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Abstract

Over the past few years, Machine Learning (ML) has demonstrated human expert

level performance in many medical image analysis tasks. However, due to the black-

box nature of classic deep ML models, translating these models from the bench to

the bedside to support the corresponding stakeholders in the desired tasks brings

substantial challenges. One solution is interpretable ML, which attempts to reveal the

working mechanisms of complex models. From a human-centered design perspective,

interpretability is not a property of the ML model but an affordance, i.e., a relationship

between algorithm and user. Thus, prototyping and user evaluations are critical to

attaining solutions that afford interpretability. Following human-centered design

principles in highly specialized and high stakes domains, such as medical image

analysis, is challenging due to the limited access to end users. This dilemma is further

exacerbated by the high knowledge imbalance between ML designers and end users.

To overcome the predicament, we first define 4 levels of clinical evidence that can be

used to justify the interpretability to design ML models. We state that designing ML

models with 2 levels of clinical evidence: 1) commonly used clinical evidence, such as

clinical guidelines, and 2) iteratively developed clinical evidence with end users are

more likely to design models that are indeed interpretable to end users.

In this dissertation, we first address how to design interpretable ML in medical

image analysis that affords interpretability with these two different levels of clinical

evidence. We further highly recommend formative user research as the first step of

the interpretable model design to understand user needs and domain requirements.
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We also indicate the importance of empirical user evaluation to support transparent

ML design choices to facilitate the adoption of human-centered design principles. All

these aspects in this dissertation increase the likelihood that the algorithms afford

interpretability and enable stakeholders to capitalize on the benefits of interpretable

ML. In detail, we first propose neural symbolic reasoning to implement public clinical

evidence into the designed models for various routinely performed clinical tasks. We

utilize the routinely applied clinical taxonomy for abnormality classification in chest x-

rays. We also establish a spleen injury grading system by strictly following the clinical

guidelines for symbolic reasoning with the detected and segmented salient clinical

features. Then, we propose the entire interpretable pipeline for Uveal Melanoma

(UM) prognostication with cytopathology images. We first perform formative user

research and found that pathologists believe cell composition is informative for UM

prognostication. Thus, we build a model to analyze cell composition directly. Finally,

we conduct a comprehensive user study to assess the human factors of human-machine

teaming with the designed model, e.g., whether the proposed model indeed affords

interpretability to pathologists. The human-centered design process is proven to be

truly interpretable to pathologists for UM prognostication. All in all, this dissertation

introduces a comprehensive human-centered design for interpretable ML solutions in

medical image analysis that affords interpretability to end users.
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Chapter 1

Introduction

In the last decade, traditional Machine Learning (ML) is quickly developed to assist

humans in simple tasks, such as e-Mail filtering [4], digit recognition [5], and detection

of oil spills in satellite radar images [6]. Since the emergence of AlexNet [7] around

10 years ago, deep MLs has become a game-changing technique to achieve human-

comparable performance for various tasks, such as natural image reasoning and medical

image analysis. Although these tasks are much more complicated compared to those

solved by traditional ML, the ultimate goals of these ML models remain the same

as those of traditional ML models, which is to assist the end users for specific tasks

rather than replacing them. However, due to the black-box nature of classic deep

ML models, translating these models from the bench to the bedside to support the

corresponding stakeholders in the desired tasks brings substantial challenges. When

stakeholders interact with ML tools to reach decisions, they may be persuaded to

follow ML’s recommendations that may be incorrect or promote unintended biases

against vulnerable populations, all of which can have dreadful consequences [8]. These

circumstances motivate the need for trustworthy ML systems and have sparked efforts

to specify the different requirements that ML algorithms should fulfill. Compared to

other imaging problems, trustworthy ML models is much more desirable in medical

image analysis because of the high stakes involved in most decisions that impact human

lives. Most of these recent efforts focus on achieving a certain on-task performance
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requirement but neglect that for assisted decision making not ML system performance

alone, but human-ML team performance is the most pertinent to patient outcome. How

to achieve adequate human-machine teaming performance, however, is debated. While

some argue that rigorous algorithmic validation, e. g., similar to the evaluation of drugs,

tests, or devices, demonstrates safe and reliable operation and may thus be sufficient

for successful human-machine teaming [9, 10], others reason that interpretability in

an ML model, e. g., by revealing its working mechanisms and presenting a proper

interface, is necessary to invoke user trust and achieve the desired human-machine

teaming performance [11–13]. The inability to make the decision making process

interpretable might affect the misuse and disuse of ML models in the clinical domain,

as the utility of the model might be limited if it does not reveal the reasoning process,

limitations, and biases [14]. We believe that this dichotomy is artificial in that, first,

rigorous validation and interpretability are not mutually exclusive, and second, both

approaches augment an ML model with additional information in hopes to justify (in

other words, make interpretable) the recommendation’s validity which is hypothesized

to achieve certain human-factors engineering goals such as understandability, reliability,

trust and etc.

Designing ML algorithms that are interpretable is fundamentally different from

merely designing ML algorithms. The desire for interpretability adds a layer of

complexity that is not necessarily computational. Rather, it involves human factors,

namely the users to whom the ML algorithm should be interpretable. As a consequence,

the interpretability of an algorithm is not a property of the algorithm but a relationship

between the interpretable ML algorithm and the user processing the information. Such

relationship can be understood as an affordance, a concept that is commonly employed

when designing effective Human-Computer Interactions (HCIs) [15], and we argue

that interpretability in ML algorithms should be viewed as such. There are several

consequences from this definition:
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• Developing interpretable ML algorithms is not purely computational.

• Specific design choices on the mechanisms to achieve explanations or interpreta-

tions may be suitable for one user group, but not for another.

• Creating interpretable ML systems without prior groundwork to establish that

it indeed affords interpretability may result in misspent effort.

Given the user- and context-dependent nature of interpretability, it is essential

to understand the target audience and to validate design choices through iterative

empirical user studies to ensure that design choices of interpretable models are

grounded in a deep understanding of the target users and their context. In addition, to

maintain a user-centered approach to design from the early stages, rapid prototyping

with users provides feedback on the current, low- to high-fidelity embodiment of the

system that is going to be built eventually. Involving users early by exposing them to

low-fidelity prototypes that mimic final system behavior allows designers to explore

multiple alternatives before committing to one pre-determined approach that may not

be understandable nor of interest to end users.

However, following a human-centered design approach to build interpretable ML

systems for highly specialized and high stakes domains, such as healthcare, is chal-

lenging. The barriers are diverse and include: 1) the high knowledge mismatch

between ML developers and the varied stakeholders in medicine, including providers,

administrators, or patients; 2) availability restrictions or ethical concerns that limit

accessibility of potential target users for iterated empirical tests in simulated setups for

formative research or validation; 3) challenges inherent to clinical problems, including

the complex nature of medical data (e.g., unstructured or high dimensional) and

decision making tasks from multiple data sources; and last but not least, 4) the lack

of ML designers’ training in design thinking and human factors engineering.

Furthermore, there are multiple “interpretability” techniques and choices, such
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as the interpretable working mechanism or user-friendly HCI. Simply selecting a

“interpretability” technique, without incorporating and consulting target users puts the

resulting ML models at risk of not achieving the desired interpretability. The human-

centered design approach addresses this challenge through iterative empirical studies

that over time guide the development and refinement of the technical approach such

that, upon completion, the design choices are well justified by empirical target user

feedback. This approach may not always be feasible in healthcare due to accessibility

and availability barriers of target users. To address this limitation while still enabling

technological progress in interpretable ML, we introduce four distinct levels of evidence.

These levels allow designers to classify the level of confidence one may have that the

specific design choices will indeed result in a model that affords interpretability. The

levels of evidence are based on increasingly thorough approaches to understanding the

chosen end users in the context of the envisioned task [16]:

• Level 0: No evidence. No dedicated investigations about the end users are

performed to develop interpretable ML systems.

• Level 1: One-way evidence. Formative user research techniques, such as

surveys and diary studies, are only performed once without further feedback

from end users about the findings extracted from the research phase, resulting in

one-way evidence. Such user research suffers risks of potential bias in concluding

about justification of interpretability because there is no opportunity for dialog,

i.e., designers may ask irrelevant questions or target users may provide non-

insightful, potentially biased responses.

• Level 2: Public evidence. Public evidence refers to information about target

user knowledge, preference, or behavior that is public domain and vetted in a

sensible way. Public evidence includes clinical best practice guidelines, Delphi

consensus reports, peer-reviewed empirical studies of closely related approaches
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in large cohorts, or well documented socio-behavioral phenomena.

• Level 3: Iteratively developed evidence. Iteratively developed evidence

is interpretability evidence that is iteratively refined through user feedback

where designers and end users communicate with each other throughout method

development. The purpose of iteratively validating and refining the current inter-

pretability mechanism is to identify any potential bias in the assumptions that

motivate the interpretability technique while ensuring that it is understandable

to end users.

Being actively cognizant of the level of evidence that supports the development enables

trading off development efforts between ML method development vs. gathering richer

evidence in support of the intended developments.

Starting from the considerations around designing and validating interpretable

ML for healthcare presented above, we aim to actively consider and work closely

with the end users during the design, construction, and validation of ML models

for medical imaging problems. Acknowledging the barriers to widespread adoption

of human-centered design techniques to develop interpretable ML in healthcare, we

highlight the need to ground and justify design choices in a solid understanding of the

users and their context when adding interpretability or other human factors-based

goals to ML systems for medical image analysis. By raising awareness of the user- and

context-dependent nature of interpretability, we consider a trade-off between efforts

to 1) better ground their approaches on user needs and domain requirements and 2)

commit to technological development and validation of possibly interpretable systems.

In this way, we increase the likelihood for algorithms that advance to the technological

development stage to afford interpretability, because they are well grounded and

justified in user and context understanding. This may mitigate misspent efforts in

developing complex systems without prior formative user research, and help us make
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accurate claims about interpretability and other human factors engineering goals when

building and validating the model.

In this dissertation, we develop task-specific interpretable ML for various

medical image analysis problems with high-stakes decision makings by

actively considering and working closely with the end users during the

design, construction, and validation of ML models for medical imaging

problems. This approach increases the likelihood for algorithms that

advance to the technological development stage to afford interpretability.

As described in the previous introduction, the human-centered design approach

performs iterative empirical studies that over time guide the development and re-

finement of the technical approach such that, the design choices are well justified

by empirical target user feedback. In addition, the included medical image analysis

tasks in this dissertation are all high-stakes problems. Potential bias in concluding the

clinical evidence may result in the mismatch between the justification of interpretabil-

ity and the context of the end users. Therefore, the end users may be unwilling to

use the developed models or the models are not understandable or useful to the end

users. Thus, only public evidence that the end users commonly use; and iteratively

developed evidence that is iteratively refined through user feedback are suitable to be

the justification of interpretability to design the models. In one aspect, we develop

interpretable models with public evidence, such as clinical guidelines in clinical routine

practices for clinical experts. In the other aspect, for clinical problems that are

not routinely performed, such as tasks beyond end users’ ability and knowledge, we

perform formative user research to iteratively develop the clinical evidence to design

the interpretable model. We further conduct user studies to assess the interpretability

and human factors of the designed models.
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1.1 Challenges and Our Contributions

We introduce two works of building interpretable ML models for routinely performed

clinical problems with the widely-used clinical guidelines and one work of building

interpretable ML models for a medical image analysis task that is beyond clinical

experts’ ability with iteratively developed clinical evidence. For the first two works,

we develop neural-symbolic models with implemented public evidence for each medical

image analysis task, as presented in Chapter 3 to Chapter 4. On one hand, neural

reasoning with deep learning is more robust with noisy and ambiguous data but

lacks interpretability. On the other hand, symbolic reasoning can naturally leverage

symbolic representations of clinical knowledge such as clinical guidelines but is intol-

erant of ambiguous and noisy data [17]. Combining the two reasoning methods and

developing neural-symbolic models makes it easy to implement clinical knowledge into

the entire deep learning system and robust to noisy and ambiguous data. In our design

process, deep Convolutional Neural Network (CNN) architectures are implemented

to extract robust and meaningful visual features. The symbolic reasoning modules

with implemented clinical knowledge further analyze the extracted visual features

which have the potential to afford interpretability to end users. The implemented

clinical knowledge is the relevant knowledge that is understandable and useful for the

end users, which is also known as the justification of interpretability in the designed

ML. Before the model design, we guarantee the justification of interpretability to be

relevant knowledge by the public clinical evidence that is publicly agreed on in clinical

publications. These two works are:

1.1.1 Abnormality Classification in Chest X-Rays with Clini-
cal Guideline: Clinical Taxonomy

With the rapid development of deep CNNs and their success in many computer vision

tasks [7], Chest X-Ray (CXR) computer-aided diagnosis (CAD) has received consider-
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able research attention [18–20]. These efforts have met success and typically approach

the problem as a standard multi-label classification scenario, which attempts to make

a set of individual binary predictions for each disease pattern under consideration.

Yet, organizing diagnoses or observations into ontologies and/or taxonomies is crucial

within radiology, e.g., RadLex [21], with CXR interpretation being no exception [22,

23]. This importance should also be reflected within CAD systems. For instance, when

uncertain about fine-level predictions, e.g., nodules vs. masses, a CAD system should

still be able to provide meaningful parent-level predictions, e.g., pulmonary nodules

and masses. This parent prediction may be all the clinician is interested in anyway.

Moreover, elegantly addressing the problem of incompletely labeled data is another

benefit of incorporating taxonomy. Radiologists may only report general/coarse disease

labels because of the imaging conditions or because the diseases are unrelated to the

purpose of patient admission. For example, imaging conditions may have only allowed

a radiologist to report “opacity”, instead of a more specific observation of “infiltration”

vs. “atelectasis”. As a result, it is clinically beneficial for CAD systems to not only

report fine-grained labels but also report labels higher up in the clinical taxonomy.

For these reasons, we present a deep hierarchical multi-label classification (HMLC)

approach for CXR CAD with a label taxonomy constructed with the reference of

clinical taxonomy [21].

To the best of our knowledge, we are the first to outline an HMLC CAD system

and implement clinical taxonomy for medical imaging and the first to characterize

performance when faced with incompletely labeled data. Our straightforward, but

effective, HMLC approach results in the highest mean Area Under Curve (AUC)

value yet reported for the Prostate Lung Colorectal and Ovarian (PLCO) dataset.

In incompletely labeled data scenarios, HMLC can garner even greater boosts in

classification performance. The method also has a high potential to be interpretable to

radiologists because of following the widely used clinical taxonomy. The methods are
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detailed in Chapter 3, and were presented at one conference and in a journal article:

[24] Chen, H., Miao, S., Xu, D., Hager, G.D. and Harrison, A.P., 2019, May. Deep

hierarchical multi-label classification of chest X-ray images. In International

conference on medical imaging with deep learning (MIDL) (pp. 109-120). PMLR

[25] Chen, H., Miao, S., Xu, D., Hager, G.D. and Harrison, A.P., 2020. Deep hierar-

chical multi-label classification applied to chest X-ray abnormality taxonomies.

Medical image analysis, 66, p.101811.

1.1.2 Splenic Injury Grading in Whole Body CT Scans with
Clinical Guideline: AAST Grading Criterion

Splenic injury is the most common solid organ injury in adult blunt abdominal

trauma [26, 27]. In 2018, the American Association for the Surgery of Trauma (AAST)

Patient Assessment Committee (PAC) introduced an updated AAST splenic organ

injury scale (OIS) for treatment decision-making based on admission abdominopelvic

CT examination. Treatment options vary by injury severity and include routine

observation for low grade injuries, and urgent angioembolization or splenectomy to

control hemorrhage in high grade injuries.

In a survey of AAST member practices in the management of blunt splenic

injury, only 45% of respondents reported routine use of the AAST splenic OIS for

blunt splenic trauma by radiologists [28]. Even assuming the ideal circumstance of

ubiquitous adoption and reporting, classification systems are prone to variability in

the perceived grades among readers with varying levels of experience, and variable

subspecialization. Recent preliminary data from a retrospective multicenter multileader

American Society of Emergency Radiology study on blunt splenic trauma indicates

only moderate agreement under research conditions. In practice, radiologists are

subject to shifting circumstances in their clinical environment with respect to study

volume, reading room distractions, and fatigue-related performance degradation, such
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as from circadian rhythm disruptions after multiple consecutive night shifts [29–33].

Furthermore, clinical decision making in this high-stakes setting must be rapid, as

the spleen is a highly vascular organ and severe injury carries the risk of multi-organ

system failure and death from exsanguination [34]. However, admission trauma CT

interpretation is time-consuming. Among expert trauma radiologists, interpretation

turnaround times for severely injured patients commonly exceed 20-30 minutes [29].

Automated AAST grading could potentially provide an objective, accurate, second-

reader capability that grants users agency in addressing disagreement between the

automated method and their own domain expertise [35, 36]. More importantly, the

automated AAST grading can be considered as a guided read. Domain expertise can

double check whether findings in automated systems truly exist or not to confirm or not

trust the automated AAST grade diagnosis for further treatment, such as mobilization

of vascular surgeon. To this end, we leverage interpretable deep learning approaches

and expert knowledge to develop a novel automated method with a hierarchical

rule-based system that follows the AAST grading pipeline and predicts the AAST

splenic OIS using the most salient CNN-extracted features of the grading system,

namely active bleeding, pseudoaneurysm, and splenic parenchymal disruption [37].

The methods are detailed in Chapter 4, and were presented in a journal article:

[38] Chen, H., Unberath, M. and Dreizin, D., 2022. Toward automated interpretable

AAST grading for blunt splenic injury. Emergency Radiology, pp.1-10.

We also build an interpretable ML models for tasks that clinical experts do not

have the ability to accomplish with current clinical knowledge. We iteratively develop

the clinical evidence to be used in the model by formative user research with user

feedback. We additionally conduct a user study to assess the interpretability and the

human factors of our models to the clinical experts. The clinical scenario and the ML

solution are described below:
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1.1.3 Uveal Melanoma Cancer Subtyping with Cytopathology
Images by Analyzing What Pathologists Believe to be
Salient: Cell Type Composition

Uveal Melanoma (UM) is the most common primary intraocular malignancy in

adults [39]. According to a recent study, there exist two subtypes in UM that can

be identified based on its Gene Expression Profile (GEP): The first subtype exhibits

low metastatic risk, while the second subtype has been linked to high metastatic risk.

However, even after 10 years of development, GEP is still only available in the United

States. The technique is also expensive and has a long turnaround time. There also

exists unexpected clinical surprises such as early death with GEP results. A more

accessible test for UM subtyping is, therefore, highly desirable.

In addition to GEP, microscopic Cytology of Fine Needle Aspirates images is

also created from the biopsy. There is increasing evidence that there exist imaging-

derived biomarkers that are informative for prognosis [40]. In the particular case

of UM prognostication, there is huge potential in using imaging-derived biomarkers

to determine GEP subtype and metastatic risk directly from cytopathology slides.

Pathologists also believe the imaging-derived biomarkers are hidden in the overall

cell appearance composition in the cytopathology images. While it is impossible even

for highly trained pathologists to derive this information from cytopathology images,

learning-based algorithms that discover associations between intensity patterns in

cytology images and GEP subtype are promising [41, 42]. However, as “black box”

models that perform a super-human task, these algorithms do not offer insights

beyond the final recommendation to the human decision makers, which has been

linked to automation bias and over-trust or dis-trust in such systems [43, 44]. A more

interpretable algorithm design may enable humans to better calibrate their trust in the

recommendation, which would be an important feat for high-stakes decision making.

To reach this goal, we need to facilitate or even automate quantitative analysis
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of cytopathology images. To this end, we first develop an interactive tool to extract

high-quality image regions from cytopathology images. Our envision will be beneficial

in two ways: First, it can be deployed in pathologist-centric workflows to guide

pathologist review, thereby reducing the experts’ workload. Second, the tool provides

an opportunity for pathologists to guide algorithmic evaluation, e. g. by refining the

content that is submitted for the following automated analysis of the slide, e. g. for

GEP classification. Such an interactive design may prove beneficial in building trust,

accelerating workflows, and reducing mistakes, of both automated algorithms and

pathologists.

After interactively extracting high-quality image regions, we develop an automatic

system for interpretable UM subtype classification from cytology images. Before

designing the models, we first perform formative user research to understand the need

and knowledge of the pathologists. They believe cell composition is informative for

UM prognostication. The designed method is based on the idea from the formative

user research that biopsy samples of the two UM subtypes should differ in overall cell

composition. Thus, we propose an algorithm that enables high level, rule-based sym-

bolic reasoning on the overall cell composition of the cytopathology images extracted

by deep CNN, which would be interpretable and could easily be verified by human

users such as pathologists.

Finally, we conducted a comprehensive user study with 4 trained pathologists

to test the affordance of interpretability in the proposed system. In the user study,

pathologists make diagnoses for GEP classes from cytopathology images, which is a

task beyond current clinical knowledge, with or without AI assistance. Human factors

are analyzed and indicate that the designed cancer subtyping model for UM is truly

interpretable to end users. The methods are detailed in Chapter 5 and Chapter 6, and

were presented at two conferences. Moreover, we are currently preparing a journal

article that summarizes the results presented in Chapter 6.

12



[42] Chen, H., Liu, T.Y., Correa, Z. and Unberath, M., 2020, October. An Interactive

Approach to Region of Interest Selection in Cytologic Analysis of Uveal Melanoma

Based on Unsupervised Clustering. In International Workshop on Ophthalmic

Medical Image Analysis (pp. 114-124). Springer, Cham.

[45] Chen, H., Liu, T.Y., Gomez, C., Correa, Z. and Unberath, M., 2021. An

interpretable Algorithm for uveal melanoma subtyping from whole slide cytology

images. arXiv preprint arXiv:2108.06246.

1.1.4 Other Contributions to Interpretable Machine Learning
in Medical Image Analysis

A series of contributions to the current state of interpretable machine learning in

medical image analysis have been made, that are in close connection to this thesis.

The main developments include:

• A systematic review of interpretable ML in medical image analysis together

with guidelines that recommend the human-centered design. Published in NPJ

Digital Medicine [16].

• An interpretable pelvic fracture detection in pelvic x-rays by comparing anatom-

ical vertical asymmetry. Published in European Conference in Computer Vision

(ECCV) [46].

• Attention-based cancer prognostication for uveal melanoma with t-SNE clustering

visualization. Published in Ophthalmology Science [47] and SSRN Electronic

Journal [48].

• Gene expression profile prediction for uveal melanoma with image regions.

Published in Ophthalmology Retina [41].
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• Survival prediction for uveal melanoma with cell feature analysis. We are

currently submitting the paper.

• Causal inference for pelvic fracture tile grade. We are currently submitting the

paper.

I also have contributed to semantic and realistic style transfer from 2D style images

to 3D scenes. The paper is currently submitting.

1.2 Dissertation Statement

In this dissertation, we emphasize the importance of and propose the approaches

to building interpretable ML for medical image analysis incorporating end users in

a human-centered design. We indicate that interpretability is not a property, but

an affordance of interpretable ML systems, i.e., a relationship between models and

end users. Efforts to build ML systems that afford interpretability in the healthcare

context should go beyond computational advances, which is not common practice in

the context of interpretable ML for medical image analysis. Considering the wide

gap between clinical end users and ML designers, we propose formative user research

to understand the context of end users which greatly reduces the risks of building

models that are not actually interpretable to end users. We also emphasize the

importance of empirical user testing to assess the interpretability of the built models

and further avoid unexpected shortcomings of the designed models in real clinical

practices. In addition, we proposed neural-symbolic reasoning models to implement

selected clinical knowledge with neural networks for both routinely performed clinical

tasks and tasks that are beyond current end users’ ability. The entire design procedure

of formative user research, neural-symbolic reasoning, and empirical user testing

achieves a comprehensive understanding of the user contexts, ensures the model

interpretability to end users, and enables iterative refinement of user-friendly ML
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models for real clinical practices.

1.3 Overview

The overview of this dissertation is illustrated as the following.

In Chapter 1 (this chapter), we introduce the need for interpretable ML in medical

image analysis. We discuss the underlying challenges and our contributions to this

dissertation topic.

In chapter 2, we summarize previous works on interpretable ML in medical image

analysis.

In Chapter 3, we propose a hierarchical multi-label classification for CXRs with clinical

guideline: clinical taxonomy.

In Chapter 4, we propose an automatic AAST grading technique for splenic injury by

following AAST clinical guidelines.

In Chapter 5, we propose an automatic but interactive high-quality region extraction

algorithm for UM cytopathology images.

In Chapter 6, we propose an entire pipeline for the interpretable rule-based algorithm

to predict GEP classes from UM cytopathology images by analyzing cell compositions,

which is believed to be salient features by pathologists.

In Chapter 7, we summarize and conclude this dissertation.
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Chapter 2

Related Work

In this chapter, we discuss related works in literature in the scope of convolutional

neural networks, deep learning in medical image analysis, and interpretable Artificial

Intelligence (AI) in medical image analysis. More detailed related work about inter-

pretable deep learning in medical image analysis can be found in my co-first-authored

systematic review paper:

Haomin Chen, et al. "Explainable medical imaging AI needs a human-centered

design: guidelines and evidence from a systematic review." NPJ digital medicine

5.1 (2022): 1-15. [16]

Related work about each challenging clinical tasks mentioned in the introduction

chapter is included in Chapter 3 to Chapter 6.

2.1 Interpretable Convolutional Neural Network

CNN is one type of machine learning model for processing data that has a grid pattern,

such as images, which is inspired by the organization of animal visual cortex [49, 50],

and designed to automatically and adaptively learn spatial hierarchies of features,

from low- to high-level patterns. Different from most recent radiomics studies which

use hand-crafted feature extraction techniques, such as texture analysis, followed

by conventional machine learning classifiers, such as random forests and support
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vector machines [51, 52], CNN extracts features automatically with the combination of

convolutional, pooling and fully connected layers. The complex combination of these

kernel operations makes CNN easy to automatically detect significant features without

any human supervision which made it the most used machine learning technique these

years. CNN has already been proven to reach human expert level performance in

various tasks, such as face recognition [53], lung nodule detection [54] and natural

image classification [55]. However, such overwhelming performance is at the price of

not being explainable and CNN is also described as a black box model. It is difficult

for humans to understand the reason behind CNN making a certain decision.

Research on interpretable CNN has gained momentum to provide knowledge and

insights into neural networks. There are two types of CNN self-reasoning: Explainabil-

ity (or model-agnostic) and Interpretability (or model-specific) [56]. Explainability

is the rationale behind the decision made by CNN[57]. The CNN remains to be a

black box model, but an ad-hoc model is applied to explain the output of the CNN.

The ad-hoc model is typically a simple self-reasoning model. Pixel-attribution model

such as saliency map is the most commonly applied ad-hoc model [58, 59]. The

visualization of pixel-attribution highlights regions used for CNN outputs. Besides,

region attribution is also calculated with image region occlusion in LIME [60]. In

addition, Shapley values are used to evaluate the feature attribution [61]. In contrast,

interpretability is intrinsic, meaning that the model structure of CNN self-explains the

functioning. Attention mechanism [62] weights feature by pixel-level importance inside

of the network structure. Region proposal learning with natural images intuitively im-

plements prototypes for image classification reasoning [63]. Intrinsically interpretable

models are usually constructed based on the defined justification of interpretability,

which varies in different tasks.

There also exist two scales of explanation that are agreed on within the research

community: local explanation and global explanation. Local methods explain the
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individual predictions of ML algorithms. Local explanation approaches have currently

received much attention. Popular local explanable methods are Shapley values [61, 64]

and counterfactual explanations [65–67]. Counterfactual explanations rely on what-if

scenarios to explain the model predictions [68]. According to the current literature in

the social sciences [69], counterfactual explanations are contrastive explanations and are

supported by a few reasons, so they are “good” explanations. Another local explanation

approach: the Shapley values explain how the deep CNN features collaborate together

to generate the final prediction [61, 64]. In contrast, the global explanation aims

to explain the entire model behavior, i.e., how the model behaves in general with

all samples of the dataset, instead of the model behavior of every specific sample.

Two main approaches for global explanation are the model’s feature importance and

feature effect. Feature importance assesses the CNN features’ relevancy to the model

predictions. Permutation feature analysis [70, 71] is a widely-used importance metric.

Some permutation feature analysis removes the features from the training data and

retrains the CNN models to test the importance of the removed feature [72]. Another

permutation feature analysis approach is based on variance measures [73].

2.2 Interpretable Deep Learning in Medical Image
Analysis

Deep learning methods such as CNN have proven to achieve human expert level

performance in multiple medical image analysis tasks such as CXR disease classifi-

cation [74], emphysema quantification in Computed Tomography (CT) scans [75],

placenta segmentation in ultrasound imaging [76] and etc. However, most of these

models are black box models and clinical stakeholders such as clinical experts and

patients cannot understand why black box models make certain decisions. Moreover,

medical images are commonly related to high-stakes decision makings impacting lives.

Clinical stakeholders cannot afford to blindly trust or distrust black box models to
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guide follow-up treatment because all deep learning models may have unexpected

mistakes.

Thus, there is a growing interest in developing interpretable CNN models for

medical image analysis. We performed a systematic review of interpretable ML in

medical image analysis [16]. We follow the PRISMA pipeline [77] for the systematic

review and 68 articles were included for information extraction. Details of the PRISMA

process can be found in the systematic review paper. In the systematic review, we

group additional considerations about human factors and clinical context into six

themes according to the initial review, iteratively defined prior to data extraction

and abbreviated to INTRPRT ; the themes are incorporation (IN), interpretability

(IN), target (T), reporting (R), prior (PR), and task (T). Incorporation refers to the

communication and cooperation between designers and end users before and during

the construction of the transparent model. Formative user research is one possible

strategy that can help designers to understand end users’ needs and background

knowledge [35, 78], but other approaches exist [79]. Interpretability considers the

technicalities of algorithmic realization of a transparent ML system. Target determines

the end users of the transparent ML algorithms. Reporting summarizes all aspects

pertaining to the validation of transparent algorithms. This includes task performance

evaluation as well as the assessment of technical correctness and human factors of

the proposed transparency technique (e.g., intelligibility of the model output, trust,

or reliability). Prior refers to previously published, otherwise public, or empirically

established sources of information about target users and their context. This prior

evidence can be used to conceptualize and justify design choices around achieving

transparency. Finally, task specifies the considered medical image analysis task, such

as prediction, segmentation, or super resolution, and thus determines the clinical

requirements on performance. These themes should not be considered in isolation

because they interact with and are relevant to each other. For example, the technical
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feasibility of innovative transparency mechanisms based on the desired task may

influence both, the priors that will be considered during development as well as the

incorporation of target users to identify and validate alternatives.

We structured the findings in the systematic review using the defined six themes

of the INTRPRT, the adequacy of which was confirmed during data extraction.

IN: Incorporation

A common trend among included studies (n=33) was that the presented methods

were developed by multidisciplinary clinician-engineering teams, as was evidenced by

the incorporation of clinical specialists, such as physicians, radiologists, or pathologists,

in the study team and on the author lists. In light of the current bias towards clinicians

as end users of transparent ML algorithms, this observation suggests that designers

may have communicated with a limited subset of the intended end users. However,

no formative user research is explicitly described or introduced in these articles to

systematically understand the end users before implementing the model. Further,

incorporating clinical experts did not have a considerable impact on whether clinical

priors or standard or care guidelines (i.e., Level 2 evidence) were used to build the ML

system (39%/44% articles with/without the incorporation of end users use clinical

priors). Regarding the technical approach to provide transparency, the incorporation

of medical experts motivated designers to incorporate prior knowledge directly into the

model structure and/or inference for medical imaging (73%/64% articles with/without

the incorporation of end users do not need a second model to generate transparency).

IN: Interpretability

Transparency of ML systems was achieved through various techniques, including

attention mechanisms (n=15), use of human-understandable features (n=11), a com-

bination of deep neural networks and transparent traditional ML methods (n=7),

visualization approaches (n=5), clustering methods (n=4), uncertainty estimation
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/ confidence calibration (n=3), relation analysis between outputs and hand-crafted

features (n=3), and other custom techniques (n=20).

The use of an attention mechanism was the most common technique for adding

transparency. Attention mechanisms enabled the generation of pixel-attribution

methods [80] to visualize pixel-level importance for a specific class of interest [81–

95]. In segmentation tasks, where clinically relevant abnormalities and organs are

usually of small sizes, features from different resolution levels were aggregated to

compute attention and generate more accurate outcomes, as demonstrated in multiple

applications, e.g., multi-class segmentation in fetal Magnetic Resonance Imagings

(MRIs) [90] and multiple sclerosis segmentation in MRIs [93]. Clinical prior knowledge

was also inserted into the attention mechanism to make the whole system more

transparent. For instance, [83] split brain MRIs into 96 clinically important regions

and used a genetic algorithm to calculate the importance of each region to evaluate

Alzheimer’s Disease (AD).

Human-understandable features, e.g., hand-crafted low-dimensional features or

clinical variables (age, gender, etc.) were frequently used to establish transparent

systems. There existed two main ways to use human-understandable features in medical

imaging: 1) Extracting hand-crafted features, e.g., morphological and radiomic features,

from predicted segmentation masks generated by a non-transparent model [96–105]

followed by analysis of those hand crafted features using a separate classification

module; 2) Directly predicting human-understandable features together with the main

classification and detection tasks [106–110]. In these approaches, all tasks usually

shared the same network architecture and parameter weights.

Instead of explicitly extracting or predicting human-understandable features, other

articles further analyzed deep encoded features with human-understandable techniques

by following clinical knowledge. Techniques such as decision trees were constructed

based on clinical taxonomy for hierarchical learning [103, 111–116]. Rule-based
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algorithms [74] and regression methods [117] were used to promote transparency of the

prediction. [118] created a Graphical Convolution Network (GCN) based on clinical

knowledge to model the correlations among colposcopic images captured around five

key time slots during a visual examination.

We also identified various other methods to create transparent systems. These

methods can be categorized as visualization-based, feature-based, region importance-

based, and architecture modification-based methods. Each approach is discussed in

detail below.

Visualization-based methods provide easy-to-understand illustrations by overlay-

ing the original images with additional visual layouts generated from transparency

techniques. There existed two main visualization-based methods: 1) Visualizing pixel-

attribution maps: These maps may be generated using gradient-based importance

analysis [119, 120], pixel-level predicted probability [121], or a combination of different

levels of feature maps [122, 123]. 2) Latent feature evolution: Encoded features were

evolved according to the gradient ascent direction so that the decoded image (e.g.,

generated with an auto-encoder technique [124]) gradually change from one class to

another [125, 126].

Feature-based methods directly analyze encoded features in an attempt to make

the models transparent. Various feature-based transparency method were proposed

for transparent learning. [127–129] first encoded images to deep features and then

clustered samples based on these deep features for prediction or image grouping tasks.

Feature importance was also well-studied to identify features that are most relevant for

a specific class by feature perturbation [130, 131] and gradients [132]. [133] identified

and removed features with less importance for final prediction through feature ranking.

As an alternative to measure feature contribution, input region importance was

also analyzed to reveal sub-region relevance to each prediction class. Image occlusion

with blank sub-regions [134–136] and healthy-looking sub-regions [137] was used to
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find the most informative and relevant sub-regions for classification and detection

tasks.

Other approaches modified the network architecture according to relevant clinical

knowledge to make the whole system transparent. [90] pruned the architecture

according to the degree of scale invariance at each layer in the network. [138] created

ten branches with shared weights for ten ultrasound images to mimic the clinical

workflow of liver fibrosis stage prediction. [139] aggregated information from all three

views of mammograms and used traditional methods to detect nipple and muscle

direction, which was followed by a grid alignment according to the nipple and muscle

direction for left and right breasts. [140] proposed to learn representations of the

underlying anatomy with a convolutional auto-encoder by mapping the predicted and

ground truth segmentation maps to a low dimensional representation to regularize the

training objective of the segmentation network.

Some other methods used the training image distribution to achieve transparency

in classification. [141] used similar-looking images (nearest training images in feature

space) to classify testing images with majority votes. Causal inference with plug-in

clinical prior knowledge also introduced transparency directly to automatic systems

[142–144]. Confidence calibration and uncertainty estimation methods were also used

to generate additional confidence information for end users [145–147].

T: Targets

A striking observation was that none of the selected articles aimed at building

transparent systems for users other than care providers. Less than half of the articles

explicitly specified clinicians as the intended end users of the system (n=30). From

the remaining 38 articles, 17 articles implied that the envisioned end users would be

clinicians, while the remaining 21 did not specify the envisioned target users. Articles

that were more explicit about their end users were more likely to rely on clinical

prior knowledge (Level 2 evidence) in model design. In total, 47% of articles that
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specified or implied clinicians as end users implemented clinical prior knowledge in

the transparent systems while only 18% of articles without end user information use

clinical prior knowledge.

R: Reporting

Evaluating different properties of a transparent algorithm besides task-related

metrics, especially its performance in regards to achieving the desired human factors

engineering goals, complements the assessment of the ML model’s intended purpose.

The quality of the transparency component is currently being evaluated through four

main approaches. The first one involves metrics based on human perception, such as

the mean opinion score introduced in [140] to capture two expert participants’ rating

of the model’s outcome quality and similarity to the ground truth on a 5-point scale.

Using two study participants, pathologists’ feedback was also requested in [132] to

assess their agreement with patch-based visualizations that display features relevant

for normal and abnormal tissue. The level of agreement was not formally quantified,

but reported as a qualitative description. Similarly, one study participant was involved

in a qualitative assessment of explanations quality in [109, 133]. These evaluations are

different from empirical user studies as they are limited to a few individuals and were

mostly used to subjectively confirm the correctness of the transparent component.

The second approach attempted to quantify the quality of explanations for a

specific purpose (functionally-grounded evaluation [148]). For instance, some articles

evaluated the localization ability of post-hoc explanations by defining an auxiliary

task, such as detection [89, 114] or segmentation [94, 111, 123, 137] of anatomical

structures related to the main task. They then contrasted relevant regions identified

by the model with ground truth annotations. These quantitative measures (dice score,

precision, recall) allowed for further comparisons with traditional explanations methods.

Similarly, [141] defined a multi-task learning framework for image classification and

retrieval, evaluating retrieval precision and providing a confidence score based on the
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retrieved neighbors as an attempt to check the learned embedding space. Capturing

relevant features consistent with human intuition was proposed in [131] by measuring

the fraction of reference features recovered, which were defined according to a guideline.

Overall, the evaluation of explanations through auxiliary tasks required additional

manual efforts to get the necessary ground truth annotations.

Properties of the explanation itself were also quantified as their usefulness to

identify risky and safe predictions at a voxel-level for the main task by thresholding

on their predictive uncertainty values [147]. Other properties of explanations, such

as their correctness (accuracy of rules), completeness (fraction of the training set

covered) and compactness (size in bytes) were measured in [113]. A measure related

to completeness was defined in [114] and aimed to capture the proportion of training

images represented by the learned visual concepts, in addition to two other metrics:

the inter- and intra-class diversity and the faithfulness of explanations computed by

perturbing relevant patches and measuring the drop in classification confidence. Other

articles followed a similar approach to validate relevant pixels or features identified

with a transparent method; for example, in [82] a deletion curve was constructed

by plotting the dice score vs. the percentage of pixels removed and [81] defined a

recall rate when the model proposes certain number of informative channels. [120]

proposed to evaluate the consistency of visualization results and the outputs of a

CNN by computing the L1 error between predicted class scores and explanation pixel-

attribution maps. In summary, while the methods grouped in this theme are capable

of evaluating how well a method aligns with it’s intended mechanism of transparency,

they fall short of capturing any human factors-related aspects of transparency design.

The third, and most common approach, involved a qualitative validation of the

transparent systems (n=40) by showing pixel-attribution visualizations overlaid with

the input image or rankings of feature relevance, along with narrative observations on

how these visualizations may relate to the main task. These qualitative narratives might

25



include comparisons with other visualization techniques in terms of the highlighted

regions or the granularity/level of details. Furthermore, following a retrospective

analysis, the consistency between the identified relevant areas/features and prior

clinical knowledge in a specific task was a common discussion item in 37% of all the

articles (n=25); refer to articles [83, 112, 115, 135, 142] for examples. While grounding

of feature visualizations in the relevant clinical task is a commendable effort, the

methods to generate the overlaid information have been criticized in regards to their

fidelity and specificity [56, 149]. Further, as was the case for methods that evaluate

the fidelity of transparency information, these methods do not inherently account for

human factors.

Lastly, transparent systems can be directly evaluated through user studies on the

target population, in which the end users interact with the developed ML system to

complete a task based on a specific context. In [121], the evaluation was centered

on the utility of example-based and feature-based explanations for radiologists (8

study participants) to understand the AI decision process. Users’ understanding was

evaluated as the accuracy to predict the AI’s diagnosis for a target image and a

binary judgement on whether they certify the AI for similar images (and justify using

multiple-choice options). Users’ agreement with the AI’s predictions was measured

as well. The empirical evidence suggested that explanations enabled radiologists

to develop appropriate trust by making an accurate prediction and judgement of

the AI’s recommendations. Even though radiologists could complete the task by

themselves, a comparison with the team performance was not included, nor the

performance of the AI model in standalone operation. An alternative evaluation of

example-based explanation usefulness was performed in [146], in which pathologists

(14 study participants) determined the acceptability of a decision support tool by

rating adjectives related to their perceived objectivity, details, reliability, and quality

of the system. Compared to a CNN without explanations, the subjective ratings were
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more positive towards the explainable systems. However, neither the team (expert

+ AI) nor expert baseline performance was evaluated. The benefit of involving a

dermatologist to complete an image grouping task was demonstrated in [127], in which

domain knowledge was used to constrain updates of the algorithm’s training, resulting

in a better grouping performance than a fully automated method. The user evaluation

only measured the task performance. These studies that explicitly involve target

users to identify whether the envisioned human factors engineering goals were met

stand out from the large body of work that did not consider empirical user tests. It

is, however, noteworthy that even these exemplary studies are based on very small

sample sizes that may not be sufficiently representative of the target users. Careful

planning of the study design (including hypothesis statement, experimental design

and procedure, participants, and measures) that allows to properly evaluate whether

the system achieves the intended goals by adding transparency to the ML system is

fundamental, especially considering the resources needed and challenges involved in

conducting user testing in the healthcare domain.

Even though there were articles that assessed human factors-related properties of

the transparency mechanism, a striking majority of articles did not report metrics

beyond performance in the main task (n=49) or did not discuss the transparency

component at all (n=9). Task performance was evaluated in the majority of the

articles, 91% (n=62), and most of them contrasted the performance of the transparent

systems with a non-transparent baseline (n=41). Of those, 36 works (88%) reported

improved performance and 5 (12%) comparable results.

PR: Priors

We differentiate two types of priors that can be used as a source of inspiration to

devise transparent ML techniques: 1) Priors based on documented knowledge, and

especially clinical guidelines considering the unvaried end user specification identified

above; and 2) Priors based on computer vision concepts. Most (93%) articles that
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incorporated clinical knowledge priors (n=28) directly implemented these priors into

the model structure and/or inference, while only 68% articles with computer vision

priors (n=40) provided transparency by the model itself and/or the inference procedure.

A direct way to include clinical knowledge priors was through the prediction,

extraction, or use of human-understandable features. Morphological features, e.g.,

texture, shape and edge features were frequently considered and used to support the

transparency of ML systems [96, 99, 100, 102, 103, 107, 109, 118]. Biomarkers for

specific problems, e.g., end-diastolic volume (EDV) in cardiac MRI [97, 105] and

mean diameter, consistency, and margin of pulmonary nodules [106] were commonly

computed to establish transparency. For problems with a well-established image

reporting and diagnosis systems, routinely-used clinical features, e.g., Liver Imaging

Reporting and Data System (LI-RADS) features for Hepatocellular carcinoma (HCC)

classification [110] or Breast Imaging Reporting and Data System (BI-RADS) for

breast mass [108] suggested that the ML systems may be intuitively interpretable

to experts that are already familiar with these guidelines. Human-understandable

features relevant to the task domain were extracted from pathology images, e.g., area

and tissue structure features [96]. Radiomic features were also computed to establish

the transparency of ML systems [102, 150].

Besides human-understandable features, clinical knowledge can be used to guide

the incorporation of transparency within a model. Some articles (n=11) mimicked

or started from clinical guidelines and workflows to construct the ML systems [83,

101, 107, 108, 131, 138–140, 143, 144]. [101, 138, 139] followed the clinical workflow

to encode multiple sources of images and fused the encoded information for the

final prediction. Other works followed the specific clinical guidelines of the problems

to create transparent systems. [83] split brain MRIs into 96 clinical meaningful

regions as would be done in established clinical workflows and analyze all the regions

separately. Some other clinical knowledge priors were also presented. [111, 112,
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116, 151] established a hierarchical label structure according to clinical taxonomy for

image classification. [98] leveraged the transparency from the correlation between the

changes of polarization characteristics and the pathological development of cervical

precancerous lesions. Clinical knowledge from human experts was used to refine

an image grouping algorithm through an interactive mechanism in which experts

iteratively provided inputs to the model [127].

Priors that were derived from computer vision concepts rather than the clinical

workflow were usually not specific or limited to a single application. The justification

of transparency with computer vision priors was more general than that with clinical

knowledge priors. Image visualization-based techniques to achieve transparency

were most commonly considered in image classification problems. Common ways of

retrieving relevance information were: Visual relevancy through attention [81, 82, 84–

86, 88–95]; region occlusion by blank areas [134, 136] or healthy-looking regions [137];

and other techniques such as supervision of activated image regions by clinically

relevant areas [114, 115, 117, 119, 120, 122, 123], and image similarity [121]. Feature-

based computer vision transparency priors focused on the impact of feature evolution

or perturbation on the decoded output. Encoded features were evolved according to

the gradient ascent direction to create the evolution of the decoded image from one

class to the other [113, 125, 126]. Some articles directly analyzed the feature sensitivity

to the final prediction by feature perturbation [126, 130, 135] and importance analysis

[104, 132, 133], feature distribution [129, 130] or image distribution based on encoded

features [128, 141]. Confidence calibration and uncertainty estimation also increased

the transparency of the ML systems [145–147].

Even though attempting to identify the type of prior evidence used to justify the

development of a specific algorithm in each ML system, none of the included articles

formally described the process to formulate such priors to achieve transparency in

the proposed system. While the use of clinical guidelines and routine workflows may
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provide Level 2 evidence in support of the method affording transparency if the end

users are matched with those priors, relying solely on computer vision techniques may

not provide the same level of justification. This is because computer vision algorithms

are often developed as an analysis tool for ML developers to verify model correctness,

but are not primarily designed nor evaluated for use in end user-centered interfaces.

The lack of justification and formal processes to inform design choices at the early

stages of model development results in substantial risk of creating transparent systems

that rely on inaccurate, unintelligible, or irrelevant insights for end users. Being

explicit about the assumptions and evidence available in support of the envisioned

transparent ML system is paramount to build fewer but better-justified transparent

ML systems that are more likely to live up to expectations in final user testing, the

resources for which are heavily constrained.

T: Task

Various types of medical image analysis tasks were explored in the included articles.

Most of the articles (n=57) proposed transparent ML algorithms for classification and

detection problems, such as image classification and abnormality detection. Three-

dimensional (3D) radiology images (n=24) and pathological images (n=15) were

the most popular modalities involved in the development of transparent algorithms.

The complex nature of both 3D imaging in radiology and pathological images makes

image analysis tasks more time consuming than 2D image analysis that is more

prevalent in other specialities, such as dermatology, which motivates transparency

as an alternative to complete human image analysis to save time while retaining

trustworthiness. In detail, classification problems in 3D radiological images and

pathological images included abnormality detection in CT scans [84, 88, 91, 100, 102,

116, 120, 131], MRIs [83, 90, 92, 97, 104, 105, 109, 110, 123, 125, 130, 135, 137, 142],

pathology images [81, 87, 89–91, 94, 96, 98, 104, 129, 132–134, 141, 146] and positron

emission tomography (PET) images [95]. Mammography dominated the 2D radiology
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image applications [103, 107, 108, 113, 117, 119, 139, 144, 150], mainly focusing

on breast cancer classification and mass detection. For other 2D radiology image

applications, [121, 143] aimed at pneumonia and pneumothorax prediction from chest

X-rays and [138] created a transparent model for liver fibrosis stage prediction in liver

ultrasound images. Classification and detection tasks were explored in other clinical

specialities, including melanoma [111] and skin lesion grade prediction [90, 112, 113]

in dermatology, glaucoma detection from fundus images [86, 101, 122] and retinopathy

diagnosis [136] in ophthalmology, and polyp classification from colonoscopy images in

gastroenterology [114, 145].

Segmentation was another major application field (n=9). Research about trans-

parency mainly focused on segmentation problems for brain and cardiac MRIs [82,

85, 93, 99, 115, 128, 140]. Other segmentation problems included mass segmenta-

tion in mammograms [103], cardiac segmentation in ultrasound [140], liver tumor

segmentation in hepatic CT images, and skin lesion segmentation in dermatological

images [90]. There also existed other applications, e.g., image grouping in dermatolog-

ical images [127] and image enhancement (super resolution task) in brain MRIs [147]

and cardiac MRIs [140].

Most of the application tasks were routinely performed by human experts in current

clinical practice (n=60). A much smaller sample of articles (n=4) aimed to build

transparent systems for much more difficult tasks where no human baseline exists, e.g.,

5-class molecular phenotype classification from Whole Slide Images (WSIs) [96, 114],

5-class polyp classification from colonoscopy images [145], cardiac resynchronization

therapy response prediction from cardiac MRIs [109], and super resolution of brain

MRIs [147]. The remaining articles (n=4) did not include explicit information on

whether human baselines and established criteria exist for the envisioned application,

e.g., magnification level and nuclei area prediction in breast cancer histology images [90],

age estimation in brain MRIs [92], AD status in Diffusion Tensor Images (DTIs), and
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risk of sudden cardiac death prediction in cardiac MRIs [97]. As previously mentioned,

tasks that are routinely performed in clinical evidence may have robust human baselines

and clinical guidelines to guide transparent ML development. Applications that are

beyond the current possibilities, however, require a more nuanced and human-centered

approach that should involve the target end users as early as possible to verify that

the assumptions that drive transparency are valid.
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Chapter 3

Deep Hiearchical Multi-Label
Classification Applied to Chest
X-Ray Abnormality Taxonomies

Chest X-Rays (CXRs) are a crucial and extraordinarily common diagnostic tool,

leading to heavy research for computer-aided diagnosis (CAD) solutions. However,

both high classification accuracy and meaningful model predictions that respect

and incorporate clinical taxonomies are crucial for CAD usability. To this end, we

present a deep hierarchical multi-label classification (HMLC) approach for CXR

CAD utilizing the clinical taxonomy. Different than other hierarchical systems, we

show that first training the network to model conditional probability directly and

then refining it with unconditional probabilities is key in boosting performance.

In addition, we also formulate a numerically stable cross-entropy loss function for

unconditional probabilities that provides concrete performance improvements. Finally,

we demonstrate that HMLC can be an effective means to manage missing or incomplete

labels. To the best of our knowledge, we are the first to apply HMLC to medical

imaging CAD. We extensively evaluate our approach on detecting abnormality labels

from the CXR arm of the Prostate Lung Colorectal and Ovarian (PLCO) dataset,

which comprises over 198, 000 manually annotated CXRs. When using complete labels,

we report a mean Area Under Curve (AUC) of 0.887, the highest yet reported for
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this dataset. These results are supported by ancillary experiments on the PadChest

dataset, where we also report significant improvements, 1.2% and 4.1% in AUC and

average precision, respectively over strong “flat” classifiers. Finally, we demonstrate

that our HMLC approach can much better handle incompletely labelled data. These

performance improvements, combined with the inherent usefulness of taxonomic

predictions, indicate that our approach represents a useful step forward for CXR CAD.

3.1 Clinical Background

Chest X-Rays (CXRs) account for a large proportion of ordered image studies, e.g., in

the US it accounted for almost half of ordered studies in 2006 [152]. Commensurate

with this importance, CXR computer-aided diagnosis (CAD) has received considerable

research attention, both prior to the popularity of deep learning [153], and after-

wards [154–158]. These efforts have met success and typically approach the problem

as a standard multi-label classification scenario, which attempts to make a set of

individual binary predictions for each disease pattern under consideration. Truly

large-scale CXR classification started with the CXR14 dataset and the corresponding

model [154], with many subsequents improvements both in modeling and in dataset

collection [157–159]. These improvements include incorporating ensembling [160],

attention mechanisms [161–163], and localizations [156, 163–166]. A commonality

between these prior approaches is that they typically treat each label as an independent

prediction, which is commonly referred to as binary relevance (BR) learning within

the multi-label classification field [167]. However, prior work has well articulated the

limitations of BR learning [168]. A notable exception to this trend is [155], which

modeled correlations between labels using a recurrent neural network. Yet, pushing

raw performance further will likely require models that depart from standard multi-

label classifiers. For instance, despite their importance to clinical understanding and

interpretation [169–171], taxonomies of disease patterns are not typically incorpo-
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rated into CXR CAD systems, or for other medical CAD domains for that matter.

This observation motivates our work, which uses hierarchical multi-label classification

(HMLC) to both push raw Area Under Curve (AUC) performance further and also to

provide more meaningful predictions that leverage clinical taxonomies.

Organizing diagnoses or observations into ontologies and/or taxonomies is crucial

within radiology, e.g., RadLex [172], with CXR interpretation being no exception [173–

175]. This importance should also be reflected within CAD systems. For instance,

when uncertain about fine-level predictions, e.g., nodules vs. masses, a CAD system

should still be able to provide meaningful parent-level predictions, e.g., pulmonary

nodules and masses. This parent prediction may be all the clinician is interested

in anyway. Another important benefit is that observations are conditioned upon

their parent being true, allowing fine-level predictors to focus solely on discriminating

between siblings rather than on having to discriminate across all possible conditions.

This can help improve classification performance [176]. In addition, incorporating

taxonomy through hierarchical classification has been well-studied for natural image

classification. Prior to the emergence of deep learning, seminal approaches used

hierarchical and multi-label generalizations of classic algorithms [177–180]. With the

advent of deep learning, a more recent focus has been on adapting deep networks,

typically Convolutional Neural Networks (CNNs), for hierarchical classification [181–

185]. Interestingly, [178] use an approach similar to popular approaches seen in more

recent deep hierarchical multi-class classification of natural images [181–183], i.e., train

classifiers to predict conditional probabilities at each node. Within medical imaging,

there is work on HMLC medical image retrieval using either nearest-neighbor or multi-

layer perceptrons [186] or decision trees [175]. However, hierarchical classifiers have

not received much attention for medical imaging CAD and deep HMLC approaches

have not been explored at all.

Elegantly addressing the problem of incompletely labelled data is another benefit
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of incorporating taxonomy. To see this, note that many CXR datasets are collected

using Natural Language Processing (NLP) approaches applied to hospital picture

archiving and communication systems (PACSs) [154, 157]. This is a trend that

will surely increase given that PACSs remain the most viable source of large-scale

medical data [187, 188]. In such cases, it may not always be possible to extract

fine-grained labels with confidence. For instance, imaging conditions may have only

allowed a radiologist to report “opacity”, instead of a more specific observation of

“infiltration” vs. “atelectasis”. Added to this inherent uncertainty is the fact that NLP

approaches for CXR label extraction themselves can suffer from considerable levels

of error and uncertainty [157, 189]. As a result, it is likely that CAD systems will

increasingly be faced with incompletely labelled data, where data instances may be

missing fine-grained labels, but still retain labels higher up in the clinical taxonomy.

An HMLC approach can naturally handle such incompletely labelled data. Within

the computer vision and text mining literature, there is a rich body of work on

handling partial labels [190–197]. When missing labels are positive examples, this

problem has also been called positive and unlabelled (PU) learning. Seminal PU

works focus on multi-class learning [193, 194]. There are also efforts for multi-label

PU learning [190–192, 195–197], which attempt to exploit label dependencies and

correlations to overcome missing annotations. However, many of these approaches do

not scale well with large-scale data [191]. [190] and [191] provide two exceptions to

this, tackling large-scale numbers of labels and data instances, respectively. In our

case, we are only interested in the latter, as the number of observable CXR disease

patterns remains manageable.

For these reasons, we present a deep HMLC approach for CXR CAD. We extensively

evaluate our HMLC approach on the CXR arm of the Prostate Lung Colorectal

and Ovarian (PLCO) dataset [198] with supporting experiments on the PadChest

dataset [158]. Experiments demonstrate that our HMLC approach can push raw
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performance higher compared to both leading “flat” classification baselines and other

HMLC alternatives. We also demonstrate that our HMLC approach can robustly

handle extremely large proportions of incompletely labelled data with much less

performance loss than alternatives. To the best of our knowledge, we are the first

to outline an HMLC CAD system for medical imaging and the first to characterize

performance when faced with incompletely labelled data.

3.1.1 Contributions

Based on the above, the contributions of our work can be summarized as follows:

• Like other deep hierarchical multi-class classifiers, we train a classifier to predict

conditional probabilities. However, we operate in the multi-label space and we

also demonstrate that a second fine-tuning stage, trained using unconditional

probabilities, can boost performance for CXR classification even further.

• To handle the unstable multiplication of prediction outputs seen in unconditional

probabilities we introduce and formulate a numerically stable and principled

loss function.

• Using our two-stage approach, we are the first to apply hierarchical multi-label

classification (HMLC) to CXR CAD. Our straightforward, but effective, HMLC

approach results in the highest mean AUC value yet reported for the PLCO

dataset.

• In addition, we demonstrate how HMLC can serve as an effective means to handle

incompletely labelled data. We are the first to characterize CXR classification

performance under this scenario, and experiments demonstrate how HMLC can

garner even greater boosts in classification performance.

37



3.2 Materials and Methods

We introduce a two-stage method for CXR HMLC. We first outline the datasets and

taxonomy we use in Section 3.2.1 and then overview the general concept of HMLC

in Section 3.2.2. This is followed by Sections 3.2.3 and 3.2.4, which detail our two

training stages that use conditional probability and a numerically stable unconditional

probability formulation, respectively.

3.2.1 Datasets and Taxonomy

The first step in creating an HMLC system is to create the label taxonomy. In this

work, our main results focus on the labels and data found within the CXR arm of the

PLCO dataset [198], a large-scale lung cancer screening trial that collected 198 000

CXRs with image-based annotations of abnormalities obtained from multiple US

clinical centers. While other large-scale datasets [154, 157–159] are extraordinarily

valuable, their labels are generated by using NLP to extract mentioned disease patterns

from radiological reports found in hospital PACSs. While medical NLP has made great

strides in recent years, it still remains an active field of research, e.g., NegBio still

reports limitations with uncertainty detection, double-negation, and missed positive

findings for certain CXR terms [199]. However, irrespective of the NLP’s level of

accuracy, there are more inherent limitations to using text-mined labels. Namely,

examining a text report is no substitute for visually examining the actual radiological

scan, as the text of an individual report is not a complete description of the CXR

study in question. Thus, terms may not be mentioned, e.g., “no change”, even though

they are indeed visually apparent. Additionally, a radiologist will consider lab tests,

prior radiological studies, and the patient’s records when writing up a report. Thus,

mentioned terms, and their meaning, may well be influenced by factors that are not

visually apparent. Compounding this, text which is unambiguous given the patient’s

records and radiological studies may be highly ambiguous when only considering text
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Figure 3-1. Constructed label hierarchy from the PLCO dataset.

alone, e.g., whether a pneumothorax is untreated or not [200]. Indeed, the authors of

the PadChest dataset bring up some of these caveats themselves, which are relevant

even for the 27% of their radiological reports that are text-mined by hand, which

presumably have no NLP errors [158]. An independent study of CXR14 [154] concludes

that its labels have low positive predictive value and argues that visual inspection is

necessary to create radiological datasets [200]. Consequently, PLCO is unique in that

it is the only large-scale CXR dataset with labels generated via visual observation

from radiologists. Although the PLCO data is older than alternatives [154, 157–159],

it has greater label reliability.

Radiologists in the PLCO trial labelled 15 disease patterns, which we call “leaf

labels” in our taxonomy. Because of low prevalance, we merged “left hilar abnormality”

and “right hilar abnormality” into “hilar abnormality”, resulting in 14 labels. From the

leaf nodes, we constructed the label taxonomy shown in Figure 3-1. The hierarchical

structure follows the PLCO trial’s division of “suspicious for cancer” disease patterns

vs. not, and is further partitioned using common groupings [173], totalling 19 leaf and

non-leaf labels. While care was taken in constructing the taxonomy and we aimed for

clinical usefulness, we make no specific claim as such. We instead use the taxonomy

to explore the benefits of HMLC, stressing that our approach is general enough to

incorporate any appropriate taxonomy. Figure 3-2 visually depicts examples from our
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Figure 3-2. Example PLCO CXRs drawn from three levels of our taxonomy. On the
left, at the higest level of taxonomy, i.e., “Abnormality”, disease patterns may manifest as
a variety of visual features within the lung parenchyma, lung pleura, or the surrounding
organs/tissues. As one progresses down the taxonomy, i.e., to “Opacity”, the discriminating
task is narrowed into identifying the “cloudy” patterns seen in both “Infiltration” and
“Major Atelectasis.”

chosen CXR taxonomy.

As supporting validation to our main PLCO experiments, we also validate on the

PadChest dataset [158], which contains 160, 845 CXRs whose labels are drawn from

either manual or automatic extraction from radiological text reports. We focus on labels

categorized as “radiological findings”, which are more likely to correspond to actual

disease patterns found on the CXRs [158]. Any CXR with a solitary “Unchanged”

label is removed, resulting in 121, 242 samples. Uniquely, PadChest offers a complete

hierarchical structure for all labels. We remove labels with less than 100 manually

labelled samples and only retain labels that align with our PLCO taxonomy. This

both ensures we have enough statistical power for evaluation and that we are retaining

PLCO-like terms that we can confidently treat as clinically significant. As a result,

total 30 out of 191 labels are selected, and our supplementary includes more details

of the included and excluded labels. The resulting taxonomy is shown in Figure 3-3.

Unlike PLCO, certain parent labels can be positive with no positive children labels,
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Figure 3-3. Constructed label hierarchy from the PadChest dataset.

e.g., “Aortic Elongation”.

3.2.2 Hierarchical Multi-Label Classification

With a taxonomy established, a hierarchical approach to classification must be estab-

lished. Because this is a multi-label setting, all or none of the labels in Figure 3-1

can be positive. The only restriction is that if a child is positive, its parent must

be too. Siblings are not mutually exclusive. For PLCO, we assume that each image

is associated with a set of ground-truth leaf labels and their antecedents, i.e., there

are no incomplete paths. However, for PadChest a ground-truth path may terminate

before a leaf node. A training set, may have missing labels.

We use a DenseNet-121 [201] model as a backbone. If we use k to denote the

total number of leaf and non-leaf labels, we connect k fully connected layers to the

backbone’s last feature layer to extract k scalar outputs. Each output is assumed to

represent the conditional probability (or its logit) given its parent is true. Thus, once

the model is successfully trained, unconditional probabilities can be calculated from
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the output using the chain rule, e.g., from the PLCO taxonomy the unconditional

probability of scarring can be calculated as

P (Scar.) = P (Abn.)P (Pulm.|Abn.)P (Scar.|Pulm.), (3.1)

where we use abbreviations for the sake of typesetting. In this way, the predicted

unconditional probability of a parent label is guaranteed to be greater than or equal

to its children labels. We refer to the conditional probability in a label hierarchy as

Hierarchical Label Vonditional Probability (HLCP), and the unconditional probability

calculated following the chain rule as Hierarchical Label Unconditional Probability

(HLUP). The network outputs can be trained either conditionally or unconditionally,

which we outline in the next two sections.

3.2.3 Training with Conditional Probability

Similar to prior work [181–183], in the first stage of the proposed training scheme,

each classifier is only trained on data conditioned upon its parent label being positive.

Thus, training directly models the conditional probability. The shared part of the

classifiers, i.e., feature layers from the backbone network, is trained jointly by all

the tasks. Specifically, for each image the losses are only calculated on labels whose

parent label is also positive. For example, and once again using the PLCO taxonomy,

when an image with positive Scarring and no other positive labels is fed into training,

only the losses of Abnormality and the children labels of Pulmonary Abnormality and

Abnormality are calculated and used for training.

Figure 3-4 (a) illustrates this training regimen, which we denote HLCP training.

In this work, we use cross entropy (CE) loss to train the conditional probabilities,

which can be written as

LHLCP =
∑︂

m∈M

CE (zm, ẑm) ∗ 1{za(m)=1}, (3.2)
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HLCP Training HLUP Training

(a) (b)

Figure 3-4. The HLCP and HLUP losses are depicted in (a) and (b), respectively, where
black and white points are positive and negative labels, respectively. Blue areas indicate
the activation area in the loss functions.

where M denotes the set of all disease patterns, and m and a(m) denote a disease

pattern and its ancestor, respectively. Here CE(·, ·) denotes the cross entropy loss,

and zm ∈ {0, 1} denotes the ground truth label of m, with ẑm corresponding to the

network’s sigmoid output.

Training with conditional probability is a very effective initialization step, as it

concentrates the modeling power solely on discriminating siblings under the same parent

label, rather than having to discriminate across all labels, which eases convergence

and reduces confounding factors. It also alleviates the problem of low label prevalence

because fewer negative samples are used for each label.

3.2.4 Fine Tuning with Unconditional Probability

In the second stage, we finetune the model using an HLUP CE loss. This stage aims

at improving the accuracy of unconditional probability predictions, which is what

is actually used during inference and is thus critical to classification performance.

Another important advantage is that the final linear layer sees more negative samples.

Predicted unconditional probabilities for label m, denoted p̂m, are calculated using

the chain rule:

p̂m =
∏︂

m′∈A(m)
ẑm′ , (3.3)
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where A(m) is the union of label m and its antecedents. When training using

unconditional probabilities, the loss is calculated on every classifier output for every

data instance. Thus, the HLUP CE loss for each image is simply

LHLUP =
∑︂

m∈M

CE (zm, p̂m) . (3.4)

Figure 3-4(b) visually depicts this loss.

A naive way to calculate (3.4) would be a direct calculation. However, such an

approach introduces instability during optimization, as the training would have to

minimize the product of network outputs. In addition, the product of probability

values within [0, 1] can cause arithmetic underflow. For this reason, we derive a

numerically stable formulation below.

Denoting the network’s output logits as ŷ(.), the predicted unconditional probability

of label m can be written as:

p̂m =
∏︂
m′

1
1 + exp(−ym′) , (3.5)

where we use m′ to denote m′ ∈ A(m) for notational simplicity.

The HLUP CE loss is calculated as:

LHLUP = − zm log(p̂m) − (1 − zm) log(1 − p̂m), (3.6)

= − zm log
(︄∏︂

m′

1
1 + exp(−ym′)

)︄

− (1 − zm) log
(︄

1 −
(︄∏︂

m′

1
1 + exp(−ym′)

)︄)︄
, (3.7)

where zm is the ground truth label of m.

The formulation in (3.7) closely resembles several cross-entropy loss terms combined

together. To see this, we can break up the second term in (3.7) to produce the following

formulation:

LHLUP = − zm log
(︄∏︂

m′

1
1 + exp(−ym′)

)︄

− (1 − zm) log
(︄∏︂

m′

(︄
1 − 1

1 + exp(−ym′)

)︄)︄
+ γ, (3.8)
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where γ is a scalar quantity that must be formulated. The log terms above can then

be decomposed as

LHLUP =
∑︂
m′

(︄
−zm log

(︄
1

1 + exp(−ym′)

)︄

−(1 − zm) log
(︄

1 − 1
1 + exp(−ym′)

)︄)︄
+ γ, (3.9)

=
∑︂
m′

ℓm′ + γ, (3.10)

where ℓm are individual cross entropy terms, using zm and ym′ as the ground truth and

logit input, respectively. Note that (3.10) allows us to take advantage of numerically

stable CE implementations to calculate ∑︁m′ ℓm′ . However to satisfy (3.10), we will

need γ to satisfy:

γ =(1 − zm) log
(︄∏︂

m′

(︄
1 − 1

1 + exp(−ym′)

)︄)︄

− (1 − zm) log
(︄

1 −
(︄∏︂

m′

1
1 + exp(−ym′)

)︄)︄
, (3.11)

=(1 − zm) log
(︄ ∏︁

m′ exp(−ym′)∏︁
m′(1 + exp(−ym′))

)︄

− (1 − zm) log
(︄∏︁

m′(1 + exp(−ym′)) − 1∏︁
m′(1 + exp(−ym′))

)︄
, (3.12)

=(1 − zm) log
(︄

exp(∑︁m′ −ym′)∏︁
m′(1 + exp(−ym′)) − 1

)︄
, (3.13)

=(1 − zm)
(︄∑︂

m′
−ym′ − log

(︄∏︂
m′

(1 + exp(−ym′)) − 1
)︄)︄

. (3.14)

If the product within the log-term of (3.14) is expanded, with 1 subtracted, it will

result in

γ = (1 − zm)
⎛⎝∑︂

m′
−ym′ − log

⎛⎝ ∑︂
S∈P(A(m))\{∅}

exp
⎛⎝∑︂

j∈S

−yj

⎞⎠⎞⎠⎞⎠ , (3.15)

where S enumerates all possible subsets of the powerset of A(m), excluding the empty

set. For example if there were two logits, y1 and y2, the summation inside the log

would be:

exp(−y1) + exp(−y2) + exp(−y1 − y2). (3.16)
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The expression in (3.15) can be written as

γ = (1 − zm)
⎛⎝∑︂

m′
−ym′ − LSE

⎛⎝⎧⎨⎩∑︂
j∈S

−yj ∀S ∈ P(A(m)) \ {∅}

⎫⎬⎭
⎞⎠⎞⎠ , (3.17)

where LSE is the LogSumExp function. Numerically stable implementations of the

LogSumExp, and its gradient, are well known. By substituting (3.17) into (3.10), a

numerically stable version of the HLUP CE loss can be calculated.

Enumerating the powerset produces an obvious combinatorial explosion. How-

ever, for smaller-scale hierarchies, like that in Figure 3-1, it remains tractable. For

larger hierarchies, an O(|A(m)|) solution involves simply interpreting the LogSumExp

as a smooth approximation to the maximum function, which we provide here for

completeness:

γ ≈ (1 − zm)
⎛⎝∑︂

m′
−ym′ − max

⎛⎝⎧⎨⎩∑︂
j∈S

−yj ∀S ∈ P(A(m)) \ {∅}

⎫⎬⎭
⎞⎠⎞⎠ , (3.18)

=

⎧⎨⎩(1 − zm)
(︂∑︁

m′ −ym′ −∑︁
j:yj<0 −yj

)︂
, if ∃ ym′ < 0

(1 − zm) (∑︁m′ −ym′ − max({−ym′})) , otherwise
. (3.19)

3.3 Experimental

We perform two types of experiments to validate our HMLC approach. The first uses

the standard completely labelled setup, helping to reveal how our use of taxonomic

classification can help produce better raw classification performance than typical “flat”

classifiers. The second uses incompletely labelled data under controlled scenarios to

show how our HMLC approach can naturally handle such data, achieving even higher

boosts in relative performance.

3.3.1 Complete Labels

Experimental Setup We test our HMLC approach on both the PLCO [198] and

PadChest [158] datasets, using the taxonomies of Figure 3-1 and Figure 3-3, respec-

tively. Our emphasis is on PLCO due to its more reliable labels, but evaluations
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on PadChest provide important experimental support, especially given its larger

taxonomy. Following accepted practices in large-scale CXR classification [154, 157,

158], we split the data into single training, validation, and test sets, corresponding

to 70%, 10%, and 20% of the data, respectively. Data is split at the patient level,

and care was taken to balance the prevalence of each disease pattern as much as

possible. As mentioned above, our HMLC approach uses a trunk network, with a

final fully-connected layer outputting logit values for each of the nodes of our chosen

taxonomy. Our chosen network is DenseNet-121 [201], implemented using TensorFlow.

We first train with the HLCP CE loss of (3.2) fine-tuning from a model pretrained

from ImageNet [202]. We refer to this model simply as HLCP. To produce our final

model, we then finetune the HLCP model using the HLUP CE loss of (3.4). We

denote this final model as HLUP-finetune.

Comparisons In addition to comparing against HLCP, we also compare against three

other baseline models, all using the same trunk network fine-tuned from ImageNet

pretrained weights. The first, denoted BR-leaf, is trained using CE loss on the

14 fine-grained labels. This measures performance using a standard multi-label BR

approach. The second, denoted BR-all is very similar, but trains a CE loss on all labels

independently, including non-leaf ones. In this way, BR-all measures performance

when one wishes to naively output non-leaf abnormality nodes, without considering

label taxonomy. Finally, we also test against a model trained using the HLUP CE

loss directly from ImageNet weights, rather than finetuning from the HLCP model.

As such, this baseline, denoted HLUP, helps reveal the impact of using a two-stage

approach vs. simply training an HLUP classifier in one step. For all tested models,

extensive hyper-parameter searches were performed on the NVIDIA cluster to optimize

mean validation fine-grained AUCs.

For comparisons to external models, we also compare to a recent DenseNet121 BR

approach [156] trained on the PLCO data. But, we stress that direct comparisons of
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numbers are impossible, as [156] used different data splits and only evaluated on 12

fine-grained labels. In the interest of fairness we compare against both (a) their best

reported numbers when only training a classifier on CXR disease patterns and (b)

their best reported numbers overall, in which the authors incorporated segmentation

and localization cues. For (a), we use numbers reported on an earlier work [203],

which were higher. Unfortunately, both sets of their reported numbers are based

on training data that also included the ChestXRay14 dataset [162], providing an

additional confounding factor that hampers any direct comparison.

Finally, we also run experiments to compare our numerically stable implementation

of HLUP CE loss in (3.8) to: (a) the naive approach of directly optimizing (3.3); and

(b) to a recent rescaling approximation, originally introduced for the multiplication of

independent, rather than conditional probabilities, seen in multi-instance learning [165].

This latter approach re-scales each individual probability multiplicand (term) in (3.3)

to guarantee that the product is greater than or equal to 1e-7. Similar to the naive

approach, the product is then optimized directly using CE loss. For the PLCO dataset,

based on a maximum depth of four for the taxonomy, we implement this approach by

re-scaling each multiplicand in (3.3) to [0.02, 1].

Evaluation Metrics We evaluate our approach using AUC and average precision

(AP), calculated across both leaf and non-leaf labels, when applicable. Additionally,

we also evaluate using conditional AUC and AP metrics, which are metrics that reflect

the complicated evaluation space of multi-label classification. In short, because more

than one label can be positive, multi-label classification performance has exponentially

more facets for evaluation than single-label or even multi-class settings. Conditional

metrics are one such facet, that focus on model performance conditioned on certain

non-leaf labels being positive. Here, we restrict our focus to CXRs exhibiting one

or more disease patterns, i.e., abnormality being positive. As such, this sheds light

on model performance when it may be critical to discriminate what combination of
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disease patterns are present, which is crucial for proper CXR interpretation [173].

3.3.2 Incomplete Labels

Experimental Setup We also use the PLCO dataset [198] to characterize the benefits

of our HMLC approach when faced with incomplete labels. However, after publication

of our original work [24], the PLCO organizers altered their data release policies and

only released a subset of the original dataset, containing 88 737 labeled CXRs from

24 997 patients. For this reason, we perform our incomplete labels experiments on this

smaller dataset, splitting and preparing the data in an identical manner as described

in Section 3.3.1.

To simulate a scenario where learning algorithms may be faced with incomplete

labels, we removed known labels from the training set using the following controlled

scheme:

1. We choose a base deletion probability, β ∈ [0, 1].

2. For data instances with positive labels for “Pleural Abnormality”, “Opacity”,

and “Pulmonary Nodules and Masses”, we delete all their children labels with

a probability of β. For example, if we delete the children labels of a positive

“Pleural Abnormality” instance, then it is no longer known whether the “Pleural

Abnormality” label corresponds to “Pleural Fibrosis”, or “Fluid in Pleural Space”,

or both.

3. We perform the same steps for data instances with positive labels for “Pulmonary

Abnormality” and “Abnormality”, except with probabilities of 0.3β and 0.32β,

respectively. For example, if the children of a positive instance of “Abnormality”

were deleted, then it is only known there are one or more disease patterns present,

but not which one(s).

4. A higher-level deletion overrides any decision(s) at finer levels.
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5. Because of their extremely low prevalence, we ignore the “Major Atelectasis”

and “Distortion in Pulmonary Architecture” labels in training and evaluation.

Note that this scheme makes it more likely to have a missing fine-grained label over

a higher-level label, which we posit follows most scenarios producing incomplete

labels. When labels are deleted, we treat them as unknown and do not execute any

training loss on them. We test our HMLC algorithm and baselines on the following β

values: {0, .1, .2, .3, .4, .5, .6, .7}, which ranges from no incompleteness to roughly 70%

of fine-grained labels being deleted. To allow for stable comparisons across β values,

we also ensure that if a label was deleted at a certain value of β, it will also be deleted

at all higher values of β. To ease reproducibility, we publicly release our data splits

(https://github.com/hchen135/Hierarchical-Multi-Label-Classification-X-Rays). All

other implementation details are also identical to that of Section 3.3.1.

Evaluation Metrics and Comparisons We measure AUC values and compare our

chosen model of HLUP finetune against BR-leaf and BR-all.

3.4 Results and Discussion

We focus in turn on experiments with complete and incomplete labels, which can be

found in Section 3.4.1 and Section 3.4.2, respectively.

3.4.1 Complete Labels

Our complete labels experiments first focus on the benefits of our HLUP-finetune

approach compared to alternative “flat” and HMLC strategies. Then, we discuss

results specifically focusing on our numerically stable HLUP CE loss.
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Table 3-I. PLCO AUC and AP values across tested models. Mean values across leaf and
non-leaf disease patterns are shown, as well as for leaf labels conditioned on one or more
abnormalities being present.

Leaf labels Non-leaf
labels

Leaf labels conditioned on
abnormality

AUC AP AUC AP AUC AP
[203] 0.865 N/A N/A N/A N/A N/A
[156] 0.883 N/A N/A N/A N/A N/A
BR-leaf 0.871 0.234 N/A N/A 0.806 0.334
BR-all 0.867 0.221 0.852 0.440 0.808 0.323
HLUP 0.872 0.214 0.856 0.436 0.799 0.288
HLCP 0.879 0.229 0.857 0.440 0.822 0.329
HLUP-finetune 0.887 0.250 0.866 0.460 0.832 0.342

3.4.1.1 HLUP-finetune Performance

Table 3-I outlines the PLCO results of our HLUP-finetune approach vs. competitors.

As the table demonstrates, the standard baseline BR-leaf model produces high AUC

scores, in line with prior work [203]; however, it does not provide high-level predictions

based on a taxonomy. Naively executing BR training on the entire taxonomy, i.e.,

the BR-all model, does not improve performance. This indicates that if not properly

incorporated, the label taxonomy does not benefit performance.

In contrast, the HLCP model is indeed able to match BR-leaf’s performance on the

fine-grained labels, despite also being able to provide high-level predictions. HLUP-

finetune goes further by exceeding BR-leaf’s fine-grained performance, demonstrating

that our two-stage training process can produce tangible improvements. This is

underscored when comparing HLUP-finetune with HLUP, which highlights that

without the two-stage training, HLUP training cannot reach the same performance.

If we limit ourselves to models incorporating the entire taxonomy, our final HLUP-

finetune model outperforms BR-all by 2% and 2.9% in leaf-label mean AUC and AP

values, respectively. Because HLUP-finetune shares the same labels as BR-all, the

performance boosts of the former over the latter demonstrate that the additional
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Disease Indices:
1. Abnormality (6516)
2. Bone lesion (906)
3. Pulmonary (2522)
4. Pulmonary nodules and masses (3261)
5. Cardiac abnormality (809)
6. COPD (466)
7. Opacity (155)
8. Scarring (1448)
9. Distortion of pulmonary architecture (4)
10. Pleural abnormality (684)
11. Mass (91)
12. Nodule (1068)
13. Hilar (80)
14. Granuloma (2135)
15. Pleural based mass (33)
16. Infiltration (145)
17. Major atelecstasis (12)
18. Pleural fibrosis (650)
19. Fluid in pleural space (35)

BR-all

HLUP-finetune

Figure 3-5. Comparison of AUC scores for all fine-grained and high-level (non-leaf)
disease patterns for the BR-all and HLUP-finetune models. The dashed line separates the
fine-grained from the high-level (non-leaf) disease patterns. Boldface labels and larger
graph markers denote disease patterns exhibiting statistically significant improvement
(p < 0.05) using the StAR software implementation [1] of the non-parametric test of [2].

output nodes seen in HMLC are not responsible for performance increases. Instead,

it is indeed the explicit incorporation of taxonomic structure that leads to improved

performance.

Figure 3-5 provides more details on these improvements, demonstrating that

AUC values are higher for HLUP-finetune compared to the baseline method for all

fine-grained and high-level disease patterns. Interested readers can find these AUC

values in our supplementary materials. Although not graphed here for clarity reasons,

HLUP-finetune also outperformed the HLCP method for all disease patterns. Of note

is that statistically significant differences also respect the disease hierarchy, and if a

child disease pattern demonstrates statistically significant improvement, so does its

parent.

Of particular note, when considering AUCs conditioned on one or more abnormali-

ties being present (last column of Table 3-I), the gap between all HMLC approaches and

“flat” classifiers increases even more. As can be seen in such settings, HLUP-finetune
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Table 3-II. PadChest AUC and AP values across tested models. Mean values across leaf
and non-leaf disease patterns are shown, as well as for leaf labels conditioned on one or
more abnormalities being present.

Leaf labels Non-leaf
labels

Leaf labels conditioned on
abnormality

AUC AP AUC AP AUC AP

BR-leaf 0.825 0.104 N/A N/A 0.743 0.212
BR-all 0.825 0.110 0.820 0.221 0.739 0.204
HLUP 0.831 0.114 0.828 0.220 0.752 0.211
HLCP 0.831 0.135 0.833 0.240 0.765 0.244
HLUP-finetune 0.837 0.145 0.840 0.253 0.778 0.261

still exhibits increased performance over the baseline models and also the next-best

hierarchical model. Importantly, if we compare the conditional AUCs between BR-all

and HLUP-finetune, we see a 2.4% increase. This indicates that HMLC is particularly

effective at differentiating the exact combination of abnormalities present within an

image. This may reduce the amount of spurious and distracting predictions upon

deployment, but more investigation is required to quantify this.

We also note that HLUP-finetune managed to outperform [156]’s AUC numbers,

despite the latter incorporating almost twice the amount of data and also including

additional localization and segmentation tasks. However, we again note that [156]

used a different data split and only 12 fine-grained labels, so such comparisons can

only be taken so far.

Experiments on PadChest further support these results, with trends mirroring

that of the PLCO experiments. As can be seen in Table 3-II, HLUP-finetune outper-

forms both the BR baselines and HMLC alternatives. Moreover, just like the PLCO

experiments, when evaluating AUC and AP conditioned on one or more abnormalities

being present, the performance gaps between HLUP-finetune and alternatives further

increase. The relative performance improvements demonstrate that our HMLC ap-

proach generalizes well to a different CXR dataset outside of PLCO, even though
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PadChest uses a different taxonomy and was collected with very different patient

populations at a much later date.

The PLCO and PadChest performance boosts are in line with prior work that

reported improved classification performance when exploiting taxonomy, e.g., for text

classification [177, 204], but here we use HMLC in a more modern deep-learning

setting and for an imaging-based CAD application. In particular, given that taxonomy

and ontology are crucial within medicine, the use of hierarchy is natural. Because the

algorithmic approach we take remains very simple, our HMLC approach may be an

effective method for many other medical classification tasks outside of CXRs.

The discussion of the performance boosts garnered by HMLC are very important,

but it should also be noted that HMLC provides inherent benefits outside of raw

classification performance. By ensuring that clinical taxonomy is respected, i.e., a

parent label’s pseudo-probability will always be greater than or equal to any of its

children’s, HMLC provides a more interpretable and understandable set of predictions

that better match the top-down structure of medical ontology.

In addition to exploring the benefits of the conceptual approach of HMLC to CXR

classification, our work also demonstrates that a two-stage HLUP finetuning approach

can provide performance boosts over the more common one-stage HLCP training seen

in many prior deep-learning works [181–183]. As such, our two-stage approach may

also prove useful to hierarchical classifiers seen in other domains, such as computer

vision or text classification.

3.4.1.2 Numerically Stable HLUP

Table 3-III demonstrates that our numerically stable HLUP CE loss results in much

better AUCs compared to the competitor rescaling approach [165] and to naive HLUP

training when starting from ImageNet weights. However, there were no performance

improvements when compared to the naive approach when finetuning from the HLCP
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Table 3-III. Comparison of AUCs produced using different HLUP CE loss implementations
for PLCO.

HLUP
(naive)

HLUP
(rescale)

HLUP
(ours)

HLUP-
finetune
(naive)

HLUP-
finetune
(rescale)

HLUP-
finetune
(ours)

0.864 0.853 0.872 0.886 0.867 0.887
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β (Incompleteness Severity)
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HLUP-finetune

Figure 3-6. Mean AUC scores under different levels of label incompleteness with confidence
intervals representing the 2.5th and 97.5th percentiles of 5000 resampling with replacement
bootstrap rounds [3].

weights. We hypothesize that the predictions for the HLCP are already at a sufficient

quality that the numerical instabilities of the naive HLUP CE loss are not severe

enough to impair performance. Nonetheless, given the improvements when training

from ImageNet weights, these results indicate that our HLCP CE loss does indeed

provide tangible improvements in convergence stability. We expect these improvements

to be greater given taxonomies of greater depth, and our formulation should also prove

valuable to multi-instance setups which must optimize CE loss over the product of

large numbers of probabilities, e.g., the 256 multiplicands seen in [165].
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3.4.2 Incomplete Labels

Figure 3-6 shows the results of our incompletely labelled experiments. As can be

seen when all labels are present, i.e., β = 0, the results mirror that of Section 3.4.1,

with HLUP-finetune outperforming the baseline models and the BR-all providing

no improvements over BR-leaf. As the incompleteness severity increases, BR-leaf’s

performance drastically drops, while BR-all and HLUP-finetune are much better able

to manage label incompleteness. At the highest β level, the performance gap between

HLUP-finetune and BR-leaf almost reaches 7%. Per-abnormality AUC values can be

found in our supplementary materials.

Our results demonstrate that incorporating hierarchy can be an effective means

to manage incomplete labels. Specifically, while HLUP-finetune’s performance does

indeed drop as the incompleteness severity increases, it does so at a drastically reduced

rate compared to the standard BR-leaf classifier. Interestingly, BR-all, which trains

all outputs but without incorporating a taxonomy, also manages to retain an equally

graceful performance drop. However, HLUP-finetune’s roughly 2% AUC performance

advantage over BR-all indicates that properly incorporating the taxonomic hierarchy

is necessary to boost classification performance. We suspect the anomaly at β = 0.6

is due to variability caused by the randomness of the training procedure and we

reran our experiments at this β value which confirmed this. Ideally, running multiple

training runs at each β value would allow us to produce confidence bars that take

into account effects from random weight initialization and sampling, but time and

computational resources did not allow us to perform this extremely demanding set of

experiments. Finally, HLUP-finetune has the added important benefit of producing

predictions that respect the taxonomy, which is something that BR-all does not do.

Thus, these results indicate that when possible, incorporating a HMLC approach can

be an effective means to manage incompletely labelled data. As the prevalence of

text-mined PACS medical imaging data increases, we expect the need for approaches
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to gracefully handle missing labels to increase, and our HMLC approach may provide

a useful cornerstore of future work in this direction.

3.5 Conclusions

We have presented a two-stage approach for deep HMLC of CXRs that combines

conditional training with an unconditional probability fine-tuning step. To effect

the latter, we introduce a new and numerically stable formulation for HLUP CE

loss, which we expect would also prove valuable in other training scenarios involving

the multiplication of probability predictions, e.g., multi-instance learning. Through

comprehensive evaluations, we report the highest mean AUC on the PLCO dataset

yet, outperforming hierarchical and non-hierarchical alternatives. Supporting exper-

iments on the PadChest dataset confirm these results. We also show performance

improvements conditioned on one or more abnormalities being present, i.e., predicting

the specific combination of disease patterns, which is crucial for CXR interpretation.

Experiments with incompletely labelled data also demonstrate that our two-stage

HMLC approach is an effective means to handle missing labels within training data.

There are several interesting avenues of future work. For instance, while the

straightforward HMLC approach we take enjoys the virtue of being easy to implement

and tune, it is possible that more sophisticated approaches, e.g., using hierarchical

features or dedicated classifiers, may garner even further improvements. Prior work

using classic, non deep-learning approaches, explored these options [177–180, 204],

and their insights should be applied today. Another important topic of future work

should be on incorporating uncertainty within HMLC. This would allow a model,

when appropriate, to predict high confidence for non-leaf label predictions but lower

confidence for leaf label predictions, enhancing its usefulness in deployment scenarios.

Future work should also consider applications outside of CXRs both within and

without medical imaging, e.g., genomics or proteomics. Finally, one issue for further
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investigation is to better understand the implications of the annotation noise described

by [156], both for training and for evaluation. Relevant to this work, assessing label

noise at higher levels of hierarchy should be an important focus going forward.
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Chapter 4

Toward Automated Interpretable
AAST Grading for Blunt Splenic
Injury

The American Association for the Surgery of Trauma (AAST) splenic organ injury scale

(OIS) is the most frequently used CT-based grading system for blunt splenic trauma.

However, reported inter-rater agreement is modest, and an algorithm that objectively

automates grading based on transparent and verifiable criteria could serve as a high-

trust diagnostic aid. To pilot development of an automated interpretable multi-stage

deep learning-based system to predict AAST grade from admission trauma CT. Our

pipeline includes 4 parts: 1) automated splenic localization, 2) Faster RCNN-based

detection of pseudoaneurysms (PSA) and active bleeds (AB), 3) nnU-Net segmentation

and quantification of splenic parenchymal disruption (SPD), and 4) a directed graph

that infers AAST grades from detection and segmentation results. Training and

validation is performed on a dataset of adult patients (age ≥ 18) with voxelwise

labeling, consensus AAST grading, and hemorrhage related outcome data (n = 174).

AAST classification agreement (weighted κ) between automated and consensus AAST

grades was substantial (0.79). High grade (IV and V) injuries were predicted with

accuracy, PPV, and NPV of 92%, 95%, and 89%. AUC for predicting hemorrhage

control intervention was comparable between expert consensus and automated AAST
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grading (0.83 vs. 0.88). The mean combined inference time for the pipeline was 96.9

seconds. The results of our method were rapid and verifiable, with the high agreement

between automated and expert consensus grades. Diagnosis of high-grade lesions

and prediction of hemorrhage control intervention produced accurate results in adult

patients.

4.1 Clinical Background

Splenic injury is the most common solid organ injury in adult blunt abdominal

trauma [26, 27]. It is routinely evaluated on admission CT when abdominal trauma is

suspected, both in stable patients, and in those with hemodynamic compromise that

demonstrate transient response to fluid resuscitation [205]. In 2018, the American

Association for the Surgery of Trauma (AAST) Patient Assessment Committee (PAC)

introduced an updated AAST splenic organ injury scale (OIS) for treatment decision

making based on admission two-phase abdominopelvic CT examination. While AAST

grading has existed as a research tool for decades, the recent update reflects an attempt

to operationalize this grading system for point of care use and standardize management

practices. Treatment options vary by injury severity, including routine observation for

low grade injuries, and urgent angioembolization or splenectomy to control hemorrhage

in high-grade injuries. Patient selection is critical as hemorrhage control interventions

require mustering limited resources and staff and are not without the potential for

both short and long-term morbidity, including from catheter-related complications

and an increased lifetime risk of overwhelming post-splenectomy infection (OPSI) [206,

207]. Clinical decision making should be rapid and based on objective criteria, as

the spleen is a highly vascular organ and severe splenic injury can potentially lead to

exsanguination, multi-organ system failure, and death [34].

CT-based AAST grading enjoys widespread adoption among trauma surgeons,

however, in a survey of AAST member practices, only 45% of respondents reported
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routine use of the AAST grading for blunt splenic trauma by radiologists at their

institutions [28]. Even in an ideal circumstance of ubiquitous radiologist adoption and

reporting, classification systems are prone to variability in the perceived grades among

readers with varying experience and specialization, and reported agreement for the

splenic AAST OIS has been modest under research conditions [208, 209]. In practice,

radiologists are subject to shifting circumstances in their clinical environment with

respect to study volume, reading room distractions, and fatigue-related performance

degradation, such as from circadian rhythm disruptions after multiple consecutive night

shifts [29–33]. Furthermore, admission trauma CT interpretation is time consuming.

Among expert trauma radiologists, interpretation turnaround times for severely injured

patients commonly exceed 20-30 minutes [29].

Automated AAST grading could potentially provide a rapid, objective, and accurate

second-reader capability, but there has been limited automation research involving

the individual CT features of splenic injury and no work has described automated

AAST grading to date [210–214].

Black box methods are prone to spurious causal inference [215] and are unaccount-

able to end-users as the reasoning used to arrive at a decision cannot be verified.

For an intelligent system to be considered responsible, ethical, and trustworthy -a

requirement in the high-stakes setting of trauma care- it must at a minimum include

a layer of explainability to ensure that the decisions made are justifiable [16, 216].

Since AAST grading is a multi-stage process, the intermediate steps of an automated

method should be interpretable to end-users, giving them agency to verify individual

model assumptions should they choose to do so. Interpretability involves the provision

of packets of symbolic information that are semantically similar to the common-sense

causal reasoning that would be used by an expert to arrive at a decision- in this case,

at a given splenic injury grade [217, 218].

To this end, we leverage transparent deep learning approaches that are based on
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clinical grading standards to develop a novel automated multi-stage deep learning

(DL) method that predicts the AAST splenic OIS using the most salient features of the

grading system, namely active bleeding, pseudoaneurysm, and splenic parenchymal

disruption [37].

4.2 Materials and Methods

4.2.1 Datasets

The work was conducted as part of an IRB approved study and utilized two deidentified

single institution datasets. The primary clinical dataset is previously described [205]

and consists of 174 dual phase trauma CT scans from consecutively selected adult

patients (age ≥ 18) collected between 2017-2019 and archived at 1.5-3 mm section

thickness, with voxelwise labeling of pseudoaneurysm (PSA), active bleed (AB), and

splenic parenchymal disruption (SPD). PSAs in this context are vascular injuries

contained by splenic parenchyma with densities similar to or slightly higher than the

blood pool [26]. Foci of AB extend beyond the splenic parenchyma, and typically

increase in size on the portal venous phase. The portal venous phase is optimal for

delineation of SPD and AB, whereas PSA is best detected on the arterial phase [219,

220].

All studies in this dataset had accompanying AAST consensus grading by three

expert trauma radiologists, and outcome data including whether patients underwent

angioembolization or splenectomy. Foci of active bleed and pseudoaneurysm occupy a

small fraction of an abdominal CT volume when present. To address AB and PSA

class imbalance, the dataset was augmented with labeled dual phase CTs from a

second existing blunt splenic injury dataset with 68 consecutively selected patients

who underwent splenic hemorrhage control intervention and had AB, PSA or both on

CT between 2007-2016 [221] (ABPSA dataset). A third dataset with the subset of
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41 labeled splenic normals from the medical segmentation decathlon challenge [222]

(SMSD dataset) was employed to develop an initial automated localization step of

injured spleens.

4.2.2 Summary of the AAST Splenic Organ Injury Scale and
Clinical Relevance

All patients with intraperitoneal AB receive a grade of V in this system, while any

patient with PSA but no AB receives a grade of IV [37]. This assignment is irrespective

of size and number of splenic vascular lesions. High grade (IV and V) injuries are

considered to necessitate angioembolization (AE) for hemorrhage control at a minimum,

and surgeons may opt instead for early splenectomy. Rates of failure for attempted

splenic salvage for high-grade injuries are historically high, ranging from 20% to over

60% [207, 223–226] but are improved with liberal use of angioembolization [224]. The

surgeon’s judgement and institution-specific guidelines play an important role in the

choice of hemorrhage control intervention [225]. In patients without splenic vascular

injury, the AAST splenic OIS grade is primarily determined by the extent of visually

estimated SPD [37, 227] using diameter measurement cut-offs established using rules

of thumb in the original 1994 AAST classification [227]. Management of grade 3

injuries (with greater than approximately 3 cm estimated SPD depth but less than

25% parenchymal involvement) is highly variable. At many institutions, these injuries

are considered low grade and are routinely managed conservatively [225], however

some investigators report improved salvage rates with routine angiographic screening

followed by AE if a vascular injury is seen on the image intensifier [207, 228], and still

others recommend the routine use of AE as a precautionary measure [229]. Variability

in practice patterns lies in the potential for missed small or subtle vascular injury

on CT due to variable scan timing, and transient vessel thrombosis or spasm [229].

Low grade (grade I and II) injuries have less than approximately 3 cm SPD depth.
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Conservative management is considered the standard of care for low grade injuries

across institutions [225, 226].

4.2.3 Automated Splenic Injury Grading Pipeline: Overview

The complete pipeline for our proposed automated AAST OIS grade prediction method

is shown in 4-1. The pipeline begins with an automated 3D cropping step aimed at

a) reducing irrelevant background which could otherwise contribute to false positive

results and b) increasing the proportion of positive voxels in the data given small

target volumes of AB, PSA, and SPD. 2D Faster R-CNN [230] is then applied to

the detection of AB on portal venous phase axial slices and PSA on arterial axial

slices, leveraging the optimal phase for detection of each feature [219, 220]. SPD is

segmented using nnU-Net [231] and quantified using voxel counting. Vascular injury

detections and SPD volumes are then fed into a hierarchical rules-based system to

derive the predicted AAST grade.

4.2.4 Step 1: Automated Splenic Localization

A semi-supervised method using the Noisy Student Algorithm [232] was employed to

derive whole-organ label masks for injured spleens. The method initially utilizes a

3D U-Net trained on the external medical segmentation decathlon challenge (SMSD)

“teacher” splenic normal labels to generate pseudo-labels in the inhouse clinical and

ABPSA datasets. The labels and pseudo-labels are used to create improved spleen

segmentations in an iterative process. The 3D U-Net predicted segmentations from a

given iteration are used as ground truth training cases in the next iteration, resulting

in gradual segmentation refinement. We used the MONAI platform [233] to construct

the 3D U-Net [234], with a learning rate of 1e-4. All training was performed using an

RTX 3090 NVIDIA GPU with 64 GB of RAM. Training involved six iterations with

600 epochs per iteration. Subsequently, the splenic volume is dilated by 30 voxels to
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include relevant perisplenic soft tissue structures and axial images above and below

the dilated volume are excluded. Following this pre-processing step, visual inspection

of each CT study indicated that all foci of vascular injury and SPD were contained

within the cropped range and there were no failures.

4.2.5 Step 2: Vascular Lesion Detection

Following splenic localization, 2D Faster R-CNN [230], a two-stage object detection

network, was used to detect PSA on axial arterial phase images, and AB on axial

portal venous phase images. The network first extracts image features and generates

region proposals. Second, it fine tunes the box proposal size and location and classifies

each proposal. We used ResNeXt-101 with Feature Pyramid Network (FPN) as

the backbone given best performance in the COCO object detection task [235, 236].

Training was augmented using the non-overlapping ABPSA dataset, within which

each CT study includes at least one focus of pseudoaneurysm or active bleed. Faster

R-CNN was trained in five-fold cross-validation, splitting the combined dataset evenly

into 5 independent subsets to avoid data leak, and using each fold for validation and

the remaining 4 folds for training. Thresholds were selected to achieve the highest

possible sensitivity. Faster R-CNN was implemented in the detectron2 platform [237],

with the following parameters: learning rate of 0.02, a 10x decay at 15,000 iterations,

and a total of 30,000 training iterations.

4.2.6 Step 3: Splenic Parenchymal Disruption Segmentation
and Quantification

We applied nnU-Net [231] to segment splenic parenchymal disruption (SPD) due to

its state-of-the-art performance across a large variety of segmentation tasks. nnU-

Net trains four models in five-fold cross-validation (2D U-Net, low resolution 3D

U-Net, high resolution 3D U-Net, and a low- and high-resolution cascaded 3D U-
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Net) and determines the best performing model or ensemble of models for inference.

Design choices including hyperparameter selection and pre-processing steps are made

automatically from specific dataset properties known as the dataset and pipeline

fingerprint [231]. Voxel counting is then applied to automated label masks to determine

laceration volumes.

4.2.7 Step 4: AAST Grade Determination

The automated detections and segmentation-derived volumes are directly applied to a

hierarchical AAST OIS-based system of rules (Figure 4-1). The directed graph starts

from the highest-grade decision, proceeding toward the lowest grade in a manner

similar to how AAST grading is employed in clinical practice (Table 4-I). First, if

AB is detected, the patient receives a grade of V. If no AB is detected, but PSA

is detected, the patient receives a grade of IV. If no vascular injury is present, the

grade is determined by the extent of splenic parenchymal disruption. In our method,

grades are stratified by the automated SPD volume in place of visual estimation of

injury depth using a logistic regression-derived cut-off. Since low grade lesions are

managed conservatively, we combined grades I and II into a single “low grade” class.

A laceration volume of 14 mL optimally discriminated between low grade (I and II)

and grade III lesions.

4.3 Results

Descriptive statistics for the clinical dataset are provided in Table 4-II. Weighted

Cohen’s κ between automated and consensus grades in the clinical dataset of 174

patients was 0.79.

Using radiologist expert consensus grading as the reference standard, diagnosis of

high grade (IV and V) splenic injuries- those that require urgent hemorrhage control

intervention for splenic salvage [226, 238]- was achieved with an accuracy, sensitivity,
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specificity, NPV, and PPV of 92%, 93%, 92%, 95%, and 89%. The proposed method

correctly identified almost all high-grade injuries. Only 1 of 69 patients with high

grade (IV and V) injuries was under-estimated as a grade III injury. 9 grade III

injuries were over-estimated as high grade. All patients classified as grade I and II by

radiologists (n = 91) were correctly predicted as low-grade injuries using our method.

This indicates that among patients who would normally be managed conservatively,

there were no false positive severe injuries. In subanalysis of high-grade injuries, 19

out of 51 consensus grade IV patients are over-estimated by our method as grade V,

but only 2 out of 18 grade V patients are underestimated as grade IV. The AUC for

predicting a composite outcome of intervention with angioembolization or splenectomy

was 0.83 for automated grades, comparable to an AUC of 0.88 for consensus grading.

Performance of detection and segmentation tasks. For AB detection in the

clinical and ABPSA datasets, Faster R-CNN achieved an AUC, accuracy, sensitivity,

specificity, NPV, and PPV of 0.84, 88%, 82%, 91%, 91%, and 83% (Table 4-III). For

PSA, Faster RCNN achieved an AUC, accuracy, sensitivity, specificity, NPV, and PPV

of 0.79, 83%, 91%, 78%, 94%, and 71%. Examples of AB and PSA box detections are

shown in Figure 4-2.

A review of AB false positive detections revealed that in 13 of 19 patients, the de-

tection network misclassified pseudoaneurysm as active bleeding on the portal venous

phase, owing to lingering pseudoaneurysm blush which otherwise characteristically

washes out and is inconspicuous on this phase [26, 219]. This could be attributable to

imperfect CT timing using a descending thoracic aorta ROI trigger threshold or vari-

ability in cardiac output between patients [205]. Nevertheless, box proposals of these

lesions provide transparent results which would allow radiologists, interventionalists,

or surgeons to reject detections they disagree with.

Patients in the clinical dataset had labeled laceration with a range of volumes

between 0.1-255.1 mL (median volume: 1.8 mL). All patients with < 1 mL had
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low grade injuries. Automated segmentations in patients with >= 1 mL SPD and

no vascular injury that would take absolute priority in injury grading had volume

Similarity (VS) index of 0.68, and dice similarity coefficient of 0.54 with respect

to manual labels, corresponding with high-saliency visual results that conformed to

the margins of laceration (Figure 4-3). Pearson’s r between manual and automated

volumes was 0.89 (‘excellent’ range).

Mean inference times for our method included 1.5 seconds for automated splenic

localization, 4.2 seconds for Faster R-CNN, and 91.2 seconds for ensembled nnU-Net,

for a total of 96.9 seconds.

4.4 Discussion

The AAST splenic organ injury scale is often used to guide surgical management

decisions. High grade (AAST IV and V) lesions typically require angioembolization

or splenectomy for hemorrhage control [205, 224–226, 238]. Low grade (AAST I and

II) lesions are routinely managed conservatively [225, 226]. Management of grade III

lesions remains variable and institution dependent [207, 228, 229]. AAST grading

is limited by modest interobserver agreement, inconsistent reporting, and the long

interpretation and reporting times of admission trauma CT [28, 29, 208, 209]. An

interpretable automated system could augment objective decision-making as a second-

reader diagnostic aid, producing verifiable visual results that could be accepted or

rejected by the end-user.

To date we are not aware of previous attempts to automate AAST splenic OIS

grading, either with black box or interpretable methods. Few studies report automated

methods for detection or segmentation of individual features relevant to the grading of

splenic injury. Several works describe whole-spleen segmentation in trauma patients

using semi-automated [210] and automated methods, such as with 3D active shape

68



contours and probabilistic atlases [211, 212], however whole-spleen volumes are of

unknown clinical import in trauma. Other work describes black-box detection but not

quantification of splenic parenchymal disruption using a random forest method and a

convolutional neural network with a long short term memory (LSTM) model [213].

One group examined detection of active bleed but not pseudoaneurysm using a

hand-crafted feature engineering-based method. Of 30 splenic injury subjects, 4

had active bleeding. The method had a detection accuracy and PPV of only 73%

and 33% respectively [214]. In more recent work using deep learning segmentation

methods, automated liver parenchymal disruption volumes predicted angiopositivity

on subsequent conventional angiography [239]. A variety of robust methods have

emerged using DL for non-trivial hemorrhage-related tasks, including hemoperitoneum,

extraperitoneal pelvic hematoma, and hemothorax quantitative visualization [240–243].

Additional DL-related work in the spleen has demonstrated the feasibility of splenic

vascular injury segmentation, however without an initial detection step or the ability

to differentiate between pseudoaneurysm and active bleeding [221]. Quantification of

vascular injury burden is presently not included in the AAST OIS framework, and

detection of vascular injury is made in a binary fashion on the patient level.

In the present work, we pilot development of an interpretable automated AAST

splenic grade prediction pipeline using the dual-phase imaging protocol currently

recommended by the AAST Patient Assessment Committee [37]. Dual phase imaging

is optimized for delineation of splenic disruption and detection of active bleeding on

the portal venous phase, and detection of pseudoaneurysm on the arterial phase [219,

220].

Our pipeline begins with robust splenic localization, followed by detection of

pseudoaneurysm and active bleed using Faster R-CNN with a RexNeXt-101 backbone,

and nnU-Net segmentation of splenic parenchymal disruption. The detections and

splenic volumes are then fed into an intuitive rules-based system guided by major
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concepts of the AAST OIS combined with consideration of clinical evidence and

expert knowledge. Using the Landis and Koch scheme [244], we achieved substantial

agreement with expert consensus ground truth AAST grading (weighted κ of 0.79), and

a 92% accuracy for predicting high grade (IV and V) lesions. The AUC of automated

grades for predicting a composite outcome of angioembolization or splenectomy was

comparable to prediction of the same outcome using expert consensus AAST grading.

The method is much more rapid in inference compared with reported admission trauma

CT interpretation times.

For active bleed detection, Faster R-CNN achieved an accuracy, NPV, and PPV

of 88%, 91%, and 83%, and for pseudoaneurysm detection, an accuracy, NPV, and

PPV of 83%, 94%, and 71%. nnU-Net results demonstrated reasonably high DSC and

volume similarity for a task involving small target volumes, with excellent Pearson

correlation between manual and automated volumes (0.89) and high-quality visual

results. A threshold of 14 mL optimally distinguished between low grade (I and II)

and grade III lesions.

Our study had some limitations. In our clinical dataset, we were not able to

determine a threshold distinguishing between grade III and the subset of grade IV

patients without detected pseudoaneurysms as there were only two such patients,

both with volumes that overlapped with the volume distribution of grade III injuries.

A larger multi-institutional dataset will contain more such patients and likely allow

determination of additional cut-offs for grade IV and V injuries. The 2018 AAST OIS

is not without controversy. Despite the recommendation of dual phase scanning, this

protocol isn’t widely adopted at present. Some high-volume level I trauma centers

perform scanning of the abdomen in the portal venous phase only or use a single-phase

split bolus protocol [245–247]. Additional features included in the AAST OIS were

selected using heuristics without strong evidence. For example, the estimated size

of subcapsular hematoma is included, although our review of the literature yielded
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few studies supporting this is as a univariate predictor of outcome [248], and we

are not aware of studies showing that this feature is independently predictive when

accounting for SPD, and vascular injury. Laceration and intraparenchymal hematoma

(blood pooled within the interstices of a laceration) are typically indistinguishable and

grouped as splenic parenchymal injury or disruption in scientific works and clinical

practice [219, 249]. The 2018 AAST discriminates between intra- and extraperitoneal

active bleeding even though the extensive literature on vascular lesions does not

differentiate between active bleeding confined to or extending beyond the capsule

into the peritoneal cavity [219, 220, 250, 251]. Additionally, the AAST OIS currently

includes capsular tear for discriminating between grade I and II lesions [37]. The

capsule is microscopic and not directly visible on CT. Capsular laceration is only

implied by the presence of SPD and this feature may be redundant. By including only

those features in our simplified system supported by strong evidence [219, 225, 238,

250, 252], we managed to achieve substantial agreement with human expert grading.

The internal and clinical validity of each feature of the 2018 AAST splenic OIS is an

active area of investigation by the American Society of Emergency Radiology (ASER)

Splenic Trauma Expert Panel [253], and we will consider inclusion of additional

features as dictated by its ongoing conclusions and further emergence of scientific

evidence. Finally, our method is trained and validated using only adult patients, and

future work will ultimately need to include pediatric trauma victims.

Other future avenues of investigation may include collaboration with participants

of the ASER panel, which has curated a large, as yet unlabeled, multicenter CT

dataset with studies performed using a variety of protocols on a wide range of scanner

makes and models. The method could be refined and retrained and tested on a

hold-out sample. A simulated deployment study comparing multileader agreement

and diagnostic performance with and without our interpretable method as a diagnostic

support system is also planned.
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In conclusion, in this single center pilot study, we developed a rapid interpretable

automated method for grading splenic injury using the most salient features of the

AAST splenic OIS. The method achieved high agreement with, and accuracy compared

to consensus expert AAST grading in cross-validation. Prediction of hemorrhage

control intervention was comparable between automated and consensus grading. Future

avenues include scaling to a larger dataset, conducting a simulated deployment study,

and assessing user acceptance.
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Figure 4-1. Overall pipeline of the proposed automatic splenic AAST grading algorithm.
Splenic localization is first performed, which crops irrelevant slices on abdominopelvic CT
cranial and caudal to the spleen and neighboring soft tissue that may harbor foci of active
bleeding. Active bleeding is detected on portal venous CT scans and pseudoaneurysm
is detected on arterial CT scans by Faster RCNN on localized axial sections. SPD is
segmented by nn-UNet, and volume is calculated. Active bleeding and pseudoaneurysm
detection and SPD volume is then fed into a directed graph for AAST grading prediction.

73



Table 4-I. Comparison of the 2018 spleen AAST splenic organ injury scale (OIS) grading
criteria and lesions in our method selected using available evidence and expert knowledge.
SPD- splenic parenchymal disruption; PSA- pseudoaneurysm; AB- active bleeding.

AAST grading criteria Lesions in our
system

Grade I
Subcapsular hematoma < 10% surface area

SPD < 14 mL

Parenchymal laceration < 1 cm depth
Capsular tear1

Grade II
Subcapsular hematoma2 10-50% surface area
Intraparenchymal hematoma < 5 cm
Parenchymal laceration 1-3 cm

Grade III
Subcapsular hematoma > 50% surface area

SPD > 14 mL
with no PSA or ABRuptured subcapsular/intraparenchymal

hematoma3 >= 5 cm
Parenchymal laceration4 > 3 cm depth

Grade IV
Any injury in the presence of a contained splenic
vascular injury5 PSA
Parenchymal laceration producing > 25%
devascularization6

Active bleeding confined within splenic capsule7

Grade V Any injury in the presence of a splenic vascular
injury AB

with active bleeding extended beyond the spleen
into the peritoneum8

Note: Capsular tear1 and subcapsular hematoma2 are ignored in our simplified system (see
discussion). Laceration and intraparenchymal hematoma3,4 are grouped as splenic parenchymal
disruption. Contained splenic vascular injury5 is synonymous with pseudoaneurysm on CT. In our
dataset, only two patients with ground truth consensus grade of IV had laceration with no detected
pseudoaneurysm, precluding derivation of a data-driven cut-off differentiating grade III and IV
lesions by SPD volume6. Current literature does not differentiate between active bleeding confined
to or extending beyond the capsule7,8.
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Table 4-II. Ground-truth descriptive statistics of the clinical splenic injury dataset.

n (%)
Total 174 (100)
Active bleeding 28 (16)
Pseudoaneurysm 54 (31)
PSD ≥ 1cm3 93 (53)
Expert consensus grade

Grade V 18 (10)
Grade IV 50 (29)
Grade III 15 (9)
Grade I & II 91 (52)

Note: All CT studies in the ABPSA dataset (n = 68) has pseudoaneurysm (n = 31, 46%), active
bleed (n = 54, 80%), or both (n = 17, 25%).

Table 4-III. Faster RCNN detection results for active bleeding and pseudoaneurysm.

AUC accuracy sensitivity specificty PPV NPV
Active Bleeding 0.84 88% 82% 91% 91% 83%
Pseudoaneurysm 0.79 83% 91% 78% 94% 71%

Figure 4-2. pseudoaneurysm (“psa”, part A) and active bleed (“ab”, part B) box detection
on arterial and portal venous phase images, respectively. Detection is achieved using Faster
R-CNN with a very deep (ResNeXt-101) backbone. Numbers shown refer to probability of
correct detection as a fraction of 1.
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Figure 4-3. Splenic parenchymal disruption (SPD) segmentation/quantitative visualization
for a range of volumes. On regression, an optimal cut-off of 14 mL distinguished between
low grade (I and II) and grade III lesions.
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Chapter 5

An Interactive Approach to Region
of Interest Selection in Cytologic
Analysis of Uveal Melanoma Based
on Unsupervised Clustering

Facilitating quantitative analysis of cytology images of fine needle aspirates of uveal

melanoma is important to confirm diagnosis and inform management decisions. Ex-

tracting high-quality regions of interest (ROIs) from cytology whole slide images is a

critical first step. To the best of our knowledge, we describe the first unsupervised

clustering-based method for fine needle aspiration cytopathology images that auto-

matically suggests high-quality ROIs. Our method is integrated in a graphical user

interface that allows for interactive refinement of ROI suggestions to tailor analysis to

any specific specimen. We show that the proposed approach suggests ROIs that are in

very good agreement with expert-extracted regions and demonstrate that interactive

refinement results in the extraction of more high-quality regions compared to purely

algorithmic extraction alone.

5.1 Clinical Background

Uveal Melanoma (UM) is the most common primary intraocular malignancy in

adults [39]. As standard care for UM, Fine Needle Aspiration Biopsy (FNAB) is often
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performed to confirm the diagnosis and to obtain cell aspirates for both Gene Expression

Profile (GEP) and cytopathology image analysis for prognostication. According to

recent analysis, primary UM clusters in two distinct subgroups according to its GEP;

the first corresponding to low grade melanoma with little to no metastatic risk, and

the second corresponding to high grade melanoma with high metastatic risk, which

results in 6 times of 5-year probability of metastatic death [254]. While GEP analysis

of fine needle aspirates has shown good accuracy for identifying patients at high risk of

metastatic disease, the only commercially available test is expensive, requires special

storage and transportation, has a long turn around time and is only available in the US.

Most importantly, despite its efficacy, the commercial GEP test still occasionally fails

resulting in unpleasant clinical surprises and unexpected early metastatic death. There

is increasing evidence that the underlying genetic profile affects cancer growth on

multiple scales. Radiomics, for example, exploit this observation to develop imaging-

derived biomarkers that are informative for prognosis [40]. We hypothesize that such

multi-scale analysis will also be useful for prognosis in UM. Specifically in addition

to GEP, we would like to extract imaging-features from the cytopathology images.

In addition to complementing GEP analysis, such cytology-based test could provide

a cheap and widely available alternative for prognostication of UM [255]. However,

pathologist analysis of cytopathology images is infeasible, as 1) it is a very time-

consuming and tedious task, and 2) none of the manually defined cytopathological

features proved particularly robust for predicting metastatic risk. One reason is

the cytopathology images exhibit much higher variation in cell quality and artifact

compared to histology Whole Slide Image (WSI) which contains an entire slice of

tissue.

To reach this goal, we need to facilitate or even automate quantitative analysis

of the cytopathology images. Unlike histology WSI where several learning-based

algorithms for Region of Interest (ROI) extraction have been proposed [256–259], all
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existing approaches for high-level cytopathology image analysis operate on manually

identified ROIs [260–262]. To this end, we develop an interactive tool that our envision

will be beneficial in two ways: First, it can be deployed in pathologist-centric workflows

to guide pathologist review, thereby reducing the experts workload. Second, the tool

provides an opportunity for pathologists to guide algorithmic evaluation, e. g. by

refining the content that is submitted for automated analysis of the slide, e. g. for

GEP classification. Such an interactive design may prove beneficial in building trust,

accelerating workflows, and reducing mistakes, of both automated algorithms and

pathologists.

We present our first steps in this direction that consider the extraction of high-

quality ROIs (areas with multiple clear cancer cells) from gigapixel-sized histological

architecture, cytopathology images. Further analysis of high-quality ROIs is described

in Chapter 6. We propose a Human-Interactive Computationally-Assisted Tool (HI-

CAT) that supports ROI selection with a 2-step coarse-to-fine unsupervised clustering.

Coarse-to-fine concepts are widely used due to the small targets (e.g. lesions and

organs) in medical imaging. Spatial coarse-to-fine segmentation is applied to target

small organs and lesions [263–267]. Spatial coarse-to-fine clustering is also commonly

used to extract ROIs from high spatial resolution WSIs and several machine-learning

approaches exist for this task [256, 257]. The coarse-to-fine concept in our algorithm

aims to resolve the high-quality ROI imbalance problems in cytopathology images. The

HICAT system also provides interactivity to allow for patient-specific refinement of

ROI selection at application time. This refinement provides insight into and some con-

trol over the region selection, and results in the extraction of more informative regions

compared to the purely algorithmic extraction. Such human-machine partnership may

contribute to pathologists building trust in AI-assisted tools. The current research

community in human interaction with deep learning so far has been largely limited

to segmentation problems [268–272], but our algorithm offers human interaction in a
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brand new direction for high-quality ROI extraction.HICAT increases Recall in ROIs

from 7.44% to 42.32%, while Precision remains the same 83%. On average, 1318 ROIs

per cytopathology image are extracted, which contains enough information for further

analysis. Our AI-assisted ROI selection workflow is more than 10 times faster than

manual ROI extraction by pathologists that was used previously [41].

5.2 Method

Given a cytopathology image, we seek to extract square-shaped ROIs, similar to those

shown in Figure 5-2(a), which lend themselves well for further cell-level algorithmic

analysis. Our ROI extraction pipeline contains of a 2-step clustering that is followed

by an interactive decision boundary definition to assign image-quality to centroids.

The clustering algorithm will be discussed in Section 5.2.1 and Section 5.2.2. The first

step aims to remove blank images, i.e., Figure 5-2(g), to greatly reduce processing time

for the second step, which further clusters the selected ROIs based on image content.

After the 2-step clustering, a global decision boundary for all cytopathology images is

defined by centroid-level human annotation. Interactive refinement of this decision

boundary is then possible for every patient and cytopathology image to improve the

algorithmic ROI selection based on centroid annotation (Section 5.2.3).

5.2.1 Step-1 Clustering

The given cytopathology image is first down-sampled such that each pixel in the

resulting image corresponds to the average signal within one area. The size of this area

is only constrained by its compatibility with the following clustering steps. We found

the size 512 × 512 is able to perform sufficiently well. K-means clustering is then used

to cluster pixel intensities into 2 centroids that intuitively correspond to regions with

bright and dark average intensities. Since cytopathology images are acquired with the

bright-field technique, pixels with low and high intensities correspond to regions with
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Figure 5-1. Overview of the HICAT.

(a) (b) (c) (d) (e) (f) (h)(g)

Figure 5-2. Different types of ROIs in cytopathology images. (a) High-quality ROIs, which
contain more than 3 clear cancer cells. (b) Blood cell ROIs. (c) Blurred ROIs. (d) Fluid
ROIs. (e) Multi-layer cell ROIs. (f) Artifact ROIs. (g) Blank ROIs. (h) Borderline ROIs,
which contain more than 3 clear cancer cells, but contains a large portion of low-quality
areas.

high and low tissue content, respectively. We select the darker centroid for further

processing via Step-2 clustering in Section 5.2.2. Because the exact magnitude of

bright and dark centroid intensities varies with cell distribution and illumination, this

scheme is applied to every cytopathology image independently.

5.2.2 Step-2 Clustering

Step-2 clustering aims to separate high-quality images with more than 3 clear cancer

cells from low-quality images that either show blood cells, multiple layers of cells

and fluid, are blurred or otherwise corrupted with artifact. Examples of such images
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(a) (b) (c) (d) (e)

Figure 5-3. An example of Step-1 clustered area and some of the corresponding Step-2
clustering ROIs. (a) Step-1 area. (b) Top-left corner. (c) Top-right corner. (d) Bottom-left
corner. (e) Bottom-right corner.

are provided in Figure 5-2. Since this separation is based on image content that, in

cytology, can vary considerably across pixels (cf. Figure 5-3), a patch-based network

is applied to perform clustering on 228 × 228 pixel ROIs in naive resolution which

is much smaller than the areas extracted from Step-1 clustering. These patches are

extracted with a stride of 128 from the ROIs selected in Step-1 clustering. A previous

state-of-the-art patch-based method, BagNet17 [273] is used as the backbone. The

input images of size 512 × 512 pixels are first down-sampled 4 times and an average

pooling layer with kernel size 6 and stride 4 is attached after the final residual block,

so that each output pixel corresponds to one desired patch (if using other parameters,

the receptive field’s size and stride cannot be guaranteed to take on the desired value).

Finally, a convolutional layer with kernel size 1 × 1 compresses the feature into a lower-

dimension space with dimension d. We follow [274, 275] to involve k-means clustering

for the d-dimension network outputs. K-means centroids and patch assignments are

initialized by the pre-trained network and are fixed in the training phase. L2 loss

is applied to force patch features to be close to the assigned centroid. Centroids

and patch assignments are updated during the validation phase. We reassign empty

centroids during training to avoid trivial parametrization. Step-2 clustering is trained

on all cytopathology images simultaneously.

In order to reduce the number of centroids that focus on fluid and artifact images,

we introduce a centroid-based coarse-to-fine clustering strategy. Only a portion of

centroids are initialized first, and new centroids are inserted during training in order
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(a) (b)

Figure 5-4. Examples for cytopathology image-specific ROI refinement GUI. For each
screenshot, top-left image is the down-sampled WSI, top-right image shows the corre-
sponding spatial states for all ROIs, white/light grey/grey means high-/mix-/poor-quality
ROIs. Dark grey corresponds to blank images removed by Step-1 clustering. Pink pixels
correspond to uncertain ROIs. Bottom left image is the corresponding full resolution ROI
that the mouse hovers over. By double clicking the pixel on the down-sampled WSI or
state image, a window in bottom right will pop out for annotation. (a) shows the overall
behaviour of the state image. (b) shows the zoomed-in version for detail visualization.

to increase the probability of these centroids to account for cell images, which is

referred as CTF in Figure 5-1. We reassign/insert empty/new centroids around the

centroid with the largest standard deviation of its assigned samples in feature space,

instead of the centroid with the largest number of samples [274, 275]. It is referred as

STD in Figure 5-1. This is because of 2 reasons: 1) A considerable number of fluid

and artifact images exists and there is no use to further insert centroids for these

images. 2) Fluid and artifact images are easier to separate because of the difference

in complexity compared to cell images. Consequently, centroids with cell images

tend to have larger standard deviation among the assigned samples in feature space,

so that inserted/re-assigned centroids are more likely to focus on cell images. The

re-assignment and insertion is processed during the validation phase.

5.2.3 Interactive Centroid Assignment and Refinement

After Step-2 clustering, every centroid contains ROIs that exhibit similar appearance.

However, at this point it is still unclear which of the ROIs in the centroids are high-

/low-quality. To provide this semantic definition with minimal manual annotation

requirement, we developed a Graphical User Interface (GUI) that allows for rapid
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centroid annotation. To this end, 10 ROIs from 10 random centroids are displayed

for the user to classify. After several iterations, each centroid has more than 10

high-/poor-quality annotations. The ratio of high-quality ROIs classified to every

centroid is then used to define a centroid-level boundary that separates between

high- and low-quality ROIs. Because cell quality in cytopathology images has large

variation, some ROIs cannot be clearly classified as high-/low-quality, e.g., Figure 5-

2(h). Therefore, we allow for some mix-quality centroids that contain roughly an equal

number of high-/low-quality ROI annotations. Although there exists high-quality

ROIs in mix-quality centroids, we exclude them to avoid introducing poor-quality

images to influence further analysis.

During application, due to high variations in cytopathology images, the classifier

based on the above procedure may not perform perfectly when suggesting ROIs

in new cytopathology images. To allow for the refinement of ROI suggestions, a

patient-specific refinement tool is created for pathologists to interact with, as shown in

Figure 5-4. Specifically, high-/low-/mix-quality assignments from boundary definition

are visualized and synchronized with the corresponding cytopathology image. The

user can hover the mouse over the cytopathology image to display the underlying

ROI in native resolution, and can simply click it to re-annotate if necessary. In this

case, the selected ROI and all ROIs with similar features {x, where ||x − F ||2 < λ2L1}

are all re-annotated, where F is the selected ROI’s feature, L1 is the distance to the

closest centroid and λ2 is a constant. Uncertain ROIs are also identified and displayed

to users as recommended for re-annotation. Using L1, L2 as the distance of an ROI

feature to the 2 closest centroids. The ROI is considered uncertain if the two closest

centroids are high- and low-quality, respectively, and satisfies

||L1 − L2||2
min{L1, L2}

< λ1 (5.1)

where λ1 is a constant. The result of every click re-annotation is reflected in real time.

The user has full control over when to stop the refinement.
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5.3 Experiment

5.3.1 Experiment Setup

Dataset: The dataset we use includes 100 cytopathology images from 88 UM pa-

tients. The cellular aspirates obtained from cytopathology images of each tumor were

submitted to cytology and GEP testing. The cytology specimen was flushed on a

standard pathology glass slide, smeared, and stained with hematoxylin and eosin. The

specimen submitted for GEP was flushed into a tube containing extraction buffer and

submitted for DecisionDx-UM testing. Whole slide scanning was performed for each

cytology slide at a magnification of 40x, using the Aperio ScanScope AT machine,

and the high-magnification digital image was examined using the Aperio Imagescope

software.

516 areas of size 1716 × 926 are manually extracted and annotated from 20 slides

by an expert pathologist. Every area is split into 8 small areas with equal size. Each

small area is further split into 9 ROIs where the stride of ROI extraction is half of

their width and height. All of these ROIs are annotated as high-/low-quality images,

which results in 37, 152 annotated ROIs. The criterion for high-quality images is the

same as Figure 5-2(a). All our experiments are trained on the remaining 80 slides and

tested on the 20 slides with annotations.

Implementation details: 259, 203 areas are extracted by Step-1 clustering. In

Step-2 clustering, each area corresponds to 9 ROIs with size 228 × 228, which results

in a total of 2, 332, 827 ROIs for training. The length d of the output feature vector is

16. Centroid-based coarse-to-fine clustering is first initialized with 32 centroids. 4 new

controids are inserted after every training epoch until a total of 100 centroids exists.

We implement the model using PyTorch [276] for Step-2 clustering, and initialize them

with ImageNet pre-trained weights provided by [273]. All models are optimized by

Adam [277] with a learning rate of 10−3. All interactive centroid assignments and
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Table 5-I. Ablation study for clustering algorithm. DeepCluster (DC) is DCN [274]
with BagNet17 [273] as backbone. “CTF" indicates the use of the proposed centroid-
based coarse-to-fine strategy. “STD" indicates the use of the proposed mechanism of
inserting/reassigning new/empty centroids to be around the centroid with the largest
standard deviation of its assigned samples in feature space. (Otherwise, to be around the
centroid with most samples). Numbers of high-/low-quality centroids are also reported.

Model Recallgb Recallgmb Precisiongmb Accuracy #high-quality #low-quality
DC [273, 274] 11.74% 7.44% 83.17% 61.43% 10 60
DC+STD 34.71% 7.89% 85.99% 63.63% 18 43
DC+STD+CTF 51.38% 27.83% 91.56% 70.90% 23 51

specific boundary refinement were performed by an expert pathologist. During centroid

definition, centroids with greater than 70% of ROIs annotated as high-quality are

classified as high-quality centroids, while centroids with fewer than 30% are classified

as low-quality centroids. The other centroids are mix-quality centroids. For boundary

refinement, the parameters are λ1 = 0.2, λ2 = 0.5.

Evaluation metrics: The final goal for our proposed extraction is to maximize

the number of high-quality ROIs and to minimize the number of low-quality ROIs

provided for further analysis. To evaluate our success, we calculate the recall, precision

and accuracy on the ROIs in the 20 slides with manually extracted ROIs. Because

there exist mix-quality centroids, we first report recall and precision for images only

in high-/low-quality centroids, denoted as Recallgb, Precisiongb. We also report recall,

precision and accuracy for all annotated images, by treating mix-quality centroids

as low-quality centroids, denoted as Recallgmb, Precisiongmb and Accuracy. Because

Precisiongb is the same as Precisiongmb, only Precisiongmb is recorded.

5.3.2 Ablation Study for Clustering Algorithm

In order to compare different clustering algorithms, human-interactive boundary

definition is performed separately for all models to classify high-/mix-/low-quality

centroids by the same expert pathologist. We conduct an ablation study for clustering
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Table 5-II. Ablation study for human interactive patient-specific boundary refinement.

Model Recallgb Recallgmb Precisiongmb Accuracy
without Boundary Refinement 51.38% 27.83% 91.56% 70.90%
HICAT 59.47% 42.32% 83.09% 74.18%

algorithm to analyze the contributions of its novel components. The baseline is the

combination of the deep clustering network, DCN [274], with BagNet17 [273] (referred

to as DeepCluster) with 100 centroids. The performance by adding the two novel

components: centroid-based coarse-to-fine concept (referred to as CTF) and the

centroid insertion/reassignment algorithm (referred to as STD) is compared. The

Step-1 clustering is kept the same across all models, which eliminates 96.5% areas as

blank areas. Results are summarized in Table 5-I.

The effect of our proposed centroid insertion/reassignment algorithm is reflected

in the comparison of DeepCluster v.s. DeepCluster+STD. Recallgb and Precisiongmb

increase from 11.74% and 83.17% to 34.71% and 85.99% by using STD. Improvements

are due to our observation that standard deviation of the assigned samples are efficient

to tell apart centroids for high-/low-quality images. More centroids for high-quality

images result in better performance.

The effect of centroid-based coarse-to-fine method is reflected in the comparison

of DeepCluster+STD v.s. DeepCluster+STD+CTF. By adding the centroid-based

coarse-to-fine module to DeepCluster+STD, we observe substantial improvements

in Recallgmb and Precisiongmb which increase from 7.89% and 85.99% to 27.83% and

91.56%, respectively. The improvement is in line with our motivation and hypothesis

that more centroids are assigned to focus on images with different cells and various

visual quality. The increase in the number of high-quality centroids further supports

our hypothesis.
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5.3.3 Ablation Study for Interactive Refinement

The performance of interactive refinement of ROI suggestion is shown in Table 5-II.

Cytopathology images and the ROIs’ labels after centroid definition are synchronously

visualized as Figure 5-4. An expert pathologist finished the human interactive boundary

refinement for all testing cytopathology images. Less than 50 re-annotation clicks are

performed for each slide. The pathologist stopped the process for each slide, once he

determined there were adequate high-quality ROIs selected for further analysis and

few low-quality ROIs exist. Comparing with/without boundary refinement shows that

Recallgmb goes drastically up from 27.83% to 42.32%. The reduced precision from

91.56% to 83.09% may be attributed to a conservative selection of the pathologist.

However, since adequate high-quality ROIs are still available for further analysis, this

decrease is likely not problematic. The boost in performance is due to the variation

in different cytopathology images. Pathologists may interact with our tool to adjust

the inclusion criteria based on a specific cytopathology image, e.g., when few cells

are visible, the selection criteria for high-quality ROIs can be relaxed. Finally, 1318

ROIs are extracted on average per cytopathology image, which contain adequate

information for further analysis. The whole application process takes 15 minutes per

cytopathology image, which is more than 10 times faster than manual ROI extraction.

(3 minutes for 2-step clustering and 12 minutes for boundary refinement.)

5.4 Conclusion

In this work, we propose an interactive and computationally-assisted tool for high-

quality ROI extraction from cytopathology images. Our method relies on 2-step

unsupervised clustering of ROI appearance and content to automatically suggest

ROI of acceptable quality. These suggestions can then be refined interactively to

adapt ROI selection to specific patients. We hope to contribute effective tools that
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support quantitative analysis of cytopathology images to, in the future, improve the

prognostication of patients suffering from UM.

89



Chapter 6

Explainable AI and
Human-Machine Teaming for
Cancer Subtyping from Digital
Cytopathology

Algorithmic decision support is rapidly becoming a staple of personalized medicine,

especially for high-stakes recommendations in which access to certain information

can drastically alter the course of treatment, and thus, patient outcome; a prominent

example is radiomics for cancer subtyping. Because in these scenarios the stakes are

high, it is desirable for decision systems to not only provide recommendations but

also supply explainable reasoning in human-machine teaming support thereof. For

learning-based systems, this can be achieved through the explainable design of the

inference pipeline. Herein we describe an automated yet explainable system to assist

pathologists with cancer subtyping with digital cytopathology images. Following a

human-centered design, we first perform formative user research to understand end

users’ needs and requirements. It reveals that pathologists mainly analyze the cell

composition of cytopathology images for cancer subtyping. We strictly follow what

pathologists believe to be explainable and informative to design deep learning based

models for cancer subtyping by explicitly analyzing cell composition over cytopathology

images. We first consistently embed every automatically segmented cell of a candidate
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cytology image as a point in a 2D manifold with a fixed projection, which enables

reasoning about the cell-level composition of the tissue sample, paving the way for

explainable subtyping of the biopsy. Finally, a slide-level cell composition analysis is

completed with rule-based symbolic reasoning. This process results in a simple rule

set evaluated automatically but highly transparent for human verification. On our in

house cytopathology dataset of 88 uveal melanoma patients and a public dataset of

60 cervical cancer patients, the proposed method achieves an accuracy of 87.5 % and

93.1 %, respectively, which compares favorably to all competing approaches, including

deep “black box” models. We further conduct a user study to assess the human factors

of the proposed algorithm, including user willingness and trust in the algorithm.

Among all interactive model components, an efficient cell composition inspection tool

greatly improves the reliability and effectiveness of human-machine teaming in cancer

subtyping.

6.1 Clinical Background

Cancer subtyping is a high-stakes decision-making procedure for the selection of

patients that benefit most from specified therapies and the design of novel targeted

agents. Cancer classification is largely based on histopathological, cytopathological,

and clinical characteristics, which makes it difficult to implement uniformly, as the

individual expertise of the clinicians is often a major determinant [278, 279]. Besides,

cancer subtyping with microscopy images is a time-consuming task as microscopy

images are giga-pixel level images [280]. Furthermore, it is impossible even for highly

trained pathologists to derive cancer subtyping for some diseases, i.e. Uveal Melanoma

(UM), because no hand-crafted features have been proven to be robust for cancer

subtyping. With advances in computer-aided diagnosis (CAD), deep learning has the

potential to address the aforementioned bottlenecks. Deep learning-based CAD is

much faster than clinical experts in most clinical tasks [38, 46, 151]. Another crucial
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advantage of deep learning approaches is their ability to learn task-specific salient

features and discriminative morphological patterns to diagnose microscopy images in

a standardized and objective manner. However, this superiority comes at the cost

of explainability. Classic automatic cancer subtyping and analysis in Whole Slide

Images (WSIs) is based on multiple small regions extracted from slides, that then

need to be aggregated to a single prediction on the slide level. These methods include

majority voting, coarse-to-fine techniques [281–284], and multiple instance learning

approaches [285, 286]. Most of these techniques consider all image regions equally

in the aggregated predictions and ignore the variations in WSI image quality. Such

classic machine learning algorithms offer no insights beyond the final recommendation

to pathologists, which has been linked to automation bias and over-trust or dis-trust

in such systems [43, 44]. A more explainable algorithm design may enable humans to

better calibrate their trust in the recommendation, which would be an important feat

for high-stakes decision-making such as cancer subtyping.

Recent literature advocates a human-centered design for explainable models in

medical image analysis [16]. Multi-disciplinary teaming between designers and clinical

stakeholders in model design is highly recommended to increase the likelihood that the

designed model is truly explainable to end users in real clinical applications. Teaming

with pathologists in cancer subtyping reveals what pathologists believe is clinically

important, which should be the fundamental justification of the explainability of the

deep learning model to design. In this work, we propose formative user research with

pathologists and reveal that pathologists believe cell type composition should be the

most salient and informative feature for cancer subtyping with cytopathology images.

Based on the findings in formative user research, we propose a deep learning

algorithm that directly analyzes the cell composition of cytopathology images for

cancer subtyping and achieves human-machine teaming in the application. However,

classic deep learning techniques, such as Convolutional Neural Network (CNN) can
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hardly learn the global behavior of cell type information in cytopathology images

because they are kernel-based feature extractors and mainly focus on local information.

Instead, we propose a neural-symbolic model to fully utilize the overwhelming power

of CNN in extracting salient features per cell locally and the explainable nature of

symbolic reasoning directly with cell composition. In detail, we first automatically

extract features per cell with CNN as cell appearance information. Cell-level features

are consistently projected into a 2D space as the embedded and informative cell

composition. Finally, we apply an explainable rule-based symbolic reasoning for cell

appearance composition analysis in the 2D space. The proposed method can also be

naively applied to any microscopy image, such as histopathology images. To the best

of our knowledge, we are the first to analyze cell composition for cancer subtyping

with deep learning techniques.

After developing the proposed method, we further conduct a user study with

four pathologists to assess whether the proposed algorithm is indeed interpretable to

pathologists. We compare the performance and human factors of pathologists with

different levels of assistance: with no assistance, with the assistance of a “black box”

model, and with the assistance of the proposed method in cell composition. With the

assistance of our proposed method, both pathologists’ accuracy and human factors, i.e.

confidence, willingness, and understandability outperform those with the other two

levels of assistance, which indicates that the proposed method is truly interpretable

to pathologists.

We apply the entire algorithm for cancer subtyping of two diseases: UM and

Cervical Cancer (CC). UM is the most common primary intraocular malignancy in

adults [39]. As standard care for UM, Fine Needle Aspiration Biopsy (FNAB) is often

performed to confirm the diagnosis and enable UM prognostication. To this end, a

molecular test, Gene Expression Profile (GEP), is performed and microscopic Cytology

of Fine Needle Aspirates images are created from the biopsy. According to a recent
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study, there exist two subtypes in UM that can be identified based on its GEP: The

first subtype exhibits low metastatic risk, while the second subtype has been linked to

high metastatic risk. There is a stark contrast in long-term survival between the two

classes: the 92-month survival probability in class 1 patients is 95%, versus 31% in

class 2 patients [287]. It is evident that access to UM subtype information is critical

for the proper management of patients by providing an appropriate recommendation

for metastasis surveillance. However, even after 10 years of development, GEP is still

only available in the United States. The technique is also expensive and has a long

turnaround time. Thus the proposed method aims to predict the GEP subtypes of

UM. CC is the second most common malignancy among women [288]. Pap smear is

the identified tool for cervical cancer screening but the sensitivity is approximately

50-80% [289]. In this work, we perform a simple task to predict whether each subject

has intraepithelial malignancy or not.

6.2 Method

Our goal is to create an interpretable algorithm to assist pathologists for cancer

subtyping. We develop the algorithm for UM prognostication specifically. However,

developing an interpretable algorithm by us designers alone is highly vulnerable to

finally developing an algorithm that is actually not interpretable to pathologists.

The reasons are 1) We designers lack the professional skills required for cancer

prognostication with whole slide images. 2) We designers have a huge clinical knowledge

gap against true pathologists. Thus, the justification of interpretability for the Machine

Learning (ML) system determined by ourselves alone is extremely likely to deviate

from the knowledge and need of pathologists. As a result, we first performed formative

user research (Section 6.2.1) with pathologists to 1) get a comprehensive picture of

UM prognostication and 2) understand how they diagnose cytopathology images and

which features they focus on. We determine the justification of interpretability based
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on formative user research. We then build the interpretable algorithm based on the

justification of interpretability in Section 6.2.2. Finally, we perform a user study to

assess the interpretability with pathologists in Section 6.2.3.

6.2.1 Formative User Research

To avoid determining justification of interpretability with considerable bias against

the need of pathologists, we perform formative user research with pathologists for the

current stage of UM prognostication and what pathologists believe to be important in

cytopathology images for UM prognostication.

We had multiple meetings with two pathologists and one clinical professor for the

formative user research. Pathologists taught us how they diagnose cytopathology

images hand in hand. The clinical professor introduced the current literature of UM

prognostication with GEP as well as cytopathology images. The current stage of UM

prognostication and important findings that pathologists focus on are listed below

1. The current gold standard of UM prognostication is GEP classes. There exist no

robust manual features in cytopathology images for UM prognostication. As a

result, pathologists cannot perform UM prognostication through cytopathology

images, making it a “Super Human Task”.

2. Pathologists believe that visual information of cells in cytopathology images is

adequate to predict UM prognostication. It is still a super human task only

because they have not found effective and robust features among the cells.

3. Diagnosis with cytopathology images is a game of numbers. A single cell’s visual

feature does not represent the overall behavior of cells in the cytopathology

images. A macro analysis with cell distribution over the entire cytopathology

images is more likely to reveal the UM prognostication status, such as metastatic

risk.
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According to the findings in formative user research, we aim to build an interpretable

ML model to directly analyze the cell distribution of the cytopathology images. Due

to the fact that it is a super human task, we also perform a user study to assess the

interpretability of our algorithm with pathologists.

6.2.2 Interpretable Cell Appearance Composition Learning

Following the findings in formative user research, we aim to create an interpretable

system to analyze UM cytopathology images and reveal GEP subtype based on the

overall cell composition of the sample. We construct cell composition by aggregating

the cell appearance of each cell in cytopathology images. However, all existing

high-quality Region of Interests (ROIs) in cytopathology images are automatically

extracted with our previous work [42]. There exist no cell annotations at all. First

and foremost, in Section 6.2.2.1, we describe a cost-efficient way of weakly labeling our

dataset to enable supervised learning of the cell segmentation network. Features of

the segmentation network are aggregated to generate cell-level features that represent

cell appearance information for each extracted cell. The overall cell appearance

composition of cytopathology images is made up of the appearance of all cells within

it. Thus, all cell-level features within cytopathology images are consistently embedded

as points in a 2D space and the point distribution in the 2D space is the projected

cell appearance composition (Section 6.2.2.2). Finally, we train a rule-based model in

the 2D space to directly analyze the cell appearance composition of cytopathology

images (Section 6.2.2.3). The system overview is shown in Figure 6-1.

6.2.2.1 Instance Cell Segmentation

In order to analyze cell appearance composition, the first step is to extract all cells in

cytopathology images. However, there exist no cell annotations for the high-quality

ROIs that are automatically extracted from cytology images by [42], making it hard
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Figure 6-1. System overview of the proposed method. Cell-level features are obtained
by aggregation over instance cell segmentation masks and then embedded into a 2D
space. Several slides are embedded in this way to create a representative cell appearance
space, and the 2D embedding space is subsequently distorted into a circle. For every
other cytopathology image, cell representations are extracted and projected with the same
embedding process into the circular space, such that one density chart is generated for
every slide. Finally, we find an interpretable rule set to classify UM biopsies based on the
density charts.

Figure 6-2. The ROI annotation procedure. (a) the extracted high-quality ROI; (b) the
generated super-pixels.; (c) the annotations on super-pixels. Yellow and blue regions are
annotated super-pixels for cancer cells and background, respectively.

to establish supervised learning for instance level cell segmentation. Thus, we prepare

annotations on a small subset with minimal manual labor to enable supervised training

of an instance segmentation network. Figure 6-2 presents the annotation procedure.

In detail, we randomly select 500 ROIs from the 131k pool and partially annotate

super-pixels generated by SLIC [290] to reduce the annotation workload. We group

all super-pixels within any cell to prepare instance-level annotations. YOLACT [291]

is trained on the partially annotated ROIs, by converting annotated super-pixels into

pixel-level annotations. We compute all loss functions, e.g., semantic segmentation

loss, only in annotated regions. After we fully trained the cell segmentation network,
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all ROIs in cytopathology images are fed to the segmentation pipeline to extract cells.

6.2.2.2 Cell-Level Feature Embedding

Previously, pathologists have attempted to quantify different cell components, such as

nuclear size and nucleolar size, to predict the behavior of tumors. Our approach is

similar to this process but extracts network feature representations of cells, which we

assume contain all information about cell appearance. Cell-level features Fc for cell c

are extracted from the entire feature map F using the instance segmentation mask

Mc with masked average pooling

Fc = Avg(F [Mc]) (6.1)

The outputs of the last convolutional layer are used as the feature F for pooling.

To generate the cell appearance composition of cytopathology images, we apply

UMAP [292] for all cell-level features to embed cell appearance composition in a 2D

space. In order to analyze cell appearance composition, one assumption should be

guaranteed that similar cells in different cytopathology images should be close to

each other in the embedded 2D space. However, UMAP is a data-driven clustering

technique. Applying UMAP individually for each cytopathology image does not hold

the assumption. In order to keep the projection parameters as the same, we first

generate a “reference” projection by 20 GEP class 1 slides and keep it fixed during

application time. All other slides are then embedded with the “reference” UMAP

projection, to represent the respective cell composition. We expect slides of distinct

GEP classes to have different cell compositions, and thus distribution in the 2D

embedding space.

6.2.2.3 Interpretable Classification

Based on our hypothesis that slide-level cell composition, and thus distributions in

the 2D cell appearance embedding space, should be different between GEP classes, we
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Figure 6-3. (a) The definition of spatial partitioning and density charts in the distorted
2D embedding space. (b) The density chart of all cells in GEP class 1; (c) Two density
chart examples of GEP class 1 slides; (d) The density chart of all cells in GEP class 2; (e)
Two density chart examples of GEP class 2 slides.

devise an interpretable algorithm that reasons based on these representations. Direct

comparisons between distributions, e.g., chi-square test [293] and Kolmogorov-Smirnov

tests [294], are complicated and not usually interpretable. Instead, we partition the

embedding space and analyze the region densities. To make it easier to define the

spatial partitioning of the embedding space, we first distort the space into a unit circle.

We treat the center of gravity of all embedded cells as the origin. Then, we normalize

to unity the scale of all embedded cells in every degree of angle in polar coordinates,

so that the whole embedding space is distorted to a unit circle. Finally, we divide the

unit circle equally into 12 regions, as shown in Figure 6-3. Since we posit that each

GEP class will have different densities in distinct regions, in addition to the individual

densities of these regions (Di), we define the relative densities (Di/Dj) as input

variables for classification. Finally, an interpretable Bayesian rule set algorithm [295]

takes these 78 input variables (12 values, and 66 relations) for GEP classification.

Contrary to other interpretable methods, e.g., logistic regression, the number of

input variables will not limit the interpretability of the rule set algorithm, because

the number of arguments in each rule can be controlled. In addition, it is different

from a random forest (which uses a majority vote) since here, the predicted output
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Figure 6-4. Trained rule set for UM dataset.

is positive if the sample obeys at least one rule in the rule set. The rule set for UM

cancer subtyping is shown in Figure 6-4.

Datasets The first dataset we use includes 100 cytology samples from 88 UM

patients, which refers to as UM dataset. To the best of our knowledge, this is the

largest dataset on UM cytology. The dataset contains 50 slides from 43 patients with

GEP class 1 and 50 slides from 45 patients with GEP class 2. The cellular aspirates

obtained from cytology of each tumor were submitted for cytology and GEP testing.

The cytology specimen was flushed on a standard pathology glass slide, smeared, and

stained with hematoxylin and eosin. The specimen submitted for GEP was flushed

into a tube containing extraction buffer and submitted for DecisionDx-UM testing.

Whole slide scanning was performed for each cytology slide at a magnification of 40x.

Automatic ROI extraction is performed using [42], resulting in a total of 131, 816

high-quality ROI across all slides.

We also use a second dataset to validate our interpretable cell distribution analysis

system, which we refer to as Cervical dataset [296]. The dataset includes total

963 image regions sub-divided into four sets of images representing the four classes

of pre-cancerous and cancerous lesions of cervical cancer as per standards under

The Bethesda System. The pap smear images were captured in 40x magnification

using Leica ICC50 HD microscope which is collected and prepared using the liquid-

based cytology technique from 60 patients. In detail, the four classes are “High

squamous intra-epithelial lesion”, “Low squamous intra-epithelial lesion”, “Squamous
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cell carcinoma” and “Negative for Intraepithelial malignancy” (negative control),

which has 9, 4, 4, 43 patients respectively. The number of image regions for each

patient ranges from 5 to 37. Due to the extreme imbalance of the number of cases

among classes, we combined “High squamous intra-epithelial lesion”, “Low squamous

intra-epithelial lesion”, “Squamous cell carcinoma” as one class named “positive” class

and rename “Negative for Intraepithelial malignancy” as “negative” class for training

and analysis.

Implementation Details: Super-pixel algorithm Simple Linear Iterative Cluster-

ing (SLIC) [290] is implemented following [297]. In SLIC, the number of components

is 400, and the Euclidean distance ratio is 1 for UM dataset and the number of

components is 200, and the Euclidean distance ratio is 0.1 for Cervical dataset to

better fit each dataset. We apply SLIC for 500 image regions in UM dataset and

100 image regions in the Cervical dataset for the manual annotation process. On

average, each image region has 9 cells and 38 background super-pixels annotated. The

number of prototypes in YOLACT is doubled to 64 to potentially segment more cells

within every ROI. The segmentation model is optimized using Adam [298] with a

learning rate of 10−5 and 4000 iterations with a batch size of 1. We train the model on

80% annotated ROIs and validate on the other 10% ROIs in each dataset separately.

During the cell distribution distortion, we empirically split the circular embedding

space into 12 partitions for UM dataset, as shown in Figure NEED REFERENCE. We

also empirically split the circular embedding space into 54 partitions, which include

18 equal partitions in the inner circle and 36 equal partitions in the outer ring. We

observed that the original UMAP cell distribution of the Cervical dataset is too

irregular because the size of cells varies extremely in image regions. We further apply

θ distortion before ρ distortion. We first sort cell points by θ and distort every 1/360

portion of cell points to fill each 1◦ degree in θ. These partition settings were found in

internal development to yield the best performance compared to other split approaches.
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Figure 6-5. Prototype of task 1 in the user study. Users need to predict cancer subtyping
without any AI assistance.

Figure 6-6. Prototype of task 2 in the user study. Users need to predict cancer subtyping
with AI predictions of ROIs by majority votes of predictions in image regions.

We used the cell distribution of 20 slides in GEP class 1 in UM dataset to generate cell

projections for application. We also used 10 patients in the negative class in Cervical

dataset to generate the cell projection in application time. In application time, all cells

that map outside the circular embedding space are projected to the nearest region.

For the interpretable classification, we use 80% of the projected slides in both all

classes for training (64 for UM; 40 for Cervical) and the other 20% for testing (16 for

UM; 10 for Cervical). The rule set algorithm is trained with a simulated annealing

procedure as described in [295]. The maximal length of each rule in the rule set is set

to 2 to preserve its intelligibility.

6.2.3 User Study

After the development of our interpretable algorithm for UM prognostication with

cytopathology images, we further perform a user study to assess whether the algorithm

is truly interpretable to pathologists. Instead of constructing the user interface for
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Figure 6-7. Prototype of task 3 in the user study. Users need to predict cancer subtyping
with AI predictions based on cell appearance composition. Cell composition is visualized in
a pie chart. Users can inspect the cell appearance of any area in the pie chart.

the user study on our own, we first shared a prototype of the user interface for the

experts to collect feedback. We iteratively refine the prototype until the experts were

satisfied with the prototype.

Our user study consists 3 tasks for pathologists to prognose UM based on cy-

topathology images with:

1. No ML predictions.

2. ML predictions with an explanation at the small image region level.

3. ML predictions with an explanation about cell distribution.

We created prototypes for each task. They are shown in Figure 6-5, Figure 6-6 and

Figure 6-7. Because we planned to perform user study through the internet, the

left-hand side of Figure 6-5, 6-6 and 6-7 is an inspection tool for cytopathology images

we will develop, which is the same for all tasks. The cytopathology image will be shown

in the top left window and users can move, zoom in and zoom out the cytopathology

image as other software tools such as QuPath. However, due to the limit of network

speed, we only show a thumbnail of the cytopathology image in the top left window.

Users can click on the area of interest in the thumbnail image and the corresponding
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cytopathology image region with full resolution will be shown in the bottom left

window. Another part of the prototype that is the same for all tasks is the diagnosis

panel. Because UM prognostication with cytopathology images is a super human task,

we offer 7 levels of choices for user diagnosis, from very certain that the specimen has

a low metastatic risk to very certain that the specimen has high metastatic risk. The

middle choice indicates that the user cannot tell the metastatic risk with diagnosis.

In task 1 (Figure 6-5), users directly make the diagnosis with the inspection tool.

In task 2 (Figure 6-6), AI recommendations for prognostication: GEP class 1 like or

GEP class 2 like is shown to users, together with the voting results in image region

level. Users can choose to consider/not consider the AI recommendation on their

own in the final diagnosis. In task 3 (Figure 6-7), which is the user study for our

proposed method, we additionally show the pie chart that consists of all extracted cells.

Users can interact and inspect the cells clustered within the pie chart by clicking the

interesting area in the pie chart. The full resolution of the image region together with

the bounding box and the zoomed-in version of the image region is shown on the right.

Because AI in this task directly analyzes the cell distribution, the AI recommendation

switches to provide evidence from the cell distribution according to the trained rule

set. The entire rule set will be shown when users click the corresponding button. As in

task 2, in task 3, Users are also free to consider/not consider the AI recommendation

on their own in the final diagnosis.

The prototype is shown to one clinical expert and 5 Ph.D. students for suggestions.

All of them were satisfied with the overall design of the prototype, including the

inspection tool of cytopathology images and the diagnosis panel. However, all of them

thought the rule set criterion in the prototype is too hard to follow. We modified

iteratively the representation of partitions in the pie chart from partition indexes to

partition’s shape. It showed that the partition’s shape can help users quickly find the

corresponding partition. The clinical expert also mentioned that showing cell type
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information within the pie chart would be helpful. Unfortunately, because we do not

have cell type annotations and predictions, this may be future work. The clinical

expert also mentioned that using the same specimen would make the study across

tasks comparable. We applied this suggestion and cropped the cytopathology images

differently for each task so that users cannot easily recognize these specimens are the

same in different tasks.

We developed the user study according to the refined prototype. We use 6

cytopathology images in each task of the user study. The user interface for tasks 1,

2, and 3 is shown in Figure 6-8, 6-9 and 6-10. Before using the interface, the users

are provided detailed instructions on how to use the interface for each task. The user

interface of tasks 1 and 2 is the same as the prototype. In the user interface of task 3,

when users hover the mouse over each partition of the pie chart, the portion of cells in

the corresponding partition is shown beside the mouse icon. We also re-designed the

representation of partitions in the AI recommendation. The partitions are highlighted

in red in the pie chart and the portion of cells belonging to the partition is also shown

above the partition to make it easy for users to compare. In the AI recommendation,

the reason for AI prediction is concisely included in the paragraph.

During the user study, we also ask for user feedback per specimen and task by

implementing a questionnaire within the web page. Users can select their answer to

feedback from 5 choices, from “strongly disagree” to “strongly agree”. The middle

choice is “fair”. The user diagnosis and feedback are recorded for further analysis. For

each task per specimen, we ask feedback of

• you are confident with your diagnosis.

For tasks 2 and 3, we additionally ask feedback about AI recommendation

• AI recommendation is easy to understand.

• You agree with the AI recommendation.
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• You considered the AI recommendation in your final decision.

We also ask for feedback once users complete each task. After completing task 1, we

also ask for user feedback of

• This workflow is easy to use.

• You are willing to use this workflow in real clinical practice.

After completing task 2, we additionally ask for feedback of

• AI recommendation accelerates diagnosis.

After completing task 3, we additionally ask for feedback of

• Pie chart is efficient to extract cell information.

User study setup

We performed the user study mentioned in Section 6.2.3 with 4 pathologists. The

user interface was developed by Flask [299] and software ngrok offered remote access

to the user interface. We recorded the user study with each participant through zoom

and we have got the agreement to record from all participants. Each task in the user

study contains 6 cytopathology images. The 6 cytopathology images are the same to

keep results comparable. Three of them are of GEP class 1 and the other three are of

GEP class 2. In each class, one specimen contains few cells and the two others contain

numerous cells. In each class, GEP of two specimens are correctly classified by the

rule-based algorithm and the other one is miss classified, so the accuracy of the AI

in the user study is 66.7%. However, each miss classified specimen is proved to be a

clinical surprise, which does not follow typical GEP class survival status. For example,

one GEP class 1 cytopathology image is miss classified as GEP class 2 but the patient

only survives 2.3 years. One GEP class 2 cytopathology image is miss classified as
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Figure 6-8. User interface of task 1. Users need to predict cancer subtyping without any
AI assistance. Users can move and zoom-in and -out the top left cytopathology image to
select the region they are interested in. The selected region is shown in the bottom left
image with full resolution.

GEP class 1 but the patient was alive in the last follow-up and has survived at least

6.6 years. As the result, model prediction can be treated as the truth of survival

status. The specimens are cropped differently and randomly ordered in each task to

avoid pathologists recognizing them in the following tasks. To crop the cytopathology

images, we guarantee that cropped specimens still contain a large portion of cells in

the original slide.

All participants are asked to prognose UM for each image in every task. There

contains 7 slots for users to choose to diagnose GEP classes / metastatic risk for

each cytopathology image. We define the first 3 as the participants predicting GEP

class 1 and the last 3 as the participants predicting GEP class 2. The middle one is

considered as "cannot tell". We use the three defined classes to calculate the accuracy

of user diagnosis. All questions for user feedback after each specimen and task have

5 slots for users to choose from, which range from “Strongly Disagree”, “Disagree”,

“Fair”, “Agree” and “Strongly Agree”.
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Figure 6-9. User interface of task 2. Users need to predict cancer subtyping with the
assistance of AI predictions with ROIs. The AI predicted class and how many ROIs vote
for the decision is also displayed.

6.3 Results and Findings

6.3.1 Cell Appearance Composition Classification

We compare our proposed method on UM cancer subtyping with a previously proposed

deep black box model [41, 300] evaluated on the same dataset, which classifies UM

subtype directly from ROIs. In [300], slide-level subtype prediction is obtained by

simply averaging class predictions for all corresponding ROIs. Both, the black box and

our proposed method use the same backbone network architecture (ResNet-50 [301])

and the same training and testing split for a fair comparison. We observe that the

accuracy performance of our method (87.5%) compares favorably to the black box

approach following [300] (83.3%). More importantly, our proposed method is highly

likely to be interpretable because the trained rule set is simple to understand, and

our method prognoses cytopathology images directly by cell appearance composition

analysis which follows pathologists’ clinical knowledge that is confirmed in the formative

user research with pathologists (Section 6.2.1). There only exist 3 arguments in the

rule set, which makes algorithmic recommendations transparent and verifiable, while

enabling users to understand overall cell composition. We also evaluate the performance
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Figure 6-10. User interface of task 3. Users need to predict cancer subtyping with
the assistance of AI predictions based on cell appearance composition. Cell composition
is visualized in a pie chart. Users can click any area in the pie chart to inspect the
corresponding cell appearance. The AI prediction is shown with the evidence from the rule
set criterion.

of rule-based cell appearance composition classification for Cervical cancer subtyping.

The accuracy of the trained rule set reaches 93.1%. As a result, our proposed rule-based

method analyzing cell appearance distribution achieves overwhelming performance in

both UM and Cervical cytopathology images and in both normal v.s. abnormal and

low v.s. high metastatic risk predictions.

6.3.2 User Study Findings

We perform a user study to evaluate the human factors of our proposed model and a

black box model on UM cancer subtyping. Details of user study design and protocol

are shown in Section 6.2.3. Pathologists are asked to perform the same task with

3 different levels of assistance: without any AI assistance; with the assistance of
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(a) (b)

(c) (d)

Figure 6-11. User study analysis.

the black box model, and with the assistance of the proposed model. We call tasks

with 3 different levels of assistance as task 1, task 2, and task 3. We summarized

all the results from the user study in the following paragraphs. We further provide

corresponding recommendations to pathologists and system designers for participating

and designing human-machine teaming in UM prognostication below:

• Pathologists should follow AI predictions in cancer subtyping with cytopathology

images to achieve higher performance.

• Formative user research is essential for designers to understand pathologists’

needs in cancer subtyping.

• Efficient cell inspection tools and straightforward cell composition visualization

are two key successes in human-machine teaming in cancer subtyping with

microscopy images.

Human-machine teaming performance cannot exceed machine-alone

performance.
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Pathologists made their diagnosis for each specimen among “low metastatic risk

(GEP class 1)”, “high metastatic risk (GEP class 2” and “ cannot tell”. “Ccannot

tell” is treated as misclassification. The user accuracy in predicting GEP in tasks 1,

2, and 3 is 0.458, 0.542, and 0.542, respectively. The performance of task 1 is the

user accuracy without any AI assistance, which is slightly lower than those with AI

assistance (tasks 2 and 3). However, the accuracy in all the tasks is much lower than

the AI-alone performance (0.667), indicating that human-machine teaming cannot

achieve higher performance than AI alone.

Pathologists are predicting metastatic risk instead of cancer subtype.

The users’ dignosis alignment with AI predictions in tasks 1, 2, and 3 is 0.667,

0.875, and 0.75, which is much higher than those aligned with GEP (0.458, 0.542,

and 0.542). Due to the fact that UM prognostication is a super human task and AI

prediction perfectly corresponds to survival status, it is reasonable to believe that

pathologists are actually predicting metastatic risks of specimens instead of their GEP

classes in this user study. With AI recommendations in tasks 2 and 3, pathologists

significantly achieve higher accuracy in human-machine teaming according to the

t-test (pvalue = 0.026). In addition to the three diagnosis classes, pathologists were

also asked to rate their confidence in their diagnosis. In detail, rating “1” indicates the

pathologist is confident that the specimen is “GEP class 1”, and rating “7” indicates

the pathologist is confident that the specimen is “GEP class 2”. Rating “4” indicates

“cannot tell” and the pathologist has no confidence in either “GEP class 1” and “GEP

class 2”. We calculate the difference between users’ diagnosis and AI predictions and

the statistics of difference is shown in Figure 6-11 (a). Here the difference is calculated

by |ui − Ai|, where ui is the user’s diagnosis ratings which range from 1 to 7; Ai = 1

when AI predicts GEP class 1 and Ai = 7 when AI predicts GEP class 2. There is no

significant difference in user behaviors between AI correctly and misclassified cases

among all tasks (Pvalues for the t-test in task 1, task 2, and task 3 are 0.558, 0.604, and
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0.732). It indicates that users do not have a complementary opinion against AI in

UM prognostication. As a result, pathologists cannot improve human-machine teaming

performance. To achieve the highest possible accuracy in super human tasks, the best

strategy for pathologists is to follow AI predictions.

Pathologists are more confident with diagnoses made with AI assistance.

We asked pathologists to rate their confidence of diagnosis in each specimen in

each task. The levels of ratings are 1 (“Strongly disagree”), 2 (“Disagree”)3 (“Fair”),

4 (“Agree”) and 5 (“Strongly agree”). Figure 6-11 (b) shows the user’s confidence in

each task. Most of the user’s feedback about confidence is between 3 (“Fair”) and 4

(“Agree”) and the difference between tasks is limited. The pathologists’ confidence

in task 1, task 2, and task 3 is 3.21 ± 0.74, 3.75 ± 0.65, and 3.79 ± 0.62 respectively.

However, user confidence with AI assistance is significantly larger than that without

AI assistance. With non-parametric Friedman’s test, the user confidence in the three

tasks is significantly not the same (pvalue = 0.00017). Using a non-parametric Wilcoxon

test to further make comparisons between every two tasks, we found that users are

more confident with their diagnosis with AI assistance (p-value = 0.002 for task 1 v.s.

task 2 and p-value = 0.003 for task 1 v.s. task 3). AI assistance is highly reliable to

one pathologist:

In those cases that the quality of the slides is poor, then I suppose I would more

likely be inclined to use AI as an additional kind of answerary mechanism for

interpretation.

If AI is confident in the cases, I will use it in practice. If you can tell me AI

has confidence over 90%, then I will trust it.

However, the cell composition explanation does not further significantly increase

user confidence compared to black-box models (p-value = 0.655 for task 2 v.s. task 3).

Pathologists are more willing to use AI-assisted systems.
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We performed a post-task survey after each task to receive feedback from pathol-

ogists on whether the user interface of each task is easy to use and whether they

are willing to use the tool in each task in real practice. Figure 6-11 (c) shows user

feedback on their interaction with the system. There appears an obvious trend that AI

assistance is easy to use and users are more willing to use systems with AI assistance.

In detail, the willingness with AI assistance is never lower than that without AI

assistance in all specimens.

Pathologists have similar feedback on different AI recommendations.

We further performed a post-diagnosis survey after each specimen’s diagnosis of

each task to receive feedback from pathologists on whether the AI recommendation

is understandable; whether they agree with the AI recommendation; and whether

they consider AI recommendations in their final diagnosis. Figure 6-11 (d) shows user

feedback on AI recommendations. It is shown that AI recommendations are equally

understandable in tasks 2 and 3. Pathologists agree with and use AI recommendations

as a reference opinion equally in tasks 2 and 3.

Cell-oriented visualization greatly improves the effectiveness of human-

machine teaming

Understanding users’ preferences for one interface over the other is of pivotal

importance to analyze their impressions. We asked the participants to give us answers

about 1) what they liked the most about the interface they had just used, and

2) what challenges they see in using this workflow for UM prognostication. All

pathologists prefer the AI-assisted interface to the first interface with no assistance.

More importantly, pathologists all expressed their likeness to the cell inspection tool

(pie chart) and cell composition visualization. It is much easier to inspect cells with the

interaction of the pie chart. The clustering of cell characteristics also helps pathologists

to inspect similar cells more efficiently. In overall user behavior,three of the four

participating pathologists spent 99% of diagnosis time interacting with the pie chart
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for cell inspection. The other pathologist also spent > 60% of the diagnosis time

with the pie chart and he explicitly mentioned her habit of inspecting cells directly

with cytopathology images. All four pathologists also agree on the effectiveness of

cell-oriented visualization:

I like the pie chart because I like the ability to see cells quickly without trying to

search for them.

I like the clustering so you see the features of the similar cells.

It is definitely easier to find cells in the pie chart.

Moreover, pathologists expect more clinically-relevant explanations through the pie

chart, i.e. clustering cells according to clinically meaningful groups, such as cell types.

Surprisingly, they also stated the desired features they want in the pie chart.

In real practice, it would be nice for the pie chart to show why and which cells

are in the pie chart.

Looking at the microscope and having an AI suggestion with specific cells with

some kind of annotation will definitely be helpful, some kind of explanatory pie

chart.

6.3.3 Ablation Study

We conduct an ablation study of the rule-based interpretable classification to bench-

mark its performance against other classification methods, i.e., logistic regression,

Support Vector Machine (SVM) and Artificial Neural Network (ANN). We also com-

pare different embeddings, by creating the initial UMAP embedding space with either,

GEP class 1 or GEP class 2 slides. The quantitative results are shown in Table 6-I.

We also performed the same experiments for Cervical dataset except that we only

initialize embedding space by negative classes and results are shown in Table 6-II.
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After the embedding space creation, only 80 slides of UM dataset and 50 patients of

Cervical dataset remain to train and evaluate the classification models. Therefore,

we also introduce an ensemble method to enrich the input data by creating synthetic

cell compositions. To create a synthetic slide/patient, we randomly selected 30% cells

from one slide/patient and 1% cells from all the other slides/patients in the same

class as all the cells in the synthetic slide/patient. Then, the synthetic slide/patient

will represent the main pattern of one observed slide/patient but also introduce other

variations. We created 100 synthetic slides/patients for each class using this approach,

which is indicated as “Ensemble” in Table 6-I and 6-II. The simple ANN we used is

fc(8) + ReLU + fc(1), where n in fc(n) means the number of output channels. To

evaluate the methods, we perform 100 different and random training/testing splits of

our dataset on the patient level and train all models on every split. The mean results

and the corresponding confidence intervals are summarized in Table 6-I.

In UM dataset, logistic regression results in the lowest testing accuracy (75.14%)

and the rule set achieves the highest performance (87.50%), which is comparable

to SVM (82.07%) and ANN (83.71%). Creating the embedding from distinct GEP

classes results in similar accuracy of the rule set algorithm (87.50% v.s. 84.33%).

As in the previous comparisons to black-box models, the rule set approach has the

added benefit of being interpretable. Logistic regression and SVM models suffer in this

regard due to the high dimensionality of the input representation (78). Dimensionality

reduction techniques, e.g., principal component analysis (PCA), exist but are not

applicable here because the number of input variables (78) is larger than the number

of training samples (64). Finally, all models reach higher accuracy with the ensemble

except SVM. In Cervical dataset, a similar pattern is observed. The trained rule set

achieves the highest performance (93.1%) which outperforms all the other methods.

However, creating the embedding from distinct GEP classes results in significantly

higher accuracy of the rule set algorithm (93.1% v.s. 85.5%). If is not surprising
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Table 6-I. Ablation study of interpretable classification with different methods and an
ensemble technique for UM dataset. LR refers to logistic regression. Rule Set (class k,
k = 1, 2) refers to results using the embedding created from class k slides.

w/o Ensemble w/ Ensemble
Accuracy # of rules Accuracy # of rules

LR 67.50 ± 5.56% N/A 75.14 ± 9.00% N/A
SVM 83.00 ± 6.37% N/A 82.07 ± 8.23% N/A
ANN 82.86 ± 8.33% N/A 83.71 ± 10.15% N/A
Rule Set (class 1) 86.36 ± 10.25% 2.28 ± 0.57 87.50 ± 9.56% 2.11 ± 0.37
Rule Set (class 2) 81.93 ± 8.02% 2.06 ± 0.49 84.33 ± 10.68% 1.96 ± 0.31

because the number of image regions for each subject in Cervical dataset is much

smaller than UM dataset, thus a much smaller number of cells for each subject. Due

to the Law of Large Numbers, the synthetic subjects created by our ensemble method

have larger variance in Cervical dataset, and equally, larger “observed” space in all

machine learning algorithms. As a result, models trained with ensemble in Cervical

dataset are more generalized than those in UM dataset.

Due to the fact that our segmentation model is not perfect, we also evaluate the

rule set model for different segmentation results in UM dataset. We observe that

during early training, the segmentation model will first identify the clearest cancer

cells, but along with plenty of false positives. As the optimization progresses, fewer

cancer cells are segmented but meanwhile much fewer false positives occur. The

accuracy of the rule set algorithm for segmentation results after 2000, 3000, and 4000

training iterations is 77.23±10.98%, 84.64±10.46% and 87.50±9.56%, which suggests

that the algorithm favors the output of a highly specific cell segmentation algorithm.

6.3.4 Cell Segmentation Performance

We use Mean Average Precision (mAP) given Intersection over Union (IoU) threshold

as the main metric to evaluate cell segmentation performance. The quantitative results
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Table 6-II. Ablation study of interpretable classification with different methods and an
ensemble technique for Cervical dataset.

w/o Ensemble w/ Ensemble
Accuracy # of rules Accuracy # of rules

LR 82.9 ± 11.8% N/A 81.9 ± 11.2% N/A
SVM 58.9 ± 7.5% N/A 44.4 ± 5.7% N/A
ANN 82.2 ± 14.2% N/A 76.7 ± 16.8% N/A
Rule Set 85.5 ± 13.3% 2.34 ± 0.92 93.1 ± 8.1% 2.22 ± 0.58

Table 6-III. mAP for segmentation boxes and masks with different IoU threshold for UM
dataset.

IoU 0.5 0.6 0.7 0.8 0.9
box 70.67% 64.41% 49.20% 27.52% 3.24%
mask 69.30% 64.72% 53.07% 33.91% 2.49%

are shown in Table 6-III. The mAP is above 70% when IoU threshold is 50%, which

indicates that the segmentation process catches a fairly good number of cancer cells.

However, mAP is relatively low with high IoU threshold, because of the low quality

of super-pixel-based annotations on the cells’ boundary. Figure 6-12 also presents

visual results for cell segmentation. The algorithm can easily tell apart cancer cells

from blood cells, but the algorithm left some cancer cells with ambiguous boundaries,

which are caused by cell overlapping or the wrong focus of the microscopy cameras.

We attribute this to the low quality of super-pixels for these cells during annotation.

As a result, cells with ambiguous boundaries are usually skipped in annotation if

there already exist enough clear cells in the same ROI for cell annotation. The miss

detection of cancer cells with ambiguous boundaries is not a big issue for the following

cell distribution analysis. There exist numerous cells in each slide. Missing some cells

at random will not significantly impact the overall cell composition, and further, the

classification performance.

117



Figure 6-12. Examples of segmentation results. The segmentation network is able to (a)
separate cancer cells (purple, large) from blood cells (red, small); (b) segment cells with
all sizes, but (c) misses some ambiguous cells. The numbers within the boxes correspond
to confidence scores.

6.4 Conclusion

We have presented an automatic but explainable algorithm of cancer subtyping from

cytopathology images based on cell composition analysis. This algorithm strictly

follows a user-oriented design. The entire pipeline is inspired by the need and knowledge

of pathologists from the formative user research. The explainability of the proposed

approach is further assessed directly by user studies with pathologists. We included

two cancer subtyping tasks, Uveal Melanoma and Cervical Cancer, to evaluate the

algorithm’s performance. It is worth mentioning that this automatic algorithm is not

limited to the tasks mentioned above and is easy to apply for other cancer subtyping

tasks with microscopy images. We emphasize the importance of user-oriented designs

in cancer subtyping with microscopy images and the proposed algorithm has great

potential to offer insights for model designers to build user-oriented explainable models

for cancer subtyping and other clinical tasks.
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Chapter 7

Conclusion and Future Work

Interpretability is an affordance of interpretable ML systems, i.e., a relationship

between models and end users. Therefore, especially in contexts where there exists a

high knowledge gap between ML developers and the envisioned end users, developing

interpretable ML algorithms without explicitly considering and involving end users

may result in products that are unintelligible in the envisioned context and irrelevant

in practice. Efforts to build ML systems that afford interpretability in the healthcare

context should go beyond computational advances, which is not common practice in the

context of interpretable ML for medical image analysis. We acknowledge that building

systems that afford interpretability by involving end users in the design process is

challenging for medical image analysis and related healthcare tasks. We introduce

neural-symbolic reasoning models to achieve the clinical task by implementing clinical

guidelines that are commonly agreed on by end users to be useful and understandable.

Chapter 3 and Chapter 4 are in the scope of establishing neural symbolic ML models

with existing clinical knowledge. We also show how to perform formative user research

to iteratively develop clinical evidence to design models for clinical scenarios that end

users have no ability to deal with. Furthermore, we present a user study to prove the

interpretability and assess the human factors of the designed model, which can be

iteratively performed to refine the model design, clinical evidence, and even the entire

clinical scenario to be more user friendly and of better human-ML team performance.
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Chapter 5 and Chapter 6 fall into addressing the entire procedure to design ML models

that afford interpretability in medical image analysis by formative user research, model

construction, and empirical user study. This dissertation introduces a new viewpoint

to recommend ML designers to actively consider end users during the designing and

validating of interpretable machine learning models to make models truly interpretable

to end users and achieve higher human-ML performance.

In the detail of my Ph.D. projects, in Chapter 3, we take advantage of a commonly

used clinical guideline: hierarchical clinical taxonomy to model label dependencies

in Chest X-Rays (CXRs) and present a deep hierarchical multi-label classification

approach for CXR CAD. The quantitative results show that the proposed method

outperforms the other state-of-the-art approaches, and more importantly, the model

outputs strictly follow the hierarchical clinical taxonomy which has great potential

to afford interpretability to radiologists. In Chapter 4, we strictly follow the official

AAST clinical guidelines to design a splenic injury grading system with Computed

Tomography (CT) scans. The most salient features of the grading system, namely

active bleeding, pseudoaneurysm, and splenic parenchymal disruption are summarized

from the clinical guidelines and are detected and segmented with CNN models. These

features are further fed to a rule-based algorithm which is built according to the clinical

guidelines to output final grading predictions. Moving forward beyond clinical routine

practices, Chapter 5 and Chapter 6 aim to design an interpretable ML algorithm for a

clinical task beyond clinical experts’ knowledge and ability. The task is predicting UM

GEP classes with cytopathology images. Cytopathology images are giga-pixel level

images. In order to first determine regions of interest for further analysis, Chapter 5

proposes an automatic but interactive method to efficiently extract high-quality regions

in cytopathology images. The method accelerates the region extraction process in

cytopathology images more than 10 times compared to manual extraction. The

extracted regions with human interaction procedures are more likely to be reliable
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to pathologists. Moving forward, Chapter 6 uses the regions extracted in Chapter 5

as inputs and established an interpretable algorithm for UM GEP classification. We

first perform formative user research to understand pathologists’ needs and what

they believe is informative to UM prognostication. We found pathologists believe

the cell type composition is the most salient feature for UM prognostication. Then,

we automatically extract cells and directly analyze cell appearance composition over

entire cytopathology images with a rule-based algorithm because pathologists believe

cell type distribution already contains adequate information for GEP and further,

metastatic risk prediction. Finally, we conduct a user study with pathologists to assess

the interpretability of the proposed algorithm.

There also exist multiple future works that are worthy of exploration. First,

My Ph.D. projects mainly focus on clinical problems that are relevant to medical

images alone. There exist other clinical scenarios that require integrative learning

with multiple sources of clinical data, such as medical images, clinical variables, and

electronic health records (EHR). Most of these clinical scenarios are closely related to

high-stakes decision makings. Thus building interpretable models is highly desired

for these clinical scenarios as well. Second, my work aims to afford interpretability to

clinical experts, who have a solid training and understanding of the corresponding

clinical scenarios. However, other clinical stakeholders, such as the patients and the

managers of the hospitals, are also seeking interpretable models to understand the

situation of their health and formulate the next steps for the hospitals in the near

future. Third, my work established one-time communication between ML models and

end users. ML models are the speakers to interpret their own results and end users are

the listeners to understand the ML results as a reference to make the final decisions.

This is only one approach to the communications between ML models and the end

users. An advanced human-machine teaming requires humans and machines to be both

receptive listeners and expressive speakers. Effective human-machine collaboration
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hugely depends on a shared team mental model that includes values, goals, and current

states of the task, which has great potential to improve the human-machine teaming

experience.
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