24 research outputs found

    Generic decoupled image-based visual servoing for cameras obeying the unified projection model

    Get PDF
    In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform

    Visual servoing of mobile robots using non-central catadioptric cameras

    Get PDF
    This paper presents novel contributions on image-based control of a mobile robot using a general catadioptric camera model. A catadioptric camera is usually made up by a combination of a conventional camera and a curved mirror resulting in an omnidirectional sensor capable of providing 360° panoramic views of a scene. Modeling such cameras has been the subject of significant research interest in the computer vision community leading to a deeper understanding of the image properties and also to different models for different types of configurations. Visual servoing applications using catadioptric cameras have essentially been using central cameras and the corresponding unified projection model. So far only in a few cases more general models have been used. In this paper we address the problem of visual servoing using the so-called radial model. The radial model can be applied to many camera configurations and in particular to non-central catadioptric systems with mirrors that are symmetric around an axis coinciding with the optical axis. In this case, we show that the radial model can be used with a non-central catadioptric camera to allow effective image-based visual servoing (IBVS) of a mobile robot. Using this model, which is valid for a large set of catadioptric cameras (central or non-central), new visual features are proposed to control the degrees of freedom of a mobile robot moving on a plane. In addition to several simulation results, a set of experiments was carried out on Robot Operating System (ROS)-based platform which validates the applicability, effectiveness and robustness of the proposed method for image-based control of a non-holonomic robot

    Rotation Free Active Vision

    Get PDF
    International audience— Incremental Structure from Motion (SfM) algorithms require, in general, precise knowledge of the camera linear and angular velocities in the camera frame for estimating the 3D structure of the scene. Since an accurate measurement of the camera own motion may be a non-trivial task in several robotics applications (for instance when the camera is onboard a UAV), we propose in this paper an active SfM scheme fully independent from the camera angular velocity. This is achieved by considering, as visual features, some rotational invariants obtained from the projection of the perceived 3D points onto a virtual unitary sphere (unified camera model). This feature set is then exploited for designing a rotation-free active SfM algorithm able to optimize online the direction of the camera linear velocity for improving the convergence of the structure estimation task. As case study, we apply our framework to the depth estimation of a set of 3D points and discuss several simulations and experimental results for illustrating the approach

    Robust image-based visual servoing using invariant visual information

    Get PDF
    This paper deals with the use of invariant visual features for visual servoing. New features are proposed to control the 6 degrees of freedom of a robotic system with better linearizing properties and robustness to noise than the state of the art in image-based visual servoing. We show in this paper that by using these features the behavior of image-based visual servoing in task space can be significantly improved. Several experimental results are provided and validate our proposal

    Photometric visual servoing for omnidirectional cameras

    Get PDF
    International audience2D visual servoing consists in using data provided by a vision sensor for controlling the motions of a dynamic system. Most of visual servoing approaches has relied on the geometric features that have to be tracked and matched in the image acquired by the camera. Recent works have highlighted the interest of taking into account the photometric information of the entire image. This approach was tackled with images of perspective cameras. We propose, in this paper, to extend this technique to central cameras. This generalization allows to apply this kind of method to catadioptric cameras and wide field of view cameras. Several experiments have been successfully done with a fisheye camera in order to control a 6 degrees of freedom (dof) robot and with a catadioptric camera for a mobile robot navigation task

    Distance-based and Orientation-based Visual Servoing from Three Points

    Get PDF
    International audienceThis paper is concerned with the use of a spherical-projection model for visual servoing from three points. We propose a new set of six features to control a 6-degree-of-freedom (DOF) robotic system with good decoupling properties. The first part of the set consists of three invariants to camera rotations. These invariants are built using the Cartesian distances between the spherical projections of the three points. The second part of the set corresponds to the angle-axis representation of a rotation matrix measured from the image of two points. Regarding the theoretical comparison with the classical perspective coordinates of points, the new set does not present more singularities. In addition, using the new set inside its nonsingular domain, a classical control law is proven to be optimal for pure rotational motions. The theoretical results and the robustness to points range errors of the new control scheme are validated through simulations and experiments on a 6-DOF robot arm

    Solution to the problem of designing a safe configuration of a human upper limb robotic prosthesis

    Get PDF
    На сегодняшний день остается актуальной разработка методов контроля позиционирования роботических манипуляторов с помощью систем технического зрения (СТЗ) с целью обеспечения безопасности пациентов и медицинского персонала при работе с медицинскими роботизированными реабилитационными устройствами. Целью исследования было разработать метод повышения безопасности применения роботизированных медицинских реабилитационных устройств путем разработки и апробации алгоритма расчета угловых положений роботизированных манипуляторов или роботических протезов, применяемых в восстановительном лечении и позволяющих воспроизвести естественную траекторию перемещения руки человека под контролем СТЗ. Дано описание роботизированного манипулятора, использованного при проведении исследований, представлены существующие подходы к расчету угловых положений приводов, а также описание предлагаемого алгоритма. Приведены сравнительные результаты работы предлагаемого алгоритма и существующих методов расчета угловых положений приводов роботизированных манипуляторов (роботических протезов) и предполагаемые направления для его доработки

    Visual servoing from three points using a spherical projection model

    Get PDF
    International audienceThis paper deals with visual servoing from three points. Using the geometric properties of the spherical projection of points, a new decoupled set of six visual features is proposed. The main originality lies in the use of the distances between spherical projection of points to define three features that are invariant to camera rotations. The three other features present a linear link with respect to camera rotations. In comparison with the classical perspective coordinates of points, the new decoupled set does not present more singularities. In addition, using the new set in its non-singular domain, a classical control law is proven to be ideal for rotational motions. These theoretical results as well as the robustness to errors of the new decoupled control scheme are illustrated through simulation results

    Enhanced Image-Based Visual Servoing Dealing with Uncertainties

    Get PDF
    Nowadays, the applications of robots in industrial automation have been considerably increased. There is increasing demand for the dexterous and intelligent robots that can work in unstructured environment. Visual servoing has been developed to meet this need by integration of vision sensors into robotic systems. Although there has been significant development in visual servoing, there still exist some challenges in making it fully functional in the industry environment. The nonlinear nature of visual servoing and also system uncertainties are part of the problems affecting the control performance of visual servoing. The projection of 3D image to 2D image which occurs in the camera creates a source of uncertainty in the system. Another source of uncertainty lies in the camera and robot manipulator's parameters. Moreover, limited field of view (FOV) of the camera is another issues influencing the control performance. There are two main types of visual servoing: position-based and image-based. This project aims to develop a series of new methods of image-based visual servoing (IBVS) which can address the nonlinearity and uncertainty issues and improve the visual servoing performance of industrial robots. The first method is an adaptive switch IBVS controller for industrial robots in which the adaptive law deals with the uncertainties of the monocular camera in eye-in-hand configuration. The proposed switch control algorithm decouples the rotational and translational camera motions and decomposes the IBVS control into three separate stages with different gains. This method can increase the system response speed and improve the tracking performance of IBVS while dealing with camera uncertainties. The second method is an image feature reconstruction algorithm based on the Kalman filter which is proposed to handle the situation where the image features go outside the camera's FOV. The combination of the switch controller and the feature reconstruction algorithm can not only improve the system response speed and tracking performance of IBVS, but also can ensure the success of servoing in the case of the feature loss. Next, in order to deal with the external disturbance and uncertainties due to the depth of the features, the third new control method is designed to combine proportional derivative (PD) control with sliding mode control (SMC) on a 6-DOF manipulator. The properly tuned PD controller can ensure the fast tracking performance and SMC can deal with the external disturbance and depth uncertainties. In the last stage of the thesis, the fourth new semi off-line trajectory planning method is developed to perform IBVS tasks for a 6-DOF robotic manipulator system. In this method, the camera's velocity screw is parametrized using time-based profiles. The parameters of the velocity profile are then determined such that the velocity profile takes the robot to its desired position. This is done by minimizing the error between the initial and desired features. The algorithm for planning the orientation of the robot is decoupled from the position planning of the robot. This allows a convex optimization problem which lead to a faster and more efficient algorithm. The merit of the proposed method is that it respects all of the system constraints. This method also considers the limitation caused by camera's FOV. All the developed algorithms in the thesis are validated via tests on a 6-DOF Denso robot in an eye-in-hand configuration
    corecore