshold and watershed-based separation, after 

which healthy neuronal nuclei are identified based on size and intensity parameters. Step B: Detection of somas. 

Using the healthy nuclei as seeds, somas are segmented by conditional dilation. Step C: Neurite segmentation. A 

combination of three different methods, one intensity-based and two edge-based, allow to distinguish the majority of 

neurites with variable thickness and fluorescence intensity. Step D: neuronal network reconstruction and image 

analysis. The final neuronal network mask is reconstructed by summing the neurite mask and the soma mask. 

Neurite length is obtained by analysing the skeleton of the neurite mask and neurite attachment points are detected 

by scoring the overlapping regions between the neurite mask and a dilated soma mask. 
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 Results 3.

To assess the performance of MorphoNeuroNet, we compared various parameters with the 

established neurite tracing tools NeuronJ [276], NeurphologyJ [279] and CellProfiler‟s 

MeasureNeurons on a data set of NDN cultures consisting of 20 mosaic images acquired with 

20x magnification. Table 5 gives an overview of the parameters and accuracy of the four 

methods.  

3.1. NDN culture analysis 

We evaluated the accuracy of MNN in neurite tracing and in estimating morphological 

parameters in cortical neuron cultures cultured for 48 h. Parameters such as total neurite length 

per image, soma number per image and number of neurites (attachment points) per neuron were 

compared with the results obtained with manual tracing using NeuronJ, the automated tool 

NeurphologyJ and the automated CellProfiler module MeasureNeurons. Results obtained by 

manual neurite tracing with NeuronJ were considered as ground truth for performance 

assessments (Figure 18). All three automated methods showed a highly accurate and linear 

estimation of neurite length in 2 day-old NDN neuron cultures with a Pearson correlation 

coefficient close to 1 (NeurphologyJ R=0.98; CellProfiler R=0.93; MNN R=0.99) and the paired 

t-test showed no significant difference for the different methods from ground truth 

(NeurphologyJ p=0.19; CellProfiler p=0.72; MNN p=0.63). Notably, MNN was able to detect 

the weakest intensity parts of thin neurites, whereas this was not the case for the other two 

(Figure 18 A, yellow arrows). 
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Table 5: Comparison of MNN with manual and automatic neurite tracing packages designed for non-dense 

network (NDN) analysis. 

Measurements 

(Functions, speed 

and accuracy) 

NeuronJ NeurphologyJ 

Pipeline to generate 

soma and neurite 

masks  

+ MeasureNeurons 

MorphoNeuroNet 

Required images Neuronal network Neuronal network 
Neuronal network 

and nuclei 

Neuronal network 

and nuclei 

Number of nuclei No No Yes Yes 

Soma numbers No Yes Yes Yes 

Soma size No Yes Yes Yes 

Soma shape 

parameters 
No No Yes Yes 

Neuron size No No Yes Yes 

Neurite size No No Yes Yes 

Neurite length Yes Yes Yes Yes 

Attachment points Yes Yes Yes Yes 

Ending points Yes Yes Yes Yes 

No. of images in 

one batch 
Unlimited Unlimited Unlimited Limited by memory 

Analysis speed per 

image**** 

Related to neurite 

density and the 

user  

(50 - 200 min) 

2.5 sec 1min 30 sec 50 sec 

Correlation 

coefficient/p-value 

for neurite tracing 

in non-dense 

network *  

 
 

R=0.99 / p=0.19 

 

R=0.93 / p=0.72 

 

R=0.98 / p=0.63 

Correlation 

coefficient/p-value 

for soma area in 

non-dense network 

** 

 
 

R=0.89 / p=0.11 

 

R=0.98 / p=0.72 

 

R=0.99 / p=0.82 

Correlation 

coefficient/p-value 

for soma detection 

***  

 
 

R=0.95 / p=0.12 

 

R=0.94 / p=0.82 

 

R=0.99 / p=0.77 

Correlation 

coefficient/p-value 

for neurite tracing 

in dense network *  

 

 

R=0.67/p=0.049 

 

 

R=0.43 / p=0.001 

 

R=0.91 / p=0.63 

* Manual tracing with NeuronJ used as a ground truth 

** Manual tracing with NeuronJ used as a ground truth 

*** Manual counting used as a ground truth 

****The average processing time was measured on Intel Core 2 Duo, 2.40 GHz, 4 GB, 32-bit computer. 
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Whilst all three methods NeurphologyJ, MeasureNeurons and MNN are able to detect 

somas, thanks to the nuclear seeding procedure, MeasureNeurons and MNN are also capable of 

separating adjacent somas, where NeurphologyJ typically assigns them as one single soma 

(Figure 18 A). Comparison of the Pearson‟s correlation coefficient and a paired T-test of 

automated versus manual soma area per image showed that all methods were highly accurate, but 

MNN offered an additional advantage (NeurphologyJ R=0.89 p=0.11; CellProfiler R=0.98 

p=0.78; MNN R=0.99 p=0.82) (Figure 18 C). By comparing the soma counts between programs, 

we found a strong correlation between the number of detected somas and the actual number of 

somas (based on manual identification) for all three methods (Pearson‟s correlation coefficients 

were R=0.95 for NeurphologyJ, R=0.94 for CellProfiler and R=0.99 for MNN). Nevertheless, 

MNN presented a higher correlation than NeurphologyJ and CellProfiler. Furthermore, a 

marked, but non-significant deviation from linearity for NeurphologyJ at the higher numbers of 

neurons (p=0.22 for soma nr >50) was observed (Figure 18 D). There was no significant 

difference in measured neurite area either (Figure 18 E). In neuronal re- or degeneration studies, 

it is important to accurately estimate the number of neurite attachment points. To determine 

accuracy and average error rate, attachment points of 20 neurons were manually counted as 

ground truth and compared with the number of attachment points estimated by NeurphologyJ 

and MNN. As reported in table 6 of supporting data, the error rate and the accuracy in 

NeurphologyJ were 5.02% and 98.38%, respectively. The error rate and the accuracy in 

CellProfiler were 4.64% and 95.3% and in MorphoNeuroNet were 4.35% and 97.41%, 

respectively.  
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Figure 18: MNN accurately traces neurites and segments somas in NDN cultures.  

(A) Example of mouse cortical neuron images analysed by NeurphologyJ, CellProfiler and MNN (nuclei in blue and 

β-tubulin 3 in green). In the binarized images, the skeleton of the neurites is represented in white, somas in green 

and nuclei in blue. White arrows indicate differences in soma segmentation whereas yellow arrows show 

segmentation of neurites with weak fluorescence intensity. (B-D) Quantitative comparison of performance of 

NeurphologyJ, CellProfiler and MNN with ground truth (manual tracing) in measuring (B) neurite length, (C) soma 

area, (D) soma number and (E) total neurite area. Pearson’s correlation coefficients and p-values for the paired 

two-tailed Student’s T-test are shown.  
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Table 6: Error rate and accuracy on automated counting of neurite per soma are calculated.  

The error rate was estimated by dividing the difference between manually counted points (ground truth, M) and the 

automatically detected points (A) by the number of automatically detected points (A) (Error rate % = (M-A)/A = 

D/A). The accuracy was estimated dividing the correctly detected points (AC) by manual counted points (M) 

(Accuracy % = Ac/M). 
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3.2. DN analysis  

Similar to the NDN analysis, several tools such as NeuronJ [276], NeuriteTracer [277] and 

NeuroMetrix [278], were tested on DN. The two most suitable methods for tracing a neuronal 

network were NeurphologyJ and CellProfiler (MeasureNeurons), due to their accuracy and their 

capability to analyse the whole NDN images. Due to the high variability in fluorescence intensity 

between somas (Figure 19A) NeurphologyJ and CellProfiler were not able to correctly segment 

the somas. In an attempt to find the optimal equilibrium in threshold between somas with 

different intensity, NeurphologyJ increases the size of somas with high intensity and reduces the 

size of somas with low fluorescence intensity, creating highly inaccurate segmentation results. 

On the other hand, CellProfiler, which allowed for detecting somas using nuclei as seeds, 

showed an under-segmentation of the cell body. The capability of MNN to determine somas one 

by one, beginning from nuclei allows discriminating soma shape (Figure 19 D). In line with the 

results obtained for the NDN, CellProfiler and MNN are able to separate touching somas 

whereas NeurphologyJ is not (Figure 19 D). 

Due to the high heterogeneity of DN immunofluorescence intensity, images should be 

acquired with a high-magnification (M>=40) and high-resolution objective (NA>0.6), to avoid 

loss of information at the level of thinnest neurites. As previously described by Shinn-Ying Ho 

[279], NeurphologyJ does not quantify neurite length correctly and the skeletonize function 

produces a tree-like skeleton in high resolution images. Due to the over- and under-sampling of 

somas, an incorrect skeletonization is generated, introducing an error in quantification of 

attachment points. In addition, due to the high variability in fluorescence intensity in the neurite 

network, thinner neurites with low intensity are not detected without an oversampling of neurites 

with high intensity (Figure 19 B-C-E). Less prominent but still present, a tree-like skeleton was 

observed in images processed with the CellProfiler‟s module MeasureNeurons (Figure 19 B-C-

E). Thanks to its multi-tier approach, MNN is capable of handling strong intensity differences 
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between neurites and therefore allows for obtaining a more reliable estimation, with the neurite 

mask covering the majority of the visually discernible network without over-segmentation 

(Figure 19 B-C-E). Indeed, the comparison of neurite length per image between the three 

Figure 19: Automated neurite tracing and soma segmentation in DN cultures.  

Example of (A-D) soma segmentation and (C-D) neurite tracing in 10 day old mouse cortical neuron images 

analysed by NeurphologyJ, CellProfiler and MNN. In binarized images the skeleton of neurites is represented 

in white, somas in green. (E) Box plot comparing total neurite length measured by NeurphologyJ, CellProfiler 

and MNN in 7 random frames (40X) of 10 day-old neuronal networks and compared with manual tracing. Total 

neurite area is expressed in pixels. Pearson’s correlation coefficients and p-values for the paired two-tailed 

Student’s T-test are shown.  
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automated methods with the ground truth showed statistically significant differences for 

NeurphologyJ (p=0.049) and CellProfiler‟s MeasureNeurons (p=0.001), which make an 

overestimation due to the incorrect skeletonization (Figure 19 E, table 2). In contrast, MNN 

showed a good Pearson correlation with the ground truth with 0.91 (p=0.63) (Figure 19 E, table 

2). 

3.3. Determining the neurite network by MNN throughout 23 days of culturing 

Determining the length of neurites helps to estimate neuronal network development stage. 

To test the capability of MNN to trace neurites in very dense neuronal networks, cortical primary 

mouse neurons were cultured for 23 days and fixed and stained at day 1, 5, 10, 14, 20 and 23. 

Next, the analysis was applied to four randomly selected images per condition (Figure 20). 

Statistically significant differences were found for the average neurite length per neuron between 

1 and 5 days (p=0.0039) and between 5 and 10 days (p=0.0274), but not between later time 

points. (Figure 20 A). Similar results were observed for total neuron size (soma + neurites) and 

total neurite size per neuron (Figure 20 B-C). Additionally, since neurites extend slower after 10 

days showing a statistical difference only between 10 and 23 days, the reasonable stage of 

connectivity occurred around day 10. As expected, (since neurons do not divide in culture), no 

statistical difference was observed between soma numbers, (Figure 20 E) suggesting that the 

observed reduction of number of neurons within 23 days was not relevant and differences 

observed in neuronal network would mainly be due to plasticity activities (Figure 20 D). 
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Figure 20: MNN traces neurites and segments somas throughout 23 days of culture. 

 (A) Raw images and MNN-generated neuronal masks of primary mouse cortical neuron cultures at different time 

points. In binarized images, neurite skeletons are represented in white and somas in green. (B) Neurite length per 

neuron. (C) Average neurite area per neuron. (D) Average neuronal. (E) Average number of somas per cm2. 

Paired two-tailed Student’s t-test was performed, significant differences are indicated with a *, error bars in the 

graphs represent the standard deviation. Arrows indicate non-accurate soma segmentation. 
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3.4. Robustness of MNN 

MNN is superior in segmentation performance of both neurite networks and somas, 

especially in DN cultures, the only drawback is the higher processing time, with an average of 50 

sec per image (1500 x 1100 pixels) compared to 30 sec per image for NeurphologyJ (opening, 

analysis and saving). Since MNN is completely automated and opens, analyses and closes 

images without human assistance, this concession in time efficiency can be afforded. 

In DN images, MNN might detect somas not as accurately when neurites with equal 

intensity are juxtaposed (Figure 20 A arrows). Furthermore, in order to separate adjacent nuclei, 

the watershed segmentation was used, which caused an over-segmentation error rate of about 

2.3% (1 or 2 per image). Additionally, estimation of relative area of automated soma 

segmentation into manual segmentation showed an accuracy of about 93% (Fig. 21). 

 

  

Figure 21: Soma segmentation accuracy of MNN. 

(A) Relative overlapping area between automated and manual soma segmentation. (B) Comparison of soma 

circularity estimation performance between MNN and manual soma segmentation. 
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To test the robustness of MNN, the analysis was run on real images which were degraded 

by adding two types of noise: either additive Gaussian noise was applied in order to obtain the 

SNR between 25 (low noise) and 2 (high noise) or S&P noise (2.5%) up to 5 times. On a data set 

of 3 images, neuronal area, neurite area and length were estimated with MNN after noise 

application and compared with the original image to determine the percentage of error (obtained 

value/reference value*100). Results obtained with MNN on neuron area, neurite area and neurite 

length showed an increase of the error percentage in NDN images with SNR<=15 whereas the 

error percentage increased in DN images with SNR<=7.5 (Fig. 22). Furthermore, the error 

percentage was evident in both networks after applying twice (5%) the S&P noise (Fig. 22).  

In order to determine if automated plugins are able to perform high throughput assays, sets 

of images of ten day-old cultures of primary neurons continuously exposed to low dose of high 

LET ionizing radiation for 5 days were analysed with MNN, CellProfiler and NeurphologyJ. 

Results on neurite length showed statistical difference between irradiated cultures and their 

respective controls (data not shown). Finally, the Z-factors [294], calculated on obtained neurite 

length per image, showed highest value for MNN (0.22) compared to CellProfiler (0.15) or 

NeurphologyJ (<0) (data not shown).  

 

 

Figure 22: MNN performance in tracing neurites in images degraded with noise. 

 (A) Gradual increase of Gaussian noise in NDN images acquired with 20x and in DN images acquired with 20x and 

40x. The Gaussian noise was applied in order to obtain a SNR (dB) of 25, 15, 7.5, 4 and 2. (B-D) The error 

percentages estimated on neuron area, neurite area and neurite length images with gradual increase of Gaussian 

noise. (E) Gradual increase in Salt & Pepper noise (2.5%) on the same images (F-H) Estimation of the error 

percentages increasing the Salt & Pepper noise estimating neuron area, neurite area and neurite length images. 

(Page 107). 
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 Discussion 4.

In recent years, high content screens have revolutionized cell biological studies by giving 

phenotypical observations a statistically relevant and quantitative foundation. In line with this, 

the bottleneck has shifted from acquiring the images to analysing the image data sets in an 

automated and objective manner [117]. In the context of neuronal regeneration studies, several 

automated image analysis pipelines have been conceived, which accurately quantify the shape 

changes in NDN cell cultures [276-279]. However, most existing methods show limited 

performance for well-connected and differentiated neuronal networks. Nevertheless, these DN 

cultures may serve as valuable models for instance for investigating neuronal network 

remodelling in the presence of stress factors, thus demanding an appropriate analysis. To cater 

for this need, we developed MNN as a macro set for ImageJ to enable automated tracing of 

neurites in both NDN and DN images. During the development phase, the accuracy (in 

comparison with the ground truth), the speed (faster than manual reconstruction) and the broad 

applicability of the algorithms to different data sets were used as criteria to evaluate the 

performance, in analogy with other works [295, 296]. MNN shows a strong accuracy in neurite 

tracing and soma segmentation in culture conditions, measuring neurites in cultures grown for up 

to 23 days.  

MNN allowed for detecting subtle changes in the neuronal network on multiple levels 

(neuron size, areas and length of neurite, size and shape of somas and attachment points to 

somas), in particular at the level of thin neurites, where the fluorescence intensity is low 

compared to the rest of the network. This capability is due to a multi-tier approach that combines 

intensity and edge information in the segmentation process, instead of using only one method as 

in NeuriteTracer [277], NeuronMetrics [278] or NeurphologyJ [279]. MNN performed well on 

different image data sets acquired at different resolutions and was robust to relatively high levels 

of noise. Finally, but not less important, the speed to analyse NDN cultures was about 60 times 
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faster than the manual tracing, and more than 200 times for 10 day-old neuronal networks. Using 

the MNN method, we found that neurites extend fast until they reach the stage of reasonable 

connectivity, after which the neuronal network grows slower, consistently with earlier data 

[176]. There are still improvements that can be made in terms of processing speed or 

segmentation performance. For instance, solutions could be implemented to prevent or recover 

erroneous separation of nuclei caused by the watershed algorithm. This could be done by a 

posteriori re-joining or model fitting based on a library of expected shapes [297, 298]. 

Thanks to the aforementioned advantages, the use of MNN holds promise in neurological 

research to estimate subtle changes in long-term neuron cultures used as in vitro mature nervous 

system model. It is known that cognitive dysfunction and memory impairment at adult age might 

be induced by neurological disease as well as external events like toxic compounds or radiation. 

In vivo [208] as well as in vitro [299] studies showed that ionizing radiation at low or high doses 

induce neuronal death. Analysis of DN neurite cultures continuously exposed for 5 days to 

ionizing radiations were performed with MNN. The calculated Z-factor [294] for MNN (0.22) 

suggested that our toolkit has a potential for high content analyses and with a few 

implementation could be useful also for high throughput screens. Recently, valuable efforts have 

been made to enable segmentation of neuronal networks in 3D. In the context of the DIADEM 

(Digital Reconstruction of Axonal and Dendritic Morphology) Challenge [295, 296], several 

algorithms have been developed, among which one that sequentially detects the neurite centre 

line and merges individual branches into trees to reconstruct 3D neurons [300] and one that is 

based on 3-D open-curve active contours for tracing and reconstructing neurites [301]. Whilst 

these methods show strong performance and high accuracy in individual neuron reconstruction, 

these algorithms require high-resolution images and high computational power for calculations, 

rendering them at this point in time less attractive for high content applications. Moreover, not 

all applications require that amount of detail. In many high-content and high-throughput 

screenings the purpose is to derive a simple yet accurate phenotypical indicator of a biological 
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effect. As we have shown, neuronal network density is one such valuable parameter, which can 

be efficiently measured in 2D and thus lends itself to implementation in such screening with 

much lower computational requirements and therefore higher capacity for multiplexing.  

Another potential bottleneck in high content applications is the staining procedure, which 

is time consuming and has low multiplexing capability. Options to expand the number of 

markers include the use of Quantum dots but this still leaves the large number of samples that 

remains to be processed in parallel. To avoid this, fluorescently labelled neurons can be obtained 

by transgenic mice [302, 303]. Impressive solutions to allow resolving individual neurons in 

dense neuronal networks have been proposed by the Lichtman group (cfr. Brainbow, cre-lox 

approaches…) [302]. In addition, a mix of differently labelled neuronal cultures (e.g. from 

different transgenic strains) could allow resolving neuronal characteristics in different settings. 

In conclusion, the toolbox that we have developed adds a new analytical strategy in the 

rapidly growing field of neurological research, by allowing accurate and robust estimation of the 

density of neuronal networks. This can be useful for high content analysis and compound 

screening of well-connected neuronal cultures and thereby opens new venues for neuronal 

research.  
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microgravity.” Conditionally accepted in PlosOne with minor revisions on May 30.  
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Morphological and physiological changes in mature in vitro 

neuronal networks towards exposure to short-, middle- or long-term 

simulated microgravity 

Abstract 

One of the objectives of the current international space programmes is to investigate the 

possible effects of the space environment on the crew health. The aim of this work was to assess 

the particular effects of simulated microgravity on mature primary neuronal networks and 

specially their plasticity and connectivity. For this purpose, primary mouse neurons were first 

grown for 10 days as a dense network before being placed in the Random Positioning Machine 

(RPM), simulating microgravity. These cultures were then used to investigate the impact of 

short- (1h), middle- (24 h) and long-term (10 days) exposure to microgravity at the level of 

neurite network density, cell morphology and motility as well as cytoskeleton properties in 

established two-dimensional mature neuronal networks. 

Image processing analysis of dense neuronal networks exposed to simulated microgravity 

and their subsequent recovery under ground conditions revealed different neuronal responses 

depending on the duration period of exposure. After short- and middle-term exposures to 

simulated microgravity, changes in neurite network, neuron morphology and viability were 

observed with significant alterations followed by fast recovery processes. Long exposure to 

simulated microgravity revealed a high adaptation of single neurons to the new gravity 

conditions as well as a partial adaptation of neuronal networks. This latter was concomitant to an 

increase of apoptosis. However, neurons and neuronal networks exposed for long-term to 

simulated microgravity required longer recovery time to re-adapt to the ground gravity. 

In conclusion, a clear modulation in neuronal plasticity was evidenced through 

morphological and physiological changes in primary neuronal cultures during and after 
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simulated microgravity exposure. These changes were dependent on the duration of exposure to 

microgravity. 

Keywords: Mature neuronal network; neuroplasticity; neuronal morphology; simulated 

microgravity; short-term exposure; long-term exposure  
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 Introduction 1.

In an orbital spaceflight, astronauts are exposed to the orbital gravity (10
-2

 - 10
-6

 x g), also 

called microgravity, which is a continuous free-fall condition, resulting from the Earth‟s 

gravitational pull and the centrifugal forces from the spacecraft‟s propulsion. Microgravity is one 

of the main stressful components of the space environment since it is well known that it induces 

physiological changes in astronauts such as skeletal muscle atrophy [304], bone loss [305], 

immune system impairment [216, 263] and shifts of body fluids from the lower extremities to the 

upper body [306]. Moreover, cognitive deficits, sensory-motor alterations, changes in sleep-

wake regulation as well as vegetative disorders can also occur during long-term space flight, 

affecting human performance [307]. It is also known that organisms exposed to microgravity 

undergo physiological, cellular as well as metabolic changes. For instance, cellular motility, 

morphology, cytoskeleton [59], proliferation [35], apoptosis [68, 308] as well as other 

physiological systems are known to be altered following exposure to modified gravitational 

fields. 

When astronauts and/or animals are exposed to microgravity, a particular number of 

neurological disorders, such as space adaptation syndrome (SAS), space motion sickness (SMS), 

postural illusion, visual disturbances, nausea and headaches, neuromuscular fatigue and 

weakness as well as postural imbalance and ataxia may appear and persist until return to Earth 

[309]. These pathological changes affect both motor and sensory functions, and the effects can 

be long lasting. Furthermore, it has been suggested that these changes could be the signs of an 

active process of neuroplasticity [310]. However, the nature of the functional and structural 

mechanisms involved in these changes is currently not well understood. 

Basically, the term “neuroplasticity” is related to the neuronal capability to modify some 

functional processes in response to the alterations in incoming information [153]. It is an 

intrinsic property of the nervous system maintained throughout life that allows physiological 
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modifications of neuron functions and structures in response to environmental changes via the 

strengthening, weakening, pruning or the addition of synaptic connections and/or the promotion 

of neurogenesis [154]. Increases in neuroplastic activity seem also to be linked to pain 

hypersensitivity and to headaches [154, 311]. Furthermore, it has been previously shown that 

environmental changes can alter cognition and behaviour by modifying connections between 

existing neurons in the hippocampus, cortex and other parts of the brain [155]. 

Several experiments on cell morphology and motility have been performed in real and 

simulated microgravity. In these experiments loss of cell adhesion, reduced cell surface, decrease 

in the number of filopodia and reduced motility were reported [38, 59]. These functions are 

mainly regulated by cytoskeletal activities and the observed alterations concern in particular the 

distribution and organization of microtubules, microfilaments and the structure of adhesion 

proteins [38, 51, 59]. Alterations of microtubule and microfilament organization under simulated 

microgravity have already been evidenced in neuron outgrowth cones [188]. It was also reported 

that glial cells showed morphological alterations already after 30 minutes of simulated 

microgravity, and after 20-32 h, presented an elevated cell death rate [56]. Moreover, neurons, 

exposed to simulated microgravity before plating, showed cell clustering and abnormal shapes 

after 24 h of culture in ground conditions [57]. Experiments on neuronal connections in 

simulated microgravity also suggested that synapse formation is sensitive to the gravitational 

vector [58, 312]. 

Apoptosis, or programmed cell death, occurs in all multicellular organisms and the 

initiation is induced by various stimuli such as changes in cellular homeostasis, binding of 

particular ligands to cell surface receptors, radiation and many other external stress factors [283]. 

In the brain, apoptosis is known to be partly induced by cytoskeleton disruption in hippocampal 

cells [313]. Apoptosis induced by microgravity, both in vivo and in vitro, was also described in 

several experiments related to the central nervous system (CNS) [67, 68]. 
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As previously described, microgravity can directly influence several parts of the CNS 

inducing a re-organization of neuron connections in order to codify the new inputs coming from 

the sensory system. However, it is still unknown whether microgravity also exerts an effect on 

the CNS areas that are not directly involved with either the sensing or the response to gravity. In 

these CNS areas microgravity could induce alterations at the cellular level affecting thereafter 

events involved in neuronal plasticity and connectivity [307]. However, although some 

experiments reported morphological alterations in neurons cultured in altered gravity force [57, 

58, 188, 196], until now only few in vivo and in vitro studies on mature nervous system models 

have been conducted to investigate the effects of real or simulated microgravity on adult neural 

plasticity processes [58, 196]. Results from the few in vivo studies on the effects of real or 

simulated space conditions on the CNS plasticity suggest that exposure to gravity alterations, 

both during microgravity as well as after return to Earth, induce changes in the mature nervous 

system [193]. During the Cosmos 1514 flight, pups were exposed to space conditions in utero 

and brains were thereafter morphologically and histochemically examined [168]. Ultrastructural 

studies revealed some delay in neuroblastic differentiation as well as in cytoskeletal changes in 

unmyelinated fibers and in outgrowth cones of axons and dendrites in the hypothalamic 

supraoptic nuclei [168]. Furthermore, experiments performed on rat during the Space Flight 

Science 1 and 2 reported changes in ribbon synaptic plasticity. In particular it was demonstrated 

that gravity sensor hair cells have an extraordinary ability to change number, type and 

distribution of synapses [165]. Recently, a payload for rodents, named Mice Drawer System 

(MDS) was built to house mice aboard the International Space Station (ISS) for investigating the 

long-term adaptation to space conditions [198]. A reduced expression of neuron growth factor 

(NGF) and brain-derived neurotrophic factor (BDNF) was reported in brain regions such as 

cortex and hippocampus of spaceflown as compared to ground control animals [199]. The same 

study revealed that genes involved in long-term potentiation, axon guidance, neuronal growth, 
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cone collapse, cell migration, dendrite branching and dendritic-spine morphology were up-

regulated in the whole brain of mice exposed for 91 days to the ISS environment [199]. 

In this study we investigated the effects of simulated microgravity using the Random 

Positioning Machine (RPM) on in vitro dense mature neuronal networks obtained from primary 

mouse neurons with a particular emphasis on neuronal network morphology and cell death 

during short-, middle and long-term exposure to simulated microgravity. 
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 Materials and method 2.

2.1. Primary cell culture and adult neuronal network model 

In this study, primary neuron cultures were initiated from brain cortex of 17 day-old mouse 

foetuses. All animal experiments were carried out in strict accordance with the recommendations 

from the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health 

(USA). The protocol was approved by the SCK•CEN (Belgian Nuclear Research Centre, Mol, 

Belgium) and VITO (Flemish Institute for Technological Research, Geel, Belgium) Ethical 

Committee for Laboratory Animal Experimentation (Permit Number: 08-001). Three pregnant 

BALB/c mice, one per replicate, were sacrificed by cervical dislocation at day 17 post-

conception. Subsequently, brains from mouse foetuses were dissected and cortices were 

extracted. Brain cortices of foeti from the same pregnant female were pooled and considered as 

one replicate. Treatment with 0.1% trypsin (cat n° 15400, Gibco, Belgium) and 10µg/ml DNAse 

I (cat n° 18068015, Gibco, Belgium) in phosphate buffered saline solution allowed to isolate 

single neuronal cells which were then collected after centrifugation. Finally, neurons from the 

three replicate pools were plated each in 18 4-well plates (54 4-well plates in total) (cat n° 

76740, Thermo Scientific, Belgium) and in 18 flasks (15 cm
2
) (54 flasks in total) (Thermo 

Scientific, Belgium) at a density of 50,000 cells per cm
2
.
 
Neurons were plated in poly-D-lysine 

pre-coated wells (cat n° P0899, Sigma-Aldrich, Belgium) with MEM medium (cat n° 31095, 

Gibco, Belgium) supplemented with 10% foetal serum (cat n° 10437, Gibco) and penicillin-

streptomycin (0.1%) (cat n° 15140, Gibco, Belgium) and incubated for 1 h at 37°C and 5% CO2 

to allow adherence of neuron cells to the coated support. The medium was then exchanged for 

Neurobasal Medium (cat n° 10888-022, Gibco, Belgium) supplemented with 2% B27 

supplement (cat n° 17504-044, Gibco, Belgium), HEPES 20 mM (cat n° 15630, Gibco, Belgium) 
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and 0.2% penicillin-streptomycin. This selective medium stimulated the growth of neuronal cells 

present in the culture and not the other brain cell types. 

In order to obtain adult neuronal networks as in vitro model, neurons were cultured for 10 

days at 37 °C, 95% of humidity and 5% CO2. At days 5 and 7 of culture, 2/3 of each culture 

medium was replaced with fresh medium.  

2.2. In vitro experimental layout  

To study the morphological effects of simulated microgravity on dense neuronal networks 

as well as on well-connected neurons, at day 9 of neuron culture, plates and flasks were prepared 

to be exposed to the desktop RPM (Dutch Space) for 1 hour (short-time exposure), 24 hours 

(middle-term exposure) and 10 days (long-term exposure). The complete experiment required 

fifty-four 4 well-plates and fifty-four flasks, eighteen plates/flasks per replicate (9 GC and 9 

RPM), which were fully filled with complete neurobasal medium and sealed with sterile 

parafilm. Bubbles were removed with a syringe. At day 10, 3x9 plates and 3x9 flasks were 

exposed to the RPM at 60°/s (0.03-0.008 x g) [314] for 1 h, 24 h or 10 days. For every time 

point, the three remaining plates and flasks were positioned on the static RPM bar as ground 

controls (GC). After 1 h, 24 h and 10 days of exposure, one plate per condition was fixed with 

4% paraformaldehyde whereas cells in flask were lysed with lysis buffer from Qiagen AllPrep 

DNA/RNA/Protein Mini Kit. Remaining two plate and flasks per experimental point were kept 

for 24 or 72 h at normal ground conditions to further investigate the neuronal recovery after 

simulated microgravity. The experimental layout is described in supplementary figure 23. 
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2.3. Immunostaining of neuronal network  

Neuronal networks were stained for the neuronal marker β-tubulin 3 (-tub 3) using 

indirect immunofluorescence, whereas nuclei were revealed by direct fluorescence. After 

washing with phosphate buffered saline (PBS), cells were permeabilized with PBS-Triton X-100 

(Sigma, Belgium) 0.1% for 3 min and blocked for 30 min with PBS-BSA 3%. Fluorescent 

staining was performed by exposing the samples to mouse monoclonal anti-β-tubulin 3 (cat n° 

T5076-200UL, Sigma-Aldrich, Belgium), diluted 1:200 in PBS (Sigma, Belgium), at 4 °C 

overnight. After washing in PBS, a second layer of fluorescein isothiocyanate (FITC)-conjugated 

anti-Mouse IgG (cat n° F2012, Sigma-Aldrich) antibody, diluted 1:200 in PBS, was applied for 

90 min, at 37 °C in the dark. Nuclei were then stained with Hoechst (cat n° B2883, Sigma-

Aldrich), 1:400 in PBS, for 10 min. Wells were then rinsed three times in PBS and twice in H2O. 

2.4. Image acquisition and neuronal network analysis. 

Images were acquired with a Nikon Eclipse Ti (automated inverted wide-field 

epifluorescence microscope) equipped with a 40x magnification (S PLAN FLUR, ELWD 40x / 

0. 6) dry objective and a Nikon DS-Qi1Mc camera controlled by a NIS-Elements software. 

Figure 23: Experimental layout.  

Ten day old neuron cultures used for different times of exposure to RPM or ground conditions (GC) for 1 h, 24 h and 10 

days. Cells were then fixed immediately after (0 h) or after 24 and 72 h of recovery in GC. 
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Per each condition, three mosaic regions of 3 by 3 images (27 bi-dimensional images, in 

total) with five focus positions were randomly acquired and compressed in a 2D in focus image 

by Extended Depth of Focus (EDF) NIS-Elements module. Data obtained from the 3 mosaics 

were summed and considered as a single large image. 

The neuronal network image processing analyses were performed by a home-made tool for 

ImageJ (Rasband, W.S., N.I.H, USA, http://rsb.info.nih.gov/ij/) by merging known functions 

available in the freely available plugin [274, 278, 279, 315]. The high performance of this new 

tool came from an appropriate soma segmentation originating from nuclei and from an elegant 

multi-tier segmentation after image enhancing and edge detection, segmenting even the thinner 

neurites. Thereafter, morphological processes could be easily applied for the determination of the 

total neuron area, the total neurite area and length, the neurite attachment points, the soma 

counting and soma characteristics. Data related to area and length of neurites per image were 

determined to specifically investigate the effects of simulated microgravity on the neurite 

network density in toto. Finally, morphological values per single neuron were obtained dividing 

image parameters by number of neurons per image in order to obtain an average per cell. 

In order to better understand the distribution of -tub 3, the mean intensity of fluorescence 

was determined in somas and neurites. Calculating the ratios between mean intensities of somas 

and neurites allowed us to determine the distribution of tubulin into neurons. 

Each experiment was performed in triplicates. A significant difference from the control 

conditions was determined by paired t-test or two-way ANOVA (Graph Pad Software Inc., San 

Diego, USA) and a p value <0.05 was considered significant. 

2.5. Apoptosis 

Apoptosis was estimated by Annexin V (Ann V) assay on adherent neurons using the Ann 

V-FITC apoptosis detection kit II (cat n° BMS500FI/300CE, eBioscience, Belgium) combined 

with an additional fluorescence staining of nuclei by Hoechst dye. Ann V-FITC was used to 
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quantitatively estimate the percentage of dead cells in the neuron cultures. The AnnV-FITC
-
/PI

-

/Hoechst
+
 population was considered as normal healthy cells, while Ann V-FITC

+
/PI

-
/Hoechst

+
 

(Ann V
+
-PI

-
) and Ann V-FITC

+
/PI

+
/Hoechst

+
 (AnnV

+
-PI

+
) cells were taken as an estimation of 

early apoptosis and late apoptosis or necrosis, respectively (Fig. 32 F). Image processing analysis 

is described in figures 24 and 25 (Fig. 24; Fig. 25). Primary neuron cultures are not 100% pure 

cultures as a small number of non-neuron cells (negative to β-tub 3) with small nuclei and 

condensed chromatin were observed after nuclei and neuron marker staining. This type of cells 

that were positive for PI and negative for Ann V staining were not taken into account in the 

viability estimation since they could induce a relative error in the counting of late 

apoptosis/necrosis neuron cells.  

For statistical analysis, 36 images were randomly acquired with 40x objective and an 

average of 530±130 cells per condition were taken into account. Ann V
-
-PI

-
 cells as well as the 

specific Ann V
+
-PI

-
 and Ann V

+
-PI

+
 cells were counted and the percentages of Ann V

+
-PI

-
 and 

Ann V
+
-PI

+
 neurons on total cell number were then calculated. To estimate the relative level of 

total Ann V
+
 (Ann V

+
-PI

-
 + Ann V

+
-PI

+
) neurons exposed to simulated microgravity, the 

percentage of total Ann V
+
 neurons in culture exposed to the RPM were divided by the 

Figure 24: Annexin V – PI staining on neuronal networks.  

From left to right: nuclei staining, Annexin V staining, propidium iodide (PI) staining and merge. (A) Neuronal 

network without Ann V positive neurons. (B) Neuronal networks with Ann V positive neurons are highlighted in 

bright green. 
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percentage obtained in control cultures. Based on nucleus counterstaining of adherent neurons, 

the same apoptosis analysis image sets of neuron cultures exposed for short-, middle- or long-

term to RPM were used to estimate the density of cells per cm
2
. This allowed to compare neuron 

cultures exposed to the RPM vs. their respective controls. Additionally, comparison between 1 h 

GC and 10 days RPM was performed to observe the loss of cells over the whole experiment. For 

comparison between conditions, we used the paired t-test and a p-value <0.05 was considered 

significant. 

Figure 25: Image processing analysis of Annexin V – PI staining on neuronal networks.  

From images of nuclei (A) regions of interest (ROI) related nuclei (B) were determined and counted. From 

Ann V images (C) neurite network mean intensity, related to the background, was determined after 

enlarging all ROI’s of nuclei and inverting the obtained selection (D). Twice the background mean 

intensity was removed from the Ann V images in order to obtain a clear image of Ann V staining into 

somas (E). To determine if somas were positive or negative for Ann V staining, the external background 

was determined as previously described (F) and finally mean intensity related to each soma was estimated. 

As shown in image F, if the mean intensity related to each soma was higher than twice the background 

mean intensity, somas were considered as positive.  

Similar procedure was performed to determine negative or positive neurons to propidium iodide staining.  

Finally, cells were divided in:  

1) AnnV-FITC
-
/PI

-
/Hoechst

+
 named Ann V negative, which characterizes normal neurons. 

2) AnnV-FITC
+
/PI

-
/Hoechst

+
 named Ann V positive, which characterizes neurons in early apoptosis. 

3) AnnV-FITC
+
/PI

+
/Hoechst

+
 named Ann V-PI positive, which characterizes neurons in late apoptosis or 

necrosis.  

4) AnnV-FITC
-
/PI

+
/Hoechst

+
 named PI positive, which characterizes neurons in necrosis or non-neuron 

cells or decreases. 
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2.6. RNA extraction 

RNA was extracted from in vitro neuron cultures using the Qiagen AllPrep 

DNA/RNA/Protein Mini Kit according to the manufacturer‟s instructions. Concentration and 

purity of RNA were assessed using the Nanodrop spectrophotometer (Thermo Scientific, USA) 

while RNA integrity was determined using the RNA Integrity Number (RIN) (Agilent„s lab-on-

chip Bioanalyzer 2100, Agilent Technologies, USA). All samples had a RIN number above 8.0 

and were used for further processing. 

2.7. Microarray hybridization 

The total RNA was quantified and used for synthesis of the first strand cDNA, followed by 

the synthesis of second strand-cDNA. The double stranded cDNA was then in vitro transcribed 

into cRNA. A second cycle of cDNA synthesis was performed followed by a purification and 

fragmentation step of the cDNA. The fragmented second cycle cDNA was then labelled and 

hybridized to Affymetrix Mouse Gene 1.0 ST Arrays (Affymetrix, Santa Clara, USA). All the 

steps of amplification, transcription and labelling were performed using the Ambion® WT 

Expression Kit according to the manufacturer„s instructions (Life Technologies Ltd, Paisley, 

UK). For every time point following irradiation, the chips were all scanned in three steps. In 

total, 18 chips were prepared for in vitro samples exposed to 1 h RPM and 18 chips were 

prepared for in vitro samples exposed to RPM for 10 days. 

2.8. Microarray data analysis 

Microarray data were analysed using Partek Genomics Suite 6.6 Beta (version 6.13). Data 

were imported at exon level using a customized RMA algorithm (pre-background adjustment for 

probe sequence, default settings for RMA background correction, quantile normalization, Log2 

transformation of the estimated probe signal intensities and median polish probe set 
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summarization). For summarization of exon signals to gene signals, a one-step Tukey's biweight 

summarization method was used. Since the transcriptional changes were quite small, we 

considered genes with a p-value <0.005 between the experimental conditions and the 

representative controls as being differentially expressed. Additionally, threshold of 1.4 in fold 

changes was set. 

2.9. Panther classification system and gene set description 

Gene classification of biological processes, cellular components and involved pathways 

were performed on gene lists from three different analyses (i.e. in vitro short-term exposure, in 

vitro long term exposure and in vivo exposure to microgravity) using the Panther 8 software 

(www.pantherdb.org) [316]. Gene ontology functional classification was performed to identify 

the number of modulated genes in biological processes. Additionally, gene ontology of 

biological processes was performed. Afterwards, based on previous analyses, tables of genes 

related to apoptosis, cell adhesion, cell communication and transition processes were generated. 

Finally, on the complete gene lists, pathway analysis was performed to identify which pathways 

were modified in microgravity conditions.  
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 Results 3.

3.1. Behaviour of neurons in culture  

For all experiments primary neurons were cultured under ground conditions up to 23 days 

in a neuron-selective medium as described in the section Materials and Methods. The growth of 

the neuronal network was monitored and allowed us to determine at which stage a sufficient 

connectivity between neurons occurred which was indicating a good maturation of the neuronal 

network as previously demonstrated in other studies [176]. As shown in figure 26 we observed 

that during the first ten days of culture the neuronal network grew fast; thereafter the growth rate 

slowed down. Therefore, we decided to use 10-day old cultures for subsequent experiments. 

Figure 26: Neuronal network growth under ground conditions.  

Growth curve of the neuronal area (upper panel) within a period of 23 days with representative images at 

selective time points (lower panel). Values are expressed as the average of single neuron areas and bars 

represent standard deviation. Paired t-test was performed to determine differences between two close 

experimental points and obtained results showed significant differences between 1 day vs. 5 days (P=0.046) 

and 5 days vs. 10 days (P=0.041) but not between the following time points.  
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3.2.  Behaviour of the neuronal networks under simulated microgravity 

To investigate the effects of simulated microgravity on dense neuronal networks, 10-day 

cultures were exposed for short-, middle- and long-terms to the RPM. Immunostaining of -tub 3 

as a specific marker of neurons was used to analyse the changes in the neuronal network.  

3.2.1. Changes of neuron area and neurite area and length under simulated 

microgravity  

Neurons cultured for 10 days under ground conditions and afterwards exposed to the RPM 

for 1 h showed an area reduction of 24% per neuron compared to their respective controls, 

whereas neurons exposed for 24 h showed a significant area reduction of 14% (Fig. 27 A, B and 

H) per neuron. In neurons exposed for 10 days the 6% area reduction was not significant (Fig. 

27A, B and H). Similar effects of microgravity exposure were observed on the neurite area and 

length per neuron, both of which were significantly reduced after short- to middle-term 

exposures, but not after long-term exposure (Fig. 27C, D and H). These data therefore indicate 

that from the initial reduction in neuron/neurite area, which occurred during the first hour of 

RPM exposure, cells adapted to the new gravity condition over time. Additionally, analyses on 

neurite network density, estimated as neurite area or neurite length per image, showed a decrease 

in network density after exposure to the RPM for 1h or 24 h, whereas networks exposed for 10 

days showed partial adaptation (Fig. 27 A, E, F and H). Interestingly, in both single neurons and 

neurite networks the adaptation of the neurite length in simulated microgravity was delayed (Fig. 

27 H) indicating that the recovery of the neurite area after 24 h should be the result of partial 

thickening of the neurites (Fig. 28). Furthermore, analysis on neuron density determined in 

number of neurons per cm
2
 did not show major change over the different exposure times to 

simulated microgravity compared to the respective controls.  
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3.2.2. Changes in soma morphology and -tubulin isotype 3 distribution in neurons 

Microtubules are cytoskeleton elements organized in substructures as protofilaments made 

by α- and β- tubulin monomers. They are involved in the internal transport, locomotion and cell 

shape. In particular, microtubules together with microfilaments and intermediate filaments 

determine the cell architecture which explains how cell shape and other mechanisms are 

controlled and respond to mechanical forces [185]. Microtubules are under a continuous turn-

over of polymerisation and depolymerisation of their arborisation, also known as “treadmilling”, 

Figure 28: Neurite thickness.  

Average of neurite thickness determined dividing neurite area by neurite length. No statistical difference was 

observed with Paired two-tailed Student’s t-test and bars represent standard deviation.  

 

Figure 28: Effects of simulated microgravity on single neurons as well as on neuronal networks .  

(A) First line: neuronal networks cultured in ground control conditions (GC 1h - 24h - 10 days); Second line: 

neuronal networks exposed to simulated microgravity (RPM 1h - 24h - 10 days). (B) Neuron area (soma + 

neurites) in neuronal network cultures exposed to RPM for 1h, 24h or 10 days and the respective controls. (C) 

Neurite area per neuron in neuronal network cultures exposed to RPM for 1h, 24h or 10 days and the respective 

controls. (D) Neurite length per neuron in neuronal network cultures exposed to RPM for 1h, 24h or 10 days and 

the respective controls. (E) Neurite area per image in cultures exposed to RPM for 1h, 24h or 10 days and the 

respective controls. (F) Neurite length per image in cultures exposed to RPM for 1h, 24h or 10 days and the 

respective controls. (G) Neuronal density per cm2; 10 day RPM vs. 1h GC : P=0.055. (H) RPM vs. Ground 

condition ratios of neuron area, neurite area and neurite length show how neurons adapt to simulated 

microgravity throughout the exposure time. Paired two-tailed Student’s t-test and standard deviation bars are 

shown. 1, P < 0.05 RPM 1 h compared to GC 1 h; 2, P < 0.05 RPM 24 h compared to GC 24 h; 3, P < 0.05 RPM 

10 days compared to GC 10 days. GC= ground condition; RPM=Random Positioning Machine 
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and the dynamic activity is linked to the cell function or to the intracellular or extracellular 

environment. Staining the cells for the -tub 3, one of the components of microtubules, allowed 

us to analyse the distribution of the cytoskeletal protein into neurons exposed to simulated 

microgravity and therefore estimate variations in the protein distribution between somas and 

neurites. 

Typically, in neurons exposed to ground conditions, β-tub 3 mean intensity in somas was 

twice as high as in the neurites (Fig. 29A-B-C). However, after exposure to the RPM for 1 h, the 

mean intensity of the fluorescence signal decreased in the neurites (P = 0.029) whereas it 

increased in the soma (P = 0.039) (Fig. 29A-C) which suggests a redistribution of microtubules 

in the cells upon short-term exposure to microgravity. In contrast, cells exposed for 24 h or 10 

days did not show any difference in β-tub 3 distribution compared to their respective controls 

indicating that the cells had adapted to their new environment (Fig. 29B-C).  

Figure 29: Distribution of β-tubulin isotype 3 (β-tub 3) under simulated microgravity. 

 (A) Distribution of β-tub 3 between somas and neurites in neurons exposed for 1 h to RPM (neurite p = 0.029; 

soma p = 0.038). (B) Soma intensity vs. neurite intensity ratios in neurons exposed for 1 hour, 24 hours and 10 days 

to the RPM compared to the respective ground condition controls. Statistical analysis show a difference between 

GC 1h vs. RPM 1h (P = 0.0012) and RPM 1h vs. rpm 24h vs. RPM 10 days (P < 0.05). (C 1-2-3) Higher 

magnification of neurons show the morphological and fluorescence intensity differences at the soma and neurite 

levels between exposed and non-exposed samples. One way Anova, Paired two-tailed Student’s t-test and standard 

deviation bars are shown. GC= ground condition; RPM=Random Positioning Machine. 
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Since a redistribution of microtubules may affect the cellular morphology, we also 

measured the size as well as the shape of the somas. We observed that, at all time points, 

exposure to microgravity led to a significant reduction of the soma size (Fig. 30A). The shape of 

each somas was attributed a certain roundness coefficient (ratio between longest and smallest 

diameter used to determine how far from a perfect circle the shape is), and we found that the 

roundness was reduced in short-term exposed cells, whereas it was increased in middle- and 

long-term exposed cells (Fig. 30B). 

3.3. Neuronal network recovery after simulated microgravity 

3.3.1. Neuron and neurite recovery after simulated microgravity 

In order to understand whether microgravity induces permanent or temporary 

morphological changes, neuronal network cultures were exposed again to ground conditions for 

24 and 72 hours after having been exposed to simulated microgravity. We analysed the neuron 

area, the neurite area and length per image and per neuron as well as the morphological 

parameters of the somas (size and roundness) to evaluate the recovery after RPM exposure. 

Neurons exposed to simulated microgravity for 1 h showed a significant area increase from 

75 to 90 % of the respective controls in 24 h of recovery in ground conditions. In the following 

Figure 30: Soma characteristics in neurons exposed for 1 hour, 24 hours and 10 days to the RPM compared to their 

respective controls.  

(A) Size of somas in neuron cultures exposed to RPM for 1, 24 hours or 10 days and their respective controls. (B) 

Roundness of somas in neuron cultures exposed to RPM for 1, 24 hours or 10 days and their respective controls. 

Paired two-tailed Student’s t-test and standard deviation bars are shown. 1, P < 0.05 RPM 1 h compared to GC 1 

h; 2, P < 0.05 RPM 24 h compared to GC 24 h; 3, P < 0.05 RPM 10 days compared to GC 10 days. GC= ground 

condition; RPM=Random Positioning Machine. 
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hours of recovery they reached 96% of their respective controls (Fig. 31A). Similar area increase 

was also observed in neurons previously exposed to the RPM for 24 h. Neurons exposed for 10 

days to RPM did not show any statistical area increase. Also the area of neurites of single 

neurons exposed for 1 h and 24 h to the RPM showed a significant increase in the first 24 h of 

recovery in ground conditions, whereas neurons exposed to simulated microgravity for 10 days 

showed a statistical reduction of 4% (from 91% to 87%) in neurite area per neuron within the 

first 24 h of recovery and reaching 95% of the corresponding controls 72 h after RPM (Fig 31B). 

Similar behaviour was observed on neurite length per single neurons (Fig. 31C). Furthermore, 

analyses of neurite network density per image, expressed in neurite area and length, showed a 

similar recovery such as single neurons (Fig. 31 D, E). Additionally, neurite networks having 

recovered in re-established ground conditions after exposure to simulated microgravity for 10 

days showed statistical difference in area and length compared to the respective controls (Fig. 31 

D, E).  

  

Figure 31: Recovery in re-established ground conditions of neuronal networks and neurons previously exposed to 

simulated microgravity.  

(A) Recovery dynamics of area of single neurons after RPM as expressed in ratios of RPM vs. ground control 

exposed cultures. (B) Recovery dynamics of neurite area per neuron after RPM as expressed in ratios of RPM vs. 

ground control exposed cultures. (C) Recovery dynamics of neurite length per neuron after RPM as expressed in 

ratios of RPM vs. ground control exposed cultures. (D) Recovery dynamics of neurite network area per image after 

RPM as expressed in ratios of RPM vs. ground control exposed cultures. (E) Recovery dynamics of neurite metwork 

length per image after RPM as expressed in ratios of RPM vs. ground control exposed cultures. (F) Size of somas in 

neuron cultures previously exposed to RPM and having recovered for 24 hours in ground conditions and their 

respective controls. (G) Roundness of somas in neuron cultures previously exposed to RPM and having recovered 

for 24 hours in ground conditions and their respective controls. Paired two-tailed Student’s t-test and standard 

deviation bars are shown.*, P<0.05 raw data 72 h RPM vs. raw data 72 h GC 1, P < 0.05 24 h vs 0 h of neuron 

area after 10 days of RPM; 2, P < 0.05 24 h vs 0 h of neurite area after 24 h of RPM; 3, P < 0.05 24 h vs 0 h of 

neurite length after 1 h of RPM; 4, P < 0.05 72 h vs 24 h of neuron area after 10 days of RPM; 5, P < 0.05 72 h vs 

24 h of neurite area after 24 h of RPM; 6, P < 0.05 72 h vs 24 h of neurite length after 1 h of RPM. GC= ground 

condition; RPM=Random Positioning Machine. (page 136) 
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1.1.1. Morphology of somas after simulated microgravity 

As previously mentioned, somas of neurons exposed to simulated microgravity presented 

morphological alterations such as a reduction in size and changes in roundness. After being 

exposed to ground conditions for 24 h following simulated microgravity, these effects were 

completely reversed for short-, middle- as well as long-term exposed neuronal cultures (Fig. 31F, 

G), indicating a fast full recovery of the soma morphology. 

3.4. Changes in cell viability 

It is known that apoptosis can be induced by stress when cells are exposed to different 

physiological conditions. In order to understand whether neuron viability was altered by 

exposure to simulated microgravity and throughout the following recovery in ground conditions, 

neuron cultures were analysed using the Ann V - PI assay. 

The percentages of total Ann V positive neurons (tot Ann V
+
 = Ann V

+
-PI

-
 +Ann V

+
-PI

+
) 

in cultures exposed to RPM for 1 h, 24 h and 10 days was between 1.5 and 2 times the respective 

controls (Fig. 32A-B).  Interestingly, in cultures exposed for 10 days to RPM conditions the 

number of Ann V
+
-PI

+
 neurons was 3 times more elevated than the controls (Fig. 32A). This 

increase in Ann V
+
-PI

+
 cells was not observed in cultures exposed for 1 and 24 hours to the RPM 

(Fig. 6A). Furthermore the rate of tot Ann V
+
 neurons (RPM/GC) did not change between short-, 

middle- and long-term exposure to simulated microgravity (Fig. 32A). 

Neuron cultures exposed to the RPM and having recovered for 24 h showed an increase in 

percentage of tot Ann V
+
 cells over 2 times more elevated than the respective controls. 

Furthermore, an increase in percentage of late apoptotic or necrotic (Ann V
+
-PI

+
) cells was 

observed in neuron cultures previously exposed for 1 h 24 h and 10 days to RPM (Fig. 32C). 

Seventy-two hours after exposure to RPM, only neurons exposed for 10 days still showed 

statistical differences in both tot Ann V 
+
 and only Ann V

+
-PI

+
 positive cells compared to the 

controls (Fig. 32D). 
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Moreover, it was observed that RPM/GC ratios of total Ann V
+
 showed a statistical 

decrease between 24 and 72 hours after 1 h RPM exposure (Fig. 32E). 

  

Figure 32: Altered viability induced during and after simulated microgravity exposure. 

 (A) Percentage of Ann V+-PI- and Ann V+-PI+ cells in neuronal network induced after 1 hour, 24 hours or 10 

days of simulated microgravity. (B) RPM/GC ratios of tot Ann V+ percentages of neuron cultures exposed and not 

exposed to simulated microgravity. (C) Percentages of Ann V+-PI- and Ann V+-PI+ cells in neuron cultures 

exposed to RPM and having recovered for 24 h in ground conditions. (D) Percentages of Ann V+-PI- and Ann V+-

PI+ cells in neuron cultures exposed to RPM and having recovered for 72 h in ground conditions. (E) RPM/GC 

ratios of tot Ann V+ percentages of neuron cultures recovered for 24 and 72 hours after simulated microgravity 

exposure. * = P<0.05 24h compared to 72h. (F) Neurons stained with Annexin V-FITC/PI/Hoechst (green/red/blue) 

and observed under fluorescence microscope. Ann V-FITC-/PI-/Hoechst+ are considered healthy cells, V-

FITC+/PI-/Hoechst+ are considered early apoptotic cells and Ann V-FITC+/PI+/Hoechst+ are considered late 

apoptotic or necrotic cells. Paired two-tailed Student’s t-test and standard deviation bars are shown. 1, P < 0.05 

Ann V+-PI- RPM compared to GC; 2, P < 0.05 Ann V+-PI+ RPM compared to GC; 3, P < 0.05 tot Ann V+ RPM 

compared to GC. GC= ground conditions; RPM=Random Positioning Machine. 
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3.5. Gene expression changes in mature neuronal cultures after short-term exposure to 

simulated microgravity 

Exposure of mature neuronal cultures to simulated microgravity for 1 h (1h RPM + 0h GC) 

resulted in 25 genes being significantly modulated (p <0.005 compared to controls and ±1.4 fold 

changes) (Fig. 33). These genes are mainly involved in Wnt signalling, the gonadotropin-

releasing hormone receptor pathway and the p53 pathway (Table 7). During the first 24 h of 

recovery after 1h RPM exposure (1h RPM + 24h GC) the number of modulated genes was 11 

times higher (271 genes) than RPM exposed samples without recovery (1h RPM + 0h GC). The 

amount of significant genes decreased down to 140 within 72 h of recovery in re-established 

ground gravity (1h RPM + 72h GC). The change in the number of modulated genes provided a 

first indication about the neuron response during recovery in ground conditions after RPM 

exposure. Pathway analysis of up and down-regulated genes after 24 h of recovery underlined 

changes in genes involved in cytoskeleton related, axonal guidance, adrenaline and noradrenaline 

biosynthesis, apoptosis, Alzheimer‟s, Parkinson‟s and Huntington‟s diseases and 

neurotransmitter receptor signaling pathways (Table 7). Genes modulated after 72 h were, 

Figure 33: Venn diagram of regulated genes after 1h of RPM and during 24 and 72 h of recovery after restored 

ground conditions.  

Statistical significance is considered when p<0.001. “1h RPM + 0h GC”: cultures only exposed to 1 h of RPM; 

“1h RPM + 24h GC”: cultures exposed to 1 h of RPM followed by 24h of recovery in ground conditions (GC); “1h 

RPM + 72h GC”: cultures exposed to 1 h of RPM followed by 72h of recovery in ground conditions. 
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among others, involved in neurotransmitter receptor-mediated pathways, in cytoskeletal 

regulation by Rho GTPase, in integrin signaling, in the gonadotropin-releasing hormone receptor 

pathway as well as in neurotransmitter receptor signaling and in Huntington‟s disease-related 

pathways (Table 7). The up-regulation of few genes involved in axonal guidance is confirming 

the morphological observations delineating an increase in neurite area and length during 

recovery after simulated microgravity.  

 

Table 7. Pathways involved after 1 h of RPM or in the following 24 and 72 h of recovery in GC. 

“1h RPM + 0h GC”: cultures only exposed to 1 h of RPM; “1h RPM + 24h GC”: cultures exposed to 1 h of RPM 

followed by 24h of recovery in ground conditions (GC); “1h RPM + 72h GC”: cultures exposed to 1 h of RPM 

followed by 72h of recovery in ground conditions. D=down-regulated genes; U=up-regulated genes. 

 

1h RPM + 0h 

GC 

1h RPM + 

24h GC 

1h RPM + 

72h GC 

Cadherin signaling pathway 

   

D 

  
Cytoskeletal regulation by Rho GTPase 

    

U 

 
Integrin signalling pathway 

   

D U 

 
Notch signaling pathway 

  

U 

   
Axon guidance mediated by netrin 

    

U 

 
Axon guidance mediated by semaphorins 

   

D 

  
Axon guidance mediated by Slit/Robo 

  

U 

 

U 

 
Apoptosis signaling pathway 

   

D 

  
p53 pathway U 

  

D U 

 
Alzheimer disease-amyloid secretase pathway 

   

D 

  
Alzheimer disease-presenilin pathway 

   

D 

  
Huntington disease 

  

U D U 

 
Parkinson disease 

  

U 

   
Ras Pathway 

  

U D 

  
Synaptic vesicle trafficking 

    

U 

 
Adrenaline and noradrenaline biosynthesis 

   

D 

  
Oxidative stress response 

  

U 

 

U 

 
Gonadotropin-releasing hormone receptor pathway U 

 

U D U D 

5HT2 type receptor mediated signaling pathway 

   

D U 

 
Beta1 adrenergic receptor signaling pathway 

   

D 

  
Beta2 adrenergic receptor signaling pathway 

   

D 

  
Nicotinic acetylcholine receptor signaling pathway 

   

D U 

 
Oxytocin receptor mediated signaling pathway 

   

D U 

 
Wnt signaling pathway 

 

D 

 

D U D 
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Functional classification based on biological processes from the gene ontology database 

indicate that cell communication, metabolic and cellular processes appeared to be the most 

involved processes with a high number of genes during 1 hour of RPM and the following 24 and 

72 hours of recovery in restored ground conditions (Figs 34-35). Interestingly, the high number 

of genes involved within the first 24 h of recovery after RPM exposure suggest that short-term 

exposure to microgravity could induce a relevant response in neuronal cells.  

Evaluation of gene expression changes involved in biological processes as apoptosis, cell 

adhesion, transport and cell communication showed that in in vitro mature neurons exposed to 

simulated microgravity, for instance, few genes as Gadd45b (involved in growth arrest and DNA 

Figure 34:. Modulated biological processes related to up-regulated genes expressed in mature neuronal cultures exposed to 

RPM for 1h (1h RPM + 0h GC) and the following recovery in restored ground conditions (GC), 24h (1h RPM + 24h GC) 

and 72h (1h RPM + 72h GC) after RPM exposure.  
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damage), Klra5 (involved in cell-cell adhesion and signal transduction), Rbp7 (involved in 

neuronal apoptosis) and Rassf1 (involved in signal transduction) were modulated (Tables 9-12).  

During the first 24 h of recovery after RPM exposure, several cytoskeleton and synapsis 

related genes (Cadm1, Cdh8, Col6a1, Glt25d2, Adamts1. Gpr50, Ntsr1, Svc2, Syn3, Enc1, 

Dnm3, Sh3gl3, Ezr, Tuba8, Myo1 and more) involved in cell adhesion, transport or cell 

communication were modulated as response to re-established ground gravity. Additionally, some 

structural components of cytoskeleton or involved in cell adhesion as α-tubulin 8, collagen α1, 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2, pleckstrin and others were still highly 

expressed within 72 h of recovery (Tables 9 and 11). Nevertheless, for highly expressed gene, a 

similar pattern was observed with a maximum of expression at 24 h of recovery delineating a 

high similarity with the morphological changes (neurite area and length and apoptosis) showing 

also a maximum of change at 24 h. 

Figure 35: Modulated biological processes related to down-regulated genes expressed in mature neuronal cultures 

exposed to RPM for 1h (1h RPM + 0h GC) and the following recovery in restored ground conditions (GC), 24h 

(1h RPM + 24h GC) and 72h (1h RPM + 72h GC) after RPM exposure.  
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3.6. Gene expression changes in mature neuronal cultures after long-term exposure to 

simulated microgravity 

Interestingly, long-term exposure to simulated microgravity also induced a moderate effect on 

gene expression levels in mature neuronal cultures. After 10 days RPM exposure, 17 genes with 

a fold change of ±1.4 were significantly changed compared to ground controls (Fig. 36). 

Pathway analysis showed that these genes involved in P53 pathway and Gonadotropin-releasing 

hormone receptor pathways were up-regulated whereas genes involved in Huntington‟s disease 

and cytoskeleton regulation pathway were down-regulated. The number of modulated genes after 

24 h of recovery (10d RPM + 24h GC) was 2.5 times higher (46 genes) as compared to the RPM 

exposed samples without recovery (10d RPM + 0h GC). After 72 h of recovery (10d RPM + 72h 

GC) the number of modulated genes increased up to 75 genes. The difference in the number of 

modulated genes provided us with a first indication about the neuron response to RPM exposure 

and the time-dependent recovery in ground conditions.  

Figure 36: Venn diagram of regulated genes after 10 days of RPM and during 24 and 72 h of recovery after restored 

ground conditions.  

Statistical significance is considered when p<0.001. “10 d RPM + 0h GC”: cultures only exposed to 10 days of RPM; 

“10 d RPM + 24h GC”: cultures exposed to 10 days of RPM followed by 24h of recovery in ground conditions (GC); “10 

d RPM + 72h GC”: cultures exposed to 10 days of RPM followed by 72h of recovery in ground conditions. 
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Pathway analysis of the modulated genes after 24 h of recovery underlined down-

regulation of genes involved in adrenaline, noradrenaline and serotonin biosynthesis, apoptosis, 

Parkinson‟s and Alzheimer‟s diseases and inflammation (Table 8). Genes modulated after 72 h 

were, among others, involved in neurotransmitter receptor-mediated pathways, in cytoskeletal 

regulation by Rho GTPase, in serotonin degradation, in the gonadotropin-releasing hormone 

receptor pathways as well as in Parkinson‟s, Huntington‟s and Alzheimer‟s disease-related 

pathways.  

 

Gene ontology analyses based on biological processes revealed that metabolic and 

transport processes were the most involved pathways after 10 days of RPM exposure (Fig. 37, 

Table 8. Pathways involved after 10 days of RPM or in the following 24 and 72 h of recovery in GC.  

“10 days RPM + 0h GC”: cultures only exposed to 10 days RPM; “10 days RPM + 24h GC”: cultures exposed to 10 days of 

RPM followed by 24h of recovery in ground conditions (GC); “10 days RPM + 72h GC”: cultures exposed to 10 days of 

RPM followed by 72h of recovery in ground conditions. D=down-regulated genes; U=up-regulated genes. 

 
10 day RPM + 

0h GC 

10 day RPM + 

24h GC 

10 day RPM + 

72h GC 

Cytoskeletal regulation by Rho GTPase 
     

D 

Cytoskeletal regulation pathway 
 

D 
 

D 
 

D 

Notch signaling pathway 
   

D 
 

D 

p53 pathway U 
     

5-Hydroxytryptamine biosynthesis 
   

D 
  

5-Hydroxytryptamine degredation 
    

U 
 

Adrenaline and noradrenaline biosynthesis 
   

D 
  

Nicotine pharmacodynamics pathway 
   

D 
  

Gonadotropin-releasing hormone receptor pathway U 
   

U D 

Histamine H1 receptor mediated signaling pathway 
     

D 

Metabotropic glutamate receptor group II pathway 
     

D 

Metabotropic glutamate receptor group III pathway 
     

D 

Muscarinic acetylcholine receptor 1 and 3 signaling 

pathway      
D 

Nicotinic acetylcholine receptor signaling pathway 
     

D 

Alzheimer disease-amyloid secretase pathway 
     

D 

Alzheimer disease-presenilin pathway 
   

D 
 

D 

Huntington disease 
 

D 
  

U 
 

Parkinson disease 
   

D 
  

Wnt signaling pathway 
    

U D 
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38). Time-dependent recovery over 24 and 72 hours post simulated microgravity exposure, 

revealed metabolic, cellular, and developmental processes as well as cell communication, cell 

adhesion, cellular component organization and transport as the main representative biological 

processes (Fig. 37, 38). Interestingly, most of the involved genes over the recovery period after 

10 days RPM were down-regulated and could play a role in re-adaptation to the established 

gravity condition (Fig. 38). 

 

Evaluation of gene expression changes in in vitro mature neurons exposed to simulated 

microgravity for 10 days and that recovered for 24 and 72 hours showed that not many genes 

were modulated in apoptosis and cell adhesion biological processes, although an increase in 

apoptosis coupled with a reduction of network density was observed at 24 h of recovery. 

Furthermore, transport and cell communication related genes were mainly down-regulated, 

suggesting a partial recovery of the neuronal network. Indeed, few genes involved in cell-matrix, 

Figure 37: Modulated biological processes related to up-regulated genes expressed in mature neuronal cultures 

exposed to RPM for 1 h (10 days RPM + 0 h GC) and the following recovery in restored ground conditions (GC) 24h 

(10 days RPM + 24 h GC) and 72h (10 days RPM + 72 h GC) after RPM exposure. 
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cell-cell adhesion, cell motion and membrane trafficking as tubulin-specific chaperone D, 

kinesin-like protein KIF3C, myosin-III b and calcium/calmodulin-dependent protein kinase type 

1 were still down-regulated only 72 h of recovery after long-term exposure to RPM indicating a 

continuous recovery of the network (Tables 13-16).  

  

Figure 38: Modulated biological processes related to down-regulated genes expressed in mature neuronal cultures 

exposed to RPM for 1h (10 days RPM + 0 h GC) and the following recovery in restored ground conditions (GC) 

24h (10 days RPM + 24h GC) and 72h (10 days RPM + 72h GC) after RPM exposure. 
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 Discussion 4.

In this study, we investigated morphological and molecular changes of well-connected 

primary neuronal networks cultured under simulated microgravity conditions using the RPM to 

test whether simulated microgravity can affect neuronal morphology and physiology in order to 

establish a possible link with physiological changes observed in astronauts during space flight. 

4.1. Cellular and neurite network response to the modified gravity  

In our study we observed that, within the first hour of simulated microgravity exposure, 

cultured single neurons exhibited a reduction of neurite length, size and roundness of somas 

indicating shrinkage of the cell. Concomitantly, the area and the length of neurite networks were 

also affected by the RPM environment. Moreover, β-tub 3 fluorescence intensity analyses 

showed that 1 h of exposure to microgravity induced changes in the microtubule distribution 

from the neurites to the soma. This is in accordance with other investigations on the cytoskeleton 

of cells exposed to short-term microgravity conditions, which described changes of 

microtubules, microfilaments and intermediate filaments [38, 51, 64]. Additionally, concomitant 

to microgravity-induced cytoskeletal changes [38, 51], cell area reduction occurred as well [59]. 

Furthermore, the observed reduction of the roundness of somas, which occurred within the first 

hour of simulated microgravity, seems to be a transitive stage before reaching the final stage in 

which neuron bodies of cells subjected to simulated microgravity were rounder compared to the 

controls already at 24 h of RPM.  

 Studies on cell motility reported a drastic reduction of cell locomotion [38, 59]. On the 

contrary, in our neuronal cultures, one of the responses observed in modulated gravity is that 

these cells do not lose their intrinsic property to extend neurites and search for contacts with 

other neurons. In fact, neurons as well as neuronal networks are initially affected by simulated 

microgravity and they reacted by increasing area and length of neurites throughout long RPM 
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exposure (Fig. 28 B-H). Despite the high neuron adaptation to simulated microgravity during 

long-term RPM exposure, the partial adaptation of neurite network to simulated microgravity 

could be explained by the observed increase of apoptosis over long-term exposure. 

 

Within this study, we observed in both single neurons as well as neurite networks that most 

of the effects of short-term exposure to microgravity are attenuated in middle- and long-term 

exposed neurons, indicating that the cells adapt to the new gravity conditions. On the other hand, 

neuron recovery after long-term exposure showed a different re-adaptation to the ground 

conditions compared to short- and middle-term RPM exposure. After long-term RPM exposure 

(10 days) we observed in both single neurons and neurite networks an initial decrease in the area 

and the length of neurites during the first 24 hours of recovery followed by an increase after 72 

hours of recovery reaching again almost the normality (Fig. 31 B, C).  

The observed morphological changes are in line with the gene expression modulation. The 

guidance of axons is mediated by extracellular cues that modulate cytoskeletal dynamics in 

axonal growth cones during the organization of the neuronal network [317, 318]. According to 

literatures [319, 320] and to our results microgravity modulate changes in cytoskeleton structure 

distribution and organization resulting in alteration of cytoskeleton gene expression. In our 

experiments we observed that short-term exposure to microgravity induce retraction of neurites, 

which recover within a few days when the gravitational forces are re-established. As described 

by Guan and Hubert [317, 318], the observed down-regulation of Plexin-A1, gene involved in 

axon guidance collapse, together with up-regulation of Netrin-1, Rhoj and UNC5B, which are 

involved in attractive and repulsive functions during neurites extension, modulate the axonal 

guidance during the re-establishment of the neuronal network. Furthermore, no changes in genes 

involved in axonal guidance were observed over long-term exposure to simulated low gravity 

suggesting an adaptation to the new condition as observed from morphological analysis. 
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4.2. Viability of mature neurons under gravitational changes.  

As reported in several studies, apoptosis and neuroplasticity (neurogenesis and neuronal 

network remodelling) are in stable equilibrium. An increase in one may trigger the other and vice 

versa [321]. In vivo studies reported that environmental as well as endogenous factors not only 

decrease neurogenesis but can also induce apoptosis [322, 323]. Indeed, several experiments 

showed that simulated microgravity induces apoptosis in different cell types [59, 67, 68, 324]. 

Within our experiments, cell death investigation revealed an increase of total Ann V
+
 cells after 

exposure to simulated microgravity.  

The observed increase of cells positive for the apoptosis markers (total Ann V
+
) within 24 

h of recovery after short and middle-term exposure to microgravity (Fig. 33C) might be due to 

the fact that, under simulated microgravity, some neurons may have lost their connections as a 

consequence of the reduction in neurite length. Furthermore, an increase of late apoptotic and 

necrotic (Ann V
+
-PI

+
) neurons was observed within the first 24 h of recovery after RPM which 

might induce gaps in the networks. Nevertheless, the number of apoptosis marker positive cells 

(total Ann V
+
) decreased 72 h after RPM exposure (Fig. 33D, 1-24 h) allowing to re-establish the 

equilibrium between cell death and neuroplasticity.   

Despite the neuron adaptation to simulated microgravity during long-term exposure, we 

observed an increase in Ann V
+
-PI

+
 neurons in long-term exposed cultures (Fig. 33A), but not in 

short- or middle-term exposed cultures. These results suggest that the increased percentage of 

late apoptosis could be the cause of the partial adaptation of neurite networks to simulated 

microgravity during long-term exposure. Within the first 24 h of recovery after long-term RPM 

exposure, neuronal networks showed reduction in neurite length and area (Fig. 32A, B), while 

the level of tot Ann V
+
 cells was still higher than the control after 72 h of recovery. Furthermore, 

the higher percentage of late apoptotic or necrotic cells observed within the 24 h of recovery in 

ground conditions after RPM (Fig. 32C) might be linked to neuronal network changes observed 
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at the same time point, inducing a delay in the neuronal network recovery observed 72 h after 

RPM (Fig. 32A, B). Similar effects were reported in studies on skeletal muscles of rat exposed 

12.5 days to real space conditions, where fiber necrosis and degeneration of motor innervation 

were observed a few days after landing [325].  

According to the obtained data, up-regulation of genes involved in apoptosis, as well as in 

p53, growth arrest and DNA damage pathways were observed in mature neurons exposed to 

simulated microgravity for short- and long-term. In particular, increase of involved genes within 

the first 24h of recovery after short-term exposure to RPM suggested an initial impact of 

gravitational changes in well-connected neurons. Interestingly, induction of apoptosis and stress-

related genes as well as genes involved in DNA damage/repair (Gadd45b and Gadd45g) and p53 

pathways [326], after 1h RPM exposure and within the first 24 h of recovery (Table 9) is in line 

with the observed increase in apoptosis. Obtained results suggest a change in neuronal 

physiology due to the re-adaptation to the re-established Earth gravity conditions, as also 

observed in rat motor neurons which undergo apoptosis or neurodegeneration after microgravity 

exposure [325].  

4.3. Neuroplasticity and possible links with physiological disorders in space 

It was reported that environmental changes increase the activity of neuroplasticity. In fact, 

during the first days in space, the nervous system of astronauts is forced to develop new 

interpretations of the stimuli and to develop alternative adjustment strategies to compensate for 

the altered incoming stimuli [327]. In this study we provided new data on in vitro neuronal 

network changes during short- and middle-term exposure to simulated microgravity and on their 

partial adaptation over a period of 10 days. This seems to be in agreement with the behavioural 

tests performed on mice exposed for 91 days to the ISS environment and in which a quick 

learning in how the mice dealt with the new gravity conditions using the grid to grasp and direct 

their movements was reported [199]. In this study, we observed an increased level of apoptotic 
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neurons within 10 days of RPM, probably due to the stress induced by simulated microgravity, 

which might induce a reduction of the neurite network density resulting in an increase of 

neuroplasticity activity in order to re-establish the lost connections. These results could be the 

response to an increase of neuroplasticity activity in the neuronal network as reported by the up-

regulation of genes related to axonal guidance, branching of neurites and long-term potentiation 

observed in genome expression analyses on the whole brain tissue of mice recently exposed to 

ISS environment [199] as well as in in vitro mature neuron culture exposed to RPM, as observed 

in our studies. The observed neuroplasticity (network remodelling and/or apoptosis) might be a 

factor contributing to changes in brain homeostasis. We provided here molecular and cellular 

evidence of neuronal network remodelling and neuron adaptation following a stress due to 

changes in gravity conditions such as the ones experienced by astronauts in space, although 

neuron cells represent just one piece of the puzzling central nervous system. Nevertheless, we 

believe that our system is an appropriate model for testing the effects of different space 

conditions and to better understand the related mechanisms that may compromise the structure 

and function of the neuronal network.  

In conclusion, obtained results within this investigation underline two different responses 

related to simulated microgravity exposure time. First, short-term (1 h) exposure to simulated 

microgravity induces stress in neurons. Reduction in neurite network density, neuron size, 

alteration in β-tubulin isotype 3 distributions and increase of apoptotic cells are observed in 

neurons exposed to the RPM for only 1 hour. During recovery post short-term exposure to 

simulated microgravity, a fast restoration almost reaching the ground morphological state 

coupled with up-regulation of many genes involved in axonal guidance, cytoskeleton and cell 

motility occurred in the neurite network as well as in neurons. Furthermore, the response 

observed after short-term exposure to reduced gravity might influence the connectivity 
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stimulating neurons to increase the network by producing new neurites to establish new 

connections over time.  

On the contrary, a second type of response was observed during long-term exposure where 

neurons reached a high degree of adaptation to simulated microgravity conditions, in which the 

neurite network was partially adapted, most probably due to increase of apoptosis. Additionally, 

the neuron recovery post long-term exposure to RPM appeared slower and the neuronal networks 

partially recovered. The neuronal network seems to acquire a different physiological state under 

microgravity conditions requiring a long re-adaptation period during recovery under ground 

conditions. This response clearly indicates that the highly adapted neurons to simulated 

microgravity (10 day exposure to RPM) exhibit different physiological cell state than in normal 

ground control conditions.  

Most of the space motion sickness and the space adaptation syndrome symptoms are 

related to the nervous system which is forced to develop new strategies to interpret the opposite 

inputs coming from environmental sensors. This adaptation is probably partly based on 

neuroplasticity activity. In the light of the obtained results, in vitro neuronal networks seem to 

partially adapt to the reduced gravity conditions during long-term exposure. However, to confirm 

the physiological changes, complementary studies on metabolic pathways, neuronal connectivity 

and neuronal network activities should be performed. Investigations on mature neuronal 

networks exposed to both conditions, microgravity and radiation, are necessary to help 

deciphering the related health risks for the central nervous system in the context of long and deep 

space travels. 
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Table 9. Apoptosis-involved genes in neuron cultures exposed to 1 h RPM and having recovered for 24 and 72 

h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h vs. 

GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h vs. 

GC * 72 h) 

NM_011785 Akt3 
RAC-gamma serine/threonine-protein 

kinase 
0,6559 1,0 0,0006 -1,4 0,0288 -1,2 

NM_013863 Bag3 
BAG family molecular chaperone 
regulator 3 

0,1255 1,3 0,0034 1,7 0,1473 1,3 

NM_028967 Batf2 
Basic leucine zipper transcriptional 

factor ATF-like 2 
0,8759 -1,0 0,0003 1,7 0,0230 1,3 

NM_001159557 Cd36 Platelet glycoprotein 4 0,9524 1,0 0,5281 -1,2 0,0001 -3,7 

NM_007727 Cntn1 Contactin-1 0,9266 -1,0 0,0010 -1,5 0,1765 -1,1 

NM_010143 Ephb3 Ephrin type-B receptor 3 0,6802 1,0 0,0010 1,6 0,0847 1,2 

BC024332 Fam195a Protein FAM195A 0,6996 1,1 0,0019 1,6 0,2542 1,2 

NM_008655 Gadd45b 
Growth arrest and DNA damage-

inducible protein GADD45 beta 
0,0031 4,1 0,0178 2,9 0,2113 1,7 

NM_011817 Gadd45g 
Growth arrest and DNA damage-

inducible protein GADD45G 
0,0170 2,5 0,0038 3,3 0,7104 1,1 

NM_133849 Hrh3 Histamine H3 receptor 0,4899 1,2 0,0009 -2,7 0,3472 -1,2 

NM_198610 Igsf21 
Immunoglobulin superfamily member 
21 

0,9329 -1,0 0,0012 -1,6 0,3314 1,1 

NM_008506 Mycl1 Protein L-Myc-1 0,1160 -1,1 0,0195 -1,2 0,0003 -1,5 

NM_010850 Mycs Protein S-Myc 0,7171 -1,1 0,0023 -2,1 0,2115 -1,3 

NM_008872 Plat Tissue-type plasminogen activator 0,8311 1,0 0,0011 1,8 0,0048 1,6 

NM_008654 Ppp1r15a 
Protein phosphatase 1 regulatory subunit 

15A 
0,5034 1,1 0,0045 2,0 0,4077 1,2 

NM_019713 Rassf1 
Ras association domain-containing 
protein 1 

0,8568 -1,0 0,0039 1,6 0,7845 -1,0 

NM_177073 Relt 
Tumor necrosis factor receptor 

superfamily member 19L 
0,9120 -1,0 0,0015 1,6 0,1333 1,2 

NM_001004173 Sgpp2 Sphingosine-1-phosphate phosphatase 2 0,8627 1,0 0,4660 1,2 0,0016 2,9 

NM_007706 Socs2 Suppressor of cytokine signaling 2 0,8799 -1,0 0,0009 -2,0 0,0759 -1,4 

NM_213659 Stat3 
Signal transducer and activator of 
transcription 3 

0,8275 1,0 0,0027 1,7 0,5430 1,1 

NM_011518 Sykb Tyrosine-protein kinase SYK 0,7436 -1,0 0,1055 1,2 0,0011 1,6 

NM_019913 Txn2 Thioredoxin, mitochondrial 0,9879 1,0 0,0026 1,5 0,4248 1,1 

NM_029770 Unc5b Netrin receptor UNC5B 0,3172 1,2 0,0018 1,8 0,0016 1,8 

NM_173016 Vat1l 
Synaptic vesicle membrane protein 

VAT-1 homolog-like 
0,9631 -1,0 0,0035 -1,5 0,4560 -1,1 
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Table 10. Cell adhesion-involved genes in neuron cultures exposed to 1 h RPM and having recovered for 24 

and 72 h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h vs. 

GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h vs. 

GC * 72 h) 

NM_009621 Adamts1 
A disintegrin and metalloproteinase with 

thrombospondin motifs 1 
0,2804 1,5 0,0044 3,3 0,1108 1,8 

NM_175314 Adamts9 Protein Adamts9 0,7899 -1,0 0,0013 1,7 0,2290 1,2 

NM_011923 Angptl2 Angiopoietin-related protein 2 0,8293 1,1 0,0043 2,6 0,0387 1,9 

NM_207675 Cadm1 Cell adhesion molecule 1 0,9635 -1,0 0,0037 -1,7 0,0979 -1,3 

NM_178793 Ccbe1 
Collagen and calcium-binding EGF 
domain-containing protein 1 

0,8049 -1,1 0,0007 -2,8 0,0490 -1,6 

NM_001159557 Cd36 Platelet glycoprotein 4 0,9524 1,0 0,5281 -1,2 0,0001 -3,7 

NM_009853 Cdh8 Cadherin 8 0,7330 -1,1 0,0014 4,1 0,0137 2,7 

NM_007954 Ces1c Carboxylesterase 1C 0,4869 -1,1 0,0022 2,0 0,1600 1,3 

NM_007689 Chad Chondroadherin 0,1788 1,2 0,0032 -1,5 0,9158 -1,0 

NM_007727 Cntn1 Contactin-1 0,9266 -1,0 0,0010 -1,5 0,1765 -1,1 

NM_009933 Col6a1 Collagen alpha-1(VI) chain 0,8026 1,0 0,5195 1,1 0,0004 1,9 

NM_029636 Ctsq Cathepsin Q 0,9393 1,0 0,2135 1,2 0,0025 1,6 

NM_001081084 Cubn Cubilin 0,8479 -1,0 0,9771 1,0 0,0002 2,1 

NM_007862 Dlg1 Disks large homolog 1 0,8435 1,0 0,0040 1,5 0,0955 1,2 

NM_153078 Ehbp1 EH domain-binding protein 1 0,7085 -1,0 0,0001 -1,5 0,0985 -1,1 

NM_010143 Ephb3 Ephrin type-B receptor 3 0,6802 1,0 0,0010 1,6 0,0847 1,2 

NR_028267 Fcho1 FCH domain only protein 1 0,7834 -1,0 0,0007 -1,6 0,6212 -1,1 

NM_177756 Glt25d2 Procollagen galactosyltransferase 2 0,7221 1,1 0,0025 2,0 0,0389 1,5 

NM_198610 Igsf21 
Immunoglobulin superfamily member 
21 

0,9329 -1,0 0,0012 -1,6 0,3314 1,1 

NM_010593 Jup Junction plakoglobin 0,5569 -1,1 0,0014 -1,6 0,8978 -1,0 

NM_008463 Klra5 Killer cell lectin-like receptor 5 0,0019 2,1 0,3241 -1,2 0,5497 1,1 

NM_010733 Lrrn3 Leucine-rich repeat neuronal protein 3 0,5776 -1,1 0,0019 -1,4 0,0047 -1,3 

NR_027323 Lrrtm4 
Leucine-rich repeat transmembrane 

neuronal protein 4 
0,4429 1,1 0,8825 1,0 0,0042 -1,6 

NM_023061 Mcam Cell surface glycoprotein MUC18 0,5460 -1,1 0,0050 1,5 0,0207 1,3 

NM_008594 Mfge8 Lactadherin 0,8608 -1,0 0,1029 -1,2 0,0010 -1,6 

NM_019671 Net1 Netrin-1 0,5269 1,1 0,0016 1,5 0,1892 1,2 

NM_001081324 Neto2 Neuropilin and tolloid-like protein 2 0,6538 -1,0 0,0000 -1,5 0,0004 -1,4 

NM_001142916 Plod2 
Procollagen-lysine,2-oxoglutarate 5-
dioxygenase 2 

0,7182 1,1 0,0074 1,8 0,0032 1,9 

NM_172874 Podn Podocan 0,7148 1,1 0,9350 -1,0 0,0011 2,5 

NM_027514 Pvr Poliovirus receptor-related protein 2 0,6649 -1,1 0,0000 2,6 0,0016 1,9 

NM_011351 Sema6c Semaphorin-6C 0,5574 1,1 0,0000 -1,8 0,0147 -1,3 

NM_021286 Sez6 Seizure protein 6 0,8941 1,0 0,0027 -1,5 0,0175 -1,3 

NM_011518 Sykb Tyrosine-protein kinase SYK 0,7436 -1,0 0,1055 1,2 0,0011 1,6 

NM_001168541 Tsku Tsukushin 0,2813 -1,1 0,0040 1,5 0,0125 1,4 

NM_173007 Tspan12 Tetraspanin-12 0,2390 1,1 0,0021 1,4 0,0048 1,4 
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Table 11. Cell communication-involved genes in neuron cultures exposed to 1 h RPM and having recovered for 

24 and 72 h in ground conditions. Fold change threshold was 2 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h vs. 

GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h vs. 

GC * 72 h) 

NM_009621 Adamts1 
A disintegrin and metalloproteinase with 

thrombospondin motifs 1 
0,2804 1,5 0,0044 3,3 0,1108 1,8 

NM_011923 Angptl2 Angiopoietin-related protein 2 0,8293 1,1 0,0043 2,6 0,0387 1,9 

NM_178793 Ccbe1 
Collagen and calcium-binding EGF 

domain-containing protein 1 
0,8049 -1,1 0,0007 -2,8 0,0490 -1,6 

NM_001159557 Cd36 Platelet glycoprotein 4 0,9524 1,0 0,5281 -1,2 0,0001 -3,7 

NM_007389 Chrna1 Acetylcholine receptor subunit alpha 0,7906 1,1 0,5127 1,2 0,0031 2,9 

NM_009946 Cplx2 Complexin-2 0,9734 -1,0 0,0016 -2,3 0,0243 -1,7 

NM_001081084 Cubn Cubilin 0,8479 -1,0 0,9771 1,0 0,0002 2,1 

NM_177914 Dgkk Protein Dgkk 0,8772 1,1 0,0090 3,5 0,0002 8,7 

NM_001085390 Dusp5 Dual specificity protein phosphatase 0,1641 1,3 0,0105 1,8 0,0032 2,1 

NM_021306 Ecel1 Endothelin-converting enzyme-like 1 0,8837 -1,0 0,0221 2,2 0,0006 4,0 

NM_008655 Gadd45b 
Growth arrest and DNA damage-

inducible protein GADD45 beta 
0,0031 4,1 0,0178 2,9 0,2113 1,7 

NM_011817 Gadd45g GADD45G 0,0170 2,5 0,0038 3,3 0,7104 1,1 

NM_008082 Galr1 Galanin receptor type 1 0,6478 -1,2 0,0074 2,9 0,0001 6,1 

NM_177350 Gldn Gliomedin 0,4151 1,1 0,3385 1,1 0,0001 2,2 

NM_001010941 Gpr12 G-protein coupled receptor 12 0,2479 -1,2 0,0032 -2,0 0,0137 -1,7 

NM_010340 Gpr50 Melatonin-related receptor 0,9766 1,0 0,0021 5,0 0,0389 2,6 

NM_022427 Gpr88 Probable G-protein coupled receptor 88 0,9006 1,0 0,0038 -2,6 0,0036 -2,6 

NM_019518 Grasp 
General receptor for phosphoinositides 

1-associated scaffold protein 
0,7535 1,1 0,0560 1,6 0,0035 2,3 

NM_016719 Grb14 Growth factor receptor-bound protein 14 0,8973 -1,0 0,0003 -2,5 0,0117 -1,7 

NM_133849 Hrh3 Histamine H3 receptor 0,4899 1,2 0,0009 -2,7 0,3472 -1,2 

NM_008463 Klra5 Killer cell lectin-like receptor 5 0,0019 2,1 0,3241 -1,2 0,5497 1,1 

NM_010850 Mycs Protein S-Myc 0,7171 -1,1 0,0023 -2,1 0,2115 -1,3 

NM_181072 Myo1e Unconventional myosin-Ie 0,9270 1,0 0,0031 2,2 0,0788 1,5 

NM_018766 Ntsr1 Neurotensin receptor type 1 0,8058 1,1 0,0014 -3,7 0,6434 -1,2 

NM_172874 Plekhh3 
Pleckstrin homology domain-containing 

family H member 3 
0,7148 1,1 0,9350 -1,0 0,0011 2,5 

NM_015817 Podn Podocan 0,5089 1,2 0,0031 2,2 0,0014 2,4 

NM_027514 Prl2b1 Prolactin-2B1 0,6649 -1,1 0,0000 2,6 0,0016 1,9 

NM_022020 Rassf1 
Ras association domain-containing 
protein 1 

0,0004 -1,5 0,5669 -1,0 0,4831 1,1 

NM_011267 Relt 
Tumor necrosis factor receptor 

superfamily member 19L 
0,9642 -1,0 0,0006 3,0 0,0267 1,8 

NM_001004173 Sez6 Seizure protein 6 0,8627 1,0 0,4660 1,2 0,0016 2,9 

NM_007706 Slc6a15 
Sodium-dependent neutral amino acid 

transporter B(0)AT2 
0,8799 -1,0 0,0009 -2,0 0,0759 -1,4 

NM_146028 Sp100 Nuclear autoantigen Sp-100 0,8239 1,1 0,5297 1,2 0,0021 2,9 

NM_011491 Stac2 
SH3 and cysteine-rich domain-

containing protein 2 
0,7213 -1,1 0,0013 3,5 0,0576 1,9 

NM_013722 Sv2c Synaptic vesicle glycoprotein 2C 0,7218 1,1 0,0001 -2,5 0,7609 -1,0 
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Table 12. Transport-involved genes in neuron cultures exposed to 1 h RPM and having recovered for 24 and 72 

h in ground conditions. Fold change threshold was 1.6 and p-value 0.005. Genes statistically different compared 

to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h 

vs. GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h 

vs. GC * 72 h) 

NM_019785 Actr10 Actin-related protein 10 0,9981 -1,0 0,0026 -1,4 0,3204 -1,1 

NM_011923 Angptl2 Angiopoietin-related protein 2 0,8293 1,1 0,0043 2,6 0,0387 1,9 

NM_138652 Atp12a Potassium-transporting ATPase alpha chain 2 0,2763 -1,3 0,5868 -1,1 0,0049 -2,1 

NM_178793 Ccbe1 
Collagen and calcium-binding EGF domain-

containing protein 1 
0,8049 -1,1 0,0007 -2,8 0,0490 -1,6 

NM_001159557 Cd36 Platelet glycoprotein 4 0,9524 1,0 0,5281 -1,2 0,0001 -3,7 

NM_009853 Cd68 Macrosialin 0,7330 -1,1 0,0014 4,1 0,0137 2,7 

NM_007389 Chrna1 Acetylcholine receptor subunit alpha 0,7906 1,1 0,5127 1,2 0,0031 2,9 

NM_007390 Chrna7 Neuronal acetylcholine receptor subunit alpha-7 0,9243 -1,0 0,0010 1,7 0,7133 1,0 

NM_009933 Col6a1 Collagen alpha-1(VI) chain 0,8026 1,0 0,5195 1,1 0,0004 1,9 

NM_001081084 Cubn Cubilin 0,8479 -1,0 0,9771 1,0 0,0002 2,1 

NM_011180 Cyth1 Cytohesin-1 0,2321 -1,2 0,0014 -1,7 0,0150 -1,4 

NM_001038619 Dnm3 Dynamin-3 0,8568 1,0 0,0011 -1,7 0,0750 -1,3 

NM_133838 Ehd4 EH domain-containing protein 4 0,8295 -1,0 0,0079 1,6 0,0038 1,7 

NM_010143 Ephb3 Ephrin type-B receptor 3 0,6802 1,0 0,0010 1,6 0,0847 1,2 

NM_020488 Gabrq 
Gamma-aminobutyric acid receptor subunit 

theta 
0,5354 -1,1 0,5783 1,1 0,0013 1,8 

NM_177350 Gldn Gliomedin 0,4151 1,1 0,3385 1,1 0,0001 2,2 

NM_001033354 Hba-x Hemoglobin subunit zeta 0,9400 1,0 0,1373 1,1 0,0001 1,6 

NM_134090 Kcnq4 
Potassium voltage-gated channel subfamily 

KQT member 4 
0,9738 1,0 0,0390 1,8 0,0012 2,8 

NM_008594 Lmbr1 Limb region 1 protein 0,8608 -1,0 0,1029 -1,2 0,0010 -1,6 

NM_181072 Mfge8 Lactadherin 0,9270 1,0 0,0031 2,2 0,0788 1,5 

NM_008872 Pitpnm2 
Membrane-associated phosphatidylinositol 
transfer protein 2 

0,8311 1,0 0,0011 1,8 0,0048 1,6 

NM_024413 Plat Tissue-type plasminogen activator 0,1984 1,2 0,0005 1,7 0,0088 1,4 

NM_024413 Plekhf1 
Pleckstrin homology domain-containing family 

F member 1 
0,1984 1,2 0,0005 1,7 0,0088 1,4 

NM_146030 Plekhh3 
Pleckstrin homology domain-containing family 

H member 3 
0,9402 -1,0 0,0048 1,6 0,3998 -1,1 

NM_022020 Rbp7 Retinoid-binding protein 7 0,0004 -1,5 0,5669 -1,0 0,4831 1,1 

NM_023275 Rhoj Rho-related GTP-binding protein RhoJ 0,1879 1,2 0,0028 1,5 0,0008 1,7 

NM_145495 Rin1 Ras and Rab interactor 1 0,7551 1,1 0,0086 2,0 0,0047 2,1 

NM_027530 Rufy3 Protein RUFY3 0,3765 -1,1 0,0009 -1,8 0,3576 -1,1 

NM_178227 Scn3b Sodium channel subunit beta-3 0,8010 1,0 0,0043 -1,8 0,4005 -1,2 

NM_001171010 Slc14a1 Urea transporter 1 0,6414 1,1 0,2081 -1,2 0,0001 2,0 

NM_009196 Slc16a1 Monocarboxylate transporter 1 0,6338 1,1 0,0001 2,5 0,0017 1,8 

NM_011400 Slc2a1 
Solute carrier family 2, facilitated glucose 

transporter member 1 
0,6229 1,1 0,0000 3,3 0,0018 2,0 

NM_001135151 Slc39a14 Zinc transporter ZIP14 0,5856 1,1 0,0015 1,6 0,2210 1,2 

NM_175328 Slc6a15 
Sodium-dependent neutral amino acid 

transporter B(0)AT2 
0,8386 1,0 0,0029 -1,6 0,6477 -1,1 

NM_021471 Slco1c1 
Solute carrier organic anion transporter family 
member 1C1 

0,8661 1,0 0,0046 1,7 0,0023 1,8 

NM_029068 Snx16 Sorting nexin-16 0,7050 -1,0 0,0004 -1,6 0,0039 -1,4 

NM_007706 Socs2 Suppressor of cytokine signaling 2 0,8799 -1,0 0,0009 -2,0 0,0759 -1,4 

NM_011518 Sykb Tyrosine-protein kinase SYK 0,7436 -1,0 0,1055 1,2 0,0011 1,6 

NM_013722 Syn3 Synapsin-3 0,7218 1,1 0,0001 -2,5 0,7609 -1,0 

NM_019636 Tbc1d1 TBC1 domain family member 1 0,5046 1,1 0,0000 1,7 0,0003 1,5 

NM_001081499 Tbc1d8b TBC1 domain family member 8B 0,6067 -1,1 0,0001 3,3 0,0007 2,5 

NM_030731 Trim23 E3 ubiquitin-protein ligase TRIM23 0,7243 1,0 0,0019 -1,6 0,2628 -1,2 

NM_017379 Tuba8 Tubulin alpha-8 chain 0,8468 -1,0 0,0017 2,2 0,0002 2,9 
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Table 13. Apoptosis-involved genes in neuron cultures exposed to 10 days RPM and having recovered for 24 and 

72 h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene banck Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h 

vs. GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h vs. 

GC * 72 h) 

NM_153397 Adam32 
Disintegrin and metalloproteinase domain-

containing protein 32 
0,0030 1,1 0,0023 1,5 0,5631 -1,1 

BC024332 Fam195a Protein FAM195A 0,0005 1,5 0,2106 1,1 0,0021 1,4 

NM_019752 Htra2 Serine protease HTRA2, mitochondrial 0,2281 -1,2 0,1485 -1,2 0,0006 -1,7 

NM_001162884 Igsf10 Immunoglobulin superfamily member 10 0,0635 -1,5 0,0129 -1,7 0,0017 -2,1 

NM_001190911 Kirrel3 Kin of IRRE like 3 (Drosophila), isoform CRA_b 0,0396 1,0 0,0031 -1,9 0,4968 -1,1 

NM_153099 Prss42 Serine protease 42 0,0022 -1,6 0,6579 -1,1 0,9380 -1,0 

NM_001039146 Vmn1r90 Protein Vmn1r90 0,3516 -1,1 0,7508 -1,0 0,0003 -1,5 

 

 

Table 14. Cell adhesion-involved genes in neuron cultures exposed to 10 days RPM and having recovered for 24 

and 72 h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h 

vs. GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h 

vs. GC * 72 h) 

NM_153397 Adam32 
Disintegrin and metalloproteinase domain-

containing protein 32 
0,0030 1,1 0,0023 1,5 0,5631 -1,1 

NM_010818 Cd200 CD200 antigen 0,0009 -1,3 0,0008 -1,6 0,0012 -1,5 

NM_001162884 Igsf10 Immunoglobulin superfamily member 10 0,0635 -1,5 0,0129 -1,7 0,0017 -2,1 

NM_001190911 Kirrel3 Kin of IRRE like 3 (Drosophila), isoform CRA_b 0,0396 1,0 0,0031 -1,9 0,4968 -1,1 

NR_027323 Lrrtm4 
Leucine-rich repeat transmembrane neuronal 

protein 4 
0,0007 -1,3 0,0000 -2,4 0,1272 -1,2 

NM_010769 Matn1 Cartilage matrix protein 0,0046 -1,4 0,8907 -1,0 0,2748 1,1 

NM_011216 Ptpro Receptor-type tyrosine-protein phosphatase O 0,0001 -1,4 0,0001 -2,1 0,0001 -1,9 
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Table 15. Cell communication-involved genes in neuron cultures exposed to 10 days RPM and having recovered 

for 24 and 72 h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically 

different compared to the controls are highlighted in yellow. 

Gene bank Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h vs. 

GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h 

vs. GC * 72 h) 

NM_153397 Adam32 
Disintegrin and metalloproteinase domain-

containing protein 32 
0,0030 1,1 0,0023 1,5 0,5631 -1,1 

NM_133926 Camk1 
Calcium/calmodulin-dependent protein kinase 
type 1 

0,0339 -1,4 0,0634 -1,3 0,0042 -1,6 

NM_144817 Camk1g 
Calcium/calmodulin-dependent protein kinase 

type 1G 
0,0122 -1,2 0,0047 -1,8 0,0087 -1,7 

NM_009914 Ccr3 Probable C-C chemokine receptor type 3 0,5731 1,1 0,8040 1,0 0,0003 1,6 

NM_010818 Cd200 CD200 antigen 0,0009 -1,3 0,0008 -1,6 0,0012 -1,5 

NM_194446 Cdk10 Cyclin-dependent kinase 10 0,1517 -1,2 0,1801 -1,2 0,0036 -1,5 

NM_009142 Cx3cl1 Fractalkine 0,0074 -1,2 0,0027 -1,5 0,0152 -1,4 

NM_007873 Doc2b Double C2-like domain-containing protein beta 0,1800 -1,3 0,0209 -1,6 0,0004 -2,3 

NM_007892 E2f5 Transcription factor E2F5 0,0319 1,2 0,9849 -1,0 0,0015 1,4 

BC024332 Fam195a Protein FAM195A 0,0005 1,5 0,2106 1,1 0,0021 1,4 

NM_133248 Glmn Glomulin 0,1995 -1,1 0,0256 -1,3 0,0040 -1,4 

NM_013531 Gnb4 
Guanine nucleotide-binding protein subunit 
beta-4 

0,1973 -1,6 0,0383 -2,3 0,0029 -3,7 

NM_145552 Gnl2 Nucleolar GTP-binding protein 2 0,0362 -1,3 0,4957 -1,1 0,0038 -1,6 

NM_027543 Gpr173 Probable G-protein coupled receptor 173 0,3450 -1,1 0,2449 -1,2 0,0001 -2,1 

NM_019752 Htra2 Serine protease HTRA2, mitochondrial 0,2281 -1,2 0,1485 -1,2 0,0006 -1,7 

NM_026298 Ift172 Intraflagellar transport protein 172 homolog 0,0395 -1,3 0,0093 -1,3 0,0006 -1,6 

NM_001162884 Igsf10 Immunoglobulin superfamily member 10 0,0635 -1,5 0,0129 -1,7 0,0017 -2,1 

NM_031252 Il23a Interleukin-23 subunit alpha 0,0127 1,2 0,0015 1,5 0,5486 -1,1 

NM_001190911 Kirrel3 
Kin of IRRE like 3 (Drosophila), isoform 
CRA_b 

0,0396 1,0 0,0031 -1,9 0,4968 -1,1 

NR_027323 Lrrtm4 
Leucine-rich repeat transmembrane neuronal 

protein 4 
0,0007 -1,3 0,0000 -2,4 0,1272 -1,2 

NM_008552 Mas1 Proto-oncogene Mas 0,0490 1,0 0,0040 -1,8 0,4492 -1,1 

NM_010769 Matn1 Cartilage matrix protein 0,0046 -1,4 0,8907 -1,0 0,2748 1,1 

NM_177376 Myo3b Myosin-IIIb 0,3786 -1,2 0,3863 -1,2 0,0035 -2,0 

NM_008747 Ntsr2 Neurotensin receptor type 2 0,0094 2,4 0,4369 1,3 0,0001 4,7 

NM_011057 Pdgfb Platelet-derived growth factor subunit B 0,0179 1,0 0,0030 -1,6 0,0266 -1,4 

NM_011216 Ptpro Receptor-type tyrosine-protein phosphatase O 0,0001 -1,4 0,0001 -2,1 0,0001 -1,9 

NM_080793 Setd7 Histone-lysine N-methyltransferase SETD7 0,0072 1,3 0,0231 1,2 0,0008 1,4 

NM_017400 Sh3gl3 Endophilin-A3 0,0035 -2,1 0,4084 -1,2 0,1595 -1,4 

XM_003086051 Syngap1 Ras GTPase-activating protein SynGAP 0,0144 -1,1 0,0011 -1,7 0,1718 -1,2 

NM_018803 Syt10 Synaptotagmin-10 0,0970 -1,6 0,0104 -2,2 0,0035 -2,5 

NM_009377 Th Tyrosine 3-monooxygenase 0,0078 -1,3 0,0021 -2,4 0,0259 -1,8 

NM_144549 Trib1 Tribbles homolog 1 0,0294 1,0 0,0047 -1,5 0,1149 -1,2 

NM_009528 Wnt7b Protein Wnt-7b 0,0039 1,5 0,4570 1,1 0,0843 1,2 
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Table 16. Transport-involved genes in neuron cultures exposed to 10 days RPM and having recovered for 24 

and 72 h in ground conditions. Fold change threshold was 1.4 and p-value 0.005. Genes statistically different 

compared to the controls are highlighted in yellow. 

Gene banck Symbol  Full name gene 

p-value –  

Fold-Change 

(RPM * 0 h vs. 

GC * 0 h) 

p-value –  

Fold-Change 

(RPM * 24 h vs. 

GC * 24 h) 

p-value –  

Fold-Change 

(RPM * 72 h 

vs. GC * 72 h) 

NM_175550 Ap4e1 AP-4 complex subunit epsilon-1 0,0082 -1,1 0,0003 1,5 0,9153 1,0 

NM_007873 Doc2b 
Double C2-like domain-containing 

protein beta 
0,1800 -1,3 0,0209 -1,6 0,0004 -2,3 

NM_145552 Gnl2 Nucleolar GTP-binding protein 2 0,0362 -1,3 0,4957 -1,1 0,0038 -1,6 

NM_026298 Ift172 
Intraflagellar transport protein 172 

homolog 
0,0395 -1,3 0,0093 -1,3 0,0006 -1,6 

NM_001111028 Kctd9 
BTB/POZ domain-containing protein 

KCTD9 
0,0339 1,2 0,0028 1,6 0,8057 -1,0 

         

NM_008445 Kif3c Kinesin-like protein KIF3C 0,5058 -1,1 0,0181 -1,3 0,0033 -1,4 

NM_177376 Myo3b Myosin-IIIb 0,3786 -1,2 0,3863 -1,2 0,0035 -2,0 

NM_023409 Npc2 Epididymal secretory protein E1 0,0144 1,3 0,0024 1,4 0,0001 1,6 

NM_153099 Prss42 Serine protease 42 0,0022 -1,6 0,6579 -1,1 0,9380 -1,0 

NM_011216 Ptpro 
Receptor-type tyrosine-protein 

phosphatase O 
0,0001 -1,4 0,0001 -2,1 0,0001 -1,9 

NM_026991 Sat2 
Sodium-coupled neutral amino acid 

transporter 2 
0,0057 -1,2 0,0008 -1,5 0,0424 -1,3 

NM_017400 Sh3gl3 Endophilin-A3 0,0035 -2,1 0,4084 -1,2 0,1595 -1,4 

NM_001040459 Shroom4 Protein Shroom4 0,0168 -1,1 0,0023 -1,4 0,7043 -1,0 

NM_172577 Slc25a21 
Mitochondrial 2-oxodicarboxylate 

carrier 
0,0036 1,5 0,6837 1,0 0,3052 1,1 

NM_134420 Slc26a6 Protein Slc26a6 0,0044 1,5 0,2062 1,2 0,0050 1,4 

NM_018803 Syt10 Synaptotagmin-10 0,0970 -1,6 0,0104 -2,2 0,0035 -2,5 

 



Morphological and physiological changes in mature in vitro neuronal networks towards exposure to short-, middle- 

or long-term simulated microgravity 

158 

 

  

 



Chapter VI  | 

159 

 

 
 

 

 

 

Chapter VI  | Combined exposure to simulated 

microgravity and acute or chronic 

radiation reduces neuronal 

network integrity.  

  

 

 



Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity. 

160 

 

Modified from “Pani G., Samari N., Quintens Q, de Saint-Georges L., Baatout S., van 

Oostveldt P., Benotmane. M.A. Combined exposure to simulated microgravity and acute or 

chronic radiation reduces neuronal network integrity.” This manuscript is in final preparation to 

be submitted to PlosOne journal.  

  



Chapter VI  | 

161 

 

Combined exposure to simulated microgravity and acute or 

chronic radiation reduces neuronal network integrity. 

 

Abstract 

During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations 

and microgravity. In order to estimate the potential health risks of astronauts during their 

permanence in space, the effects of these two conditions are usually investigated separately. This 

study aimed at assessing the effects of the combined conditions on neuronal plasticity. In 

particular, we investigated the effects of simulated microgravity during or after exposure to low 

dose ionizing radiations on the neuronal network density, cell morphology and cell viability in 

well-connected primary mouse cortical neuron cultures. To this end, we used the Random 

Positioning Machine (RPM) to simulate microgravity, X-rays for low and high acute dose 

radiation exposure and Californium-252 as a source for chronic low dose radiations. 

High content image analysis of well-connected cortical neurons after exposure to acute or 

chronic radiation showed a delay in the outgrowth of neuronal extensions whereas simulated 

microgravity affected neurite area and length. Moreover, we showed that cell death was induced 

by high acute radiation dose, by low dose of chronic radiations as well as by microgravity. 

Nevertheless, when combining both simulated space conditions, we observed an enhanced effect 

on neuronal network density, neuron morphology and apoptosis. 

In conclusion, our results provide evidence of enhanced effects of combined space 

conditions on the neuronal network integrity. 

Keywords: Mature neuronal network; neuroplasticity; neuronal morphology; simulated 

microgravity; chronic irradiation; acute irradiation; simulated space conditions. 

  



Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity. 

162 

 

 Introduction 1.

Cosmic radiations and microgravity, combined with workload, confinement, hypoxia and 

psychological stress, are the main stressful components which affect astronauts during space 

flights. It is well known that microgravity induces physiological changes in human body such as 

bone loss [305], skeletal muscle atrophy [304], immune system impairment [216, 263], shifts of 

body fluids from the lower extremities to the upper body [306] and space motion sickness 

(SMS). Moreover, cognitive deficits, sensory-motor alterations, changes in sleep-wake 

regulation as well as vegetative disorders, which are SMS-related, may also occur during long-

term spaceflights, affecting human behaviour and performance [307]. It has been reported that 

organisms exposed to low gravity undergo physiological, cellular as well as metabolic changes. 

In particular, reduced cellular motility, altered morphology, altered distribution in cytoskeletal 

proteins [59], reduced proliferation [35], delayed cell cycle [328] increased apoptosis [68, 308] 

are also known effects due to the exposure to modified gravitational fields. Cosmic radiations are 

an heterogeneous pool of ionizing radiations with a wide range of charges and energies produced 

mainly by galactic cosmic rays and solar particle events [78]. Approximately 91% of the 

particles composing cosmic radiations are protons, 8% α-particles and 1% are particles heavier 

than helium as high-Z and high-energy (HZE) particles [329]. Aboard the International Space 

Station (ISS), the average dose rate of cosmic radiation is around 0.0083 mSv/h or 0.2 mSv/day 

[77] but can increase during solar activities generating then a peak of higher dose rate for a short 

period. Furthermore, neutrons are one of the most produced secondary particles originating from 

the interaction of primary particles with the spacecraft skin [78, 86, 330]. It is known that 

chronic radiation exposure can lead to neuroregulatory disorders, moderate to marked 

leukopenia, thrombocytopenia and sometimes even severe anemia [200]. At the cellular level, 

radiations can cause increased oxidative stress [66, 331], DNA damage [332, 333], cell cycle 
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arrest [334], changes in cell motility, cytoskeleton distribution [102, 142-144], apoptosis and 

senescence [139, 140]. 

During embryonic development, neuron precursors are able to move from the ventricular 

zone to their final destination in the neocortex where they mature by extending neurites to 

establish synapses with target cells. Additionally, plasticity is the final phenomenon which 

occurs in the developing brain whereas neuroplasticity is an ability of the adult brain to remodel 

the network by contracting and re-extending neurites and to reorganize connections between 

neurons in response to environmental changes [154]. The neurite outgrowth motility involves 

several cytoskeletal proteins, in particular stable microtubules along the extensions, cortical actin 

and integrins at the periphery of the outgrowth cone.  

Studies on real or simulated low gravity reported that cytoskeletal alterations observed 

during exposure may lead to reduced motility of adherent cells [38, 59]. Furthermore, gene 

expression analyses on the brain of mice exposed to the hindlimb-upload method to simulate low 

gravity showed a down regulation of Itga3. This gene codes for the alpha3 subunit of the 

transmembrane heterodimeric integrin complex which is important for adhesion, locomotion and 

organization of the sub-membrane actin cytoskeleton [197]. Recent in vivo experiments on mice 

exposed to the International Space Station (ISS) environment for 91 days reported a possible 

reduced expression of neuron growth factor (NGF) and brain derived neurotrophic factor 

(BDNF) in brain tissues as in cortex and hippocampus in wild-type animals exposed to 

spaceflight environment compared to the controls [199]. Furthermore, proteins involved in long-

term potentiation or in neurotransmitter release were up-regulated in the whole brain of mice 

exposed to ISS environment [199]. Additionally, short-term exposure of well-connected neurons 

to simulated microgravity showed a reduction in neurite length and area and changes at the level 

of somas (Pani et al., unpublished results, chapter V). Investigations on neurons exposed to 

ionizing radiations have reported effects at the cellular and molecular levels. Indeed, analysis on 

spine numbers and synapsis clusters showed an alteration 14 days after high dose exposure 
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[335]. In vitro investigation on apoptosis induced by ionizing radiation exposure reported that 

low doses of X-rays (0.2 Gy) increase NMDA receptor-mediated cell death in maturing neurons 

[299]. In vivo studies on laboratory animals indicated that low doses of HZE particles such as Fe 

and Ar, are capable of producing morphological, neurochemical and behavioural alterations 

[203-206]. Investigations on dopaminergic functions in the CNS and correlated motor behaviour 

of rats also reported an alteration after exposure to 0.1 Gy of Fe particles [203]. Additionally, 

these data showed that rats exposed to Fe ions exhibited important alterations in neuronal signal 

transduction in the striatum and in motor neuron behaviour parameters [203]. Evident correlation 

was also reported between neurodegenerative diseases and heavy ion exposure in mouse model 

[336].  

Three different theories have been proposed to describe 3 effects induced by radiation 

coupled with microgravity: additive [145], antithetical [337] and non-correlative effects. Only a 

few experiments have been performed combining both conditions, and in all of them samples 

were exposed to simulated microgravity after acute irradiation. One investigation reported a 

decreased apoptosis in foetal fibroblasts cultured for 24 h in the RPM after exposure to moderate 

(0.5 Gy) and high doses (1 Gy) of X-rays [337]. On the contrary, experiments on DNA repair 

efficiency and apoptosis in peripheral lymphocytes cultured in the Rotating Wall Vessel (RWV) 

after exposure to high doses of gamma irradiation showed an addictive effect with a delay in 

DNA repair kinetics and an increased apoptosis compared to cultures which had only been 

irradiated [145]. 

Concerning the in vitro neuronal network models, it has been reported that non-connected 

neurons and well-connected neurons differ in their action potential activities, spontaneous 

synaptic currents, number of synapses and neurite growth speed [175, 176]. It has also been 

described that synaptic protein distribution and associated vesicles are partially dependent on the 

acquisition of functional synapses [175]. Additionally, GABA or glycine neurotransmitters have 



Chapter VI  | 

165 

 

opposite activity in two developmental stages [177, 178] and neurons are less sensitive to 

external agents over maturation [179, 180].  

Since no study had so far been performed exposing neuron cultures to both conditions, we 

investigated the effects of exposure of well-connected primary mouse neuron cultures to 

microgravity either after acute (X-rays) or during chronic (neutrons) irradiation. Within this 

study morphological parameters as well as death of neurons in neuronal network cultures were 

investigated in simulated space conditions.   
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 Materials and methods 2.

2.1. Primary cell cultures and mature neuronal network model 

In this study, primary neuron cultures were initiated from the brain cortex of 17 day-old 

mouse fetuses. All animal experiments were carried out in strict accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. The protocol was approved by the Belgian Nuclear Research Centre 

(SCK•CEN, Mol, Belgium) and the Flemish Institute for Technological Research (VITO, Geel, 

Belgium) joint Ethical Committee on Laboratory Animal Experiments. Pregnant mice were 

sacrificed by cervical dislocation on day 17 after conception. Subsequently, brains from fetuses 

were dissected and cortices were extracted. Neuronal cells were isolated by trypsinization, 

mechanical dissociation of tissue and cell centrifugation after which they were seeded onto poly-

D-lysine coated 4-well plates (Thermo Scientific, Aalst, Belgium) at a density of 50,000 cells per 

cm
2
. Neurons were grown in MEM medium (Gibco, Gent, Belgium) supplemented with 10% 

fetal bovine serum (Gibco) and 0.1% penicillin-streptomycin (Gibco) and incubated for 1 h at 37 

°C and 5% CO2 to remove non-neuronal small cells and to allow cell adherence. Thereafter, the 

medium was exchanged with Neurobasal medium (Gibco) supplemented with 2% B27 

supplement (Gibco), 20 mM HEPES (Gibco) and 0.2% penicillin-streptomycin (Gibco); this 

medium allowed for selective growth of neuronal cells. In order to obtain a dense neuronal 

network as in vitro model, neurons were cultured for 10 days at 37°C, 95% of humidity and 5% 

CO2. After 5 days of culture, two thirds of medium were replaced by fresh medium every 2 days.  

2.2. In vitro experimental layout 

To study the morphological effects of simulated microgravity on dense neuronal networks, 

at day 9 of the neuron culture, all 4-well plates (27 for acute irradiation or 15 for chronic 

irradiation) were completely filled with complete neurobasal medium, sealed with a first layer of 
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sterile parafilm and, if required, bubbles were removed with a syringe. Then, a second layer of 

parafilm was applied. At day 10, three replicates for each condition were ready for mounting on 

a desktop RPM (Dutch Space) in the framework of simulated space condition experiments.  

2.3. RPM exposure after acute X-irradiations 

In the acute exposure experiments, 10 day old neuron cultures were first irradiated with X-

rays after which they were exposed to simulated microgravity. Cell cultures were irradiated at 

room temperature with 250 kV-15 mA, 1 mm Cu-filtered X-rays (Pentak HF420 RX machine), 

delivered at 5 mSv/sec. The Farmer 2570-EMI dosemeter was under the control of the 

Intercomparison Committee for Dosimetry. Cells were either exposed to a low dose of 0.1 Sv or 

to a high dose of 1.0 Sv of X-rays; non-exposed cells underwent identical manipulations. 

Immediately after irradiation, half of the samples were mounted on the RPM for simulated 

microgravity and the other half was kept in ground conditions (GC) as controls, both at 37°C, 

95% of humidity and 5% CO2. After 30 min, 2 h or 24 h of exposure to simulated microgravity 

or ground conditions, one plate per condition was fixed with 4% paraformaldehyde for 

subsequent β-tubulin 3 (-tub 3) or AnnexinV-PI and Hoechst stainings (Fig. 39 A).  

2.4. RPM exposure during neutron irradiation  

In the chronic exposure experiments, cell cultures were irradiated with neutrons during 

RPM treatment. We used Californium-252 as source of neutrons and 2% of primary and 

secondary γ-rays obtaining a final dose rate of 2 or 20 mSv/day to simulate space radiation [338]. 

At day 10 of culture, plates were divided into 3 replicates per experimental condition which 

included (1) control cultures, (2) cultures exposed for 5 days to simulated microgravity, (3) 

cultures exposed for 5 days to neutrons under ground conditions at a dose rate of 20 mSv/day, 

(4) cultures exposed for 5 days to neutrons under ground conditions at a dose rate of 2 mSv/day, 

and (5) cultures exposed for 5 days to neutrons at a dose rate of 2 mSv/day in the RPM (Fig. 39 
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B). After 5 days of treatment, all plates were fixed with 4% paraformaldehyde and stained with 

-tubulin 3 or AnnexinV-PI and Hoechst.  

2.5. Immunostaining of neuronal network  

Neuronal networks were stained for the neuronal marker -tubulin 3 using indirect 

immunofluorescence, whereas nuclei were revealed by direct fluorescence. After washing with 

phosphate buffered saline (PBS), cells were permeabilized with PBS containing 0.1% Triton X-

100 (Sigma, Belgium) for 3 min and blocked for 30 min with PBS containing 3% BSA. 

Figure 39: Experimental layouts of neuron cultures exposed to simulated space conditions.  

A) Experimental layout of simulated low gravity coupled with X-ray exposure. Ten day neurons were exposed to ground 

conditions or RPM after low or high doses of X-irradiation. B) Experimental layout of simulated space condition 

exposure. Ten day neurons were exposed to neutron irradiation or concomitantly to RPM and neutrons for 5 days at a 

dose rate of 2 or 20 mSv/day.  

A 

B 
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Fluorescent staining was performed by exposing the samples to mouse monoclonal anti-β-tubulin 

3 (cat n° T5076-200UL, Sigma-Aldrich, Belgium), diluted 1:200 in PBS (Sigma, Belgium), at 

4°C overnight. After washing in PBS, a second layer of fluorescein isothiocyanate (FITC)-

conjugated anti-Mouse IgG (cat n° F2012, Sigma-Aldrich) antibody, diluted 1:200 in PBS, was 

applied for 90 min, at 37°C in the dark. Nuclei were then stained with Hoechst (1:400 in PBS, 

cat n° B2883, Sigma-Aldrich) for 10 min. Wells were then rinsed three times in PBS and twice 

in H2O. 

2.6. Image acquisition and neuronal network analysis. 

Twenty-five mosaic regions of 2 by 2 images with five focus positions were acquired with 

a Nikon Eclipse Ti (automated inverted wide-field epifluorescence microscope) equipped with a 

40x magnification (40x / 0.75) dry objective and a Nikon DS-Qi1Mc camera controlled by NIS-

Elements software. Post-acquisition, images were compressed in a 2D in focus image by the 

Extended Depth of Focus (EDF) NIS-Elements module.   

The neuronal network image processing analyses were performed using the 

MorphoNeuroNet, a home-made tool for ImageJ (Rasband, W.S., N.I.H, USA, 

http://rsb.info.nih.gov/ij/) (Pani et al., unpublished data, chapter IV). The high performance of 

this new tool comes from an appropriate soma segmentation originating from nuclei and from an 

elegant multi-tier segmentation after image enhancing and edge detection, segmenting even the 

thinner neurites. Thereafter, morphological analysis could be applied to determine total neuron 

area, total neurite area and length and soma counting. All the obtained data were referred to a 

single mosaic image to determine the neuronal network area, neurite network area and length per 

images that were afterwards normalized to single neuron, allowing to finally obtain an average of 

morphological values per single neuron. 
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Each experiment was performed in triplicates. Difference from controls was determined by 

paired t-test or two-way ANOVA (Graph Pad Software Inc., San Diego, USA) and a p value 

<0.05 was considered statistically significant. 

2.7. Apoptosis 

Apoptosis was estimated by Annexin V (Ann V)- propidium iodide (PI) assay on adherent 

neurons using the Ann V-FITC apoptosis detection kit II (cat n° BMS500FI/300CE, eBioscience, 

Belgium) with additional fluorescence staining of nuclei by Hoechst dye. Ann V-FITC was used 

to quantitatively estimate the percentage of dead cells in the neuron cultures. The AnnV-FITC
-

/PI
-
/Hoechst

+
 (Ann V

-
-PI

-
) population was considered as normal healthy cells, while Ann V-

FITC
+
/PI

-
/Hoechst

+
 (Ann V

+
-PI

-
) and Ann V-FITC

+
/PI

+
/Hoechst

+
 (AnnV

+
-PI

+
) cells were taken 

as an estimation of early apoptosis or late apoptosis/necrosis. Image processing analysis is 

described in chapter V (Fig. 31). Primary neuron cultures are not 100% pure cultures, since a 

small number of non-neuron cells (negative to β-tub 3) with small nuclei and condensed 

chromatin were observed after nuclei and neuron marker staining. This type of cells were 

positive to PI and negative to Ann V staining and were not taken into account in the viability 

estimation due to the high error in the evaluation of late apoptosis/necrosis staining that they can 

induce.  

For statistical analysis, 25 images were acquired with a 20x objective and 500±150 cells 

per condition were taken into account. Ann V-PI negative cells as well as the specific Ann V and 

AnnV-PI positive cells were counted and the percentages of Ann V and AnnV-PI positive 

neurons and total cell numbers were then calculated. To estimate the relative level of Ann V and 

AnnV-PI positive neurons exposed to simulated low gravity, the percentage of positive neurons 

in cultures exposed to the RPM were divided by the percentages obtained in control cultures.  

Furthermore, the same datasets of nucleus images were used for determining cell death. 

Fragmentation of nuclei into many small bodies with condensed chromatin is a characteristic of 
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apoptotic cells [67, 282, 283]; therefore, fragmented nuclei were counted and the respective 

percentage over the total number of nuclei was estimated. Nuclear fragmentation was defined by 

high fluorescence intensity (>20% of the nuclear pixels are saturated) and by the presence of two 

or more distinct nuclear lobes within a single nucleus. All three replicate conditions were 

compared using the paired t-test and a p-value <0.05 was considered significant. 
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 Results 3.

To evaluate the effects of simulated space conditions on well-connected mature neurons, 

10 day cultures were exposed to simulated microgravity during chronic or after acute ionizing 

radiation. Immunostaining of β-tubulin 3 was used to investigate neurite network density and 

well-connected mature neuron morphology whereas AnnV- PI staining and nuclei fragmentation 

were assessed to determine the apoptotic cell rate. Additionally, neurite network area and length 

were monitored to observe the cumulative effects due to simulated space conditions and the 

induced apoptosis on the neuronal networks whereas the neuronal morphology was used to 

observe the effects on single neurons. 

3.1. Simulated microgravity enhances the effects of acute radiation on well-connected 

neurons 

Analysis of neurite network area and length in cultures exposed to 0.1 and 1 Sv of X-rays 

showed a dose-dependent reduction 24 h after irradiation. Furthermore, neuronal networks 

exposed for 2 hours to simulated microgravity after irradiation were shorter and less dense than 

the non-irradiated networks exposed to the RPM and the respective irradiated networks kept in 

ground conditions. This difference was higher in samples irradiated with high doses after 24 h of 

RPM exposure, suggesting an enhanced negative effect of combined conditions on total area and 

total length of the neurite network (Fig 40 A-B).   
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Figure 40: Effects of simulated microgravity after acute X-irradiation on well-connected mature neurons. 

A) Average of neurite area per image. B) Average of neurite length per image. C) Average of neuron area (soma - 

neurites) per neuron. D) Average of neurite area per neuron. E) Average of neurite length per neuron. GC= Ground 

Conditions; RPM=Random Positioning Machine. Paired t-test was performed and P<0.05 were considered 

significant. Lines above the graphs represent significant difference between conditions or time points, error bars 

represent the SD.(page174) 
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Morphological analysis on 10 day cultures revealed that well-connected mature neurons 

exposed to low or high doses of X-rays decreased in size within the first 2 h after irradiation 

instead of growing like in the control conditions. Indeed, the areas of neurons and neurites were 

smaller than the non-irradiated neurons cultured in ground conditions after X-irradiation (Fig. 40 

C-D). Additionally, neurite length was shorter than the controls only 24 h after exposure (Fig. 40 

E). Concomitantly, an increase of neuron death was observed 24 h after X-ray exposure by 

quantification of fragmented nuclei with condensed chromatin (Fig. 41 A).  

As observed in a previous study (Pani et al., chapter V), simulated low gravity affected 

neuron morphology inducing a decrease of neuron area, as well as neurite length and area within 

the first hours (Fig 40 C-E). Well-connected mature neurons cultured in simulated low gravity 

for 2 hours after X-irradiation were smaller than the non-irradiated controls. Similar results were 

obtained with analysis on area and length of neurites. Interestingly, simulated microgravity 

enhanced the effects of both radiation doses within 2 h after irradiation; indeed, irradiated 

neurons cultured on the RPM had reduced neurite length compared to irradiated neurons cultured 

in ground conditions. Furthermore, a synergistic effect was also observed in cell death events 24 

h after low doses of ionizing radiation exposure and enhanced after high doses (Fig 41 A).  

Figure 41: Fragmented nuclei due to radiation and/or simulated microgravity.  

A) Percentage of fragmented nuclei with 2 or more distinct nuclear lobes within a single nucleus in neurons 

cultured in simulated microgravity after x-irradiation. Paired t-test was performed and P<0.05 were considered 

significant. GC= Ground Conditions; RPM=Random Positioning Machine. Lines above the graphs represent 

significant differences between conditions or time points, error bars represent the SD. B 1) Morphology of normal 

nuclei and (B 2-3) fragmentation of nucleus into many small bodies with condensed chromatin are characteristics 

of apoptotic nuclei. 
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3.2. Chronic irradiation and simulated low gravity affect neuron morphology 

To better simulate conditions as they occur during space flights aboard the ISS, we 

exposed 10 day neuron cultures to simulated microgravity under continuous exposure to a source 

of Californium-252 emitting low doses of neutrons and γ-ray irradiation. We found that area and 

length of neurite networks decreased after exposure to low dose chronic radiations or RPM 

alone. Additionally, a synergistic effect was observed after exposure to combined conditions 

(Fig. 42 B,C). Furthermore, we observed that both neurite length and soma size were dose-

dependently decreased with radiation alone. Also, simulated microgravity reduced the neurite 

length and soma size to the same level as was observed with the highest radiation dose (Fig. 42 

D, E). On the contrary, neurons exposed to 2 mSv a day for 5 days (total dose 10 mSv) did not 

show any morphological differences compared to non-irradiated controls. Interestingly, the 

combination of simulated microgravity and chronic low dose rate neutron irradiation seemed to 

have an enhanced effect on neurite length and soma size reduction (Fig. 42 D-F). As previously 

observed, exposure of neuronal cultures to simulated microgravity, alone or in combination with 

ionizing radiation, increased the roundness of the somas. However, irradiation alone did not have 

any effect on the shape of the somas (Fig. 42 G, H).  
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Figure 42: Effects of simulated space conditions on well-connected mature neurons after 5 days of exposure.  

A) Fluorescence images of neuronal cultures exposed to simulated space conditions. B) Average of neurite 

area per image. C) Average of neurite length per image. D) Average of neuron area (soma - neurites) per 

neuron. E) Average of neurite area per neuron. F) Average of neurite length per neuron. G) Average of soma 

areas. H) Soma shape expressed in average of roundness. GC = Ground Conditions; RPM = Random 

Positioning Machine; 10 mSv as a total dose in 5 days of exposure to neutron source with 2 mSv/day; 100 mSv 

as a total dose in 5 days of exposure with 20 mSv/day; 10 mSv + RPM is the combination of the two 

conditions. Paired t-test was performed and P<0.05 were considered significant. Statistical differences are 

indicated with 1 = X vs. GC; 2 = X vs. RPM; 3 X vs. 10 mSv; 4 = X vs. 100 mSv; 5 = X vs. 10 mSv + RPM. X 

means compared to any conditions. 
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Analysis of cell death using the AnnV-PI staining assay revealed that the number of total 

AnnV-PI positive neurons (total early + late apoptotic cells) was increased by 2-fold after 5 days 

of exposure to simulated microgravity alone (Fig. 43 A). A similar increase in total AnnV-PI 

positive neurons was observed in cultures exposed to chronic high dose rate neutron irradiation 

(20 mSv/day) or to the combination of chronic low dose rate irradiation (2 mSv/day) and 

simulated microgravity, whereas chronic low dose rate irradiation alone induced only a small, 

but significant increase in the number of total AnnV-PI positive neurons, indicating a dose-

dependent effect (Fig. 43 A). Interestingly, as was observed on the morphological changes, the 

combined treatment of simulated microgravity and chronic irradiation had an enhanced effect on 

the number of AnnV-PI positive cells (late apoptotic/necrotic) (Fig. 43 A). This was in 

accordance with our analysis of fragmented nuclei showing a significant increase in the 

percentage of apoptotic nuclei with simulated microgravity and chronic low dose irradiation 

alone, an effect which was further increased when cells were exposed to the combined treatment 

(Fig. 43 B). Unlike the AnnV-PI staining, the analysis of apoptotic nuclei showed the strongest 

increase after treatment of neuronal cultures with chronic high dose irradiation (Fig. 43 B).  
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PI+=Propidium iodide positive cells. Paired t-test was performed and P<0.05 were considered significant. Statistical 
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 Discussion 4.

In this study, we evaluated the effects of simulated space conditions, exposure to acute or 

chronic ionizing radiation combined with simulated microgravity, on well-connected mature 

neuron cultures. In order to estimate the combined effect of both space conditions on well-

connected mature neurons, neuronal network integrity was evaluated at different levels; neurite 

network density and cell morphology as well as cell death events in neurons cultured on the 

RPM after acute or during chronic ionizing radiation exposure.  

Aboard the ISS, astronauts are exposed to around 0.2 mSv/day of an heterogeneous pool of 

radiations [77]. The impact of cosmic radiations with the spacecraft material produces secondary 

particles with lower energy and neutrons are one of the most produced particles [78, 86, 330]. In 

order to reproduce simulated space conditions aboard the ISS, Californium-252, a source of 

neutrons and γ-rays (2%), was used to obtain chronic low doses of ionizing radiation. 

Additionally, X-rays were used to generate acute low or high doses. We observed an altered 

neuronal network due to chronic low doses or acute doses of ionizing radiations which affected 

the neurite outgrowth cone motility and induced apoptosis. Furthermore, our data on acutely or 

chronically irradiated cultures showed dose dependent effects on neurite network density, neuron 

morphology and cell death events in well-connected primary mature neurons. These results are 

in agreement with studies on the effect of radiations on in vitro neuron and fibroblast cultures 

[299, 337] or in in vivo [339] investigations where ionizing radiation dose dependent effects 

were observed. Furthermore, low dose radiations with high or low dose rate affected neurite 

motility and soma size after exposure. Our data on the effects of radiations on cell motility 

activities are in agreement with several investigations on cancer radiation therapies which 

reported that ionizing radiation can affect cell adhesion to extracellular matrix and cell migration 

capability [141]. Furthermore, changes in the distribution as well expression of cytoskeletal 

proteins were observed in cells exposed to ionizing radiation [142-144]. Additionally, our data 
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showed that chronic low doses of ionizing radiation (2 mSv/day), equivalent to 10 time ISS dose, 

do not induce relevant effects on neurites in primary neuron cultures exposed for 5 days to 

ionizing radiation. Interestingly, the observed reduction of neurite network density after chronic 

irradiation might be mainly due to the increase of radiation-induced apoptosis instead of neurite 

morphological changes. 

In our previous studies, we observed that well-connected mature neurons exposed for 10 

days to simulated microgravity can adapt to the new gravity after initial morphological changes 

which were already observed within the first hour on RPM (chapter V). Within this study, we 

confirmed that the neurite network and neuron morphology changed within the first 24 hours of 

exposure to simulated microgravity. Furthermore, we observed that over 5 days of exposure to 

simulated microgravity, neuron adaptation to the new gravity condition has not yet occurred. 

These results are in line with other studies on cytoskeleton in microgravity indicating 

microfilament and microtubule changes due to the altered gravity [38, 51, 188] which might be 

linked to cell surface reduction [59]. The observed neuronal network and neuron morphology 

changes in well-connected mature neurons exposed to microgravity might also involve changes 

of NGF and BDNF which appeared reduced in cortex and hippocampus of wild type mice 

exposed to ISS environment for 91 days [199].  

Space life investigators proposed three different theories on the effects of combined space 

conditions on cells or organisms: additive [145], antithetical [337] or non-correlative effects. In 

this study, we observed mainly an enhanced effect of low doses of ionizing radiation induced by 

simulated microgravity on neurite network density and length, areas of neurons, neurites and 

somas in well-connected neurons cultured on the RPM. Furthermore, we observed that the 

effects of the combined treatment with simulated space conditions on neurite motility and shape 

are bigger than the respective effects of single treatments, suggesting a synergistic effect of the 

combination of simulated microgravity with chronic ionizing radiation. It was also reported that 

radiation and microgravity can both induce apoptosis, whereas, the combination of the two 
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stressors on mitotic cells resulted in a decrease in radiation-induced apoptosis [146, 337] and cell 

cycle arrest in G2 phase [147, 337] upon low gravity exposure. Since post-mitotic neurons may 

enter in G1 phase, without going to the S phase, to repair the damaged DNA [340], they might 

not follow the response described for mitotic cells. Indeed, our results on cell death 

investigations showed a higher rate of apoptotic neurons after exposure to combined simulated 

space conditions than the rate observed after exposure to the two single conditions, RPM and 

ionizing radiation. The synergistic effects on the induction of apoptosis as observed in this study 

is in agreement with another investigation on the effect of the same simulated space conditions 

on the efficiency of DNA repair in post-mitotic neurons (Pani et al., chapter VII) or in peripheral 

blood lymphocytes (PBLs) exposed to simulated microgravity after γ-irradiation [149]. These 

results suggest that processes involved in neuronal network changes, observed in this study, and 

in non-well repaired DNA damage (Pani et al., chapter VII) in well-connected neurons cultured 

in simulated microgravity after or during exposure to radiations might contribute to induce 

apoptosis.  

In conclusion, we showed that simulated low gravity affects the neuronal network integrity 

more than low dose radiation. Nevertheless, enhanced or synergetic effects were observed in 

well-connected mature neurons cultured in simulated low gravity after acute or during chronic 

ionizing radiations. Therefore, obtained results from our investigations on the effects of 

combined space conditions on neuronal network plasticity and neurite motility might help to 

better estimate the risks of astronauts during long-term space travel taking into account both 

conditions instead one per time. 
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Modified from “Pani G., De Vos. W., Samari N., Quintens Q, de Saint-Georges L., 

Baatout S., van Oostveldt P., Benotmane. M.A. Simulated microgravity reduces the DNA repair 

efficiency in well-connected mature neurons after exposure to ionizing radiation. This article is 

in final preparation to be submitted to International Journal of Molecular Medicine. 
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Simulated microgravity reduces the DNA repair efficiency in 

well-connected mature neurons after exposure to ionizing radiation. 

 

Abstract 

Cosmic radiations and microgravity are the two main stressors to which crew members are 

exposed during space flights. The cellular response to ionizing radiation (IR) is highly dependent 

on environmental conditions (temperature, pH, vibration, etc.), implying a high interest for 

studying the correlated effect of co-exposures. This is important in the context of space research 

where numerous potential confounding factors can interfere, such as the reduced gravity. Indeed, 

various studies confer an important role for microgravity as a stress factor contributing in 

altering cell physiology and subcellular structure. This study aims at assessing the effect of 

simulated microgravity on the DNA repair efficiency in well-connected primary mature neurons 

after exposure to acute or chronic doses of IR. To this end, neuronal cell cultures were exposed 

to either X-rays (acute) or Californium-252 (chronic) radiation, whilst mounted onto a random 

positioning machine (RPM). High content analysis of γ-H2AX foci revealed an increased 

number of double stranded break foci in neurons cultured on RPM after acute or during chronic 

exposure to IR compared to ground controls (1g). Monitoring of the DNA repair efficiency over 

the time based on the kinetics of γ-H2AX foci reduction, acquired data showed a gravity and IR 

dose dependency. In addition, a higher rate of apoptosis was observed in cells under RPM six 

hours after exposure to IR. In conclusion, results suggest that simulated microgravity has a 

negative effect on IR-induced DNA repair and cell survival in neuronal cells.  

 

Keywords: Mature neurons, microgravity, acute radiation, chronic radiation, low doses, 

high doses, γ-H2AX foci, DNA repair dynamics.  
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 Introduction 1.

One of the dominant risks in space missions, in particular during interplanetary travels, is 

the exposure of the crew members to cosmic radiations [341]. Cosmic radiations are an 

heterogeneous pool of ionizing radiations with a wide range of charges and energies which are 

produced mainly by galactic cosmic rays and solar particle events [78]. Approximately 91% of 

the particles composing cosmic radiations are protons, 8% α-particles and 1% are particles 

heavier than helium as high-Z and high-energy (HZE) particles [329]. The impact of primary 

particles with spacecraft materials generate secondary particles as knockout protons, neutrons 

and α-particles, as well as recoil heavy nuclei [78]. The major concern is that ionizing radiation 

induces DNA damage, which could damage tissues and increase cancer risk [342]. Upon 

infliction of DNA damage, the cell initiates a multifaceted response of gene induction and 

protein mobilization that leads to cell cycle arrest and DNA repair. Successful repair will allow 

the cell to resume its normal metabolism and continue with cell cycle progression. On the 

contrary, misrepair may induce genomic instability or mutations that can lead to tumorigenesis 

while irreparable damage may induce cell death [343]. Among all possible DNA lesions, the 

double strand break (DSB) is the most hazardous, being the most difficult to repair [332, 333]. 

One of the early steps following DSB formation is the rapid phosphorylation of the serine 

136/139 residue of histone H2AX by members of the phosphatidylinositol-3-OH kinase 

(PI(3)K)-like family. Large stretches of phosphorylated H2AX surrounding the break region 

form ionizing radiation-induced foci (IRIF) or γ-H2AX foci that promote DNA repair by 

concentrating dedicated repair proteins. The number of γ-H2AX foci decreases with time after 

irradiation as DSBs are repaired [344]. 

When considering tissue damage that may arise from exposure to IR, the nervous system 

appears particularly vulnerable. Epidemiological data from Nagasaki and Hiroshima atomic 

bombings and from the Chernobyl accident reported effects on the brain due to exposure to 
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irradiations; therefore, it was suggested that neurodegenerative diseases may occur after ionising 

radiation exposure [345]. At the cellular level post-mitotic neurons were shown to activate the 

cell cycle to repair induced DNA damage [340, 346]. Furthermore, although DNA replication is 

lethal for post-mitotic neurons, they activate the G0 to G1 transition to repair induced DNA 

damage but do not enter S phase [340]. Since neurons are terminally differentiated cell types, 

they developed strategies to survive longer than other cells. Indeed, analysis on neocortex of 1, 7, 

14 and 30 day-old mice X-irradiated with 8 Gy reported that IR-induced apoptosis of neurons 

decreases with ageing and therefore with the neuron maturation stage [347]. Furthermore, in 

vitro investigation on maturing neurons exposed to X-irradiation demonstrated an increase of 

DSBs and apoptosis 24 h after low and moderate dose exposures [299]. At the organismal level, 

in vivo experiments demonstrated memory impairment 30 days after irradiation in adult mice 

exposed to 1.5 Gy high-LET 
56

Fe beams [207]. In the same experiments, an increase of cell 

death in Purkinje cells and an increase of DNA fragmentation in cerebellum tissue was reported 

in irradiated mice [207]. Studies on Alzheimer‟s disease in mice exposed to 100 cGy 
56

Fe 

radiation showed an accumulation of Aβ plaques in hippocampus and cortex [336]. Furthermore, 

encephalic oxidative stress was observed in mice irradiated with heavy particles or X-rays [207-

209].  

During spaceflight, IR is not the only factor to take into account for estimating the risks. In 

fact, many factors may complicate the risk estimation and microgravity is one of the majors. 

Spaceflight studies and simulation experiments on Earth have shown that (simulated) 

microgravity affects cellular motility and cytoskeletal protein distribution [59], reduces cell 

proliferation and slows down cell cycle [35, 328], as well as increases apoptosis [68, 308] and 

oxidative stress [331] modulating activities of protein pathways. Recent in vivo experiments on 

mice exposed to International Space Station (ISS) environment for 91 days reported a reduced 

expression of neuron growth factor in brain tissues as in cortex and hippocampus in spaceflight 

wild-type animals compared to the controls [199]. Furthermore, proteins involved in long-term 
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potentiation or in neurotransmitter release were up-regulated in the whole brain of mice exposed 

to ISS environment [199] and biomarkers of oxidative stress in hypothalamus of mice were 

increased under simulated microgravity [348]. 

While several studies have been performed on the impact of IR on the central nervous 

system or neuron cultures, none of them included gravity as a possible influencing factor. With 

this study, we investigated the effects of combined conditions on in vitro mature and well-

connected neurons with a particular emphasis on the DNA damage/repair dynamics in simulated 

microgravity after low or high exposure to acute X-irradiation or during exposure to low chronic 

neutron and γ-irradiation. 
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 Materials and methods 2.

2.1. Primary cell cultures and mature neuronal network model 

In this study, primary neuron cultures were initiated from the brain cortex of 17 day-old 

mouse fetuses. All animal experiments were carried out in strict accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. The protocol was approved by the SCK•CEN (Belgian Nuclear Research 

Centre) and VITO (Flemish Institute for Technological Research, Geel, Belgium) joint Ethical 

Committee on the use of Laboratory Animal Experiments. Pregnant mice were sacrificed by 

cervical dislocation on day 17 after conception. Subsequently, brains from mouse fetuses were 

dissected and cortices were extracted. Neuronal cells were isolated by trypsinization, mechanical 

dissociation of tissue and cell centrifugation after which they were seeded onto poly-D-lysine 

coated 4-well plates (Thermo scientific, Erembodegem - Aalst, Belgium) at a density of 50,000 

cells per cm
2
. Neurons were grown in MEM medium (Gibco, Gent, Belgium) supplemented with 

10% fetal bovine serum (Gibco) and (0.1%) penicillin-streptomycin (Gibco) and incubated for 1 

h at 37 °C and 5% CO2 to remove non-neuronal small cells and to allow cell adherence. 

Thereafter, the medium was exchanged with Neurobasal medium (Gibco) supplemented with 2% 

B27 supplement (Gibco), 20 mM HEPES (Gibco) and 0.2% penicillin-streptomycin (Gibco); this 

medium allowed selective growth of neuronal cells. In order to obtain a dense neuronal network 

as an in vitro model, neurons were cultured for 10 days at 37 °C, 95% of humidity and 5% CO2. 

After 5 days of culture, two thirds of medium was replaced by fresh medium every 2 days.  

2.2. In vitro experimental layout 

To study the morphological effects of simulated microgravity on dense neuronal networks, 

at day 9 of neuron culture, three replicates were prepared for mounting on a desktop Random 

Positioning Machine (RPM, Dutch Space). To this end, 4-well plates were fully filled with 
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complete neurobasal medium, sealed with first layer of sterile parafilm and, if required, bubbles 

were removed with a syringe and a second layer of parafilm applied.  

2.3. RPM exposure after acute X-irradiations 

In the acute exposure experiments, 10 day-neuron cultures were first irradiated with X-rays 

after which they were exposed to simulated microgravity. To this end, X-irradiation was 

performed at room temperature with 250 kV-15 mA, 1 mm Cu-filtered X-ray machine (Pentak 

HF420), at the dose rate of 5 mGy/sec. The Farmer 2570-EMI dosemeter was under the control 

of the Intercomparison Committee for Dosimetry. Cells were either exposed to 0.1 Sv X-rays or 

exposed to 1 Sv X-ray; non-exposed cells underwent identical manipulations. Immediately after 

radiation, half of the samples were transferred on the RPM and the other half was kept in ground 

conditions (GC) as control, both at 37° C into the incubator. After 30 min, 2 h and 24 h of 

exposure to simulated microgravity or ground conditions, one plate per condition was fixed with 

4% paraformaldehyde for subsequent γ-H2AX staining (Fig. 44). 

2.4. RPM exposure during neutron irradiation  

In the chronic exposure experiments, cell cultures were irradiated with neutrons during 

RPM treatment. At day 10 plates were divided in 3 groups. The first group was the control, the 

second group was exposed for 65 h to neutrons in ground conditions and the third group was 

exposed for 65 h concomitantly to neutrons and RPM. After 65 h of exposure to simulated space 

conditions (radiation or combined) or ground conditions all plates were fixed with 4% 

paraformaldehyde (Fig. 44) and stained with the DSB marker γ-H2AX. In our laboratories space 

radiations was simulated using Californium-252 as source of neutrons and 1% of secondary γ-

rays obtaining a final dose rate of 20 mSv/day. To better simulate space conditions the RPM was 

coupled with chronic neutron irradiation.  
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2.5. Immunofluorescence staining and automated γ-H2AX analysis. 

DNA damage was visualized in fixed neurons by means of indirect immunofluorescent 

staining of the DSB marker γ-H2AX. Briefly, after fixation with 4% paraformaldehyde (PFA) 

for 15 min at 4°C, the bottom of the wells were carefully removed and the following 

immunostaining protocol was applied: cells were washed with phosphate buffered saline (PBS), 

permeabilized with PBS containing 0.25% Triton X-100 (Sigma-Aldrich, Bornem, Belgium) for 

3 min and blocked for 30 min with 3% BSA. Next, samples were incubated with a primary 

mouse monoclonal antibody against the phosphorylated form of the histone H2AX (γ-H2AX) 

(Abcam, Cambridge, UK) diluted 1:300 in 3% BSA in PBS and incubated at 4 °C overnight. 

After washing three times in PBS, a secondary antibody FITC labeled anti-mouse (F2012, 

Sigma-Aldrich) diluted 1:300 in 3% BSA was applied for 60 min in the dark at 37 °C. Nuclei 

were counterstained with Hoechst (B2883, Sigma-Aldrich) 1:400 in PBS and incubated for 10 

min. Wells were rinsed in PBS and finally in milliQ water; thereafter, they were mounted on 

large coverslips. 

Figure 44: Experimental layouts of neuron cultures expose to simulated space conditions.  

A) Acute exposure experiment; cell cultures were first irradiated with X-rays after which they were exposed to 

simulated microgravity. B) In the chronic exposure experiments, cell cultures were irradiated with neutrons during 

RPM treatment. 
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Images were acquired with an automated inverted wide field epifluorescence microscope 

(Nikon Eclipse Ti) equipped with a metal halide lamp, 40X Plan Fluor oil objective (NA 1.3) 

and Nikon DS-Qi1Mc camera (Nikon Instruments, Paris, France). Image pixel size was 0.16 µm.
 

For high content analysis, a mosaic of 25 images was acquired at 13 Z-positions per sample. γ-

H2AX foci were quantified using a dedicated macro-set written for open-source ImageJ, which 

allows fully automated measurement of nuclei and γ-H2AX spot parameters (size, shape, 

intensity, number…) [117]. Estimation of number of positive cells to γ-H2AX is important to 

determine the level of damage in the whole culture, therefore, neuron nuclei were considered 

positive when cells had at least 3 foci per nucleus due to the presence of DSBs in non-irradiated 

samples.  

The same dataset of nucleus images was used for determining cell death. Fragmentation of 

nucleus into many small bodies with chromatin condensation is a characteristic of apoptotic cells 

[67, 282, 283]; therefore, fragmented nuclei were counted and their respective percentages on the 

total nuclei was estimated. Nuclear fragmentation was defined by high fluorescence intensity 

(>20% of the nuclear pixels are saturated) and by the presence of two or more distinct nuclear 

lobes within a single nucleus.  

Each experiment was performed in triplicates and 150±50 cells per condition were taken 

into account. A significant difference from the controls was determined by paired t-test or one-

way ANOVA (Graph Pad Software Inc., San Diego, USA) and a p-value <0.05 was considered 

significant. In non-linear correlation analysis for reduction of DSBs per nucleus and percentage 

of γ-H2AX positive neurons, the equation “one phase exponential decay” “Y=Span*exp(-K*X)+ 

Plateau” suggested by Graph Pad was used for the best fit of the curves.  
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Figure 45: DNA damage/repair dynamics after low and high acute doses of X-rays.  

A) Immunofluorescence of γ-H2AX foci in neurons cultured for 0.5, 2, 6, 24 h in both gravity conditions after 

low or high dose x-ray exposure. B) Number of γ-H2AX foci in neurons cultured in ground conditions (GC) or 

on the Random Positioning Machine (RPM) after low or high dose radiation exposure. Paired t-test was 

performed and P<0.05 were considered significant; numbers indicate difference between time points with equal 

gravity condition (GC or RPM): 1 - irradiated vs. respective control; 2 – 0.1 Sv vs. 1 Sv; 3 – X vs. 0.1 Sv 2 h; 4 

– X vs. 1 Sv 2h; 5 – X vs. 0.1 Sv 6h; 6 – X vs. Sv 6h; 7 – X vs. 0.1 Sv 24h; 8 – X vs. 1 Sv 24h; letters indicate 

differences between gravity condition irradiated with equal dose and time points: A – 0.1 Sv RPM vs. 0.1 Sv 

GC; B – 1 Sv RPM vs. 1 Sv GC. C-D) DNA repair dynamics in both gravity conditions after low or high dose 

exposure. E) Linear regression analysis between 0.5 and 2 hours in neuron cultured in both gravity conditions 

after low (slope 0.1 Sv-GC=-2.53 ± 0.067; slope 0.1 Sv-RPM=-3.22 ± 0.10 P<0.001) and high dose radiation 

exposures (slope 1 Sv-GC=-5.140 ± 0.09092; slope 1 Sv-RPM=-3.781 ± 0.2368; P<0.001). G) Linear 

regression analysis between 2 and 6 hours in neurons cultured in both gravity conditions after low (slope 0.1 

Sv-GC=-0.15 ± 0.03; slope 0.1 Sv-RPM=-0.17 ± 0.06) and high dose radiation exposures (slope 1 Sv-GC=-

0.3079 ± 0.05799; slope 0.1 Sv-RPM=-0.4101 ± 0.08975; P<0.001). Error bars represent SD. 
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 Results 3.

3.1. DNA damage/repair kinetics in simulated microgravity after acute radiation 

The DNA damage/repair dynamics in well-connected mature neurons were monitored in 

control and simulated microgravity conditions by immunofluorescence staining of γ-H2AX foci 

after low and high doses of X-irradiation. Automated analysis of foci in mature neurons cultured 

in both ground and simulated microgravity conditions for 30 minutes after irradiation confirmed 

dose-dependent increase of DSBs (Fig. 45 B). Indeed, a statistically significant increase of foci 

number was observed between 0.1 and 1 Sv irradiated cells and respectively in both compared to 

non-irradiated controls (Fig. 45 B). Interestingly, neurons cultured for 30 minutes on the RPM 

after irradiation showed an increased average of γ-H2AX foci per nucleus compared to the 

irradiated samples cultured in ground conditions. Indeed, the mean number of foci per nucleus 

went from 7.5 (GC) to 10 (RPM) after exposure to 0.1 Sv and from 12.6 (GC) to 16.2 (RPM) 

after 1 Sv. A statistically significant (P-value <0.05) decrease of foci number was observed at 2 h 

after irradiation with respect to the 30 min time point, suggesting initial repair of DSBs. Twenty-

four hours after exposure to both X-ray doses, no significant difference was observed from the 

control conditions, suggesting complete repair (Fig. 45 B). While neurons exposed for 24 h to 

the RPM after irradiation exhibited an incomplete recovery compared to both controls, ground 

conditions and RPM (Fig 45 B). Notably, there were no statistical differences between non-

irradiated neurons cultured in ground conditions or simulated microgravity (Fig 45 B). Analysis 

on DNA repair efficiency showed not only a dose and time-dependent kinetics (Fig 45 C-D) but 

also a clear involvement of the gravity component in the repair kinetics. Within the first 2 hours 

the DNA repair kinetics in microgravity after high dose exposure was slower than the controls; 

on the contrary, it was slightly faster after low dose irradiation (Fig 45 E). In the following 4 

hours, DNA repair efficiency in simulated microgravity was faster than in control conditions 
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after high dose exposure, while low dose irradiated culture did not show any difference (Fig 45 

F). Furthermore, comparing the percentage of γ-H2AX positive neurons exposed to low or high 

doses, the mean value after irradiation was significantly higher in simulated microgravity than in 

ground conditions throughout the whole experiments (P<0.05). Non-linear correlation analysis 

showed that there were similar dissolution kinetics in both control and simulated microgravity 

conditions after low dose exposure (Fig 46 A), whereas the decrease of γ-H2AX positive neurons 

cultured in simulated microgravity cells after high dose exposure was significantly slower than 

the respective controls (Fig 46 B).  

We then estimated the apoptotic fractions (Fig. 47) by determining the percentage of cells 

with highly condensed chromatin in fractionated nuclei [283]. No difference in apoptotic nuclei 

was observed between control conditions and simulated microgravity (3±0.5) at 30 minutes and 

2 hours. On the contrary, statistical increase was observed in 6 and 24 h RPM exposed cultures. 

At six and twenty-four hours after X-ray exposure in ground control conditions (6-24 h GC), the 

fraction of apoptotic cells in high dose irradiated neurons was higher than in the non-irradiated 

cells. The percentage of apoptotic cells in cultures exposed to RPM after irradiation with the 

high X-ray dose (1 Sv-6/24 h RPM) was higher than the respective controls (0 Sv-6/24 h RPM) 

and the low dose irradiated (0.1 Sv-6/24 h RPM) samples at 6 and 24 h after irradiation. The 

Figure 46: Non-linear correlation analysis of the percentage of γ-H2AX positive neurons cultured in both gravity 

conditions after low and high doses.  

Equation: one phase exponential decay “Y=Span*exp(-K*X)+ Plateau”. Bars represent SD. 
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percentage of fractionated nuclei in cultures exposed to RPM after high dose exposure was also 

higher than the earlier time point exposed to RPM (1 Sv-6 h RPM) and the ground control high 

dose irradiated (1 Sv-24 h GC) cultures. Furthermore, neuron cultures exposed to low radiation 

followed by simulated microgravity showed an increase when compared to the respective 

irradiated cells in ground conditions (0.1 Sv RPM vs. 0.1 Sv GC). Additionally, statistical 

increase was observed between neurons cultured for 24 h on RPM after low dose X-irradiation 

and the respective controls (0 Sv-24 h RPM) as well as the previous time point (0.1 Sv-6 h RPM) 

(Fig 47).  

3.2.  DNA damage increases in simulated microgravity during chronic irradiation. 

Neuron cultures were also exposed to chronic low doses using a natural source of neutrons 

and γ-rays (1%) while cultured in simulated microgravity (RPM) as a simulation for space 

conditions. Exposure to chronic radiations (total dose of 55 mSv during 65 h) in ground 

conditions caused 2-fold more DNA double-strand breaks and the fraction of DSB marker 

positive neurons exposed to neutrons in ground conditions was 2.5-fold more than the controls 

(Fig 48 A, B). Furthermore, the mean number of γ-H2AX foci in neurons exposed to simulated 

A 

Figure 47: Altered nuclei due to radiation and/or simulated microgravity.  

Paired t-test was performed and differences with a P-value < 0.05 were considered significant and showed as lines 

between different samples. Data ±SD are showed in the graph B) Representative images of nuclear morphology of 

normal (1) and apoptotic (2-3) nuclei. Apoptotic nuclei can be further categorized by the absence (2) or presence (3,4) 

of fragmentation. Bars represent SD. 
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space conditions was statistically higher than in control conditions as well as in the samples 

exposed only to radiation (Fig 48 A). The fraction of positive cells in cultures exposed to 

simulated space conditions was 4.1-fold more than the controls and 1.7 fold more than the 

neurons exposed only to radiation (Fig 48 B). The percentage of fractionated nuclei with highly 

condensed chromatin was 2.4 times than in the controls in cultures exposed to neutrons in 

ground conditions and 4.3 times more in cultures exposed to simulated space conditions (neutron 

IR and RPM) (Fig 48 C). 

  

1-2 

1 

Figure 48: Effects of 65 h of simulated space conditions on DNA repair dynamics in well-connected neurons.  

A) average of γ-H2AX foci per nucleus. B) percentage of γ-H2AX positive cells. C) percentage of altered nuclei. 

Paired t-test was performed and P<0.05 were considered significant. 1 - irradiated vs. respective controls; 2 – 0.1 Sv 

vs. 1 Sv. Bars represent SD. 
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 Discussion 4.

In this study, we tried to illustrate the synergistic effects of the two main stressors present 

in space conditions on established neuronal networks. Namely, cosmic radiations are made of a 

heterogeneous pool of ionizing radiations and microgravity is a continuous state of free fall 

condition during orbital space flight. It is now widely established that ionizing radiation induces 

DNA damage, including DSBs [349]. Generally, cells respond to the DNA damage by activating 

cell cycle checkpoints and DNA repair machinery. Whereas the ideal outcome is full repair, in 

some severe cases, irreparable DNA damage induces apoptosis, or incorrect repair causes 

genome instability [350]. Our previous investigation on maturing neurons exposed to low and 

moderate X-ray doses showed a dose-dependent DSB and dose-dependent cell death [299].  

In this study we investigated the DNA repair efficiency in simulated microgravity after 

high or low acute dose or during chronic low dose exposure to ionizing radiations. In our 

experiments well-connected mature neurons showed an increased average of γ-H2AX foci per 

nucleus 30 minutes after low and high dose X-ray exposure. In both cases, DSBs were repaired 

after 24 h when cultured in ground conditions. Moreover, chronic exposure to low dose radiation 

caused a production of DSBs, generating 3 times more foci than the controls within 65 hours.  

Additionally, we investigated DNA repair efficiency in simulated microgravity which 

exhibited a slower kinetic in the first 2 hours after acute high doses. This is in accordance with 

investigations reported on human PBL showing a slower DNA repair efficiency in simulated 

microgravity after high dose γ-irradiation (5 Gy) [145]. Within the four following hours, the 

repair efficiency in post-mitotic neurons became then faster. On the contrary, neurons cultured 

on the RPM after low dose exposure were faster repairing the DNA damage within the first 2 h 

followed by typical repair efficiency. The minimal DNA damage required to activate the DNA 

repair [351] might explain the higher efficiency in simulated microgravity after acute low doses 

in neuronal cells observed in our study. Since neurons activate the phase G1 of cell cycle to 
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repair DSBs [340] and cell cycle in cycling cells is delayed by microgravity [35, 352], it might 

explain the higher level of IR-induced DNA damage observed in the first 30 minutes of 

simulated microgravity due to hypothesized delay in re-entering into the cell cycle. Additionally, 

the initial higher level of radiation-induced γ-H2AX foci observed in neurons exposed to the 

RPM persists over the whole experiments showing a non-restored genome 24 h after X-

irradiation. The fraction of γ-H2AX positive cells in RPM compared to the ground control 

showed a proportional decrease in low dose irradiated neurons over the time, while in cells 

exposed to high acute doses the decrease is slower in simulated microgravity than in ground 

conditions resulting in two times less repaired DNA in RPM conditions than control conditions. 

Additionally, the increase of apoptotic nuclei in neurons cultured in simulated low gravity after 

acute irradiation suggests a synergistic effect on this process. 

In order to evaluate astronaut risk during space travels, where chronic doses of ionizing 

radiation with high energy (0.2 mSv/day) are received [77], we exposed 10 day well-connected 

mature neuron cultures to 20 mSv/day of neutrons and γ-rays coupled to the RPM for 65 h to 

simulated space conditions. Again, a higher level of DNA damage and cell death was observed 

in RPM cultured cells versus the ground controls suggesting a synergistic effect due to the 

coupling of both space conditions.  

In conclusion, we have shown that simulated microgravity acts synergistically with IR in 

neuronal cell cultures. The decreased DNA repair efficiency in microgravity may induce 

genomic instability in neurons. Therefore, caution is warranted when interpreting ground-based 

studies for estimating risks during space travel. Furthermore, our results might contribute to 

increase the knowledge and help in evaluating, during or after space missions, the risk of 

astronauts [84, 202, 336, 353] who are exposed for long periods to low dose cosmic radiations 

and microgravity. Both space conditions could induce genomic instability and neurodegeneration 

in the CNS that could lead to neurological disorders and thereafter cancer and neurodegenerative 

diseases.
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General discussion 

Thousand years of evolution allowed mankind to adapt to non-extreme Earth environment 

characterized by an atmosphere with oxygen, mean temperatures above 0° C, the presence of a 

gravitational field and very low levels of radiations. Nowadays, mankind has reached a high 

level of technological development which allowed to build spacecrafts and space stations for 

more than half of century. Since the beginning of space missions, several studies in physics 

allowed to define space environment which is characterised by an absence of oxygen, extremely 

low temperatures, reduced gravity and higher levels of natural radiations than on Earth. 

Therefore, researchers developed a wide variety of technological countermeasures for traveling 

in space; nevertheless, mankind is not yet ready to undertake long permanent stays in space due 

to the high level of astronaut health risk since the appropriate shielding and gravitational field 

generators are still under development. Indeed, several medical and biological studies have 

determined changes induced by the space environment inside the body, within the organs as well 

as at the cellular and molecular levels.  

Microgravity and cosmic radiations are two main stress factors to which astronauts are 

exposed during spaceflights. Wide varieties of medical and biological investigations performed 

directly in space or on ground-based systems have reported several changes induced by space 

stressors. For example, muscular atrophy, decreased bone mass, immune system impairment, 

fluid shift, SMS are the main organ and tissue responses to microgravity observed in astronauts. 

In parallel, at the cellular level, cell cycle delay, reduced cell motility, change in cytoskeletal 

protein distribution, oxidative stress, up- or down-regulation of genes and cell death have all 

been reported after microgravity exposure. On the other hand, cosmic radiations can also induce 

effects at the cellular level such as oxidative stress, DNA damage, cell cycle arrest, cell death, 

senescence and cell motility reduction. 
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One of the main questions related to the astronaut health risk during space travel is whether 

the CNS can be damaged from microgravity and cosmic radiations that could induce behavioural 

changes as well as learning and memory impairments. The aim of this thesis was thus to 

investigate the effects of space conditions on neuronal plasticity and connectivity in 

mammalians. In particular, we aimed at estimating the effects induced by microgravity and/or 

ionizing radiation on the neuronal network remodelling by studying cell motility in adherent 

cells and in neurons, determining the influence of microgravity on DNA repair dynamics and 

evaluating the correlation between the effects induced by exposure to single conditions or their 

combination.  

 In vitro model for space condition studies. 1.

In this study, two in vitro models were used in order to investigate the effect of space 

conditions (real vs. simulated) on adherent cells. Since we had the chance to collaborate to one 

spaceflight experiment, we studied the locomotion and cytoskeleton in microgravity conditions 

aboard the International Space Station (ISS). In 2006, we had the opportunity to perform the 

experiment “Motion and InterAct” (MIA) carried out aboard the ISS in the framework of 

the Kubik Bio 1 mission of the European Space Agency. For this investigation, a monocyte cell 

line was chosen for this first flight due to its property to adhere to the substrate and the fact that 

the cell movements are mainly triggered by chemotactic attraction. The objective of this 

“Motion” experiment was to investigate the distribution of the cytoskeleton structures such as F-

actin, β-tubulin and vinculin as well as to analyse the locomotion capability of monocytes on 

colloidal gold substrate used to coat slides. Migrating cells removed the colloid gold, leaving 

tracks and allowing to record cell locomotion [230]. To achieve the aim of this experiment, we 

had to select a certain type of monocytes which already had the innate capability to adhere to the 

surface without any activation process and which showed a large surface allowing the further 

study of the cytoskeletal structure distribution. Therefore, J-111 monocytes were finally selected 
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for this experiment. J-111 is a monocyte/macrophage cell line originating from human acute 

monocytic leukemia. In this investigation, aboard the ISS, monocytes were cultured into the 

specific hardware named MIA which allowed to grow cells on coverslips in a larger chamber and 

fix cells by opening two secondary small chambers prefilled with fixative solution [59]. We 

finally studied the influence of microgravity on different cytoskeletal components in adherent 

monocytes and their ability to migrate on a colloid gold substrate.  

Based on the results obtained from these previous experiments in real space conditions on 

board the ISS, that were indicating alterations of cytoskeleton structure and reduction in motility 

in monocytes, we decided to further investigate the in vitro effects of simulated space 

conditions on neuronal network plasticity and connectivity. 

The first step was to determine the best neuronal model; thus, which type of neurons 

represented the most sensitive model to external stress factors. From literature studies, it 

appeared that cell lines, which can differentiate into neurons, are more resistant than primary 

neurons to external compounds [174]. The next step was to determine from which growth stage 

of the culture, neurons became well-connected having developed a typical mature network 

physiology in order to optimally be able to observe changes induced by space conditions. For 

that purpose, we investigated several in vitro models highlighting a wide variety of physiological 

differences between maturing and mature neurons. First of all, we observed that neurons needed 

to be well connected in order to be mature. Additionally, we noticed that synaptic protein 

distribution and associated vesicles were partially dependent on the acquisition of functional 

synaptic transition [175]. It was also reported that immature neurons and mature neurons differ 

in action potential activities, spontaneous synaptic currents, number of synapses and neurite 

outgrowth speed [175, 176]. Additionally, GABA and glycin neurotransmitters differed in 

inhibitory or excitatory activity in cortical neurons [177, 178] and the sensitivity to exogenous 

stressors (compounds, environmental factors and infections) was related to the neuronal ageing 

stage [179, 180]. Moreover, we had to determine at which stage the neuron cultures showed the 



General discussion. 

204 

 

least changes possible in neurite network growth, neuronal connectivity and cell death related to 

the culture ageing. In the literature, it was reported that neurons grew longer and exponentially 

increased their connections until they reach a stage of reasonable connectivity, thereafter slowing 

down their growth rate [176]. The use of mature neuronal networks allowed to simulate some 

structural and physiological functions as in the adult brain. In conclusion, we chose to use 

mouse primary neurons from cortex plated with a density of 50-66,000 cells per cm
2
 that were 

cultured for 10 days before exposure to simulated space conditions. High content microscopy 

analysis performed with MorphoNeuroNet (see chapter IV) on neuronal network density, neurite 

morphology and cell death revealed a certain rate of stability between 10 and 25 days of culture.  

To perform high content microscopy analysis, our chosen in vitro neuronal network model 

presented a few disadvantages. The main characteristic of this model was the high density of the 

neurite networks with a high variability in β-tub 3 distribution along the neurites. In the context 

of neuronal studies, several automated image analysis toolkits had been conceived accurately 

enabling to quantify shape changes in non-dense neuronal network cultures [276-279]. For our 

purpose, a few of them were compared but due to the high costs coupled to a low number of 

analysed parameters or low accuracy in tracing dense neurite network we therefore finally 

decided to design a new toolkit for dense network analysis. In conclusion, for high content 

analysis of two-dimensional neuronal network fluorescence images, MorphoNeuroNet (see 

chapter IV), a fully automated toolkit for ImageJ was developed allowing an accurate 

segmentation of the neurites in neuronal networks, defining area and length and number of non-

apoptotic nuclei, segmenting the respective somas as well as quantifying the related shape 

parameters. The peculiarity of this tool is that the neurite network is segmented by a 

combination of various intensity and edge detection algorithms allowing to trace even 

neuron extension ends with low fluorescence intensity. The final outputs of this tool were 

given in tables with labels and related parameters. Finally, we propose this method for high 

content analysis on the effects of compounds or stressors in dense neuronal networks thereby 



Chapter VIII  | 

205 

 

gaining physiological relevance for cell-based assays in the context of neuronal diseases. In the 

future, this tool can be up-graded firstly by making it lighter and faster and secondly, by 

implementing new functions as to detect protein accumulation along neurites of the soma, 

protein distribution (see observations on β-tub 3 in chapter V) or even by tracking protein 

movement onto neurons and, why not, by evolving into a 3D analysis system. 

Since neurons are adherent and that they cannot be detached from the substrate without 

breaking neurites, therefore damaging the plasma membrane and losing cytoplasmic material, 

analysis of apoptosis using flow cytometry could not be performed. In order to perform high 

content analysis on early and late stages of apoptosis, two function pipelines for ImageJ were 

developed to estimate the rate of death in neuronal cultures, based on AnnexinV-PI assay or 

nuclear fragmentation with condensed chromatin (see chapters V, VI and VII). These macros 

counted the number of positive cells by measuring nuclear or cytoplasmic signals of the used 

marker above a user-defined threshold relative to the background or the maximal image 

intensity. For nuclear markers, we delineated regions of interest (ROI) based on nuclear masks 

derived from a nuclear counterstain image or by conditional dilatation of the nuclear region for 

cytoplasm markers. In conclusion, we proposed these methods to be used for high content 

analysis when evaluating the effects of compounds or stressors that could potentially induce 

apoptosis in adherent cells.  

In prospective of a future possible spaceflight of our neuronal network model, we designed 

a new spaceflight hardware which would allow to culture adherent cells on glass in a small 

volume of culture medium thanks to a gas permeable membrane disposed as a cover. A space 

flight culture chamber with such a design could allow oxygen exchange and microscopy 

observations. Supplementary tests that would include among others thermal shock, cryogenic 

conservation and vibration tests would still need to be performed in order to determine the 

stability of the cultures in those space simulated conditions. 
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 Spaceflight experiments aboard the ISS  2.

Within this project we had the opportunity to participate to 2 spaceflight experiments, the 

first was the MIA experiment on monocytes in the framework of KUBIC BIO 1 directed by 

Dr. Marianne Cogoli-Greuter (Zero-g LifeTec Zürich, Switzerland) [59] and the second in the 

framework of the first flight of the MDS payload developed for rodent studies in space and 

directed by Dr. Ranieri Cancedda (DOBIG, University of Genova, Genova, Italy) [198]. 

Within the framework of the MIA experiment performed aboard the ISS, the obtained 

results on monocyte motility throughout measurements of tracks on colloid gold substrate 

allowed to underline a severe reduction in locomotion ability in cells exposed for 24 h to real 

microgravity compared to 1 g flight controls and the ground controls. Indeed, monocytes 

exposed to ISS environment moved below 4 µm within 24 h compared to 31-34 µm in 1g 

controls aboard the ISS (KUBIC centrifuge) and over 50 µm in ground controls.   

As observed in other cell types, microgravity causes alterations in locomotion as well as in 

several functions and structures such as the cytoskeleton [38, 64, 188, 252]. Obtained results on 

monocyte J-111 cytoskeleton pattern showed a gravisensitivity of cytoskeletal components 

like F-actin, β-tubulin and vinculin underlining alterations in the structure and distribution in 

cells exposed to ISS environment compared to 1 g controls. Similar changes were observed in 

endothelial cells, osteoblasts and HUVEC cells [69] and in the outgrowth cones of 

neuroblastoma cells [188]. Additionally, comparing the observed changes in real microgravity 

with changes observed in simulated microgravity allowed to evaluate the reliability of the effects 

obtained under microgravity conditions reproduced with the RPM on adherent cells [38, 59]. 

In conclusion, since cytoskeleton plays an important role in cell motility, especially in 

adherent cells where motility is based on a continuous reorganization of the cytoskeletal 

network, microgravity-induced alteration of cytoskeletal structures might be the reason of 

reduced cell locomotion and morphological changes. 
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In order to determine how the mammalian adult brain could respond to long-term exposure 

to space conditions and in collaboration with Dr. Daniela Santucci (Istituto Superiore di Sanità, 

Behavioural Neurosciences Section, Department of Cell Biology and Neurosciences, Roma, 

Italy), we had access to the shared brains of mice exposed to ISS environment. In 2009, 3 wild-

type and 3 pleiotrophin transgenic mice were housed on the ISS for 91 days "equivalent to 10 

years for mankind life span". Aboard the ISS, mice were housed into the Mice Drawer System 

(MDS). Due to low number of survived animal, 1 wild-type and 2 transgenic mice, preliminary 

genomic analyses could be performed on transgenic mice. Preliminary gene expression analysis 

showed that 111 genes were involved in the cortex, 271 in the cerebellum and 415 in the medulla 

oblongata after a 91 day trip in ISS. Preliminary analysis on GO biological functions showed that 

most of the genes were involved in cellular and metabolic processes, in cell communication and 

transport as well in developmental processes in the three tissues. Additionally, pathway analyses 

revealed also changes in Huntington‟s disease and p53 pathways in the cortex whereas axon 

guidance, cytoskeleton regulation by Rho GTPase, integrin, inflammation, Alzheimer‟s disease 

and P53 pathways were modulated in the cerebellum. Furthermore, cadherin and integrin 

signaling, axon guidance mediated by netrin or semaphorins, inflammation, Alzheimer‟s disease, 

and a few neurotransmitter receptor pathways were modulated in the medulla oblongata by ISS 

environment.  

In order to complete genomic analysis, we will try to participate in future mouse 

spaceflight or post flight “tissue sharing” of mice or to organize in vivo experiments using the 

facilities available at SCK•CEN where the hindlimb method (as a model to simulate 

microgravity on animals) could be coupled with chronic irradiation exposure. 

 Simulated space conditions (RPM and IR) 3.

Based on the previous experiments (in vitro monocyte cell type and in vivo adult mouse 

brain) performed under real space conditions on board of ISS and due to the limited access to 
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flight experiments, we decided then to study the morphological and physiological changes as 

well as the molecular alterations of mature neuronal networks under simulated space conditions 

on Earth. Morphological investigations on well-connected mature cortical neurons showed a 

reduced area and length of neurites and a reduced area of somas within short-term 

exposures to simulated low gravity. On the contrary, mature neurons showed an increase in 

area and length of neurites that reached almost back the normality over 10 days under 

simulated microgravity, thus showing a great adaptation to the new gravity conditions 

without losing their intrinsic property to search for contacts (chapter V). It is well known that 

cell motility is regulated by cytoskeletal structures as microfilaments and microtubules as well as 

by focal contacts and integrins. Since it is known that cells are sensitive to mechanical forces, 

microgravity might act on stress-dependent cell changes and specifically on the cytoskeleton. 

Indeed, the cytoskeleton has been described to be the structure through which the cells sense 

gravity [60, 252]. So far, the basic mechanisms responsible for these phenomena in low gravity 

are still unclear. In our studies, we reported that neuronal microtubules change their distribution 

within the first hours of exposure to simulated microgravity increasing the concentration into the 

soma with a consequent reduction of the neurites. Over the following hours, the physiological 

equilibrium of tubulin distribution between soma and neurites was re-established (chapter V). 

These data are in agreement with the data on β-tubulin distribution in monocytes exposed to 

RPM for 1h which reported an accumulation of this protein surrounding the nucleus and a low 

concentration close to the cell cortex where 24 h after, the microtubular network distribution was 

partially re-established [38]. Indeed, monocytes exposed for 24 h to the ISS environment did not 

show any statistical differences in tubulin intensities when compared to the respective 1 g flight 

controls [59]. Additionally, observations on gene expression on in vitro neuronal networks 

showed a lower number of representative genes related to cytoskeleton components after 

exposure to simulated microgravity with an increase of involved genes in the following hours 

(chapter V). From these results we could hypothesize that the body of neuron cells, where 
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cytoskeleton structures regulate cell motility and shape, is affected by microgravity as observed 

in monocytes. These results are supported also by the genomic analysis which showed a general 

higher number of genes related to axonal guidance and cell motility processes or cytoskeleton 

components at 24 h after 1 h of RPM and lower at 72 h. Additionally, it has been observed that 

most of the morphological and microtubule distribution changes in neurons appeared between 30 

and 60 minutes (chapters V and VI); this might explain why not many genes related to cell 

motility and cytoskeleton are involved within 1 h of RPM. On the contrary, neurite network 

adaptation to the new gravity conditions over a longer period of 10 days might suggest that 

cellular extensions are less affected by changes in gravitational forces. It appears that the adapted 

neurons to the new gravitational conditions acquired a different physiology since they showed a 

slower recovery after a long exposure to the RPM, thus requiring longer time to re-establish 

typical ground physiology. Additionally, well-connected neurons exposed for 10 days to 

simulated low gravity had the highest number of changed gene expression with genes related to 

cell motility and cytoskeleton after 72 h of recovery in re-established Earth‟s gravity from RPM 

exposure. 

Ionising radiation is the second main stressor in space conditions. It has been reported that 

irradiation affects the CNS as well as neuron cultures at the cellular and molecular levels [203, 

207, 212, 299, 335, 336]. Our investigations on well-connected cortical mature neurons exposed 

to low and high doses of X-irradiation with high dose rate or low doses of neutrons with a low 

dose rate showed an increase of DNA damage and apoptosis concomitantly to a reduction in 

neurite network growth (chapters VI and VII). In particular 24 hours after 100 mSv of acute X-

irradiation (dose rate 5 mSv/sec), neuronal networks and neurites were 2-5% smaller than the 

controls, the irradiation-induced DNA damage was repaired and no apoptosis was observed. On 

the other hand, well-connected neuron cultures exposed for 5 days to 100 mSv of neutrons and 

2% γ-irradiation (dose rate 20 mSv/day) had a neuronal network 45% smaller than the controls 

and neurites were 25% smaller than the controls. Additionally, the apoptosis fraction and the 
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DNA damage were 3-fold higher than in non-irradiated cultures. These obtained results suggest 

that chronic irradiation could induce higher damage in well-connected mature neurons than 

acute doses maybe because X-rays are low LET and that sources of radiation like neutrons are 

high LET. In addition, the Relative Biological Effectiveness (RBE) of neutrons is 12 to 16 times 

higher than X-rays.  

In the space environment, since microgravity and ionizing radiation coexist concomitantly, 

we chose as model, well-connected neuronal networks cultured on the RPM with a concomitant 

chronic exposure to neutrons or an exposure to acute X-irradiation with low and high doses 

(chapters VI and VII). Well-connected neurons cultured in simulated space conditions 

showed an enhanced reduction in neurite area and length per neuron as well as neurite 

network density, thus an overall reduction in neuronal network integrity. The rate of 

apoptosis in such cultures was increased in neurons exposed to high or low doses suggesting a 

synergistic effect of combined conditions. Additionally, the radiation-induced DNA damage per 

neuron such as the number of DSB γ-H2AX positive cells was higher whilst the efficiency of 

DNA repair was slowed down after exposure to the combination of both conditions.  

Future analyses on neuronal network activity throughout calcium assay, electrophysiology-

like assay as the multi-electrode array (MEA) could be performed to determine the functional 

integrity of the neuronal network after long-term exposure to simulated space conditions. In 

particular, multi-electrode array assay could be carried out on both well-connected neuron 

cultures and ex-vivo brain slices in order to analyse spontaneous activities or the propagation of 

induced excitation. Additionally, deeper investigations on ROS or neurodegenerative disease-

related protein accumulation in in vitro neurons or in laboratory animal brain could help to better 

estimate the effects of space conditions on adult brain to the consequent risks.  

In conclusion, we believe that simulated microgravity (RPM) enhances the DNA 

damage after exposure to ionizing radiation, which results in an increase of apoptosis and a 

reduction of the neuronal network integrity. In addition, the reduced DNA-repair kinetics 
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and the high amount of unrepaired damage up to 24 h observed with simulated 

microgravity (RPM) after or during exposure to ionizing radiation, suggest possible 

genomic instability due to non-well repaired DNA damage in simulated space conditions 

which could cause a longer delay in axon and dendrite growth and the consequent 

adaptation of the neuronal network to microgravity conditions over long-term exposure. 

Changes in the expression of cytoskeletal, transport or cell motility-related genes as well as 

axonal guidance-related genes in both in vivo and in vitro models and in space as well as 

simulated conditions indicate the sensitivity of these pathways to gravitational force 

changes. These observations are in good correlation with the morphological observations of 

the outgrowth cone motility involving cell motility and cytoskeleton adaptation to space 

conditions and the remodelling after recovery under ground conditions. Finally, alteration 

in in vivo gene expression in the medulla oblongata and the cerebellum compared to the in 

vitro changes in the neuronal network integrity indicate possible behaviour and cognition 

changes related to motor (cerebellum) and autonomous (medulla oblongata) functions. 

These results are of utmost interest in view of astronaut health risk assessment for long-

term space travel. 
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Summary 

During orbital spaceflights, astronauts are exposed to various stressful factors such as 

microgravity and cosmic radiations. Therefore, one of the main objectives in space biology 

research is to understand the mechanisms involved in the adaptation of living organisms to the 

space environment. Together with the musculoskeletal, cardiovascular and immune systems, the 

central nervous system is forced to adapt to the space environment. The aim of this PhD thesis is 

to investigate the effects of real and simulated space conditions on in vitro adherent cells as 

monocytes and neurons with a particular emphasis on cell motility and cytoskeleton 

organization as well as neuronal network plasticity and connectivity. To achieve the 

objective of this PhD, we had the opportunity to participate to spaceflight experiments aboard the 

International Space Station. In the context of these real space condition experiments, we studied 

the effects on cell locomotion and cytoskeleton structures on in vitro adherent cells using the 

monocyte J-111 cell line as a model.  

To study the plasticity and connectivity of mature neuronal networks, in vitro experiments 

were also performed with ground-based space condition systems. Well-connected mature neuron 

cultures were obtained from 17 day-old mouse foetus cortices that were cultured for 10 days in 

ground conditions. In our laboratories, we used, as ground-based space condition systems, on 

one hand, the Random Positioning Machine (RPM) to simulate microgravity, and on the other 

hand, low and high doses of X-rays and Californium-252 (source of neutrons) for acute and 

chronic irradiations, respectively. To determine the effects of space conditions on our in vitro 

model, toolkits for image analysis were developed; one to monitor neuronal network and neuron 

morphology changes and two others to estimate neuronal death by monitoring plasma membrane 

and nuclear morphology changes. 

The obtained results showed an impaired locomotion of monocytes in real space conditions 

linked to the altered distribution of cytoskeletal structures. Experiments performed on in vitro 
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neuronal networks in ground-based space condition systems underlined an adaptation of mature 

cortical neurons over long periods of exposure to simulated microgravity after initial 

morphological and cytoskeletal changes due to the altered gravitational forces. Furthermore, 

neurons exposed for long periods of time to the RPM required longer periods to recover than 

under shorter exposures. These observations are in agreement with genome expression analyses 

on in vitro models in which the expression of cell motility, cytoskeleton as well as neurological 

and signal transmission-related genes was shown to be modulated. Moreover, a delay in neuronal 

network growth coupled to an increase in DNA damage and apoptosis were induced by low 

doses of chronic irradiations. Finally, when combining the two space simulated conditions, we 

observed an enhanced reduction of neuronal network and neuronal morphology changes as well 

as a synergistic increase in the DNA damage per neuron, number of Double Strand Break 

positive neurons and apoptosis. 

We believe that microgravity induces impairment in the DNA repair efficiency during or 

after ionizing irradiation exposure. Additionally, the higher amount of unrepaired DNA damage 

suggests a possible genomic instability due to the impaired DNA repair efficiency which might 

thereafter causes a longer delay in neuronal network adaptation to space conditions. In 

conclusion, the observed in vitro changes in neuronal network integrity induced by space 

simulated conditions, might help in health risk evaluation and to develop countermeasures to 

prevent neurological disorders which could occur in astronauts over long-term space travels. 
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Samenvatting 

Tijdens ruimtevaartmissies worden astronauten blootgesteld aan diverse stressfactoren 

aanwezig in de ruimte zoals een verminderde zwaartekracht en kosmische straling. Een 

belangrijk doel van ruimtevaartonderzoek is het begrijpen van de mechanismen die een rol 

spelen in de aanpassing van levende organismen aan deze ruimteomstandigheden. Het centrale 

zenuwstelsel, samen met het musculoskeletaal, cardiovasculair en immuunsysteem, moeten zich 

aanpassen aan de stressfactoren in de ruimte. In dit doctoraat onderzoeken we de effecten van 

echte en gesimuleerde ruimteomstandigheden op in vitro adherente cellen, zoals monocyten 

en neuronen waarbij de focus zowel op cel motiliteit en cytoskeletale organisatie, als op de 

plasticiteit en connectiviteit van het neuronale netwerk gelegd wordt. Om dit doel te bereiken 

hebben we de mogelijkheid gehad om deel te nemen aan experimenten in de ruimte aan boord 

van het Internationaal Ruimtestation ISS. In de context van deze echte ruimteomstandigheden 

bestudeerden we in vitro de effecten op cel voortbeweging en de structuur van het cytoskeleton 

van de adherente monocyte cellijn J-111. Om plasticiteit en connectiviteit in mature neuronale 

netwerken te bestuderen werden ook in vitro experimenten op aarde in ruimte-simulerende 

condities uitgevoerd. Hiervoor hebben we mature neuronen geïsoleerd uit de cortices van 17 

dagen oude muis foetussen. Deze werden vervolgens gedurende 10 dagen in cultuur gebracht 

onder normale omstandigheden alvorens ze bloot te stellen aan gesimuleerde stressfactoren. 

Voor simulatie van de typische stressfactoren in de ruimte, hebben we enerzijds de 'Random 

Positioning Machine' (RPM) gebruikt om verminderde zwaartekracht na te bootsen en anderzijds 

lage en hoge dosissen van Californium-252 (een bron van neutronen) voor respectievelijk 

chronische en acute bestralingen als simulatie van kosmische straling. Om het effect van deze 

gesimuleerde stressfactoren op ons in vitro model te bepalen, hebben we specifieke 

computermodellen voor beeldanalyse ontwikkeld; één om het neuronale netwerk en 

morfologische veranderingen in de neuronen te bestuderen en twee andere gebaseerd op 
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morfologische veranderingen in het plasmamembraan en de celkern om dode neuronen te 

identificeren. 

Onze resultaten van het eerste ISS experiment tonen een verzwakte motiliteit van 

monocyten aan die wordt gekoppeld aan veranderingen in de structuur van het cytoskelet. Een 

veranderde expressie van genen betrokken in celmotiliteit en cytoskelet alsook in de begeleide 

opbouw van zenuwuitlopers kon worden aangetoond in de drie hersendelen geïsoleerd uit de 

muizen die voor een lange tijd werden blootgesteld aan de omgeving in het ISS. Verder zien we 

dat genen betrokken bij zowel neurologische processen en signaaltransmissie als bij oxidatieve 

stress en neurodegeneratieve ziekten eveneens beïnvloed zijn door de omgeving in het ISS. 

Langdurige blootstelling van ons in vitro model aan gesimuleerde verminderde zwaartekracht in 

de RPM heeft aangetoond dat mature corticale neuronen zich aanpassen aan deze langdurige 

blootstelling door veranderingen in hun morfologie en het cytoskelet. Bovendien hebben 

langdurig blootgestelde neuronen meer tijd nodig om te herstellen dan neuronen die blootgesteld 

werden voor een korte tijd. Deze bevindingen zijn in overeenstemming met de resultaten van 

genexpressie analyse van de in vivo en in vitro modellen komende van de twee ISS 

experimenten, waarbij de expressie van genen betrokken in zowel celmotiliteit en cytoskelet als 

in neurologische processen en signaal transmissie veranderd is. Verder hebben we gezien dat de 

groei van het neuronale netwerk in ons in vitro model vertraagd is na chronische bestraling met 

lage dosissen. Dit is gekoppeld aan een toename in DNA schade en geprogrammeerde celdood. 

Tenslotte, wanneer we beide gesimuleerde stressfactoren combineren, zien we een uitgesproken 

afbraak van het neuronale netwerk die samengaat met morfologische veranderingen in de 

corticale neuronen. In deze neuronen werd eveneens een toename in DNA schade 

(dubbelstrengige breuken) en geprogrammeerde celdood waargenomen.  

We veronderstellen dat een verminderde zwaartekracht de efficiëntie van het DNA herstel 

verminderd tijdens of na blootstelling aan ioniserende straling. Bovendien suggereert de toename 

in niet-herstelde DNA schade een mogelijk genomische instabiliteit als gevolg van een minder 
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efficiënt DNA herstel. Dit zal op termijn leiden tot een vertraagde aanpassing van het neuronale 

netwerk aan de typische omgeving in de ruimte. Ter conclusie, de in vitro geobserveerde 

veranderingen in de neuronale netwerk integriteit, geïnduceerd door gesimuleerde 

ruimtecondities, kan bijdragen tot de evaluatie van het gezondheidsrisico en de ontwikkeling van 

maatregelen tegen neurologische aandoeningen bij astronauten op lange-termijn ruimte reizen.  
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first 10 best photos at the European level using Sigma secondary antibodies. The prize was the Photo Book 

"LIFE" of Lennart Nilsson. November, 2008. 

 Chairman for the radiation session at ESA, ISGP, ISSBB, and ELGRA Joint Life Science Meeting: „Life in 

Space for Life on Earth‟, Trieste, Italy, June 13-18, 2010. 

 Poster Award at the "9th European Workshop on Astrobiology" for "Radiation and low gravity effects on 

neuronal cell cultures", authors Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S., Van 

Oostveldt P., Benotmane M.A. EANA'09 Brussels, Belgium. October 12-14, 2009. 

 Selected image of monocyte cytoskeleton for book cover of “Colture cellulari” (cell cultures) written by 

Meloni Mariantonia, Aracne Editor, 2012. 

 Selected image of monocyte cytoskeleton by the European Space Agency for the brochure about Luca 

Palmittano's mission to ISS, 2013. 

 Selected image of post-synaptic proteins in neuronal network for the semi-final (first 12) at the “International 

Antibody Image Contest 2013” organized by Sigma Aldrich (final result will be officialised after 15 of June).. 
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Reference experience 

 Effects of space conditions on neuronal plasticity and connectivity, laboratories of Prof. Sarah Baatout and 

Prof. Patrick Van Oostveldt, Belgian Nuclear Research Center (SCK•CEN) and University of Gent, Belgium, 

November 2008- June 2013. 

 Cytoskeleton recovery under simulated microgravity, Laboratory of Prof. Proto Pippia and Dr. Meloni 

Mariantonia, University of Sassari, Italy, April 2008.  

 Investigation on cell locomotion and cytoskeleton in monocytes exposed to ISS environment, Laboratory of 

Prof. Proto Pippia and Dr. Meloni Mariantonia, University of Sassari, Italy, April 2005 – March 2008. 

 

Teaching experience 

 15 hours of lectures and laboratory practice on space neurobiology, brain dissection, primary neuron cultures 

and immunostaining of DSBs and cytoskeletal structures to students following the European MSc in Radiation 

Biology, 2010-2013, SCK•CEN, Mol, Belgium. 

 4 hours of lectures and laboratory practice on space neurosciences and design of biological spaceflight 

experiments to students following the Course on Life Sciences and Biology in Space in the framework of the 

Advanced Master in Space Sciences, KUL-UGent, 2010-2011-2012, SCK•CEN, Mol, Belgium. 

 Two lectures on microscope settings and capture of digital images at the Molecular Biology and Cytometry 

Course, Belgian Society for Analytical Cytometry, May 2009, May 2011, SCK•CEN, Mol, Belgium.  

 

Follow-up of students 

 Miriam Mura- "Microtubule recovery in human monocytes during exposure to RPM after nocodazole 

treatment". University of Sassari, Italy, November 2008, Bachelor thesis. 

 Miriam Mura- "Cytoskeleton recovery in human monocytes after simulated space condition exposure". 

University of Sassari, April 2011, Italy, Master thesis. 

 Christelle Meulepas- “Rôle du gène TP53 dans la croissance des extensions neuronales”. HELHA Haute 

Ecole Louvain en Hainaut, June 2012, Bachelor thesis. 

 

Publications with Peer Review 

 Meloni M., Galleri G., Pani G., Saba A., Pippia P., Cogoli-Greuter M. Space flight affects motility and 

cytoskeletal structures in human monocyte cell line J-111. In: Cytoskeleton, 68:2(2011), p. 125-137.- ISSN 

1949-3592 (Meloni, Galleri, Pani have made equal contributions to this work) 

 Samari N., de Saint-Georges L., Pani G., Baatout S., Leyns L., Benotmane M.A. Non-conventional apoptotic 

response to ionising radiation mediated by N-methyl D-aspartate receptors in immature neuronal cells. 

International Journal of Molecular Medicine, 31(3) (March 2013), p.516-24. doi: 10.3892/ijmm.2013.1245. 

Epub 2013 Jan 15 

 Pani G., Samari N., Quintens R., de Saint Georges L., Meloni M.A., Baatout S., Van Oostveldt P., Benotmane 

M.A. Morphological and physiological changes in mature in vitro neuronal networks towards exposure to 

short-, middle- or long-term simulated microgravity. Conditionally accepted in PlosOne with minor revisions 

on May 30 

 Pani G., De Vos W., Samari N., de Saint Georges L., Baatout S., Van Oostveldt P., Benotmane M.A. 

MorphoNeuroNet, an automated method for dense neurite network analysis. Conditionally accepted with major 

revision in Cytometry part A and revised version submitted in June 2013 

 Samari N., Pani G, Quintens R, Michaux A., Janssen A., de Saint-Georges L., Baatout S., Leyns L., 

Benotmane M.A.. Maturing neurons exhibit a delay in neurite outgrowth upon exposure to low and moderate 

doses of ionising radiation. Submitted to Radiation Research Journal and accepted with major revisions in 

October 2012 
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Oral presentations 

 Pippia P., Galleri G., Meloni M.A., Saba A., Pani G., Cogoli A. and Cogoli-Greuter M. Modelled microgravity 

conditions alter human monocytes motility and cytoskeleton pattern. Comunicazione al 1
st
 Convegno 

Nazionale di Biomedicina e Spazio, Monte Porzio Catone, Italy. March 14-15, 2006. (presented by Pippia) 

 Meloni M.A., Galleri G., Saba A., Pani G., Pippia P., Cogoli-Greuter M. Microgravity affects immune cells. 

4th European Congress Medicine in space and in extreme environments achievements for health care on earth. 

Berlin, Germany. October 24-26, 2007.  

 Pani G. Effect of space conditions on neuronal plasticity and connectivity. WE-Heraeus Physics Winter 

School: Advanced Lectures on Protection of Humans and Their Environment Against Ionizing Radiation, Bad 

Honnef, Germany. February 9 – 18, 2009.  

 Meloni M.A., Pani G., Galleri G., Pippia P., Cogoli A., Cogoli-Greuter M. Recovery of microtubular network 

in simulated low gravity in human monocytes pretreated with nocodazole. ELGRA Symposium: "In the 

Footsteps of Columbus", Bonn, Germany. September 1-4, 2009.  

 Pani G. Effect of space conditions on neuronal plasticity and connectivity. Day of the PhD. Mol, Belgium. 

October 29, 2009.  

 Samari N., Abou-El-Ardat K., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane MA. Low doses 

of irradiation on nervous cells impairs neurite outgrowth and causes neuronal degeneration. Third European 

IRPA congress. Helsinki, Finland. June 14-18, 2010.  

 Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S., Van Oostveldt P., Benotmane M. A. DNA 

damage/repair dynamics in neuronal networks after X-ray exposure under low gravity conditions. European 

Space Agency (ESA); International Society for Gravitational Physiology (ISGP); ISSBB Symposium; 

European Low Gravity Research Association (ELGRA) - Joint Life Science Meeting: „Life in Space for Life 

on Earth‟. Trieste, Italy. June 13-18, 2010.  

 Benotmane R., Samari N., Pani G., Quintens R., Janssen A., Michaux A., e.a. Molecular and cellular effects of 

embryonic irradiation on Cognitive functions. European Master in Radiation Biology. Mol, Belgium, February 

14-25, 2011.  

 Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S., Van Oostveldt P., Benotmane M.A. 

Simulated low gravity effects on neuronal network plasticity. ELGRA 2011. Antwerp, Belgium. September 5-

9, 2011.  

 Pani G., Mura M.M., Meloni M.A., Pippia P., Baatout S. Monocyte cytoskeleton recovery after simulated 

space conditions. ELGRA 2011. Antwerp, Belgium. September 5-9, 2011.  

 Fortunati A., Pani G., Vanhoudt N., Tassone P., Loreto F., Calfapietra C., Baatout S., Vandenhove H., 

Migliaccio F. Root growth pattern is altered by simulated space environment (SSE): effect of microgravity and 

radiations. CAREX Conference on Life in Extreme Environments. Dublin, Ireland. October 18-20, 2011.  

 Pani G. Neuronal network analysis: MorphoNeuroNet.- Journal club. SCK•CEN, Mol, Belgium. February 3, 

2012.  

 Pani G., Samari N., Quintens R., de Saint-Georges L., Meloni M., Baatout S., Van Oostveldt P., Benotmane 

M.A. Effect of space conditions on neuronal plasticity and connectivity. Day of the PhD's, SCK•CEN, Mol, 

Belgium. April 27, 2012.  

 

Poster Presentations 

 Pani G., Meloni M. A., Galleri G., Saba A., Pippia P., CogoliA., Cogoli-Greuter M. Effect of space conditions 

on neuronal plasticity and connectivity. Italian Society for Space Biomedicine and Biotechnology 4
th

 National 

Conference "Un mondo senza gravità", Santa Margherita Ligure, Italy. March 31 – April 2, 2009. 

 Pani G., Meloni M.A., Galleri G., Saba A., Pippia P., Cogoli A., Cogoli-Greuter M. Microtubular recovery in 

modelled low gravity conditions after nocodazole treatment of human monocytes. Italian Society for Space 

Biomedicine and Biotechnology 4
th

 National Conference "Un mondo senza gravità", Santa Margherita Ligure, 

Italy. March 31 – April 2, 2009. 

 Saba A., Larorsa D.R., Valenti G., Galleri G., Pani G., Meloni M. A., Pippia P. In vivo rat experiments in 

Random Positioning Machine: Bone marrow cell mineralization and water transport. Italian Society for Space 

Biomedicine and Biotechnology 4° National Conference "Un mondo senza gravità", Santa Margherita Ligure, 

Italy. March 31 – April 2, 2009. 

 Saba A., Galleri G., Pani G., Pippia P., Meloni M.A. Effect of simulated microgravity conditions on talin 

binding to LFA-1 Integrin in Human T-lymphocytes. Italian Society for Space Biomedicine and Biotechnology 

4th National Conference "Un mondo senza gravità", Santa Margherita Ligure, Italy. March 31 – April 2, 2009. 

 Meloni M.A., Pani G., Galleri G., Saba A., Pippia P., Cogoli-Greuter M. Microtubular network recovery in 

human monocytes in modeled low gravity after pretreatment with nocodazole. International Society for 
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Gravitational Physiology “30th Annual International Gravitational Physiology Meeting”, Xi'an, China. May 

24-29, 2009. 

 Meloni M.A., Benotmane M.A., Mastroleo F., Pani G., Abou-el-Ardat K., Janssen A. Leysen L., Vanhavere 

F., Leys L., Galleri G., Pippia P., Baatout S. Biological effect of simulated ISS ionizing radiation environment 

on Human T-lymphocytes. International Society for Gravitational Physiology “30th Annual International 

Gravitational Physiology Meeting”, Xi'an, China. May 24-29, 2009. 

 Saba A., Galleri G., Pani G., Meloni M. A., Pippia P. In vivo physiological experiments in modeled 

microgravity (RPM) on rat bone marrow cell mineralization. International Society for Gravitational Physiology 

“30th Annual International Gravitational Physiology Meeting”. Xi'an. China. May 24-29, 2009. 

 Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S, Van Oostveldt P., Benotmane M.A. Effect 

of space conditions on neuronal morphology. ELGRA Symposium: "In the Footsteps of Columbus", Bonn, 

Germany. September 1-4, 2009. 

 Meloni M.A., Galleri G., Pani G., SabaA., Pippia P., Cogoli-Greuter M. Human leucocytes in space: the 

“MIA” experiment. 81° SIBS conference and 4
th

 ARNA conference “Nutrizione e Biologia Sperimentale nella 

Ricerca Umana e Animale, Cagliari, Italy. October 8-10, 2009. 

 Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S., Van Oostveldt P., Benotmane M.A. 

Radiation and low gravity effects on neuronal cell cultures. “9th European Workshop on Astrobiology” 

EANA'09 Brussels, Belgium. October 12-14, 2009. 

 Pani G., Meloni M. A., Baatout S., Saba A., Galleri G., Pippia P., Cogoli A., Cogoli-Greuter M. Human 

monocyte microtubular recovery in simulated low gravity after nocodazole exposure. “9th European Workshop 

on Astrobiology” EANA'09 Brussels, Belgium. October 12-14, 2009. 

 Pani G., Samari N., de Saint-Georges L., Meloni M.A., Baatout S., Van Oostveldt P., Benotmane M.A. Effects 

of radiation and low gravity on neuronal cell cultures. “BVAC/ABCA and NVC joint annual conference” 

Antwerp, Belgium. November 12-13, 2009. 

 Pani G., Meloni M. A., Baatout S., Saba A., Galleri G., Pippia P., Cogoli A., Cogoli-Greuter M. Effect of 

simulated low gravity on human monocyte microtubular recovery after nocodazole exposure. “BVAC/ABCA 

and NVC joint annual conference” Antwerp, Belgium. November 12-13, 2009. 

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane MA. Effect of low doses of 

radiation on neurite outgrowth and nervous network formation. The first joint meeting between the Belgian 

Society for Analytical Cytology (BVAC/ABCA) and the Dutch Society for Cytometry (NVC), Antwerpen, 

Belgium. November 12-13, 2009. 

 Pani G., Samari N., de Saint-Georges L., Meloni M., Baatout S., Van Oostveldt P., Benotmane MA. Effects of 

radiation and low gravity on neuronal cell cultures. 2009 first joint meeting between the Belgian Society for 

Analytical Cytology (BVAC/ABCA) and the Dutch Society for Cytometry (NVC), Antwerp, Belgium. October 

12-13, 2009. 

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane MA. Effect of low doses of 

radiation on neurite outgrowth and nervous network formation. Second edition of the international conference 

on medical radiations: research and applications. Marrakech, Morocco. April 7-9, 2010. 

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane MA. Effect of low doses of 

radiation on neurite outgrowth and nervous network formation. PhD Research Day 2010. Vrije Universiteit 

Brussels (VUB), Belgium. May 28, 2010. 

 Meloni M.A., Pani G., Benotmane M. A., Mastroleo F., Abou-el-ardat K., Janssen A., Leysen L., Vanhavere 

F., Leys N., Galler G., Pippia P., Baatout S. Effects of ISS equivalent ionizing radiation dose on Human T-

lymphocytes. COSPAR 2010. Bremen, Germany. July 18-25, 2010. 

 Pani G., Meloni M., Galleri G., Saba A., Pippia P., Cogoli-Greuter M. Motility and cytoskeleton quantification 

in monocytes exposed to real low gravity aboard the International Space Station. Advanced Light Microscopy 

Symposium (ALM 2010), Ghent, Belgium. September 23-24, 2010. 

 Pani G., De Vos W., Samari N., de Saint-Georges L., Meloni M., Baatout S., e.a."DNA damage/repair 

dynamic in neuronal network after/during ionizing radiation exposure under low gravity conditions. Advanced 

Light Microscopy Symposium (ALM 2010), Ghent, Belgium. September 23-24, 2010. 

 Samari N., Abouelaradat K., Pani G., de Saint-Georges L., Baatout S., Leyns L., e.a. Low doses of irradiation 

on nervous cells impair neurite outgrowth and cause neuronal degeneration. DoReMi Wokshop meeting on 

Task 7.5, Mol, Belgium. September 29, 2010. 

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane R. Effect of low doses of radiation 

on neuronal plasticity and connectivity. Day of the PhD's. Mol, Belgium. October 28, 2010.  

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane R. Effect of low doses of radiation 

on neurite outgrowth and nervous network formation. The Belgian-Luxembourgish cytometry meeting 2010.- 

Luxembourg, Luxembourg. November 18-19, 2010. 
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 Pani G., DeVos W., Samari N., de Saint-Georges L., Meloni M., Baatout S., e.a. DNA damage/repair dynamic 

in neuronal network after/during ionizing radiation exposure under low gravity conditions. The Belgian-

Luxembourgish Cytometry Meeting 2010.- Luxembourg, Luxembourg. November 18-19, 2010.  

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane R. Effect of low doses of ionizing 

radiation on neurite outgrowth. 1st Periodic meeting of DoReMi. Brussels, Belgium. July 4-6, 2011.  

 Samari N., Pani G., de Saint-Georges L., Baatout S., Leyns L., Benotmane R. Effect of low doses of ionising 

radiation on neurite outgrowth. 8th IBRO World Congress of Neuroscience. Florence, Italy. August 14-18, 

2011.  

 Pani G., Samari N., Quintens R., de Saint-Georges L., Meloni M., Baatout S., Van Oostveldt P., Benotmane 

M.A. Effect of space conditions on neuronal plasticity and connectivity. Day of the PhD's. Mol, Belgium. 

October 6, 2011. 

 Pani G., De Vos W.H., Samari N., de Saint Georges L., Meloni M.A., Baatout S., van Oostveldt P., 

Benotmane M.A. Effects of simulated low gravity on DNA damage/repair dynamics in neuronal network 

after/during ionizing radiation exposure. CAREX Conference on Life in Extreme Environments. Dublin, 

Ireland. October 18-20, 2011. 

 Pani G., Samari N., Quintens R., de Saint-Georges L., Baatout S., Van Oostveldt P., Van Oostveldt P., 

Benotmane M.A..- MorphoNeuroNet: an automated method for dense neuronal network analysis. 12th 

international meeting on advanced light microscopy. Leuven, Belgium. June 5-8, 2012. 

 

Project proposals 

 Proposal writing on “Morphological and molecular alterations on neuron cells during long exposure to space 

environment” under the supervision of SCK•CEN mentors: Drs. M.A. Benotmane, L. de Saint Georges and S. 

Baatout, Sassari University mentors: Dr. M.A. Meloni, Prof. P. Pippia. RIBES-Bion M1 mission, Space 

biological research opportunity. Submitted to ASI (Italian Space Agency) in June 2009 (Responsible: Dr. 

Meloni MariAntonia, Principal Investigator: PhD Student Pani Giuseppe) 

 Participation in writing the proposal "Assessment of Neuronal Network Connectivity Under Space Conditions" 

ILSRA Announcement of Opportunity by ESA. Submitted to ESA in September 2009. (Coordinator: Dr. 

Abderrafi Benotmane). 

 Participation in writing the proposal on "Effect of accelerated particles on neuronal network" . Announcement 

of opportunity for investigations into biological effects of radiation using the GSI accelerator facility (AO-10-

IBER). Submitted to ESA in January 2011. (Coordinator: Dr. Abderrafi Benotmane). 

 

 


