11 research outputs found

    Weakly Supervised Universal Fracture Detection in Pelvic X-rays

    Full text link
    Hip and pelvic fractures are serious injuries with life-threatening complications. However, diagnostic errors of fractures in pelvic X-rays (PXRs) are very common, driving the demand for computer-aided diagnosis (CAD) solutions. A major challenge lies in the fact that fractures are localized patterns that require localized analyses. Unfortunately, the PXRs residing in hospital picture archiving and communication system do not typically specify region of interests. In this paper, we propose a two-stage hip and pelvic fracture detection method that executes localized fracture classification using weakly supervised ROI mining. The first stage uses a large capacity fully-convolutional network, i.e., deep with high levels of abstraction, in a multiple instance learning setting to automatically mine probable true positive and definite hard negative ROIs from the whole PXR in the training data. The second stage trains a smaller capacity model, i.e., shallower and more generalizable, with the mined ROIs to perform localized analyses to classify fractures. During inference, our method detects hip and pelvic fractures in one pass by chaining the probability outputs of the two stages together. We evaluate our method on 4 410 PXRs, reporting an area under the ROC curve value of 0.975, the highest among state-of-the-art fracture detection methods. Moreover, we show that our two-stage approach can perform comparably to human physicians (even outperforming emergency physicians and surgeons), in a preliminary reader study of 23 readers.Comment: MICCAI 2019 (early accept

    Self-Guided Multiple Instance Learning for Weakly Supervised Thoracic DiseaseClassification and Localizationin Chest Radiographs

    Get PDF
    Due to the high complexity of medical images and the scarcity of trained personnel, most large-scale radiological datasets are lacking fine-grained annotations and are often only described on image-level. These shortcomings hinder the deployment of automated diagnosis systems, which require human-interpretable justification for their decision process. In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs in a multiple-instance learning setting. To that end, we introduce a novel loss function for training convolutional neural networks increasing the localization confidence and assisting the overall disease identification. The loss leverages both image-and patch-level predictions to generate auxiliary supervision and enables specific training at patch-level. Rather than forming strictly binary from the predictions as done in previous loss formulations, we create targets in a more customized manner. This way, the loss accounts for possible misclassification of less certain instances. We show that the supervision provided within the proposed learning scheme leads to better performance and more precise predictions on prevalent datasets for multiple-instance learning as well as on the NIH ChestX-Ray14 benchmark for disease recognition than previously used losses

    Self-Guided Multiple Instance Learning for Weakly Supervised Disease Classification and Localization in Chest Radiographs

    Full text link
    The lack of fine-grained annotations hinders the deployment of automated diagnosis systems, which require human-interpretable justification for their decision process. In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs. To that end, we introduce a novel loss function for training convolutional neural networks increasing the \emph{localization confidence} and assisting the overall \emph{disease identification}. The loss leverages both image- and patch-level predictions to generate auxiliary supervision. Rather than forming strictly binary from the predictions as done in previous loss formulations, we create targets in a more customized manner, which allows the loss to account for possible misclassification. We show that the supervision provided within the proposed learning scheme leads to better performance and more precise predictions on prevalent datasets for multiple-instance learning as well as on the NIH~ChestX-Ray14 benchmark for disease recognition than previously used losses

    Image Analysis Techniques for Scoliosis Using Deep Learning

    Get PDF
    Frontal spine radiographs are used in understanding and determining key aspects of scoliosis patients, such as bone age and degree of curvature. These properties affect proposed treatments, such as referral for surgery, as well as predicted outcomes. Variability in data interpretation and physician decisions support the utility of consistent, automated frameworks for image processing. Using radiographs both synthetically generated and from a collection of data from 28 different hospital sites, we explore three tasks on spine radiographs using convolutional neural networks (CNNs) and their potential applications: 1) segmentation of the spine from a given image, both as a whole and as individual vertebrae, 2) classification of the Risser sign measuring skeletal maturity, and 3) determination of Lenke classification describing curvature. We propose these methods as a framework that can provide a holistic under- standing of scoliosis severity and development in patients, and can also be added to and built upon in the future for other applications and data including Cobb and Risser angle with vertebral body segmentation

    Towards Interpretable Machine Learning in Medical Image Analysis

    Get PDF
    Over the past few years, ML has demonstrated human expert level performance in many medical image analysis tasks. However, due to the black-box nature of classic deep ML models, translating these models from the bench to the bedside to support the corresponding stakeholders in the desired tasks brings substantial challenges. One solution is interpretable ML, which attempts to reveal the working mechanisms of complex models. From a human-centered design perspective, interpretability is not a property of the ML model but an affordance, i.e., a relationship between algorithm and user. Thus, prototyping and user evaluations are critical to attaining solutions that afford interpretability. Following human-centered design principles in highly specialized and high stakes domains, such as medical image analysis, is challenging due to the limited access to end users. This dilemma is further exacerbated by the high knowledge imbalance between ML designers and end users. To overcome the predicament, we first define 4 levels of clinical evidence that can be used to justify the interpretability to design ML models. We state that designing ML models with 2 levels of clinical evidence: 1) commonly used clinical evidence, such as clinical guidelines, and 2) iteratively developed clinical evidence with end users are more likely to design models that are indeed interpretable to end users. In this dissertation, we first address how to design interpretable ML in medical image analysis that affords interpretability with these two different levels of clinical evidence. We further highly recommend formative user research as the first step of the interpretable model design to understand user needs and domain requirements. We also indicate the importance of empirical user evaluation to support transparent ML design choices to facilitate the adoption of human-centered design principles. All these aspects in this dissertation increase the likelihood that the algorithms afford interpretability and enable stakeholders to capitalize on the benefits of interpretable ML. In detail, we first propose neural symbolic reasoning to implement public clinical evidence into the designed models for various routinely performed clinical tasks. We utilize the routinely applied clinical taxonomy for abnormality classification in chest x-rays. We also establish a spleen injury grading system by strictly following the clinical guidelines for symbolic reasoning with the detected and segmented salient clinical features. Then, we propose the entire interpretable pipeline for UM prognostication with cytopathology images. We first perform formative user research and found that pathologists believe cell composition is informative for UM prognostication. Thus, we build a model to analyze cell composition directly. Finally, we conduct a comprehensive user study to assess the human factors of human-machine teaming with the designed model, e.g., whether the proposed model indeed affords interpretability to pathologists. The human-centered design process is proven to be truly interpretable to pathologists for UM prognostication. All in all, this dissertation introduces a comprehensive human-centered design for interpretable ML solutions in medical image analysis that affords interpretability to end users
    corecore