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Recent years have witnessed a significant advancement in brain imaging
techniques that o�er a non-invasive approach to mapping the structure and
function of the brain. Concurrently, generative artificial intelligence (AI) has
experienced substantial growth, involving using existing data to create new
content with a similar underlying pattern to real-world data. The integration
of these two domains, generative AI in neuroimaging, presents a promising
avenue for exploring various fields of brain imaging and brain network
computing, particularly in the areas of extracting spatiotemporal brain features
and reconstructing the topological connectivity of brain networks. Therefore,
this study reviewed the advanced models, tasks, challenges, and prospects of
brain imaging and brain network computing techniques and intends to provide
a comprehensive picture of current generative AI techniques in brain imaging.
This review is focused on novel methodological approaches and applications of
related new methods. It discussed fundamental theories and algorithms of four
classic generative models and provided a systematic survey and categorization
of tasks, including co-registration, super-resolution, enhancement, classification,
segmentation, cross-modality, brain network analysis, and brain decoding. This
paper also highlighted the challenges and future directions of the latest work with
the expectation that future research can be beneficial.
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1. Introduction

Brain imaging, providing a way to non-invasively map the structure and function of the

brain, has developed significantly in recent years (Gui et al., 2010). For instance, functional

brain imaging, such as functional magnetic resonance imaging (fMRI), has the potential

to revolutionize researchers’ understanding of the physical basis of the brain and offers a

powerful tool to understand how the brain adapts to various cognitive activities and tasks

(Allen et al., 2014). Additionally, it offers a powerful tool that assists in understanding how

the brain adapts to various cognitive activities and tasks. Generative artificial intelligence

refers to new technologies that employ existing data including images, text, and audio files
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to create new content. This new content has a similar underlying

pattern of real-world data and has great potential applications

in many areas. Synthetic data from generative AI (Wang et al.,

2017; Lei et al., 2020b) can train machine learning models (Liu

Y. et al., 2021; Lei et al., 2022b) to be less biased and help

robots to learn more abstract concepts both in the real and virtual

world. The development of neuroimaging as a cross-discipline

between imaging and neuroscience has enabled the qualitative

and quantitative analysis of images in multiple dimensions.

Neuroimaging is a powerful tool for studying brain science,

revealing the anatomical structure and working mechanisms of

the brain, as well as diagnosing and treating brain diseases. The

synergistic developments between emerging analytic technologies

and data-sharing initiatives have the potential to transform the role

of neuroimaging in clinical applications. While basic neuroscience

focuses on understanding how brain activity produces behavior,

clinical applications aim to develop tools that are useful for clinical

decision-making and treatment development.

Brain images reveal multiple modalities due to different

imaging principles and techniques. As shown in Figure 1, multi-
modality brain imaging contains many different types, such as

diffusion tensor imaging (DTI), fluid-attenuated inversion recovery
(FLAIR) MRI, Susceptibility weighted imaging (SWI) MRI,

resting state functional MRI (rs-fMRI) and fluorodeoxyglucose
positron emission tomography (FDG-PET), etc. Brain imaging
can be divided into two broad categories such as functional

and structural imaging. Functional neuroimaging, which has
generated great optimism about its potential to both revolutionize
researchers’ understanding of the physical basis of the brain

and to provide clinically useful tools (Yu et al., 2021b),

has made significant progress in achieving the former goal.

However, functional neuroimaging results and models have yet

to be incorporated into clinical practice. For decades, numerous

translational neuroimaging and radiological studies have identified

the characteristics that predict health-related outcomes (Wang S.-

Q. et al., 2015; Wang et al., 2020a), including current diagnostic

categories and measures of symptoms (Lei et al., 2022a), cognitive

and affective computing processes, and cognitive performance.

Redefining diagnostic categories, identifying neuropathological

features, and assessing healthy brain function outside of current

clinical diagnostic categories are potential outcomes of such studies.

Further analysis of brain images can provide morphological

information about brain regions, such as their volume, thickness,

and surface area. Automated computer analysis has replaced

expert anatomists’ manual labeling of brain images. In voxel-

based morphometry, voxels are segmented into one of three tissue

categories (cerebrospinal fluid, white matter, or gray matter) based

on their image intensity. After recording all scans in the study into

a common anatomical space, the gray matter density of each voxel

can be compared between the whole brain and the subject, using

the average brain as a template. This process extracts graphical

data information about brain-related patterns from brain imaging

voxels with high-resolution structures. Lundervold and Lundervold

(2019) demonstrated that the introduction of automated computer

analysis of magnetic resonance imaging has facilitated the in

vivo study of whole-brain coordinated patterns in thousands of

individuals (Hu et al., 2020b).

Moreover, in the field of network neuroscience (Bassett and

Sporns, 2017), the theory and applications of generative AI offer

a powerful tool for brain imaging and brain network computing

including but not limited to extraction of brain spatiotemporal

features and the reconstruction of the topological connectivity of

brain networks (Calhoun et al., 2014; Gong et al., 2022). Brain

networks, which represent the global connectivity of the brain’s

structure and function, are crucial in understanding the neural basis

of cognitive processes, neuroanatomy, functional brain imaging,

and neurodevelopment. Brain network computing involves the

construction, reconstruction, analysis, and optimization of brain

networks. While brain imaging allows for the qualitative and

quantitative analysis of the brain’s anatomical and functional

structure in two or three dimensions, brain network computing

enables the study of brain topological features and covariant

features (Isallari and Rekik, 2021). Various tools, such as PANDA

(Cui et al., 2013) and GRETNA (Wang J. et al., 2015), can be

used for constructing brain networks. However, the brain networks

produced by these tools are subjective, time-consuming, and

depend on the operator’s experience. This review also surveys

the development of AI-based algorithms that can automatically

construct brain networks.

This paper provides a brief overview of research related to

generative learning models in brain imaging from three different

perspectives: AI-based generative models, tasks for brain imaging,

and the prospects of generative AI for brain imaging. The paper

reviews recent developments and advancements made in each of

these areas.

2. Generative learning model

The generative learning model refers to a class of machine

learning (ML) models that can generate new data similar to

the training data on which they were trained. Large-scale

generative models are trained on massive datasets and require

specialized hardware, such as GPUs, for efficient training. As

shown in Figure 2, several types of generative models exist,

including Generative Adversarial Networks (GANs), Variational

Autoencoders (VAEs), Flow Models, and Denoising Diffusion

Probabilistic Models (DDPMs). Introduced by Goodfellow et al.

(2014), GANs are a type of neural network comprising two parts:

a generator network that creates new data and a discriminator

network that distinguishes between real and fake data. VAEs,

proposed by Kingma and Welling (2013), generate new data by

learning a compressed representation of the input data. Flow

Models, proposed by Rezende and Mohamed (2015), model the

probability distribution of the input data and invert it. DDPMs,

a new type of generative model introduced by Ho et al. (2020),

have gained popularity in recent years. They draw inspiration from

the physical process of gas molecule diffusion, in which molecules

diffuse from high-density to low-density areas. DDPMs learn to

model the data distribution from input data incrementally.

2.1. Variational autoencoder

Autoencoders are a type of neural network that encode the

input X into a low-dimensional vector z, also known as the latent

space, and then reconstruct the input X based on z. By minimizing

the error between X and the generated output X̂, autoencoders
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FIGURE 1

Multi-modality brain imaging includes DTI, sMRI, fMRI, PET, and other imaging types.

are trained to gradually reduce the reconstruction error, thereby

achieving the goal of reconstruction. However, autoencoders suffer

from the limitation of not being able to generate new content

as they cannot produce latent vectors arbitrarily. This is because

the latent vectors z are all encoded from the original images by

the encoder.

In Equation (1), where a set of raw data samples X1, ...,Xn

is available to describe the population, direct sampling from the

probability distribution p(X) would be feasible if p(X) were known.

However, in practice, the distribution of the raw data p(X) is

typically unknown.

p(X) =
∑

Z

p(X|Z)p(Z) (1)

p(Z) =
∑

X

p(Z | X)p(X)

= N (0, I)
∑

X

p(X)

= N (0, I)

(2)

To address this issue, researchers have added constraints to the

latent space Z (the space corresponding to the latent vectors) to

impose a prior distribution on the latent vectors. This led to the

development of the variational autoencoder (VAE) model, which

adds a constraint to the encoder to force it to produce latent

variables that follow a normal distribution in Equation (2). It is this

constraint that distinguishes VAE from traditional autoencoders.

A key aspect of variational autoencoders (VAEs) is the addition

of a constraint that enforces a normal distribution on the latent

space Z. Determining this normal distribution is the primary

objective of VAEs. To specify a normal distribution, two parameters

must be determined: the mean µ and the standard deviation σ .

To accomplish this, the encoder encodes input samples X into

two latent dimension vectors, µ and σ , which represent the mean

and variance of the latent space assumed to follow a normal

distribution (Mo and Wang, 2009). To sample Z from this latent

space, VAE assumes that the latent normal distribution can generate

the input images. VAE first samples a random vector ǫ from the

standard normal distribution N(0, I), and then computes:

Z = µ + σ ⊙ ǫ (3)

Here ⊙ denotes element-wise multiplication. Z is a vector

sampled from the latent space, and Z is used as input to the

decoder to generate a reconstructed sample X̂. The above steps

constitute the forward propagation process of the entire network.

To perform backpropagation, the loss function is evaluated from

two aspects: the similarity between the generated output X̂ and the

original input X and the similarity between the distribution of the

latent space and the normal distribution. The similarity between X

and X̂ is generally measured using reconstructions loss, while the

similarity between two distributions is generally measured using

the Kullback-Leibler divergence (Joyce, 2011).

KL(p(x)||q(x)) =

∫

p(x)ln
p(x)

q(x)
dx (4)

Loss(X, X̂) = Lossreconstruction

+ βLossKL(z,N (0, Id))
(5)
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FIGURE 2

The schematic diagram of generative learning model includes VAE, GAN, flow-based model, and di�usion model.

In summary, VAEs have found useful applications in brain

imaging. VAEs can effectively cluster similar patterns in brain

activity data and detect subtle changes that may not be easily

perceptible to the human eye (Tezcan et al., 2017; Cheng et al.,

2021). Furthermore, the learned lower-dimensional representation

by VAEs can also serve as a data compression method to minimize

computational resources when analyzing complex brain network

data (Qiao et al., 2021). The ability to model complex data and

generate new data points that resemble the original ones makes

VAEs a powerful tool in gaining insights into the underlying

mechanisms of neurological disorders and diseases (Zhao et al.,

2019).

2.2. Generative adversarial network

A Generative Adversarial Network (GAN) is a type of machine

learning framework designed byGoodfellow et al. (2014). GANs are

composed of two neural networks that compete against each other

in a zero-sum game, where one agent’s gain is another agent’s loss.

The framework learns to generate new data with the same statistics

as the training set, enabling the GAN to generate new data that

resembles the original data.

min
G

max
D

V (D,G)w = Ex∼pdata(x)

[

logD (x)
]

+ Ez∼pz(z)

[

log (1− D (G (z)))
]

(6)

GANs are based on game theory and can be viewed as a

two-player minimax game, where the generator aims to minimize

the difference between the distribution of the generated samples

and the distribution of the real data, while the discriminator

aims to maximize the difference between the two distributions.

During training, the generator tries to produce samples that

can mislead the discriminator into thinking they are real, while

the discriminator tries to correctly distinguish between real and

synthetic samples.

The generator usually consists of a series of deconvolutional

layers that gradually upsample the random input vector into

a sample that is intended to resemble the training data. The

discriminator usually consists of a series of convolutional layers

that downsample the input image or sample into a lower-

dimensional feature representation, followed by a few fully

connected layers that compute the final prediction. The loss

function used in GANs is typically the binary cross-entropy

loss, which measures the difference between the predicted
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probabilities of the discriminator and the true labels (0 for

synthetic samples and 1 for real samples). Other loss functions

such as Wasserstein distance or hinge loss have been proposed

to address some of the limitations of the binary cross-entropy

loss. However, the original GAN suffers from the issue of

gradient vanishing, which can lead to unstable training and poor

sample quality. One of the main challenges of training GANs

is the mode collapse problem, where the generator produces a

limited variety of samples that are similar to each other, rather

than generating diverse samples that cover the entire range

of the training data. Several techniques have been proposed

to overcome this problem, such as adding noise to the input

of the discriminator, using different types of regularization, or

using multi-scale or multi-modal architectures. To overcome this

limitation, methods such asWGANwere introduced, which use the

Wasserstein distance to measure the distance between the real and

generated distributions.

Wc[p̃(x), q(x)] = inf
γ∈5(p̃(x),q(x))

E(x,y)∼γ [c(x, y)] (7)

The Wasserstein GAN (WGAN), proposed by Arjovsky et al.

(2017), aims to overcome the limitations of the original GAN

model by using the Wasserstein distance to measure the distance

between the real and generated distributions. The objective of

WGAN is to minimize the optimal transport cost function,

which represents the minimum cost of transforming the generated

distribution q(x) into the real distribution p̃(x) through a series

of small steps. The cost of each step is measured by the cost

function c(x, y), which represents the distance between the samples

x and y. By using the Wasserstein distance instead of the

Jensen-Shannon divergence used in the original GAN, WGAN

is able to provide more stable training and generate higher

quality samples.

argmin
G

argmax
T,‖T‖L≤1

Ex∼p̃(x)[T(x)]− Ex∼q(z)[T(G(z))] (8)

WGAN, which uses the Wasserstein distance instead of the

Jensen-Shannon divergence used in the original GAN, provides

more stable training and generates higher quality samples. WGAN

also has other advantages, such as improved convergence properties

and the ability to measure the distance between distributions more

accurately. Overall,WGAN represents a significant advancement in

the field of generativemodeling and has been successfully applied in

various applications, such as image generation, data augmentation,

and domain adaptation. Its success has led to the development of

several variants, such as Wasserstein GAN with Gradient Penalty

(WGAN-GP; Gulrajani et al., 2017), which further improves the

stability and efficiency of training.

Another widely used GAN variant in the medical field is

CycleGAN, a type of unsupervised learning technique proposed

by Zhu et al. (2017), which can learn the mapping between

two different domains without any paired data. CycleGAN has

several advantages, such as its ability to learn the mapping

between two domains without the need for paired data and its

ability to handle multimodal and many-to-many mappings. It

has been successfully applied in various applications, including

medical image analysis, such as image-to-image translation,

segmentation, and registration. CycleGAN has also inspired the

development of several variants, such as DualGAN (Yi et al.,

2017), DiscoGAN (Kim et al., 2017), and UNIT (Liu et al.,

2017), which further improve the performance and versatility

of the original CycleGAN. The main idea behind CycleGAN

is to use two generators and two discriminators to learn the

mapping between the domains. The formula for CycleGAN is

as follows:

G∗, F∗ = argmin
G,F

max
Dx ,DY

L(G, F,DX ,DY ) (9)

The two generators in CycleGAN are used to generate

images from one domain and then transform them into images

from the other domain. The two discriminators are used to

distinguish between the generated images and the real images

from the other domain. The CycleGAN objective function

includes two GAN losses, which encourage the generators to

generate realistic images, and a cycle-consistency loss, which

encourages the generators to learn a mapping between the

two domains.

L(G, F,DX ,DY ) = LGAN(G,DY ,X,Y)

+ LGAN(F,DX ,Y ,X)

+ λLcyc(G, F)

(10)

LGAN(G,DY ,X,Y) = Ey∼Ptan(y)[logDY (y)]

+ Ex∼Ptan(x)[log(1− DY (G(x))]
(11)

Lcyc(G, F) = Ex∼ptan(x)[‖F(G(x))− x‖1]

+Ey∼ptan(y)[‖G(F(y))− y‖1]
(12)

Overall, GANs have found useful applications in brain imaging

and network analysis. They can generate synthetic data samples

that resemble real data (Dar et al., 2019), enabling researchers to

explore brain activity patterns and identify underlying structures.

GANs can also augment data by generating synthetic samples

to balance imbalanced classes in the dataset, improving deep

learning performance in tasks such as image segmentation and

classification (Gao et al., 2021). Also, GANs (Lei et al., 2020a)

can generate new brain activity patterns (Zuo et al., 2021)

in brain network analysis, which can be used to simulate

brain activity under various conditions and understand how

the network responds to different stimuli. GANs (Wang et al.,

2020b) can also help model the relationships between different

brain regions and predict the functional connectivity patterns of

the brain.

2.3. Flow-based generative model

Flow-based generative models are a type of deep generative

model that can learn to generate new samples similar to a

given dataset. Flow-based models are based on the concept of

normalizing flows, which are transformations that can map a
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simple distribution (e.g., Gaussian) to a more complex distribution

(e.g., the distribution of the training data). Flow-based models

have been applied to a wide range of applications, such as

image generation, video generation, text generation, and even

molecular design. Several variations of flow-based models have

been proposed, such as conditional flow-based models, which can

generate samples conditioned on a given input, and autoregressive

flow-based models, which can generate samples by sequentially

generating each dimension of the sample.

Flow-based models consist of a series of invertible

transformations that map a simple distribution to the distribution

of the training data. The inverse of each transformation is

also computable, which allows for efficient computation of

the likelihood of the data and generation of new samples. The

transformations can be learned using maximum likelihood

estimation or other methods.

G∗ = argmaxG

m
∑

i=1

logPG(x
i)

≈ argminGKL(Pdata||PG)

(13)

log q(x) = −
D

2
log(2π)−

1

2

∥
∥f (x)

∥
∥
2
+ log

∣
∣
∣
∣
det

[
∂f

∂x

]∣
∣
∣
∣

(14)

During training, the flow-based model learns to maximize the

likelihood of the training data, which is typically computed using

the change of variables formula and the likelihood of the simple

distribution. The model can be trained using stochastic gradient

descent or other optimization methods. It has several advantages

over other types of generative models, such as explicit likelihood

computation, efficient sampling, and the ability to perform exact

inference. However, they also have some limitations, such as the

requirement of invertible transformations, which can restrict the

expressiveness of the model.

In summary, Flow-Based Generative Models offer a promising

approach for modeling complex data distributions and have

potential applications in brain imaging and brain network research.

These models can accurately cluster brain activity patterns,

identify the structure of the data, and generate synthetic data

that resemble the real samples (Dong et al., 2022). Additionally,

Flow-Based Models can be used to learn a lower-dimensional

representation of the functional connectivity patterns in the

brain, enabling researchers to identify relevant features for

predicting network changes. The direct modeling of likelihood

and the ability to generate novel samples make these models a

powerful tool in understanding the underlying mechanisms of

complex systems.

2.4. Di�usion model

Diffusion models belong to the category of latent variable

models in machine learning that utilize Markov chains and

variational inference to discern the underlying structure

of a dataset. They offer a promising avenue for deep

generative modeling owing to their straightforward training

process, robust expressive capacity, and ability to generate

data via ancestral sampling without the prerequisite of a

posterior distribution.

log p(x) ≥ Eq(x1 :T |x0)

[

log
p (x0 :T)

q (x1 :T | x0)

]

= Eq(x1|x0)

[

log pθ (x0 | x1)
]

︸ ︷︷ ︸

reconstruction term

− Eq(xT−1|x0)
[

DKL
(

q (xT | xT−1) ‖p (xT)
)]

︸ ︷︷ ︸

prior matching term

−

T
∑

t=2

Eq(xt |x0)

[

q (xt−1 | xt , x0) pθ (xt−1 | xt)
]

︸ ︷︷ ︸

denoising matching term

(15)

The optimization of the diffusion model culminates in training

a neural network to predict the original image from any time step

of the noise image as input, with the optimization objective being

to minimize the prediction error. Moreover, the optimization of

the noise-matching term in equation 15 can be approximated by

minimizing the expected prediction error at each time step using

random sampling.

L0 = − log pθ (x0 | x1) (16)

Lt−1 = DKL

(

q (xt−1 | xt , x0) |pθ (xt−1 | xt)
)

LT = DKL

(

q (xT | x0) |p (xT)
)

argmin
θ

Et∼U{2,T}
[

Eq(xt |x0)
[

DKL(q(xt−1|xt , x0)
]]

(17)

In contrast to other deep generative models such as VAE,

GAN, and normalizing flow, diffusion models offer unique

advantages while overcoming several limitations and challenges.

The training of VAEs can be challenging due to the difficulty

in selecting the variational posterior, while GANs require an

additional discriminator network, and normalizing flow models

have limited expressive power. In contrast, diffusion models

utilize the diffusion process of data points through the latent

space to derive a solution that involves training only a generator

with a simple objective function, without the need for training

other networks.

In computer vision, diffusion models train neural networks

to denoise images blurred with Gaussian noise by learning to

reverse the diffusion process. Three examples of generic diffusion

modeling frameworks used in computer vision include denoising

diffusion probabilistic models, noise-conditioned score networks,

and stochastic differential equations. In brain imaging and brain

network analysis, diffusion models serve as a valuable tool for

estimating the underlying structure of brain function and structure

(Chung and Ye, 2022), which is essential for understanding the

mechanisms of neurological disorders and diseases (Myronenko,
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2018). By modeling the diffusion of data points through the

latent space, diffusion models are capable of effectively capturing

changes in brain connectivity over time and identifying regions

critical to brain structure (Wolleb et al., 2022). Additionally,

diffusion models can simulate brain activity under different

conditions and predict how the brain network will respond to

various stimuli.

Overall, diffusion models provide a valuable approach to

modeling latent spaces in various fields, including computer

vision, brain imaging, and brain network analysis. By offering

an efficient and effective means of estimating the underlying

structure of datasets, diffusion models can be a powerful tool for

gaining insights into the spatiotemporal dynamics of large and

complex systems.

3. Tasks for brain imaging and brain
network construction

In this section, tasks in brain imaging and brain network

construction are specifically categorized and investigated in

eight categories, including co-registration and super-resolution

(shown in Figure 3), enhancement and classification (shown

in Figure 4), segmentation and cross-modality (shown in

Figure 5), and brain network analysis and brain decode (shown

in Figure 6).

3.1. Co-registration

Co-registration is a crucial step in medical image analysis to

align images from different modalities or time points. However, it

is a challenging task due to various factors, such as noise, artifacts,

motion, and anatomical differences. Many innovative methods

have been proposed to tackle these challenges and improve co-

registration performance.

For instance, Sundar et al. (2021) proposed conditional GANs

to address intra-frame motion problems in dynamic PET studies

of the brain. Yang et al. (2020) proposed indirect multimodal

image registration and completion by using synthetic CT images

obtained from multi-contrast MRI. Kong et al. (2021) introduced

RegGAN for image-to-image translation and registration which

includes noise reduction. Furthermore, Wang B. et al. (2022)

proposed invertible AC-flow for direct generation of attenuation-

corrected PET images without CT or MR images. Apart from these

deep learning-based methods, a diffusion-based image registration

method called DiffuseMorph was introduced by Kim et al. (2022).

This method overcomes the limitations of traditional and deep

learning-based methods due to computational complexity and

topological folding.

These proposed methods have shown promising results in

improving co-registration performance in medical imaging. Future

research can explore further advances to overcome the remaining

challenges, such as reducing the time taken for co-registration

while maintaining high accuracy and improving the robustness and

generalization of existing solutions.

3.2. Super-resolution

Research into high-resolution brain imaging has yielded

promising results, with generative models proving to be a popular

and effective approach (Sun et al., 2022). One such approach, as

described in Song et al. (2020), involves using a GAN architecture

with anatomical and spatial inputs for creating super-resolved

brain PET images. According to the authors, the proposed

GAN outperforms other deep learning models and penalized

deconvolution techniques. Similarly, You et al. (2022) suggests

using fine perceptive generative adversarial networks (FP-GANs)

for high-resolution magnetic resonance imaging. This technique

applies a sub-band generative adversarial network and sub-band

attention for super-resolution in individual sub-bands.

These studies contribute to the growing body of literature on

super-resolution tasks for brain imaging, with generative models

emerging as promising solutions. The success of these models

suggests that they could be applied to other high-resolution

imaging tasks requiring greater detail and precision (Wicaksono

et al., 2022). However, further research is needed to fully evaluate

the performance and potential limitations of generative models for

these tasks.

3.3. Enhancement

Data enhancement is a widely adopted approach in

improving the performance of deep learning models for

various medical image analysis tasks. Some studies cater

to the task of data enhancement in medical tasks using

generative AI. The first CycleGAN-based method for MR-

to-CT synthesis proposed by Wolterink et al. (2017), shows

that this technique can generate high-quality synthetic CT

scans that are similar in appearance to real ones. Both

the designed GAN model and novel loss function take

enhancement tasks a step further in their performance (Dar

et al., 2019).

Similarly, Yurt et al. (2021) proposed a multi-stream approach

that integrates multiple source images to synthesize missing

multi-contrast MRI images, outperforming other state-of-the-

art methods. Zhan et al. (2021) proposed a Multi-scale Gate

Mergence based GAN model that accurately diagnoses patients

with corrupted image sequences by weighing different modalities

across locations. Luo et al. (2021) proposed an edge-preserving

MRI image synthesis GANmodel, infusing an auxiliary edge image

generation task to help preserve edge information and improve

latent representation features, and an iterative multi-scale fusion

module to further improve the quality of the synthesized target

modality. Recently, Upadhyay et al. (2021) proposed a robust

GAN-based framework that models an adaptive loss function to

improve robustness to out-of-distribution (OOD)-noisy data and

estimates per-voxel uncertainty in predictions for image-to-image

translation across two real-world datasets in medical imaging

applications. Luo et al. (2022) proposed an adaptive rectification-

based GAN model with spectral constraint to synthesize high-

quality standard-dose PET images from low-dose PET images,

reducing radiation exposure while maintaining accurate diagnoses.
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FIGURE 3

Co-registration and super-resolution task diagrams applying generative AI for brain imaging.

These studies demonstrate the promising potential of deep

learning-based approaches and data enhancement in enhancing the

quality and performance of medical image generation tasks.

3.4. Classification

Classification of brain diseases is a crucial task for early

diagnosis and effective treatment. The advancements in deep

learning techniques have led to the development of various

generative models for the automatic classification of neuroimages.

Recently, serval generative models were proposed to focus on brain

disease classification tasks.

In 2019, Pan et al. (2019) propose a unified deep learning

framework to jointly perform image synthesis and disease diagnosis

using incomplete multi-modal neuroimaging data. The proposed

method includes two networks: a Disease-Image Specific Neural

Network (DSNN) to capture the spatial information of MRI/PET

scans and a Feature-consistent Generative Adversarial Network

(FGAN) to synthesize missing images by encouraging DSNN

feature maps of synthetic images and their respective real

images to be consistent. The method achieves state-of-the-art

performance for Alzheimer’s disease identification and mild

cognitive impairment conversion prediction tasks. Besides, pattern

expression offered complementary performance to biomarkers

in predicting clinical progression, making these deep-learning-

derived biomarkers promising tools for precision diagnostics and

targeted clinical trial recruitment. Yang Z. et al. (2021) applied

deep learning framework to longitudinal data and revealed two

distinct progression pathways that were predictive of future

neurodegeneration rates.

Indeed, there are several generative models that have been

designed with a deeper consideration of prior settings for tasks

such as biomarkers and clinical reports. Wang et al. (2020a)

propose an ensemble of 3D convolutional neural networks (CNNs)

with dense connections for automatic diagnosis of Alzheimer’s

disease (AD) and mild cognitive impairment (MCI). The proposed

model was evaluated on the ADNI dataset using a probability-

based fusion method that combines multiple architectures. Shin

et al. (2020) propose a GAN-based approach for the diagnosis of

Alzheimer’s Disease (AD) using T1-weighted MRIs as input data.

The authors incorporate AD diagnosis into the training objective to

achieve better classification performance. This architecture shows

state-of-the-art results for three- or four-class classification tasks

involving MCI, normal cognition, or Alzheimer’s disease. Kim

et al. (2020) propose a GAN-based model for classifying
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FIGURE 4

Enhancement and classification task diagrams applying generative AI for brain imaging.

Alzheimer’s disease (AD) and normal cognitive condition (NC).

The authors use slice-selective learning to reduce computational

costs and extract unbiased features. The researchers trained the

model using an 18F-fluorodeoxyglucose ([18F] FDG) PET/CT

dataset obtained from the Alzheimer’s Disease Neuroimaging

Initiative database. The approach seems feasible when there are

insufficient datasets available for training individual deep neural

networks (Wang et al., 2018; Yu et al., 2020) with single-source

training datasets.

Furthermore, like Baur et al. (2020) propose a practical

method for unsupervised brain MRI anomaly detection in clinical

scenarios using a CycleGAN-based style-transfer framework.

The proposed approach involves mapping real healthy data to

a distribution with lower entropy and suppressing anomalies

by filtering high-frequency components during training. The

experiments demonstrate that the proposed method outperforms

existing methods on various metrics, such as F1 score, PRC AUC,

and ROC AUC, thus demonstrating its potential for practical

applications in clinical settings.

Therefore, generativemodels have demonstrated their potential

in various classification tasks for brain diseases. These models can

extract features that are not directly visible, thereby aiding in the

early diagnosis and accurate classification of diseases.

3.5. Segmentation

Generative models have gained significant attention in the field

of medical image segmentation for their capability of reducing

the dependence on manually labeled data. This paper reviewed

the recent advances in generative models for segmentation tasks,

focusing on brain tumor segmentation (Myronenko, 2018). In

2019, Yuan et al. (2020) presented a 3D unified generative

adversarial network, achieving any-to-anymodality translation and

multimodal segmentation through a single network based on the

anatomical structure. Ding et al. (2021) proposed ToStaGAN, a

two-stage generative adversarial neural network, for brain tumor

segmentation, which incorporates coarse prediction maps with

fine-grained extraction modules and dense skip connections. In

2022, Wang S. et al. (2022) introduced Consistent Perception

Generative Adversarial Network (CPGAN), an alternative to deep

learning algorithms with expensive labeled masks, demonstrating

superior segmentation performance over other methods with

less labeled data on Anatomical Tracings of Lesions After

Stroke. Wu et al. (2021) presented an unsupervised brain

tumor segmentation method called Symmetric-Driven Generative

Adversarial Network (SD-GAN) in 2021, which utilizes inherent

anatomical variations by learning a non-linear mapping between
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FIGURE 5

Segmentation and cross-modality task diagrams applying generative AI for brain imaging.

left and right brain images. SD-GAN outperforms state-of-the-

art unsupervised methods, providing a promising solution to

unsupervised segmentation tasks.

These studies demonstrate that generative models have become

increasingly important for medical image segmentation owing

to their ability to learn from unannotated data and promising

performance in comparison to traditional supervised methods.

3.6. Cross-modality

Cross-modality image synthesis has become an active research

area in medical imaging, where the goal is to generate images

in a target modality from the input in another modality. Several

generative models have been proposed for this task, including

variations of generative adversarial networks (GANs) and encoder-

decoder models. In recent years, significant progress has beenmade

in using generative models for cross-modality image synthesis in

the brain.

One of the early works in this area introduced gEa-GAN and

dEa-GAN by Yu et al. (2019), which integrated edge information

to bridge the gap between different imaging modalities. The

resulting synthesized images showed superior quality compared

to several state-of-the-art methods, as demonstrated on various

datasets. Another study (Hu et al., 2021) introduced Bidirectional

GAN, which used a bidirectional mapping mechanism to embed

diverse brain structural features into the high-dimensional latent

space. The method achieved better quality in generating PET

images than other models trained on the same dataset, while

preserving diverse details of brain structures across different

subjects. Other studies explored more challenging scenarios, such

as Jiao et al. (2020) generating magnetic resonance (MR)-like

images directly from clinical ultrasound (US) images of fetal brains

and Sharma andHamarneh (2019) synthesizingmultiplemodalities

of neuroimaging data. The former study proposed an end-to-

end trainable model that utilized shared latent features between

US and MR data to generate realistic MR-like images, while the

latter study introduced a multi-input, multi-output variant of

GAN to synthesize sequences missing in brain MRI scans. The

proposed models achieved promising results and demonstrate the

feasibility of using generative models in clinical practice. Moreover,

a bidirectional mapping mechanism is designed to embed the

semantic information of PET images into the high-dimensional

latent potential space for improving the visual quality of the
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FIGURE 6

Brain network analysis and brain decode task diagrams applying generative AI for brain imaging.

cross-modal synthesized images (Hu et al., 2019, 2020a). The

most attractive part is that the method can synthesize perceptually

realistic PET images while preserving the different brain structures

of different subjects.

Several other studies have also proposed novel generative

models, including MouseGAN (Yu et al., 2021c) for segmenting

mouse brain structures in MRI images and SC-GAN (Lan et al.,

2021) for synthesizing multimodal 3D neuroimaging data. The

former study achieved improved segmentation using modality-

invariant information, while the latter used spectral normalization,

feature matching, and self-attention modules to stabilize the

training process and ensure optimization convergence. These

studies have shown that generative models have the potential to

improve existing neuroimaging analysis tasks and provide new

tools for diagnosis and follow-up.

Finally, some studies have attempted to integrate generative

models with disease diagnoses (Yang H. et al., 2021). Moreover, in

neuroimaging data, One study (Pan et al., 2022) proposed a disease-

image-specific deep learning framework that utilizes image-disease

specificity to highlight different disease-relevant regions in the

brain, with promising results on Alzheimer’s Disease and mild

cognitive impairment conversion prediction tasks. These studies

highlight the potential of generative models to not only generate

images of other modalities but also aid in downstream analysis and

diagnoses using inter-modality information.

3.7. Brain network analysis

Brain network modeling is a critical research field in

neuroscience that aims to understand the complex relationships

among structural and functional connectivity patterns in the

human brain. In recent years, deep learning has been increasingly

used in brain network analysis as it shows promising results

in predicting brain graphs, inferring effective connectivity, and

diagnosing Alzheimer’s disease using multimodal neuroimaging

data. To this end, several deep learning frameworks have been

proposed to generate reliable individual structural connectivity

from functional connectivity, MultiGraphGAN, and MGCN-

GAN proposed by Bessadok et al. (2020) and Zhang et al.

(2020). These frameworks combine adversarial learning and

topology preservation to generate high-quality brain graphs

from limited data effectively. Some studies focused on inferring

effective connectivity from functional MRI data, including

EC-GAN and MGCN-GAN proposed by Liu et al. (2020),

incorporate adversarial learning and graph convolutional

networks to effectively infer brain structure-function relationships.

Additionally, some studies aimed at diagnosing Alzheimer’s

disease using multimodal neuroimaging data, such as MRL-AHF

and HGGAN proposed by Zuo et al. (2021) and Pan et al.

(2021), which leverage adversarial learning and hypergraph

representation to effectively integrate and represent multimodal
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data. Overall, deep learning frameworks have been shown to hold

great potential in brain network modeling, rapidly advancing

our understanding of brain structure-function relationships and

improving the prediction accuracy of brain disorders, such as

brain drug addiction (Gong et al., 2023). Future research in

this area will likely continue to explore and develop new deep

learning-based approaches to further enhance modeling accuracy

and generalization performance.

3.8. Brain decoding

Generative models have become a popular research focus in

the field of brain decoding tasks, especially in the reconstruction

of perceived images from fMRI signals. Baek et al. (2021)

proposed a hierarchical deep neural network model of the

ventral visual stream to explain the innate emergence of

face-selectivity. VanRullen and Reddy (2019) applied a deep

learning system to reconstruct face images from fMRI data,

achieving accurate gender classification and decoding of visually

similar inputs. Ren et al. (2021) proposed the Dual-Variational

Autoencoder/Generative Adversarial Network framework,

which outperforms state-of-the-art methods in terms of visual

reconstruction accuracy. Chen et al. (2022) introduced the MinD-

Vis framework, which uses a self-supervised representation of

fMRI data and a latent diffusion model to reconstruct high-quality

images with semantic details, outperforming state-of-the-art

methods in semantic mapping and generation quality. Dado

et al. (2022) presented a novel experimental paradigm, HYPER,

for neural decoding of faces from brain recordings using

generative adversarial networks, achieving the most accurate

reconstructions of perception to date. These studies demonstrate

the potential of generative models in brain decoding tasks,

which can help advance our understanding of brain function

and perception.

The application division of generative artificial intelligence

methods in the field of brain image analysis is shown in

Figure 7. The existing models mentioned above are divided

according to tasks, and the names of the corresponding models

are marked under the relevant tasks, which can be mainly

divided into eight categories as shown in the figure. The most

representative methods shown in the figure, the more research

is optimized under this mainstream model. The four mainstream

methods have different adaptation conditions for different

tasks. In terms of coregistration, cross-modality, segmentation,

classification, clustering, and super-scoring tasks, the optimization

of the GAN model is significantly better than the other three

mainstream models. The reason is that the GAN-based method

can be well applied to brain image generation tasks. In brain

network analysis and brain decoding tasks, the encoding and

decoding structure of the VAE-based method will have more

advantages. Flow-based models have relatively few applications

and have a certain degree of application in super-resolution,

brain decoding, and co-registration tasks. Diffusion models have

high-quality generation effects and have been gradually used

in various tasks of brain image analysis, and have achieved

certain achievements.

4. Discussion

4.1. Challenge

The domain of brain image analysis and brain network

computing confronted many obstacles that have impeded the

development of the field. In order to progress future research more

effectively, this review delves into some significant challenges and

expounds on them in the following:

4.1.1. Small sample problem
Medical image datasets are generally much smaller than

datasets in other fields, due to the challenging task of acquiring and

annotating medical images. For example, for lung nodule detection

tasks, due to the small number of lung nodules, the number of

positive samples in the dataset is very small, and the size, shape,

and position of lung nodules also vary greatly, making it difficult for

algorithms to accurately detect lung nodules. Therefore, the small

sample problem has become one of the major obstacles for machine

learning algorithms in the field of medical imaging. In addition to

methods such as meta-learning that can effectively solve the small

sample problem, improvement can be done by using prompts to

modify pre-trained models, utilizing prior knowledge, and model

ensembles. For example, in lung nodule detection tasks, pre-trained

models can be used to extract features and prompts can be used to

guide the model on how to detect lung nodules. In addition, prior

knowledge can be used to constrain the output of themodel, such as

constraining the size and shape of the output lung nodules. Finally,

model ensembles can be used to improve algorithm robustness and

generalization capabilities.

4.1.2. High dimensional data problem
Medical scans or images are typically high-dimensional data

types that contain large amounts of information. For example,

in brain medical imaging, 3D MRI or fMRI is typically used to

obtain brain structure and functional information. These data often

contain millions of pixels or thousands of time points, so extracting

meaningful, non-redundant, and non-overfitting features from

such high-dimensional data is a new challenge formachine learning

algorithms in the field of medical imaging. For the task of feature

extraction from high-dimensional brain data, due to the complexity

of brain structure and function, single modality feature extraction

methods often have difficulty in extracting meaningful features.

For example, in brain MRI images, tissue such as gray matter,

white matter, and cerebrospinal fluid have different shapes and

positions, so multi-modality feature analysis methods are required

to extract meaningful features. In addition, as there are complex

relationships between brain structure and function, multi-modality

feature analysis methods are necessary to extract the relevant

features between structure and function.

4.1.3. Realism of di�erent modalities
Generative models have been widely applied in the field

of medical data generation. However, the generated modality

data may suffer from the problems of unreliability or modality
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FIGURE 7

Model categorization map under di�erent brain image analysis tasks. Coregistration: CAE-GAN (Yang et al., 2020), RegGAN (Kong et al., 2021), cGAN
(Sundar et al., 2021), AC-flow (Wang B. et al., 2022), Di�useMorph (Kim et al., 2022); Enhancement: α-GAN (Kwon et al., 2019), AR-GAN (Luo et al.,
2022), Multi-stream GAN (Yurt et al., 2021), Intro VAE (Hirte et al., 2021), MBTI (Rouzrokh et al., 2022); Segmentation: ToStaGAN (Ding et al., 2021),
CPGAN (Wang S. et al., 2022), SD-GAN (Wu et al., 2021), DAE (Bangalore Yogananda et al., 2022), MedSegDi� (Wu et al., 2022), PD-DDPM (Guo et al.,
2022); Super-resolution: Flow Enhancer (Dong et al., 2022), Dual GANs (Song et al., 2020), FP-GAN (You et al., 2022); Cross-modality: UCAN (Zhou
et al., 2021), MouseGAN (Yu et al., 2021c), BMGAN (Hu et al., 2021), D2FE-GAN (Zhan et al., 2022), SynDi� (Özbey et al., 2022), UMM-CSGM (Meng
et al., 2022); Classification: CN-StyleGAN (Lee et al., 2022), THS-GAN (Yu et al., 2021a), Smile-GAN (Yang Z. et al., 2021), VAEGAN-QC (Mostapha
et al., 2019); Brain network analysis: LG-DADA (Bessadok et al., 2021), AGSR-Net (Isallari and Rekik, 2021), GSDAE (Qiao et al., 2021), GATE (Liu M.
et al., 2021), MAGE (Pervaiz et al., 2021); Brain decode: D-VAE (Ren et al., 2021), DMACN (Lu et al., 2021), DGNN (VanRullen and Reddy, 2019),
Untrained DNN (Baek et al., 2021), MinD-Vis (Chen et al., 2022).

inconsistency. MRI and fMRI are common modalities in medical

imaging. For MRI image generation, there may be problems

such as insufficient reconstructed image resolution, lacking local

details, and artifacts. In fMRI data generation, there may be

signal suppression in local regions, interference from noise, and

motion artifacts. In recent years, the generation of genetic data

has also had a significant impact on the medical field. One major

problem in generating genetic data is that the generated data

may differ from real genetic data because real genetic data are

produced by many genetic factors working together. Thus, when

generating genetic data, multiple factors must be considered to

improve the realism and consistency of generated data. While

problems that could occur in extensively experimented image

modalities may be easily identified and optimized, this realism

problem can be hard to discern in complex or abstract modalities.

Ultimately, such erroneously generated data may lead to incorrect

diagnoses or treatments. To address this problem, researchers

have proposed many methods, such as introducing special loss

functions, such as cycle consistency in the model process in the

image domain, and introducing strategies such as multi-modality

joint and multi-task learning to improve the generative quality and

realism of modal data.

4.1.4. Standard validation issues
The lack of universally accepted validation standards for

evaluating the performance of machine learning models in the

field of medical imaging makes it difficult to compare results from

different studies or ensure the best performance of the models. As

the structure of the human brain is complex and diverse, specific

to the generation task of brain diseases, more requirements are

raised, and large differences exist between different regions, thus

how to evaluate the performance of generative models to produce

meaningful generative models. For example, for the generation

task of MRI images, evaluation metrics can use traditional image

quality evaluation indicators such as PSNR, SSIM, FID, etc., but

these indicators cannot fully reflect the performance of the model

in medical applications, such as whether the model generates

anatomy structure consistent with real data, and whether it can

better display lesion areas. Therefore, researchers have proposed
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some specific evaluation indicators, such as similarity of structure

with real images, neuron activation, diagnostic accuracy, etc., to

more accurately evaluate the performance of generative models.

However, the universality and comparability of these indicators still

need more experimental verification and exploration in order to be

better applied to different tasks and datasets.

4.1.5. Model interpretability
The issue of model interpretability is another challenge that

must be addressed in medical image generation models. The

model needs to have a certain level of interpretability so that

physicians and researchers can understand the model’s predictions

and generate results. In the task of generating brain disease, model

interpretability is particularly critical. Doctors need to be able

to understand the relationship between the abnormal structures

in the generated images and the underlying diseases, in order

to make accurate diagnoses and treatment decisions. During the

generation of images, the model may introduce factors such as

image noise and artifacts, which can seriously affect medical

diagnosis. To address these issues, interpretability techniques can

provide valuable assistance. For example, visualization techniques

can help doctors and researchers better understand the generated

results and identify abnormal factors by generating comparative

images and visualizing the internal feature maps of the model. In

addition, model interpretability can also be achieved by adding

interpretation layers or using interpretable models. However,

there are some limitations to the use of data in the scenario

of generating brain diseases. For example, due to privacy issues

involving patients, medical imaging data is often highly sensitive

and therefore difficult to obtain large-scale datasets directly. In

addition, the different brain structures of different patients pose a

challenge to the generated results of the model. Therefore, when

generating brain diseases, it is necessary to consider the balance

between data usage scenarios and model interpretability in order

to obtain more accurate and interpretable results.

4.1.6. Limitation
There are still inescapable limitations to brain imaging

computing using generative AI. Firstly, before the application of

the synthetic brain image data set for training, if the differences

between the synthetic data set and the real data set are not fully

studied, the generated results will be biased. Secondly, most current

generative brain image analysis methods may generate illogical

“unnatural data" due to the lack of labels and causal features in the

generating process. The robustness and reliability of the algorithm

may be impacted. Thirdly, in the process of model training, it is

possible to remember the distribution of original training samples.

If the original training sample can be reversely inferred from the

synthesized data, there will be “implicit privacy" leakage problem,

and how to protect privacy more closely is still a question to

be explored.

4.2. Future direction

New generative methods in brain network research are likely

to find applications in both basic and clinical research. In the

coming years, generative learning and signal processing techniques

will remain essential tools for furthering our understanding of the

brain. This paper presents three perspectives on future approaches

to brain network research:

4.2.1. Brain circuit identification
The application of generative models in brain circuit research

is gaining more attention. Through the utilization of generative

models, researchers are able to extract significant information about

neural circuits from brain data. In the field of neuroscience, neural

circuits are key elements for understanding brain function and

are crucial for regulating various cognitive and affective behaviors.

Deep learning can assist in revealing the intricate structure,

profound functionality, and impact of the brain. Generative models

can support neural circuit research by learning data features in

brain circuits. In particular, generative models can be employed to

generate, transform, and improve neuroimaging data, consequently

creating novel and high-quality data to facilitate a more profound

comprehension of neural circuits. Furthermore, generative models

can serve as a data augmentation technique to diversify the limited

neural circuit data samples, which can boost both training and

disease diagnosis efficiency. Moreover, this technique can simulate

and generate experiments related to the connection and variation

of neural circuits among patients, ultimately resulting in more

experimental evidence and predictive capacity for neural circuit

research, therefore yielding more information for disease diagnosis

and treatment.

4.2.2. Precise localization of brain regions
In the field of brain disorders, exploration of potential

treatment options is a common practice. Generative models are

capable of assisting in the comprehension of neural regulation

and localization by producing intricate images that reflect the

interconnectivity between different regions of the brain. Neural

regulation denotes the procedure through which the brain

controls behavior and emotions by moderating the excitatory

and inhibitory activities of neurons. In neuroscience, generative

models can simulate and forecast complex neural regulation

processes. These models are instrumental in comprehending

the mechanisms of neural regulation during brain development,

deducing the reciprocal interaction between neurons and synapses,

and predicting the patterns of connectivity between distinct

neurons. Furthermore, synthetic neural imaging data is useful in

providing researchers with a better appreciation of macroscopic

neural regulation patterns. To pinpoint the location and function of

particular brain areas, researchers can input significant image data

into a generative model to learn the features of brain structures and

more precisely localize brain regions. In functional connectivity

analysis, generative models can generate hypothetical functional

connectivity data and compare it with actual data to identify

the links between various brain regions. The identification of

possible targets for the treatment of brain-related disorders involves

investigating the associations between the functions of neurons,

synapses, and specific diseases. Generative models, as tools for data

analysis and prediction, can effectively learn features and patterns

automatically from vast amounts of neural data, and aid in target

identification for the moderation or treatment of such diseases.
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Thus, generative models can enable the comprehension of neural

regulation and brain localization, facilitate the search for targets

and solutions to treat brain disorders, and ultimately improve

patients’ quality of life.

4.2.3. Brain diseases and mechanisms
Neurodegenerative diseases, particularly Alzheimer’s disease,

are caused by damage to neurons and synapses in the brain,

resulting in declines in cognitive and memory function and

eventually leading to dementia. Studies have shown that generative

models can forecast the speed of a patient’s cognitive function

decline, aiding physicians in early disease diagnosis. These models

can also assimilate prior knowledge on diverse physiological,

neural, cognitive, and behavioral processes, such as visual

information processing, perception, language, and memory

cognition. Generative models have helped in analyzing the onset

mechanism of the disease and developing individualized treatment

plans. Consequently, they are expected to become pivotal tools

for exploring and comprehending brain mechanisms, with the

potential to boost the precision of neurodegenerative disease

diagnosis and treatment (Jing et al., 2022).

4.2.4. Multi-scale brain atlas
Population-based multi-scale brain research is a prominent

focus in neuroscience (Betzel and Bassett, 2017). Its goal is

to integrate information from multiple levels to understand

the structure and function of the brain, establish connections

between them, and gain insights into the working principles of

the brain. Macro-level research investigates the overall structure

and function of the brain, while micro-level research focuses

on the cellular-level structure and function of neurons and

synapses. Meso-scale research investigates small structures, such

as cortical columns, connections, and neuronal clusters. Genomics

studies the influence of genes on the brain’s structure and

function. Generative models integrate multiple data sources to

reveal the complex mechanisms of the brain and explore the

interactions between neurons and brain regions, providing a

comprehensive view of the brain network. They can also predict

gene expression data, diagnose and treat individual differences

in diseases. Although the use of generative models in the

study of the brain is still in its early stages, the accumulation

of data and technological advances are expected to expand

their usage.

These approaches will help build a comprehensive and

accurate representation of the human brain and enable

the discovery of new insights across neurological and

psychiatric disorders.

5. Conclusion

This article provides a review of generative artificial intelligence

for brain image computing and brain network computing.

Generative AI can be divided into four main methods: variational

autoencoder (VAE), generative adversarial network (GAN), flow-

based model, and diffusion model. These models offer a promising

solution for analyzing and interpreting large-scale brain imaging

data. Generative AI has enabled researchers to gain a better

understanding of the brain’s physical basis and how it adapts

to various cognitive activities in the field of brain imaging. In

the context of brain network computing, generative AI can be

used to reconstruct the topological connectivity of brain networks.

However, there are limitations associated with using generative AI

for analyzing brain imaging data. For instance, medical imaging

data is often highly sensitive due to privacy issues involving

patients, making it difficult to obtain large-scale datasets directly.

Additionally, different brain structures of different patients pose a

challenge to the generated results of the model. Therefore, when

using generative AI techniques to generate brain diseases or analyze

large-scale medical imaging datasets, it is necessary to balance data

usage scenarios and model interpretability in order to obtain more

accurate and interpretable results. In conclusion, generative AI has

broad application prospects in brain imaging and brain network,

which can help to better understand the internal function and

structure of the brain, promote the diagnosis and treatment of

brain diseases, and provide new opportunities and methods for

neuroscience research.
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