16 research outputs found

    Generative AI for brain image computing and brain network computing: a review

    Get PDF
    Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial

    Towards a data-driven treatment of epilepsy: computational methods to overcome low-data regimes in clinical settings

    Get PDF
    Epilepsy is the most common neurological disorder, affecting around 1 % of the population. One third of patients with epilepsy are drug-resistant. If the epileptogenic zone can be localized precisely, curative resective surgery may be performed. However, only 40 to 70 % of patients remain seizure-free after surgery. Presurgical evaluation, which in part aims to localize the epileptogenic zone (EZ), is a complex multimodal process that requires subjective clinical decisions, often relying on a multidisciplinary team’s experience. Thus, the clinical pathway could benefit from data-driven methods for clinical decision support. In the last decade, deep learning has seen great advancements due to the improvement of graphics processing units (GPUs), the development of new algorithms and the large amounts of generated data that become available for training. However, using deep learning in clinical settings is challenging as large datasets are rare due to privacy concerns and expensive annotation processes. Methods to overcome the lack of data are especially important in the context of presurgical evaluation of epilepsy, as only a small proportion of patients with epilepsy end up undergoing surgery, which limits the availability of data to learn from. This thesis introduces computational methods that pave the way towards integrating data-driven methods into the clinical pathway for the treatment of epilepsy, overcoming the challenge presented by the relatively small datasets available. We used transfer learning from general-domain human action recognition to characterize epileptic seizures from video–telemetry data. We developed a software framework to predict the location of the epileptogenic zone given seizure semiologies, based on retrospective information from the literature. We trained deep learning models using self-supervised and semi-supervised learning to perform quantitative analysis of resective surgery by segmenting resection cavities on brain magnetic resonance images (MRIs). Throughout our work, we shared datasets and software tools that will accelerate research in medical image computing, particularly in the field of epilepsy

    Translational insights into the genetic etiology of mental health disorders: Examining risk factor models, neuroimaging, and current dissemination practices

    Get PDF
    Psychiatric genetics is a basic science field that has potential for practical application and effective translation. To date, translational frameworks utilized by this field have been linear (e.g., sequential) in nature, focusing on molecular genetic information. It is proposed that non-linear (e.g., socio-ecological) frameworks are a better way to immediately translate non-molecular genetic information. This dissertation explored the translation of psychiatric genetic information in two ways. First, a survey was sent to academic stakeholders to assess the state of the science regarding the translation of genetic information to the clinical care of mental health disorders. Findings from this indicate a translation-genetic competence gap whereby genetic knowledge reinforces linear frameworks and genetic competence is needed to achieve effective translation in this content area. Second, a new risk factor model for social anxiety was created that incorporated genetic, environmental, and neurophysiological risk factors (behavioral inhibition, parental bonding, emotion reactivity). Findings indicate that genetic etiology is more informative knowledge that can influence risk factor models and possibly prevention and intervention efforts for social anxiety. Overall this dissertation paves the way for examining the translational capacity of psychiatric genetics in a clinical setting. It constitutes the first examination of barriers to and a potential solution for the most effective translation of psychiatric genetic information

    Technologies on the stand:Legal and ethical questions in neuroscience and robotics

    Get PDF

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces

    Mathematical models for glioma growh and migration inside the brain

    Get PDF
    284 p.Los gliomas forman el subtipo más prevalente, agresivo e invasivo de tumores cerebrales primarios,caracterizados por una rápida proliferación celular y una elevada capacidad de infiltración. A pesar de los avances de la investigación clínica, estos tumores suelen ser resistentes al tratamiento; la supervivencia media oscila entre 9 y 12 meses, siendo la recurrencia la principal causa de mortalidad.La migración y la invasión de los gliomas en el cerebro son fenómenos complejos y aún se desconocen varios de los mecanismos subyacentes que guían la progresión de estos tumores.En esta tesis, proponemos varios modelos matemáticos para estudiar diversos aspectos de la progresión del glioma en relación con las escalas microscópicas y macroscópicas que caracterizan este proceso. Considerar el carácter intrínsico multiescala de la evolución del glioma permite definir modelos basados en sistemas dinámicos, ecuaciones cinéticas y EDP macroscópicas con diferentes roles dependiendo de los fenómenos a estudiar. Uno de los objetivos principales de esta tesis es integrar datos biológicos y clínicos con los modelos matemáticos. Los datos experimentales utilizados se han obtenido de imágenes por resonancia magnética, de imágenes con tensor de difusión del cerebro humano y de análisis de inmunofluorescencia in vivo de distribuciones de varias proteínas en Drosophila, un modelo fiable para el estudio de la dinámica del glioblastoma.Analizamos las características de anisotropía del tejido nervioso, utilizando los datos del tensor de difusión, y la influencia de la estructura de las fibras en la dinámica de las células tumorales.Mostramos cómo la red de fibras guía la migración celular a lo largo de rutas preferenciales,reproduciendo los patrones ramificados y heterogéneos típicos de la evolución del glioma; asimismo,demostramos cómo los tratamientos multimodales pueden reducir este comportamiento.Estudiamos la interdependencia entre la acidez del microambiente y la vascularización en el proceso de angiogénesis tumoral. Para ello, construimos un modelo capaz de reproducir la influencia de estos mecanismos en el desarrollo de la heterogeneidad intratumoral y de características típicas de la progresión del glioma relacionadas con la hipoxia (e.g. la necrosis). Este estudio permite formular una clasificación de los tumores basada en el nivel de necrosis, así como la investigación de terapias multimodales que incluyan efectos antiangiogénicos.Investigamos la influencia de las protrusiones celulares desde una perspectiva no local.Analizamos su rol en el fenómeno de la guía por contacto y en la manifestación de efectos colaborativos o competitivos entre dos estímulos que determinan cambios de dirección de la velocidad celular.Utilizando el análisis experimental de las distribuciones de varias proteínas, evaluamos la relación de las protrusiones celulares con las integrinas y las proteasas como principales mecanismos de progresión del glioblastoma. Mostramos cómo las interacciones bioquímicas y biomecánicas de estos agentes dan como resultado el desarrollo de frentes de propagación tumoral, que pueden presentar una evolución dinámica y heterogénea en relación a los cambios ambientales.bcam:basque center for applied mathematics; La Caixa Foundatio
    corecore