483 research outputs found

    Roadmap on digital holography [Invited]

    Get PDF
    This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    Molecular epidemiology of Mansonella perstans on Bioko Island: identification of risk factors, co-infection with malaria and Loa loa and impact in pregnant women

    Get PDF
    Implementation of an effective and targeted mass drug administration program against filarial worms needs an accurate identification and mapping of the distribution of these parasites. Molecular diagnostic methods like polymerase chain reaction (PCR) based techniques have shown high sensitivity to detect and distinguish parasites at low infection levels and even in people that are amicrofilaremic by microscopy. However, larger scale implementation over time remains a challenge for low-income countries because of logistical complexity and costs, including collection, transportation and preservation of biological samples and running of the analytical tests. In this study, we aimed to develop and implement a novel molecular based diagnostic approach for monitoring highly neglected filariasis causing parasites in Equatorial Guinea, West Africa. The ENAR protocol is an approach based on the use of nucleic acids (NA) extracted from dried blood retained on used malaria rapid diagnostic test (mRDT). Malaria RDTs used in this work were stored at room temperature for around 18 months before used for molecular analysis and served as reliable source for NA based detection of blood-dwellings pathogens beyond malaria. Our approach of repurposing used mRDTs for filarial parasites detection provides a versatile and cost-effective approach to monitor prevalence, genotype, infection intensity and co-infections of filarial nematodes and other blood borne infectious diseases

    Low-cost portable microscopy systems for biomedical imaging and healthcare applications

    Get PDF
    In recent years, the development of low-cost portable microscopes (LPMs) has opened new possibilities for disease detection and biomedical research, especially in resource-limited areas. Despite these advancements, the majority of existing LPMs are hampered by sophisticated optical and mechanical designs, require extensive post-data analysis, and are often tailored for specific biomedical applications, limiting their broader utility. Furthermore, creating an optical-sectioning microscope that is both compact and cost effective presents a significant challenge. Addressing these critical gaps, this PhD study aims to: (1) develop a universally applicable LPM featuring a simplified mechanical and optical design for real-time biomedical imaging analysis, and (2) design a novel, smartphone-based optical sectioning microscope that is both compact and affordable. These objectives are driven by the need to enhance accessibility to quality diagnostic tools in varied settings, promising a significant leap forward in the democratization of biomedical imaging technologies. With 3D printing, optimised optical design, and AI techniques, we can develop LPM’s real time analysis functionality. I conducted a literature review on LPMs and related applications in my study and implemented two low-cost prototype microscopes and one theoretical study. 1) The first project is a portable AI fluorescence microscope based on a webcam and the NVIDIA Jetson Nano (NJN) with real-time analysis functionality. The system was 3D printed, weighing ~250 grams with a size of 145mm × 172 mm × 144 mm (L×W×H) and costing ~400.Itachievesaphysicalmagnificationof×5andcanresolve228.1lp/mmUSAFfeatures.Thesystemcanrecogniseandcountfluorescentbeadsandhumanredbloodcells(RBCs).2)Idevelopedasmartphone−basedopticalsectioningmicroscopeusingtheHiLotechnique.Toourknowledge,itisthefirstsmartphone−basedHiLomicroscopethatofferslow−costoptical−sectionedwidefieldimaging.Ithasa571.5ÎŒmtelecentricscanningrangeandan11.7ÎŒmaxialresolution.Isuccessfullyusedittorealizeopticalsectioningimagingoffluorescentbeads.Forthissystem,Idevelopedanewlow−costHiLomicroscopytechniqueusingmicrolensarrays(MLAs)withincoherentlight−emittingdiode(LED)lightsources.IconductedanumericalsimulationstudyassessingtheintegrationofuncoherentLEDsandMLAsforalow−costHiLosystem.TheMLAcangeneratestructuredilluminationinHiLo.HowtheMLA’sgeometrystructureandphysicalparametersaffecttheimageperformancewerediscussedindetail.ThisPhDthesisexplorestheadvancementoflow−costportablemicroscopes(LPMs)throughtheintegrationof3Dprinting,optimizedopticaldesign,andartificialintelligence(AI)techniquestoenhancetheirreal−timeanalysiscapabilities.TheresearchinvolvedacomprehensiveliteraturereviewonLPMsandtheirapplications,leadingtothedevelopmentoftwoinnovativeprototypeLPMs,alongsideatheoreticalstudy.Theseworkscontributesignificantlytothefieldbynotonlyaddressingthetechnicalandfinancialbarriersassociatedwithadvancedmicroscopybutalsobylayingthegroundworkforfutureinnovationsinportableandaccessiblebiomedicalimaging.Throughitsfocusonsimplification,affordability,andpracticality,theresearchholdspromiseforsubstantiallyexpandingthereachandimpactofdiagnosticimagingtechnologies,especiallyinthoseresource−limitedareas.Inrecentyears,thedevelopmentoflow−costportablemicroscopes(LPMs)hasopenednewpossibilitiesfordiseasedetectionandbiomedicalresearch,especiallyinresource−limitedareas.Despitetheseadvancements,themajorityofexistingLPMsarehamperedbysophisticatedopticalandmechanicaldesigns,requireextensivepost−dataanalysis,andareoftentailoredforspecificbiomedicalapplications,limitingtheirbroaderutility.Furthermore,creatinganoptical−sectioningmicroscopethatisbothcompactandcosteffectivepresentsasignificantchallenge.Addressingthesecriticalgaps,thisPhDstudyaimsto:(1)developauniversallyapplicableLPMfeaturingasimplifiedmechanicalandopticaldesignforreal−timebiomedicalimaginganalysis,and(2)designanovel,smartphone−basedopticalsectioningmicroscopethatisbothcompactandaffordable.Theseobjectivesaredrivenbytheneedtoenhanceaccessibilitytoqualitydiagnostictoolsinvariedsettings,promisingasignificantleapforwardinthedemocratizationofbiomedicalimagingtechnologies.With3Dprinting,optimisedopticaldesign,andAItechniques,wecandevelopLPM’srealtimeanalysisfunctionality.IconductedaliteraturereviewonLPMsandrelatedapplicationsinmystudyandimplementedtwolow−costprototypemicroscopesandonetheoreticalstudy.1)ThefirstprojectisaportableAIfluorescencemicroscopebasedonawebcamandtheNVIDIAJetsonNano(NJN)withreal−timeanalysisfunctionality.Thesystemwas3Dprinted,weighing 250gramswithasizeof145mm×172mm×144mm(L×W×H)andcosting 400. It achieves a physical magnification of ×5 and can resolve 228.1 lp/mm USAF features. The system can recognise and count fluorescent beads and human red blood cells (RBCs). 2) I developed a smartphone-based optical sectioning microscope using the HiLo technique. To our knowledge, it is the first smartphone-based HiLo microscope that offers low-cost optical-sectioned widefield imaging. It has a 571.5 ÎŒm telecentric scanning range and an 11.7 ÎŒm axial resolution. I successfully used it to realize optical sectioning imaging of fluorescent beads. For this system, I developed a new low-cost HiLo microscopy technique using microlens arrays (MLAs) with incoherent light-emitting diode (LED) light sources. I conducted a numerical simulation study assessing the integration of uncoherent LEDs and MLAs for a low-cost HiLo system. The MLA can generate structured illumination in HiLo. How the MLA’s geometry structure and physical parameters affect the image performance were discussed in detail. This PhD thesis explores the advancement of low-cost portable microscopes (LPMs) through the integration of 3D printing, optimized optical design, and artificial intelligence (AI) techniques to enhance their real-time analysis capabilities. The research involved a comprehensive literature review on LPMs and their applications, leading to the development of two innovative prototype LPMs, alongside a theoretical study. These works contribute significantly to the field by not only addressing the technical and financial barriers associated with advanced microscopy but also by laying the groundwork for future innovations in portable and accessible biomedical imaging. Through its focus on simplification, affordability, and practicality, the research holds promise for substantially expanding the reach and impact of diagnostic imaging technologies, especially in those resource-limited areas.In recent years, the development of low-cost portable microscopes (LPMs) has opened new possibilities for disease detection and biomedical research, especially in resource-limited areas. Despite these advancements, the majority of existing LPMs are hampered by sophisticated optical and mechanical designs, require extensive post-data analysis, and are often tailored for specific biomedical applications, limiting their broader utility. Furthermore, creating an optical-sectioning microscope that is both compact and cost effective presents a significant challenge. Addressing these critical gaps, this PhD study aims to: (1) develop a universally applicable LPM featuring a simplified mechanical and optical design for real-time biomedical imaging analysis, and (2) design a novel, smartphone-based optical sectioning microscope that is both compact and affordable. These objectives are driven by the need to enhance accessibility to quality diagnostic tools in varied settings, promising a significant leap forward in the democratization of biomedical imaging technologies. With 3D printing, optimised optical design, and AI techniques, we can develop LPM’s real time analysis functionality. I conducted a literature review on LPMs and related applications in my study and implemented two low-cost prototype microscopes and one theoretical study. 1) The first project is a portable AI fluorescence microscope based on a webcam and the NVIDIA Jetson Nano (NJN) with real-time analysis functionality. The system was 3D printed, weighing ~250 grams with a size of 145mm × 172 mm × 144 mm (L×W×H) and costing ~400. It achieves a physical magnification of ×5 and can resolve 228.1 lp/mm USAF features. The system can recognise and count fluorescent beads and human red blood cells (RBCs). 2) I developed a smartphone-based optical sectioning microscope using the HiLo technique. To our knowledge, it is the first smartphone-based HiLo microscope that offers low-cost optical-sectioned widefield imaging. It has a 571.5 ÎŒm telecentric scanning range and an 11.7 ÎŒm axial resolution. I successfully used it to realize optical sectioning imaging of fluorescent beads. For this system, I developed a new low-cost HiLo microscopy technique using microlens arrays (MLAs) with incoherent light-emitting diode (LED) light sources. I conducted a numerical simulation study assessing the integration of uncoherent LEDs and MLAs for a low-cost HiLo system. The MLA can generate structured illumination in HiLo. How the MLA’s geometry structure and physical parameters affect the image performance were discussed in detail. This PhD thesis explores the advancement of low-cost portable microscopes (LPMs) through the integration of 3D printing, optimized optical design, and artificial intelligence (AI) techniques to enhance their real-time analysis capabilities. The research involved a comprehensive literature review on LPMs and their applications, leading to the development of two innovative prototype LPMs, alongside a theoretical study. These works contribute significantly to the field by not only addressing the technical and financial barriers associated with advanced microscopy but also by laying the groundwork for future innovations in portable and accessible biomedical imaging. Through its focus on simplification, affordability, and practicality, the research holds promise for substantially expanding the reach and impact of diagnostic imaging technologies, especially in those resource-limited areas

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de EconomĂ­a, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    Mechanical characterisation of biological cells and biofunctional interfaces

    Get PDF
    Biological cells sense the mechanical properties of their surrounding environment and adapt their shape and function. Moreover, the mechanical properties of cells and tissues tightly correlate with their functions. The main thrust of this thesis is to quantitatively determine the mechanical proper- ties of cells and cell-repellent coating materials by the combination of unique experimental techniques by covering different spatio-temporal domains. In chapter 7 the viscoelastic shape relaxation of malaria-infected human red blood cells with a di- ameter of about 10 ÎŒm was monitored by the combination of a custom-designed microfluidic device and a high-speed imaging platform under collaboration with Prof. Dr. M. Lanzer (Center for Inte- grative Infectious Diseases, Heidelberg University). Using the binarised cell rims extracted from the live-cell images, the shape recovery of red blood cells upon the ejection from the narrow constriction was monitored with a time resolution of 30 ÎŒs per frame. The mechanical responses of the malaria- infected red blood cells were monitored through the entire life cycle of parasites. The systematic comparison of the red blood cells with genetically mutated hemoglobin (hemoglobinopathie) with normal red blood cells indicated a less pronounced change in the relaxation time in hemoglobinopa- thetic red blood cells, which might correlate with delayed protein synthesis in hemoglobinopathetic red blood cells. In chapter 8 the film elastic properties and internal structures of the monolayers of oligoethylene glycol-based dendrons for the coating of iron-oxide nanoparticles were studied by the combination of high energy X-ray reflectivity and high-speed atomic force microscopy. To achieve higher film sta- bility in blood stream, the dendrons, synthesized by the group of Prof. Dr. Felder-Flesch (Institut de Physique et Chimie des Materiaux , Univ. Strasbourg) were coupled to the oxide surface via two phosphonate groups. The interfacial force measurements were performed on planar silicon dioxide surfaces instead of iron oxide nanoparticle surfaces due to the technical limitations. The internal structures of dendron monolayers in water were probed by high energy specular X-ray reflectivity. An analytical model considering the transition from a soft layer to a hard layer was introduced to cal- culate the Young’s modulus from nm-thick monolayers. To gain deeper insights into the interfacial force interactions, the coarse-scale surface force-distance curves were measured by a cell-sized particle attached to an atomic force cantilever cantilever, while the size and distribution of nanoscopic pin- ning centers were monitored by fast force mapping with a pixel rate of 200 Hz. The capability of the dendron coating to prevent the platelet aggregation was assessed by observing the non-specific adhesion of human platelets on dendron-coated substrates. The dynamic uptake and localisation of fluorescent dendron-coated iron oxide nanoparticles into hypoxic mouse breast cancer cells was tracked using fluorescence imaging and cryo-transmission electron microscopy. Together, these meth- ods revealed a continuous uptake of iron oxide nanoparticles into in intracellular compartments such as endosomes via endocytosis. The iron oxide particles were found either agglomerated or as single nanoparticles
    • 

    corecore