757 research outputs found

    Star Decompositions of Bipartite Graphs

    Get PDF
    In Chapter 1, we will introduce the definitions and the notations used throughout this thesis. We will also survey some prior research pertaining to graph decompositions, with special emphasis on star-decompositions and decompositions of bipartite graphs. Here we will also introduce some basic algorithms and lemmas that are used in this thesis. In Chapter 2, we will focus primarily on decomposition of complete bipartite graphs. We will also cover the necessary and sufficient conditions for the decomposition of complete bipartite graphs minus a 1-factor, also known as crown graphs and show that all complete bipartite graphs and crown graphs have a decomposition into stars when certain necessary conditions for the decomposition are met. This is an extension of the results given in "On claw-decomposition of complete graphs and complete bigraphs" by Yamamoto, et. al. We will propose a construction for the decomposition of the graphs. In Chapter 3, we focus on the decomposition of complete equipartite tripartite graphs. This result is similar to the results of "On Claw-decomposition of complete multipartite graphs" by Ushio and Yamamoto. Our proof is again by construction and we propose how it might extend to equipartite multipartite graphs. We will also discuss the 3-star decomposition of complete tripartite graphs. In Chapter 4 , we will discuss the star decomposition of 4-regular bipartite graphs, with particular emphasis on the decomposition of 4-regular bipartite graphs into 3-stars. We will propose methods to extend our strategies to model the problem as an optimization problem. We will also look into the probabilistic method discussed in "Tree decomposition of Graphs" by Yuster and how we might modify the results of this paper to star decompositions of bipartite graphs. In Chapter 5, we summarize the findings in this thesis, and discuss the future work and research in star decompositions of bipartite and multipartite graphs

    Multipartite graph decomposition: cycles and closed trails

    Get PDF
    This paper surveys results on cycle decompositions of complete multipartite graphs (where the parts are not all of size 1, so the graph is not K_n ), in the case that the cycle lengths are “small”. Cycles up to length n are considered, when the complete multipartite graph has n parts, but not hamilton cycles. Properties which the decompositions may have, such as being gregarious, are also mentioned

    Multipartite graph decomposition: cycles and closed trails

    Get PDF
    This paper surveys results on cycle decompositions of complete multipartite graphs (where the parts are not all of size 1, so the graph is not <em>K</em>_<em>n</em> ), in the case that the cycle lengths are “small”. Cycles up to length <em>n</em> are considered, when the complete multipartite graph has <em>n</em> parts, but not hamilton cycles. Properties which the decompositions may have, such as being gregarious, are also mentioned.<br /

    Transversal designs and induced decompositions of graphs

    Get PDF
    We prove that for every complete multipartite graph FF there exist very dense graphs GnG_n on nn vertices, namely with as many as (n2)cn{n\choose 2}-cn edges for all nn, for some constant c=c(F)c=c(F), such that GnG_n can be decomposed into edge-disjoint induced subgraphs isomorphic to~FF. This result identifies and structurally explains a gap between the growth rates O(n)O(n) and Ω(n3/2)\Omega(n^{3/2}) on the minimum number of non-edges in graphs admitting an induced FF-decomposition

    A Generalization of the Hamilton-Waterloo Problem on Complete Equipartite Graphs

    Full text link
    The Hamilton-Waterloo problem asks for which ss and rr the complete graph KnK_n can be decomposed into ss copies of a given 2-factor F1F_1 and rr copies of a given 2-factor F2F_2 (and one copy of a 1-factor if nn is even). In this paper we generalize the problem to complete equipartite graphs K(n:m)K_{(n:m)} and show that K(xyzw:m)K_{(xyzw:m)} can be decomposed into ss copies of a 2-factor consisting of cycles of length xzmxzm; and rr copies of a 2-factor consisting of cycles of length yzmyzm, whenever mm is odd, s,r1s,r\neq 1, gcd(x,z)=gcd(y,z)=1\gcd(x,z)=\gcd(y,z)=1 and xyz0(mod4)xyz\neq 0 \pmod 4. We also give some more general constructions where the cycles in a given two factor may have different lengths. We use these constructions to find solutions to the Hamilton-Waterloo problem for complete graphs

    On Hamilton cycle decompositions of complete multipartite graphs which are both cyclic and symmetric

    Get PDF
    Let G be a graph with v vertices. A Hamilton cycle of a graph is a collection of edges which create a cycle using every vertex. A Hamilton cycle decomposition is cyclic if the set of cycle is invariant under a full length permutation of the vertex set. We say a decomposition is symmetric if all the cycles are invariant under an appropriate power of the full length permutation. Such decompositions are known to exist for complete graphs and families of other graphs. In this work, we show the existence of cyclic n-symmetric Hamilton cycle decompositions of a family of graphs, the complete multipartite graph Km×n where the number of parts, m, is odd and the part size, n, is also odd. We classify the existence where m is prime and prove the existence in additional cases where m is a composite odd integer

    Theta Graph Designs

    Get PDF
    We solve the design spectrum problem for all theta graphs with 10, 11, 12, 13, 14 and 15 edges
    corecore