-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE
provided by Research Commons@Waikato

EE{, WAIKATO Research Commons

:\ﬁzg::’: T Whare Wananga o Waikaro

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:
The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the
Act and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right
to be identified as the author of the thesis, and due acknowledgement will be
made to the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

https://core.ac.uk/display/29202846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

Star Decompositions of Bipartite

Graphs

A thesis
submitted in partial fulfilment
of the requirements for the Degree
of
Masters of Science
at the
University of Waikato
by

J.S. Lim

THE UNIVERSITY OF

WAIKATO

Te Whare Wananga o Waikato

University of Waikato
2015

Abstract

In Chapter 1, we will introduce the definitions and the notations used through-
out this thesis. We will also survey some prior research pertaining to graph
decompositions, with special emphasis on star-decompositions and decompo-
sitions of bipartite graphs. Here we will also introduce some basic algorithms
and lemmas that are used in this thesis.

In Chapter 2, we will focus primarily on decomposition of complete bipar-
tite graphs. We will also cover the necessary and sufficient conditions for the
decomposition of complete bipartite graphs minus a 1-factor, also known as
crown graphs and show that all complete bipartite graphs and crown graphs
have a decomposition into stars when certain necessary conditions for the
decomposition are met. This is an extension of the results given in “On claw-
decomposition of complete graphs and complete bigraphs” by Yamamoto, et.
al [38]. We will propose a construction for the decomposition of the graphs.

In Chapter 3, we focus on the decomposition of complete equipartite tripar-
tite graphs. This result is similar to the results of “On Claw-decomposition of
complete multipartite graphs” by Ushio and Yamamoto. Our proof is again by
construction and we propose how it might extend to equipartite multipartite
graphs. We will also discuss the 3-star decomposition of complete tripartite
graphs.

In Chapter 4 , we will discuss the star decomposition of r-regular bipartite
graphs, with particular emphasis on the decomposition of 4-regular bipartite
graphs into 3-stars. We will propose methods to extend our strategies to
model the problem as an optimization problem. We will also look into the
probabilistic method discussed in “Tree decomposition of Graphs” by Yuster
[39] and how we might modify the results of this paper to star decompositions
of bipartite graphs.

In Chapter 5, we summarize the findings in this thesis, and discuss the
future work and research in star decompositions of bipartite and multipartite

graphs.

Acknowledgement

I would like to take this opportunity to express my special appreciation and
thank you to my supervisor and advisor Dr. Nicholas Cavenagh, for his support
and guidance throughout this project. I would like to thank him especially
for his extra time, wisdom, patience, advice and in keeping me focused in this
project. He has truly been instrumental in helping me develop the necessary
skills to complete this dissertation.

I would like to thank the Faculty and the School of Mathematics in Uni-
versity of Waikato for the opportunity to pursue my post-graduate studies. I
appreciate especially the knowledge imparted by the professors and how the
academic staff made the post graduate students feel special. I would like
to acknowledge my fellow post-graduates in the School of Mathematics and
Statistics who have made the office entertaining and homely with the lively
discussions and by mutually motivating each other in our respective projects.

I thank my friends in Hamilton, with very special emphasis to my house-
mates. They have been my family away from home, supporting me and keeping
me motivated. I thank them especially for going the extra mile to make my
post-graduate life a joy. I also would like to thank my friends back in Malaysia
for their encouragement throughout my life as a post-graduate.

Last but absolutely not least, I would also like to thank my family members
who have supported me and kept me in their daily prayers. Their constant
encouragement and support have been a driving force in completing this dis-
sertation.

I dedicate this dissertation to my grandmother. It has been a difficult year
being apart from her in the time of her illness, but her love has sustained me

throughout this project.

Contents

Acknowledgement
1 Introduction
1.1 Definitions
1.2 Known results in Graph Decompositions
1.2.1 Graph Decomposition is NP-Complete
1.2.2 Graph Decomposition of Complete Graphs
1.2.3 Probabilistic Methods
1.2.4 Solutions and Algorithms for S;-decomposition and Ss-
decomposition
1.3 Representation of a decomposition in the thesis
2 Decomposition of complete Bipartite Graphs
2.1 Preliminary Lemmas
2.2 Decomposition of Complete Square Bipartite Graphs
2.3 Decomposition of Complete Bipartite
Graphs
2.4 Decomposition of Crown Graphs.
3 Decomposition of complete Tripartite Graphs
3.1 Preliminary lemmas
3.2 Decomposition of equipartite tripartite
graphs
3.3 S3-Decomposition of complete tripartite
graphs L
3.4 Extending Theorem 3.3 for multipartite graphs
4 Decomposition of regular bipartite Graphs

4.1 S3-decomposition of 4-regular bipartite graphs

4.1.1

4.1.2
4.1.3

Strategy 1: Picking one edge from each vertex in one
partite set to form S3.
Strategy 2: Reducing the number of vertices to be covered.

Structure of a cyclic bipartite graph

1

13
13
14
15

16
16

19
19
20

25
28

35
35

37

56
29

66
66

66
73
4

v

4.2 Probabilistic method on decomposition of bipartite graphs . . 75

5 Conclusion 84
6 Appendix 86
6.1 Source Code for Strategy 1 86
6.1.1 The main wrapper program 86

6.1.2 Thesolver 93

6.1.3 Supporting JAVA classes 103

6.2 Sz-cover of partiteset V'o 104
6.2.1 Ss-cover of partite set V form=6.. 104

6.2.2 Ss-cover of partite set V form=9. 104

6.2.3 Sz-cover of partite set V form =12 105

6.2.4 Sz-cover of partite set V form =15 108

6.2.5 Sz-cover of partite set V forn =18 116

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

1.18

2.1

2.2

Path from vy towv,.
Cycleof length 6.
Graph G and its Line Graph L(G).
A graph and its incident matrix. L.
A Graph and its adjacency matrix.
Complete graph Kg.
Example of a bipartite graph.

The complete bipartite graph K53

3-Regular Cyclic Bipartite Graph with n = 4 and D = {0, 1, 3}.

Example of a tree.
Graph Sg; vy is the center; vy, v9, v3, vy, U5, vg are the leaves. . .
Ps-decomposition of a graph.
Py-factor of a graph.
Cg-factorization of Graph G.
Lexicographical product of Graph G'= Ky and H = K. . ..
Polynomial time algorithm for S5 decomposition.
Graphical representation of the decomposition of the edges be-
tween partite set U and V'
Graphical representation of the decomposition of the edges be-
tween partite set V' and W when there are more than 2 partite

sets and the graph is not complete

Kgg decomposes into Sy.o

K494 decomposes into Stg.

-~ W W

ot

© oo N N O

10
10
11
11
12
17

18

2.3

2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3

4.1

4.2

4.3

4.4

4.5

vi

K515 as the lexicographical product of K44 ® K5 decomposing
into Sy @ K3 and into Sya
Kgg decomposing into Sg.
K315 decomposing into Sg.o
Ky ¢ minus 1-factor decomposing into Ss.
S9, partitioned into subgraphs.

Sy decomposing into Se.

Vertex u and v not picked as centers
K14714 reduced to K10710.

Ki312,12 decomposed into So

S3 decomposition of a 4-regular graph using Strategy 1

Using optimization software to find a Ss-cover of V..
Ss-Decomposition of G(n = 15, D = {0,1,3,7}); pink and yel-
low blocks are S3 decompositions with centers in partite set U.
Ss-Decomposition of G(n = 15, D = {0,4,6,7}); pink and yel-
low blocks are S3 decompositions with centers in partite set U.

Modified line graph and S3-decomposition using Strategy 3.

25
29
29
31
32
34

37
47
o7

68
81

82

82
83

List of Tables

3.1
3.2
3.3

4.1

6.1
6.2
6.3
6.4
6.5

The value pg+ gr + pr (mod 3) for different values of p/, ¢’ and r’. 58

Table describing the Sg;2 decomposition. 60
Table of values for Sg;2-decomposition for graph K, pinini. - - 61
Ss-cover of Partite Set V forn=9 71
Ss-cover of Partite Set V forn=6 104
Ss-cover of Partite Set V forn=9 105
Ss-cover of Partite Set V forn=12. 107
Ss-cover of Partite Set V forn=15. 115

Ss-cover of Partite Set V forn=18 130

Chapter 1

Introduction

1.1 Definitions

Unless stated, all definitions are consistent with “Graph Theory with Appli-
cations” [5].

A graph is an ordered pair G = (V| E) where V is a non-empty set of
vertices and F is a set of edges which are subsets of V' of size 2. The order
of the graph |V is the number of vertices and the graph size |E| is the number
of edges in the graph.

In the case of directed graphs or digraphs, the order of the 2 elements
is considered unique and each element of the set E is known as an arc or
directed edge. A loop is an edge with the starting and ending vertices
equal. We say that the graph contains a multiple edge if the graph contains
two or more edges joining the same pair of vertices. A vertex is said to be
adjacent to another vertex if there is an edge between the two vertices. A
vertex is said to be incident to an edge if the vertex is contained in the edge.

Simple graphs are undirected graphs that do not contain any loops or
multiple edges. Thus each edge in a simple graph is a distinct unordered pair
of vertices.

From here onwards a graph is assumed to be simple and undirected unless

otherwise stated.

A walk of length n is a sequence [vy,vs,...,v,41] of vertices, such that
{vi,vi41} is an edge for each 1 < i < n. If the edges are all distinct from one
another, the walk is called a trail. If the both the edges and vertices are all
distinct, the walk is called a path. A path is denoted by P, where n is the

number of vertices in the path.

Vo (%1 (%] Un

Figure 1.1: Path from v, to v,.

A circuit is a non-trivial trail in a graph from a vertex to itself. If all the
vertices except for the first vertex and last vertex in the circuit are distinct, the
circuit is called a cycle. A graph that does not contain any cycles is known as
a cycle-free graph. A cycle is denoted by C,, where n is the number of vertices
in the cycle.

Formally, let V' = {v; : 1 < i < n} be a set of distinct vertices, and let
E ={e; : 1 <i<n}wheree; = {v;,v;41} for 1 <i<n-—1ande, ={v,, v}
Then the graph C,, = G(V, E) is a cycle of length n.

Cs Vs Vi

Vs V3

Figure 1.2: Cycle of length 6.

A connected component or component of a graph is a subgraph such
that for every pair of vertices {u, v} within the component there exists at least
one path from u to v. If the graph consists of exactly one connected component
the graph is called a connected graph. A bridge is an edge such that the

removal of the edge results in an increase in the number of components in the

graph. If Hy, Hy, ... H, are the components of the graph G then we can also
use the notation G = H|J Hy---|J H.-

A connected graph is said to have an Eulerian Trail if there exists a trail
such that each edge of the graph is used exactly once. If the trail starts and
ends on the same vertex, the graph is said to have an Eulerian Circuit. A
graph that has an Eulerian Circuit is also said to be Eulerian. An Eulerian
Circuit exists in a connected graph if and only if every vertex in the graph has
even degree.

A graph is said to have a Hamilton Path if there exists a path such that
each vertex of the graph is visited exactly once. If there exists a cycle such
that every vertex of the graph belongs to the cycle, the graph is said to have
a Hamilton Cycle. Equivalently, the graph is said to be Hamiltonian.

The line graph L(G) is a graph such that the edge set of G is the vertex
set of L(G), and the edge set F(L(G)) is such that there is an edge if and only
if there is a vertex in common with the corresponding edges in G.

Formally, V(L(G)) = E(G) and E(G) = {e;,e;} if and only if e; and
e; share a common vertex in G. Figure 1.3 shows an example graph G and
the corresponding line graph. According to Skiena [34], the line graph of an

Eulerian graph is both Hamiltonian and Eulerian.

G L(G)
€1 €2
€3 €4
€4
e
€6
€5

Figure 1.3: Graph G and its Line Graph L(G).

The degree §(v) of vertex v is the number of edges incident to the vertex
v. If every vertex in a graph has the same degree r, the graph is said to be
r-regular.

A graph H is said to be isomorphic to graph G, if there is a bijection f :
V(G) — V(H) such that {v,w} € E(G) if and only if {f(v), f(w)} € E(H).

An incidence matrix is an n x m matrix B = [b;;] where n is the number
of vertices and m is the number of edges, subject to the following. If the vertex
set V = {v1,vq,...v,} and the edge set E = {ey,eq,...€,} then b;;=1 if the

vertex v; and edge e; is incident and b;; = 0 otherwise.

U1 U2
€1 ey €3 ey
vy |1 |1 [0 |0
U3 Y4 e [0 |0 |1 |1
vy |1 |0 |1 |0
vy |0 |1 |0 |1

Figure 1.4: A graph and its incident matrix.

An adjacency matrix is a n x n matrix B = [b;;| where n is the number of
vertices, subject to the following. If the vertex set V = {vy,va,...v,}, we let
b;j = 1 if vertex v; and vertex v; are adjacent and b;; = 0 otherwise. Observe
that for simple graphs, the diagonal of the adjacency matrix is 0. Also observe
that for an undirected graph, the adjacency matrix is symmetric.

A complete graph is a graph in which every pair of distinct vertices is
connected by a unique edge. A complete graph is denoted by K, where n is
the number of vertices in the graph. The edge set of K, is all the possible
edges on the vertex set of G.

Formally G is complete if and only if E(G) = {v;, v;} where v; € V(G), v, €
V(G),v; # v,.

U1 V2

V1 V2 V3 Vg

(%1 0 1 1 0

U3 Y4 1 |0 |0 |1

V3 1 0 0 1

V4 0 1 1 0

Figure 1.5: A Graph and its adjacency matrix.

Figure 1.6: Complete graph K.

We say that G is the complement of a graph G such that the vertex set
V(G) = V(@) and the edge set of G consists of all the possible edges that are
not present in G. Observe that E(G) + E(G) = E(K,) where n = [V (Q).

Formally G is the complement of G if and only if V(G) = V(G) and
E(G) = {v;,v; where v; € V(G),v; € V(G),v; # vj and {v;,v;} ¢ E(G)}..

A bipartite graph (sometimes known as bigraph) is a graph in which
the vertex set V' can be partitioned into two disjoint sets Vi and V5 such that
every edge is incident with a vertex in V; and a vertex in V5. The sets V)
and V5, are known as partite sets. Observe that a bipartite graph is either
cycle-free or has at least one even cycle. Equivalently, a graph that does not

contains an odd cycle is bipartite.

Partite Partite
Set 1 Set 2

Figure 1.7: Example of a bipartite graph.

A graph G is said to be multipartite or m-partite if the vertex set V'
can be partitioned into m disjoint sets Vi, Vs, ..., V,, such that every edge of
G is incident to vertices from two different partite sets. A multipartite graph
is said to be equipartite every partite set has an identical size. In the case
where m = 3 the graph is also known as tripartite.

A complete bipartite graph is a bipartite graph in which every vertex in
V) is adjacent to every vertex in V5. Formally G is a complete bipartite graph
if and only if E(G) = {v;,v; : v; € Vi,v; € Va}. A complete bipartite graph
is denoted by K, ,, where n = |V;| and m = |V5|. We say that a complete
square bipartite graph is a complete bipartite graph with an equal number

of vertices in each partite set.

Figure 1.8: The complete bipartite graph K 3.

An r-regular bipartite graph is a bipartite graph where every vertex of
the bipartite graph has degree r. Observe that an r-regular bipartite graph

always has an equal number of vertices in each partite set.

We say that a r-regular bipartite graph is “cyclic” if the edges of the
graph are induced by ordering the vertices of partite sets U and V' and defining
an adjacency based on a cyclic difference between the vertices of the partite
sets.

We define a generator G, (D) of a r-regular cyclic bipartite graph as the
function describing the adjacency between the two partite sets. We call D
here the generator set where D is of size r. A vertex u in U is adjacent to a
vertex v in V if and only if the index of v minus the index of v modulo n is
equal to an element in D.

Formally, let U = {u; : 1 <i <n}and V = {v; : 1 <j < n} be the partite
sets of the bipartite graph. Let D = {d; : 1 < k < r} where 0 < d; < n.
The vertices u; and v; are adjacent if and only if j = i + dy(mod n) for some

di € D. Figure 1.9, is an example of a cyclic 4-regular bipartite graph.

Figure 1.9: 3-Regular Cyclic Bipartite Graph with n = 4 and D = {0, 1, 3}.

A matching is a set of edges of a graph such no two edges have a vertex in
common. A perfect matching is when every vertex of the graph is incident
to exactly one edge of the matching. A perfect matching is also called a
1-factor of the graph. A complete bipartite graph K, , that has a perfect
matching removed is known as the crown graph of size n [32]. Thus G is

a crown graph of size n if E(G) = {w;,v; : u; € Vi,v; € Vo,i # j} where

Vi = {ug,ug,...,u,} and Vo = {v,vs,...,v,} are the two partite sets of G.
A crown graph of size n is denoted by K?.

A tree is a graph in which every pair of vertices is connected by a unique
path. The leaves of a tree are the vertices of the tree with vertex degree 1.
An internal vertex is a vertex of degree at least 2. The diameter of a tree is
the length of the longest path in the tree. Observe that a tree is cycle-free and

thus bipartite.

U1 V2

U3
v1, V2, Vg, U, Vg are leaves

V4 Us

U6 v7 U8

Vg

Figure 1.10: Example of a tree.

A k-star is a special case of a tree in which there is only one internal
vertex which is also known as the center and k leaves. A k-star is denoted
by Sy where k is the number of leaves. A k-star can also be represented as
the complete bipartite graph K ;. A 3-star is sometimes known as a claw.
Observe that the center of Sy has degree k and the leaves of Si have degree 1.
Observe also that the diameter of Sy, where k£ > 2 is always two.

We say that the greatest common divisor of a graph G, (denoted here
as GCD(G) is the greatest common divisor of the degrees of the vertices in G.
Observe that when G is a tree or a star, GCD(G)=1.

The graph H(V', E') is a subgraph of G(V,E) if V/ C V and E' C E.
A graph G is said to decompose into {G1,Gs,...G;} where G1, G, ... G;
are subgraphs of G if E(G) has the partition {E(G1), E(Ga),...,E(G;)}.
If G1,Gs,...G; are all isomorphic to H then we say that there is an H-

Decomposition of the graph GG. Observe that, in order for an H-decomposition

10

U1 V2

V6 U3

Vs V4

Figure 1.11: Graph Sg; v is the center; vy, vo, v3, V4, V5, Vg are the leaves.

to exist, the number of edges in G must be divisible by the numbers of edges
in H. Moreover the GCD(G) must also be divisible by GCD(H) [39].

A graph G is said to factor into subgraphs Gi,Gs ... G; if every vertex
V(G) has a partition {V(G1),V(Ga),...,V(Gy)}. If Gi,Gs,...,G; are all
isomorphic to H, then we say that there is an H-Factor in the graph G. If
H is the path P,, then this is equivalently a 1-Factor of the graph G. An
H-factorization of a graph G is a decomposition of G into H-Factors.

Figure 1.12 illustrates an example of a P,-decomposition of a graph, with
each coloured lines a copy of a P,. Figure 1.13 illustrates an example of a P;-
factor of a graph with each bolded lines a P, factor, and Figure 1.14 illustrates

an example of a Cg-factorization of a graph with the bolded lines a copy of C.

(*)

Figure 1.12: P5-decomposition of a graph.

Figure 1.13: P,-factor of a graph.
G@

Figure 1.14: Cg-factorization of Graph G.

12

A graph product of G; and G is a new graph H where V(H) = V(Gy) X
V(Gs). A special graph product that is used in this thesis is the lexicographi-
cal product. This was first introduced by Hausdorff according to Imrich and
Klavzar [25] [7]. The lexicographical product of G and Gj is denoted by
G1 ® Ga. A lexicographical product is a product such that an edge between
vertices (u,v) and (z,y) exists if and only if an edge exists between u and x
in G; or u = z and an edge exists between v and y in G,. Figure 1.15, shows
an example of a lexicographical product.

Formally, if V(U) = {u; : 1 <i <n}and V(V) ={V;:1 < j <m} and
H=U®VthenV(H)={h;; :1<i<n,1<j<m}and E(H) = {hij, hi}
if and only if {u;, ux} € E(U) or w; = uy and {v;, v} € E(V).

G H
[]
[]
G H

Figure 1.15: Lexicographical product of Graph G = Ky, and H = K.

A clique of the graph G is a complete subgraph of G. If the clique is the
maximum possible size, the clique said to be the maximum clique. Observe
that the size of the maximum clique of a bipartite graph is 2. A bipartite
analogous equivalent of cliques is a biclique. A biclique of the graph G is a

complete bipartite subgraph of G. [3]

13

1.2 Known results in Graph Decompositions

Graph decomposition has been a prominent research area in graph theory
and combinatorics since the 1960s [22]. Although not referred to as a graph
decomposition, graph decomposition and factorization can be seen in various
combinatorial problems in the 19th century such as “Kirkman’s 15 strolling
school girls” [22], Dudney’s handcuffed prisoners [22] and Euler’s 36 army
officer problem [22]. In 1966, Erdds, Goodman and Posa first introduced the
concept of H-decomposition in their paper “The representation of a graph by
set intersection” [19, 36]. The interest in graph decomposition is not surprising
as graph decomposition has many real world application such as bioinformatics
[30, 4], social science research, network and topology research [15], coding

theory [14], and in many other computer science applications [6].

1.2.1 Graph Decomposition is NP-Complete

Given graphs G and H we may ask whether G decomposes into H. We call
this the “Graph decomposition problem”. According to Lonc [29], Tan Holyer
in his dissertation “The computational complexity of Graph Theory problems”
[24] conjectured in 1980 that the graph decomposition problem is NP-complete
if the graph H has at least three edges. Holyer proved the conjecture for the
cases where H is a complete graph and G is a simple circuit. Daniel Leven
presented an unpublished proof for the case where H is a star. In 1991, Cohen
and Tarsi extended the proof to include trees [12]. Finally in 1992 and 1995,
Dor and Tarsi generalized the proof to include graphs that contains a con-
nected component of at least three edges [16]. However, Holyer’s conjecture
was proven false when H is not a connected graph [17]. Bialoski and Rod-
dity showed that the problem is polynomial when H is a set of three disjoint
edges (3K [see definition of a complete graph]). This was further generalized
by Alon [1] where H is a set of s disjoint edges (sK3). Favaron, Lonc and

Truszezynski [20], also showed that the problem has polynomial complexity

14

for the case where H = K;5|J K, [17] . This result was further extended
when Priesler and Tarsi [31] showed that the problem is still polynomial when
H=K; | JtK>.

The result of these findings gave strong evidence for a revised version of
the Holyer’s conjecture, that is, a H-decomposition of graphs is NP-complete

if and only if the graph H contains a connected component of at least three

edges [17].

1.2.2 Graph Decomposition of Complete Graphs

While the graph decomposition problem in general is NP-complete, by impos-
ing conditions on the graphs G and H, researchers have proven the existence
of certain H-decomposition should these criteria be met on the graph G. We
first briefly give a survey of decomposition results into stars. In 1974, Cain
showed that complete graphs K, and K,,; decompose into m-stars, if and
only if m is odd or n is an even multiple of m and n > m [8].

In 1974, Yamamoto, Ikeda, Shige-eda, Ushio and Hamada [38] showed that
K, decomposes into k-stars if and only if £ divides m x n for & < m,
k < n or k divides m or n . This result is later extended by Ushio and
Yamamoto [37], who showed that there is a k-star decomposition for complete
equal sized m-partite graphs of size n if w# divides ¢ and mn > 2c.
This result is then further extended by Shyu, [33] showing that a crown graph
SY can be decomposed into K, if there is a positive integer value for A such
that n = Alm + 1 [33]. In 2013, Lee and Lin [28] showed that a (Cj, Sk)-
decomposition of crown graphs such that there is at least one copy of C} and
one copy of S;, when 4 < k < ”T’l, k is even and k divides n(n — 1).

There has been some research into regular bipartite graphs, namely by
Jacobson, Truszczynski and Tuza [26] who proved that a 2r-regular bipartite
graph has a decomposition into trees of size r. They also prove that every
r-regular bipartite graph can be decomposed into double stars (a tree with

2 internal vertices and r leaves) of size . They also proved that 4-regular

15

bipartite graphs can be decomposed into paths of length 4. Moreover, they
also proved that a r—dimensional cube decomposes into a tree of size r.

There has also been substantial research into the decomposition of com-
plete bipartite graphs. In 1981, Sotteau [35] showed that there is a 2k-cycle
decomposition for all complete K, , bipartite graphs if 2k divides mn, and
both m and n are even, and £ < m and k < n. An extension of this result
presented by Cichacz, Froncek, Kovar shows that a K, , bipartite graphs can
be decomposed into prisms [11].

There are many more proven decomposition for complete graphs such as
decomposition into trees, (Lonc (1988), Yu Min Li (1990)), cycles (Farrell
(1982)) and paths, however these decompositions are beyond the scope of this
thesis. Further results on graph decompositions may be found in VI. 24 of

Handbook of Combinatorial Designs [13].

1.2.3 Probabilistic Methods

As the problem of graph decomposition is conjectured to be NP-complete,
especially when weak conditions are imposed on the graph G, we also look
into the probabilistic method pioneered by Erdos in his paper “Graph Theory
and Probability” published in 1959 [18] and expanded upon in 1961. Despite
the name and the use of probability, the probabilistic method gives a conclusive
proof on the existence (or the non-existence) of a mathematical object.

In their book “Probabilistic Method”, Alon and Spencer state that the idea
behind the probabilistic method is to create an appropriate probability space,
and then show that a randomly chosen object has a positive probability to
have specified properties in order to prove the existence of such object [2].

In the paper by Yuster [39], this method was used to show that there is
H-decomposition where H is a tree with at least h vertices if the minimum
degree of the graph §(g) is greater than % + 10h4\/W . It was shown
that with the minimum degree, and by applying the Chernoff bound, there is

a positive probability that the graph would have the required properties for

16

such an H-decomposition.
We will explore whether Yuster’s result can be strengthened in the case

when H is a star and G is a bipartite graph in Section 4.2.

1.2.4 Solutions and Algorithms for S;-decomposition and
So-decomposition

Finding a H-Decomposition where of H = S; (equivalently K;; or P) is
trivial. Since there is only a single edge in the graph H, the set of edges F(G)
is itself the graph decomposition.

In the case of H = S5 (equivalently K 5 or Ps), we first check if two divides
|E(G)| in each connected component. Having an even number of edges in each
connected component is in fact the only necessary and sufficient criteria for a
Sy decomposition. First, we randomly assign directions to each of the edges
and assign weight to each of the vertices in the graph by counting the number
of directed edges pointing towards the vertex. Next, we find a pair of vertices
with odd weights, and flip the direction of the edges in a path between these
two vertices. Note that flipping the edges along the path does not change the
parity of the weights of the vertices along the path, while changing the parity
of the weights of the end vertices. We repeat this for every pair of vertices
of odd weight. Finally we pair off the edges according to the direction of the
edges to form copies of Sy, on the vertices with weight two and higher. This
algorithm is folklore. Figure 1.16 illustrates this algorithm on a graph G, with

the coloured lines representing the Sy decomposition.

1.3 Representation of a decomposition in the
thesis

In this section, we will explain how a graph decomposition is represented pic-

torially throughout the thesis.

17

1 1 1 0
1 2 1 2
0 2 0 2
0 1 0 0
0 2 0 2

2 0 2 0

2 0 2 0

2 2 2

0 0 0

0 2 2

Figure 1.16: Polynomial time algorithm for Sy decomposition.

Let U and V be 2 partite sets from a bipartite graph. In the illustration
provided in figures 1.17, 1.18 the rows represents the vertices from partite set
U and the columns represents the vertices from partite set V. A shaded area
(possibly non-contiguous) of the same colour within a row or column of size r
units, represents a copy of 5.

In the cases where the bipartite graph is not complete, we denote the edges
that are not part of the graph with a solid black region. In the cases where
the graph has more than two partite sets, we will indicate the partite set in
which the rows are represented on the left of the graph, and the partite set in

which the columns are represented on the top of the graph.

18

U1 V2 U3 Uy Us Vg U7 Ug V9

Uy

U2

usg

Uy

Us

Ug

U7

us

Figure 1.17: Graphical representation of the decomposition of the edges be-

tween partite set U and V

Figure 1.18: Graphical representation of the decomposition of the edges be-

tween partite set V' and W when there are more than 2 partite sets and the

graph is not complete

Chapter 2

Decomposition of complete

Bipartite Graphs

In this section we give the necessary and sufficient conditions to decompose
complete bipartite graphs and crown graphs into stars. Our proofs are by

direct construction.

2.1 Preliminary Lemmas

Here we introduce some lemmas that will be used for S,-decompositions of

bipartite and multi-partite graphs.

Lemma 2.1 If the degree of every vertex in a partite set U of a bipartite graph

G s divisible by r, then there exists an S,-decomposition of G.

Proof. We can greedily choose r edges adjacent to a vertex in the partite set
U to form a copy of S,. We repeat this process until all the edges adjacent
to the vertex are chosen. Then we repeat this process for each vertex in the

partite set U until all the remaining edges have been chosen. Il

The following proof is an extension to Corollary 2.2 and 2.5 [9] that shows
that if the graph K,,,, decomposes into k-cycles, then the graph K, . =
Kpm ® K, also decomposes into k-cycles. Moreover, if the graph K de-

composes into k—cycles, the graph K, ,,; also decomposes into kl-cycles.

20

Lemma 2.2 If the graph G decomposes into S,, there exists an S, and an Sy,

decomposition for the lexicographical product G @ K;.

Proof. We let H = S, ® K;. We then label the leaf vertices of S, with
integers from 1 to r, the center vertex of S, as u and the vertices of K; with
integers from 1 to [. The resulting graph H = S, ® K, has the partite sets
U={{uy, 11 <y<Ii}, V={v,:1<z<rl<y<I}and edge set,
EH) ={esy.: 1 <z <rl1<y<Il1<z<I} where e, is the edge
between v, , and u.. Observe that H is isomorphic to K ;.

Observe that the each vertex in the partite set U has degree r{. By Lemma
2.1, we can decompose H into S,. Moreover, we can also decompose H into
Syl

Formally, we partition the edges of H into graphs H,, where 1 < x <
[,1<y<[and

E<Hx,y) = {el,x,y: €2.x,y5 -+ er,az,y}a
V(Hx’y) = {Ul,w; Ug’x, e 71)7',17 ’U,y}.

Note that each H,, is isomorphic to S,. We can also partition the edges

of H into graphs J, where 1 <y <[and

E(Jy) - {61,1,3;7 €21,y5-- -, er,j,y}a

V(Jy) = {Ul,la U271, e ,UT’j7 Uy}

and we also note that J, is isomorphic to Sy;.]

2.2 Decomposition of Complete Square Bipar-

tite Graphs

In this section we will prove that the complete bipartite graph K, , has an
S,.-decomposition if p? is divisible by r and r is less or equal to p by giving
a construction of such decomposition. This theorem is also proven by Ya-

mamoto, Ikeda, Shige-eda, Ushio and Hamada [38]. In the proof given in that

21

paper, the authors showed that the bipartite graph K, , can be represented
as mn lattice points. From there, they showed that they can represent the
decomposition using claw-type subsets of size r. They then show that each
subset represents a claw or a S, graph, and showed that there is always an
arrangement for the subsets when the conditions above are met.

The construction of our proof here, although similar to the techniques given

in the paper, was developed independently of the paper and is original.

Theorem 2.3 The graph K,,,, decomposes into S, if and only if p* is divisible

by r and r < p.

Proof. We first show the necessity of the conditions r | p* and r < p. Suppose
that r does not divide p?. The number of edges in a K,, graph is equal to
the product of the number of vertices in the two partite set, i.e. p?. By the
definition of a decomposition, the number of edges of a decomposition of S,
must divide the number of edges in K),, and therefore r | p?.

Suppose 7 > p. We will show that K, , has no subgraph isomorphic to S,.
Thus K,, has no decomposition into S,. Each vertex in K, has degree p.
Therefore, any subgraph of K, , has degree of at most p. Since S, has a vertex
degree of r, K, has no subgraph isomorphic to S,.

We now show the conditions r | p? and r < p are sufficient. We methodi-
cally divide the proof to according to the following cases:

Case 2.3.1: 7 | p.

Case 2.3.2: 71 p and r is square.

Case 2.3.3: 71 p and r is not square.
Case 2.3.1 r divides p.

Let m = . Note that every vertex in the partite set V' has degree mr. By
Lemma 2.1, there is a S,.-decomposition of the graph.
Formally, let U = {u;; : 1 <i<m,1 <j<r},andlet V={v,: 1<k <

p} be the partite sets of K, ,.

22

We can then define the S,-decomposition of K, , as follows:
V(Hig) = {vp,uij 1 < j<r}

with 1 <t <mand 1<k <p.

Observe that each H;j, is isomorphic to S,.
Case 2.3.2 r does not divide p and r 1s square.

Let r = 2. Let n = p_Tp/ where » < p’ < 2r, and let U and V be the two
partite sets of K, ,. We partition U into disjoint subsets U’ and U” such that
|U'| = p’ and |U"| = nr. Similarly, we partition V' into disjoint subsets V' and
V" such that |V'| = p" and |V"| = nr.

By Lemma 2.1 we can partition the edges between U” and V into copies
of S,. Similarly, by Lemma 2.1 we can partition the edges between V" and U
into copies of S,. The remaining edges not partitioned by the steps above are
the edges between U’ and V.

Since 7 | p?, we have

r| (p' + nr)?

= 7| p? 4 2nrp + 4n*r?

=r|p?
= 4% | p?

=1i|p.
We let j = %/. Observe that, since r < p’ < 2r, we have i < j' < 2i. We

now let b = j' —i. Note that 0 < j'b < p’. The proof for this is as follows.

We also note that b = p' — r. We partition U’ into disjoint subsets

Up, Uy, Us ... Uj_q such that |U,| =i where 0 < < j'—1. Since 0 < j'b < p/,

23

we can partition V' into disjoint subsets Vg, V4, Va,...Vy—y and V, such that
|[Vz| = b where 0 <z < j' —1and |Vi| =p' — jb.
By Lemma 2.1, we can decompose the edges between Uy, U; ... U;_; and
Vb into copies of S;z with the vertices of Vj as centers. We then repeat this
for the edges between Uy, U, + 1... Upti—1(mod joy and V,, for 0 <z < j' — 1.
We have used bj'i? edges altogether using vertices from V' regularly. Thus we
bj'i?

have used = ib edges incident with each vertex from U’. By Lemma 2.1,

we can decompose the remaining edges using p’ copies of S, with each vertex
in U’ the center of one S,.

Formally, let U' = {U, : 0 < g < j' —1,} where Uy, = {uy), : 1 < h <i}.
Let V! = {V,,V* : 0 < g < j — 1}, where V, = {vy;, : 1 < h < b} and

V*={z;:1<1<p—7b}. We can then define the decomposition as

V(Hgﬁ) = {Ug7h} U Ul mod j/ where Vg,h € V;J

g<I<g+i

with the vertex v, the center of a copy of S;2 and
V{(;,h) = {ugn}t U Vi mod j» U Vi where u,), € U,
g—i<I<g—1
with vertex ugy) the center of a copy of Sj.

We illustrate this in Figures 2.1, 2.2.

Vive VsV
p==©6
Uy — r=4
1=2
j'=3
U b=1
| |Ug| =1 =2
UQ_ |Vh‘:b:1
[V =p—jb=3

Figure 2.1: K46 decomposes into Sj.

Uo

Uy

Us

Us

Us

24

Vo Vi Vo V3 Vy Vs Ve
p=24
r=16
i=4
i =6
b=2
Ug| =i =4
Vil =b=2
= V' =p—ib=12

Figure 2.2: K494 decomposes into Sig.

Case 2.3.3 r does not divide p and r is not square.

Let r = % where j is a square free number,

r|p?

= i’j | p°

=ij | p.

We let p = kij.

We first observe that K, is the lexicographic product Kjj ;1 ® E Since

r < p, we have ¢ < k. From Case 2.3.2, we have shown that Kj;; ;; decomposes

into S;2. Using Lemma 2.2, it then follows that K, decomposes into Sj;.

This is illustrated in Figure 2.3.

25

1 | I | r=12
: i k=3
L 1] [fEEEEEEEEEEEEEEEE- ;=2
1]]

1 (|] 3

Figure 2.3: Kjg15 as the lexicographical product of K44 ® K, decomposing
into S, ® K3 and into Sy

2.3 Decomposition of Complete Bipartite
Graphs

In this section we will show that the complete bipartite graph K, , has a S,-
decomposition if at least one of the following two cases is satisfied:

Case 1: pq is divisible by r and » < p and r < q.

Case 2: p is divisible by r or ¢ is divisible by r.

As mentioned in the earlier section, this theorem was proven by Yamamoto,
Ikeda, Shige-eda, Ushio and Hamada [38]. The construction of our proof here
although similar to the techniques given in that paper, was developed inde-

pendently of the paper and is original.

Theorem 2.4 The complete bipartite graph K, , decomposes into S, if and
only if one of the following cases is true:
Case 1: pq is divisible by v and r < p and r < q.

Case 2: p is divisible by r or q is divisible by r.

Proof. We first show the necessity of the conditions r | pg. Suppose that r

does not divide pg. The number of edges in K, ; is equal to the product of the

26

number of vertices in the two partite set, pg. By the definition of decomposition
the number of edges in the decomposition must divide the number of edges in
the graph; thus » must divide pq.

Now we will show the necessity of the condition r» < p and r < ¢ when
r 4 pand r 1 g. Without loss of generality let p > ¢, otherwise we swap the
partite sets. Suppose r | pg, ¥ p, 7 g and r > ¢. Let ¢ be the center vertex
of a subgraph. Since the degree of each vertex in U is ¢ and the degree of ¢ is
greater than ¢, ¢ cannot be in U. However, since r { p, there will be edges left
over incident to vertex in V' if all the center vertices in the S,-decomposition
belong to V. Therefore if » > p or r > ¢ there is no S, decomposition of K,
in the case where r { p and r 1 ¢.

From here, we can separate the proof to the following cases,

Case 2.4.1: r divides p or r divides q.

Case 2.4.2: r does not divide p and r does not divide q.
Case 2.4.1 r divides p or r divides q.

Without loss of generality, let r divide p, otherwise we swap the partite sets
Uand V.
Let m = 2. Note that the vertex degree on every vertex of the partite set

V' is mr, therefore by Lemma 2.1, there is an .S, decomposition of the graph.
Case 2.4.2 r does not divide p and r does not divide q.
We let ged(r,p)=i. This gives us, r = ij and p = iz, ged(j,x)= 1. Now,
r | pg
= ij | izq
=7 | zq
= j | ¢ since ged(j, x) = 1.

Therefore we have i | p and j | q.

27

Let U and V' be the partite sets of K,, with U be size p and V size ¢
respectively. Let p’ = p — nr where r < p’ < 2r and let ¢ = ¢ — mr where
r < ¢ < 2r. We can partition U into two disjoint subsets U’ and U” such
that |U'| = p’ and |U”| = nr. Similarly, we can partition V' into two disjoint
subsets V'’ and V" such that |V’'| = ¢’ and |V"| = mr.

By Lemma 2.1 we can partition the edges between U” and V into copies
of S,. Likewise, by Lemma 2.1 we can partition the edges between V" and U
into copies of .S,.

Since 7 | p?, we have
r| (p+nr)(qd +mr)

= 7| p'd +nrq +mrp + mnr?
=r|pq
= ij | p'q.
We also have
i|p
=1i|(p +nr)
=1i|p
and
jla
= 51+ mr)
=jld.

We let k' = %/ and I' = €. Observe that i < I' < 2i. We let b = I’ —i. Note

that 0 < k'b < ¢’ and the proof of this is as follows:
k/(l/ _ 7/) — k/l/ _p/ S q/
— k/l/ S p/ + q/

= <9 +dq.

P'q
T

28

We separate the remainder of the proof into two cases, p > ¢ and p < ¢:

Case i: p' > ¢
/! 27,,/
P24 ey
r r
<:>>q/§])/
Case ii: p' < ¢
! ! 2,r,/
PV iy
r r
= p <q.

We also note that jb = ¢ —r.

We partition U’ into disjoint subsets Uy, Uy, Us . .. Uy 1 such that |U,| =i
where 0 < x < k' —1. Since 0 < k'b < ¢/, we can also partition V' into disjoint
subsets Vpy, V1, Va, ... Viy_y and V* such that |V,| = b where 0 < z < k' —1 and
[V*| =¢ — K.

By Lemma 2.1, we can decompose the edges between Uy, Uy ... U;_; and V}
into copies of S;; with each vertex of Vj a center of S;;. We then repeat this for
the edges between Uy, Upy1 ... Upgj—1(mod &) and V,, for 0 <z < kK —1. We
have used 1jbk’ edges altogether using vertices from V' regularly. Thus we have
used % = jb edges incident with each vertex from U’. Our decomposition
thus removes exactly ¢ — r edges incident to each vertices in U’. By Lemma
2.1, we can decompose the remaining edges using p’ copies of S, with each

vertex in U’ the center of one S,.

Figures 2.4 and 2.5, illustrates an example of this algorithm.

2.4 Decomposition of Crown Graphs

In this section, we extend the results of Theorem 2.3 and Theorem 2.4 to crown
graphs. Here we show that a crown graph has a S,-decomposition if and only

if r divides p? — p and r is less or equal to p — 1.

29

Voo i Va2 V3 Ve
U -
0 7=9
1=2
7 =3
Ui K =4
I'=3
b=1
Uz U, =i =2
Vil =b=1
[V |=q—kKb=5
Us
Figure 2.4: Kgg decomposing into Sg.
o i Vo V3 v
p=12
q=15
Ui
0 r=9
=3
U1 J=3
K =4
I'=5
Uy b=2
Ug| =i=3
Vil =b=2
U3 /
V¥ =q—kb=1

Figure 2.5: K315 decomposing into Sy.

Theorem 2.5 The crown graph K,, minus a 1-factor decomposes into S, if

and only if p*> — p is divisible by r and r < p — 1.

Proof. Observe that K, minus a 1-factor is isomorphic to Sg (see Introduc-
tion).
We first show the necessity of the conditions 7 | (p*> — p) and 7 < (p — 1).

Suppose that 7 does not divide p? —p. The number of edges in SI? equals p? —p.

30

By the definition of a decomposition, r must divide p? — p.

Suppose r > p — 1. We will show that S]? has no subgraph isomorphic to
S,. Every vertex in Sg has the degree p — 1. Thus, every vertex in a subgraph
of Sg has degree at most p — 1. Since the center vertex of S, has a degree of
T, Sg has no subgraphs isomorphic to 5.

From here, we can separate the proof to the following cases:

Case 2.5.1: r divides p — 1.

Case 2.5.2: r divides p.

Case 2.5.3: r does not divide p, r does not divide p — 1.
Case 2.5.1 r divides p — 1.

Observe that each vertex in SS has the degree p — 1. By Lemma 2.1, we
can use a greedy algorithm to pick out the edges from one bipartite set to form

@ copies of S,.
Case 2.5.2 r diwvides p.

Let m = 2 and let U and V' be the 2 partite sets of the graph. We can
partition V' into m disjoint subsets Vi, Vs, ... V,,, each with size r. Let G; be
the subgraph induced by U and V; where 1 <7 < m.

Observe that in each G;, there are r vertices in partite set U with degree
r — 1 and p — r vertices with degree r.

From here, we partition U into two disjoint subsets U/ and U’ such that U/
is the set of p —r — 1 vertices with degree r and U/ is the set of r vertices with
degree r — 1 and one vertex with degree r. Let G be the subgraph induced
by U/ and V;. Observe that every vertex in U]’ has degree r, and by Lemma
2.1 we can decompose the edges between U] and V; into S,. We now define
G’ as the subgraph induced by U/ and V;. Observe again that each vertex in
V; in subgraph G} has degree r. By Lemma 2.1 we can decompose the edges
of this subgraph into stars S,.. We repeat for each i, 1 <7 < m.

Figure 2.6 illustrates an example of this algorithm.

31

Wi Wi Wi

U; Uy

Uy Us

Figure 2.6: Kg9 minus 1-factor decomposing into Sj.

Case 2.5.3 r does not divide p and r does not divide p — 1.
Recall that r | p(p — 1). Let ged(r, p) = i, we then have
r=1j and p = ix.

Now,
rpp—1)
= 1j | iz(p — 1)
=Jlzlp-1)
since ged(j,z) =1
=Jj -1
Let n = ”%ﬂ where r < p’ < 2r.
Since n > 0, we can partition the graph into a union of graphs Sg, U
nS U2Ky 1, U (n)(n — 1)K, as illustrated in Figure 2.7. By Lemma 2.1,
we can decompose S2,; (refer to case 2.5.1), and K, _1,, (refer to Theorem

2.4, case 2.4.1), K, , (refer to Theorem 2.3, case 2.3.1) into S, and the edges

not partitioned are the edges in Sg,.

32

0
S0 o
p =10
r==~6
0., K,
Kp,2r
S0
Kr,r

Figure 2.7: S5, partitioned into subgraphs.

Observe that p’ is divisible by ¢ and p’ — 1 is divisible by j. The proof of

this is as follows. Since

i|p,
i | nr+p
and since r = 17, we have
=1i|p.
Similarly,
jlp—1),

jl(nr+p'—1)
and since r = ij, we have
=Jj -1

We let o’ = %l and y = ’%. Let b = 2/(y' —i).

33

Observe that ¢y’ — i > 0, since
r<p <2r
=r<p-—1<2r
=ij < jy’
= jy' —i) > 0.

Also observe that %x’ = p' — 1 — r the proof of which is as follows:

Yt -0
= jy —ij
=p —1-r. (2.1)

Let U and V be the partite sets of S](j,. We partition U into two disjoint
subsets U; and U, such that |U;| = b and |Uy| = p — b. We then partition V'
into 7 disjoint subsets V}, of size 2’ where 1 < k < ¢. For each vertex in U;, we
pick out j edges in each Vj, offsetting by one each time until we are done with
each vertex in Uj.

We have used ijb edges altogether using vertices from U; regularly. Thus
igb _ jb

= L edges incident with each vertex from V. Thus, our

iz’ T

we have used
decomposition removes exactly (p' — 1) — r edges incident to each vertices in
V. By Lemma 2.1, the remaining edges forms p copies S, using each vertex in
V' as the center vertex for one copy of S,.

Formally, we let U = Uy U Uy where Uy = {uy, : 1 < k < b} and Uy = {u; :
b+1<i<p} Let V= Ulgkgi Vi, where Vi, = {vg, : 1 <1 < z}. Let there
be an edge between u,, and vy, unless kx 4+ [= m.

For each 1 < m < b we define the decomposition H,, to be
V(Hm) - {U/mavk’,(lmodx) 1 S k S z,m—i—l S l S m+.]+1}

By equation (2.1) we have % =p' — 1 —r edges used up for every vertex
in V. Therefore, we have exactly r edges incident to the vertices in V. By
Lemma 2.1 we have an S,-decomposition.

Figure 2.8 illustrates an example of this algorithm. 0

34

14 Va

r==6

Uy i=2
ji=3
r=25

] b=53B-2)=5

|Vh‘:$:5
Uil =b=5
|Us|=p—b=5

Us

Figure 2.8: SY, decomposing into Sg.

Chapter 3

Decomposition of complete

Tripartite Graphs

In this section, we give necessary and sufficient conditions to decompose com-
plete equipartite tripartite graphs into stars. This result was proven by Ushio
[37] in 1982. The proof by construction given below is original, and uses
methods similar to those in Chapter 2. We will also extend the result for
Ss-decompositions of K, ,, where p, ¢ and, r are not equal. We conclude this
section by discussing how we might extend our results to S,-decompositions

of multipartite graphs.

3.1 Preliminary lemmas

Lemma 3.1 If%—l—% =1, there exists a decomposition of K,,,, into m copies
of S, and n copies of Sy such that each vertex in the partite set of size m is
the center of one copy of S, and each vertex in the partite set of size n is the

center of one copy of Sy.

Proof. Without loss of generality, let m > n otherwise we may swap the
partite sets. To highlight the necessity of the condition, let = + % = 1; then
multiplying mn to both sides gives us ma+nb = mn. Since the total number of

edges of the m copies of S, and n copies of S5, must equal the number of edges

36

in K,,, this condition is necessary. We can then construct a decomposition
to partition the edges into m copies of S, and n copies of S,. Let U and V' be
the two partite sets of K,,,, containing m and n vertices respectively. Observe
that vertices in U each have degree n and the vertices in V' each have degree
m. We use each vertex of U as the center vertex of a star S, offsetting each
of the vertices used in V' by one each time. This uses a”* edges incident with

each of the n vertices of V. Since

+:1
n m

m
= a— =m — D,
n

there are exactly b edges incident with each of the vertices of V. By Lemma
2.1, we can then pick out the remaining b edges incident to each vertex of V'
creating n copies of 5.

Formally, the decomposition is as follow. Let U = {u; : 1 < i < m} and

V ={v; : 1 <i<n} then

V(Hi):{uhvcmodm:igcg (Z+a—1)}
V(H;):{Ujaucmodn:j_bécgj—l}

where 1 <7 < m and 1 < 5 < n. Observe that each H; is isomorphic to S,

and each H} is isomorphic to Sp. O

Lemma 3.2 If K,,,,, has a S,-decomposition then at least p vertices are cen-

ters of S, in two of the three partite sets.

Proof. We let U, V, W be the 3 partite sets of K, ,. We then define ¢(X) to
the be the number of vertices chosen to be a center of S, in partite set X. Let
a=c(U),b=c(V) and ¢ = ¢(W). Without loss of generality, let us assume
that there exists an S,-decomposition with a < p and b < p. Since a and b are
less than p, there exists vertices © € U and v € V that are not chosen to be
centers of S,.. Note that every edge of S, is an edge between the center and

a leaf vertex. However, since both u and v are not the center vertex of some

37

Sy, the edge {u,v} cannot be in a S, decomposition. This is a contradiction,

therefore both a < p and b < p cannot be true. [

centers centers
of S, in of S, in
partite partite
set U set V

Figure 3.1: Vertex u and v not picked as centers

3.2 Decomposition of equipartite tripartite
graphs

In this section we will prove that the complete tripartite graph kK, ,, has a
S,-decomposition if and only if 3p? is divisible by r and r is less or equal
to %. We will provide a proof by construction of such decomposition. This
theorem was also proven by Ushio, Tazawa, and Yamamoto [37]. In the proof
by given in that paper, the authors showed that an adjacency matrix admits
a S, decomposition if the row sum vector equals . The authors then showed

that for all equipartite multipartite graphs, this condition is met when the

necessity conditions are met.

Theorem 3.3 The complete tripartite graph K, ,, decomposes into S, if and

only if 3p* is divisible by r and p > %r and r | 3p*.

Proof. We first show the necessity of the conditions r | 3p* and p > %r. Let
U,V,W be the three partite sets of K,,,,. Note that the graphs formed from
the edges between U and V', V and W, and U and W, are each isomorphic
to K,,. Hence the total number of edges in K,,,, is 3p?. By the definition of
decomposition, the edges in a decomposition must divide the total number of

edges in the graph. Thus, » must divide 3p?.

38

Suppose p < %r. Let ¢(X) be the number of vertices chosen to be a center
of S, in partite set X, and let a = ¢(U), b = ¢(V) and ¢ = ¢(W). By Lemma
3.2, at least two of the three partite sets have p vertices chosen as centers of .S,.
Without loss of generality let a > p and b > p. Also note that r(a+b+c) = 3p.

We can then derive the following inequality:

r(a+b+c) = 3(p?)
= r(p+p+c) <30p%)
= r(2p +c) < 3(p?).

Since it is impossible for ¢ to be negative, we have the following;

r(2p) < 3(p?)

We now show the sufficiency of the conditions, by separating proofs into

the following cases:

Case 3.3.1: ged(r,3)=3,r=374,7 | p.
Case 3.3.2: ged(r,3)= 3, r = 3k, k 1 p.
Case 3.3.3: ged(r,3)=1,7r<p

Case 3.3.4: ged(r,3)=1, 2r <p<r

Case 3.3.1 gcd(r,3)=3,r=3j,7 | p.

Let n = £. By Lemma 2.2, since K, = Ky ® K;, if K, 5., decomposes
into Ss then K, ,, decomposes into Ss; for all p > 2j. Let U, V,W be the 3
partite sets of K, , .

There exists a > 0 and 0 < b < 2 that satisfies n = 3a + 2b for all n > 2,
since ged(3,2) = 1. We first pick out a total of b edge disjoint 1-factors between
partite sets U and V, and a total of 2b edge disjoint 1-factors between partite

sets U and W. Note that we can use these edges to form b copies of S3 using

39

each vertex in partite set U as a center. We then pick out another b edge-
disjoint 1-factors between partite sets U and V', and 2b edge disjoint 1-factors
between partite sets V' and W. We also note that we can use these edges to
form b copies of S3 using each vertex in partite set V' as a center. Observe
each vertex in U is now incident with 3a edges between partite sets U and
V. Also observe that each vertex in V' is now incident with 3a edges between
partite sets V' and W, and each vertex in W is also incident with 3a edges
between partite set W and U. By Lemma 1, we have a S3 decomposition of

the remaining edges.
Case 3.3.2 gcd(r,3)=3, r =3k, k1{p.
Let k = i?j where j is square-free. Since r | 3p?,
k| p®
= i%j | p®
= ij|p
= p = nij.

Let ni = 1]3. By Lemma 2.2,since K, = Kpinini ® E, it Ky nini decom-
poses into S3;2 then K, ,, decomposes into S,. Using the strategy from Case
3.3.1, we can divide the decomposition problem into partial decompositions of
3K,ini- By the necessary conditions, we have ni > %(3z’2); we can then sim-
plify this to n > 2i. We can now show a proof by construction of the existence
of a S3;2-decomposition. Let us assume that there exists a S3;2-decomposition
with a copies of S3;2 with centers in partite set U each using x edges to V;

b copies of S3;z with centers in partite set V' each using y edges to W and ¢

copies of S3;2 with centers in partite set W each using z edges to U.

40

By summing the edges between partite sets U and V' we have the following

equality
a(z) + b(3i* — y) = (ni)*.

By considering the edges between partite sets V' and W we have
b(y) + c(3i* — 2) = (ni)?,
By considering the edges between partite sets U and W we have
c(z) + a(3i® —) = (nd)?.
Summing the three equations gives us
(3i*)(a + b+ c) = 3(ni)?
= (3i%)(a + b+ c) = 3(ni)?
=a+b+c=n’
The values of x,y and z are bound by the following
0 <z < min(34%, ni);
0 <y < min(3i*, nd);
0 < z < min(3i*, ni).
Moreover we also have the following bounds
0 < 3i* — x < min(34%, ni);
0<3i>—y< min(3i2,m');
0 < 3i* — z < min(3i%, ni).

Now,

0>z — 3i* > —min(34%, ni)

= 3i* > 7 > max(0, 3i> — ni).

(3.1)

(3.2)

(3.3)

(3.4)

41

We obtain similar bounds on y and z. Combining these bounds gives us

max(3i> — ni,0) < z < min(3:?, ni); (3.5)
max(3i* — ni,0) <y < min(3i*, ni); (3.6)
max(3i* — n4,0) < z < min(3i*, ni). (3.7)

We then consider the following sub-cases:
Case: 3.3.2.1 2 <n < 3i.
Case: 3.3.2.2 31t < n < 44.
Case: 3.3.2.3 41 < n < 5i.

Case: 3.3.2.4 n > bi.
Case 3.3.2.1 2¢: <n < 3i.

Using inequalities (3.5), (3.6), (3.7) we have the following bounds for z,y,z
for 2i <n < 3i:

32'2—m'§m§m';

) . .
31" —n1 <y < ni;

31 —ni < z < ni. (3.8)
We now set the following,
a = nt,
b = ni,

c=n’—2ni,
r =n? — 3ni + 3%,

y =n? — 4ni + 642,

We will now show that our choice above satisfies equations (3.1), (3.2),

(3.3), (3.4), and the inequalities (3.8). Looking at equation 3.4, we have

a+b+c=mni+ni+ (n®—2ni) =n’

42
We can also show that equations (3.1), (3.2), (3.3) are satisfied by our
choice of a,b, ¢, x,y, and z. The left hand side of equation (3.1) is equal to

a(x) + b(3i* — y)

= ni(n® — 3ni + 3i*) + ni(3i* — (n® — 4ni + 6i%))
= ni(n® — 3ni + 3i%) + ni(4ni — 3i> — n?)
2,2

= n-i-.
Again, the left hand side of equation (3.2) is equal to
b(y) + c(3i* — 2)
= ni(n® — 4ni + 6i*) + (n* — 2n4)(3i — (ni))
= ni(n® — 4ni + 6i*) + ni(n — 2i)(3i — n)
= ni(n® — 4ni + 6i* — (n* — 5ni + 6i%))
= n-i-.

Finally, the left hand side of equation (3.3) is equal to
a(3i® —) + c(z)
= ni(3i> — (n* — 3ni + 3i%)) + (n* — 2ni)(ni)
= ni(3ni — n?) + (n? — 2ni)(ni) = n*i*.

Now we can show that our choice of x, y, 2z satisfies bounds given by

inequalities (3.8) for 2i < n < 3i. Checking for the lower bounds for z we have
x> 3% —ni
< n® —3ni+3i* > 3° —ni
> n*—2ni>0
< n(n—2i) >0

<— n<0orn> 2.

43

Checking for the upper bounds for we have

r <ni

< n®—3ni+3i* < ni
= n®—4ni+3i* <0
<— (n—=3i)(n—1) <0
<= 1 < n < 37 which is true because 2 < n < 31.

Moreover, for 2i < n < 3i, we can also show that the lower bound of y is

y > ni —c > r —ni. We first show the second inequality
nt—c>r—n

< ni—nn—2i) >r—ni
<= n(4i—n) —3i> >0
< n® —4ni+ 3> <0
<~ (n—3i)(n—1) <0
<— 1 <n <3

Now we verify that y > ni — ¢
n? —4ni+6i2 > ni—c

<= n® —4ni+ 6i* > ni — n(n — 2i)
— 2% — Tni +6i* >0
= 2n* —Tni+6i>>0
<~ (2n-3)(n—21) >0
3. .
= n§§z orn > 2i (3.9)

which is true because 2 < n < 31.

44

Looking at the upper bounds of y, we have
n® — 4ni + 6i* < ni

— n2—5mi+62<0
< n®—5ni+6i* <0
— (n—2i)(n—31) <0
— 2i <n <3
Finally z = ni clearly satisfies the inequality » — ni < z < nq.
Observe that for 2i < n < 3i,
0 <c¢<ni. (3.10)
The proof of which is as follows:
n(n —2i) >0

=n < 0orn > 2

By equation (3.1), we have

a(x) — b(3i* — y) = n%?>

2,2

= ni(z) — ni(3i* —y) = n%.

Dividing both sides by n?i? gives us

T 3i2—y:

ni nt

1.

Thus by Lemma 3.1, the edges between U and V' can be decomposed into ni
copies of S; and ni copies of Ss;2_, so that each vertex of U is the center of

one copy of S, and each vertex of V' is the center of one copy of Ss;2_,,.

45

Let Dy, be the set of S;’s and D,, be the set of Ss;2_,’s in this decompo-
sition.
We next partition W into disjoint sets W’ and W”| such that |IW’| = ¢ and

|[W”| = ni — c. Observe that 3i* —z = ni — ¢
3i% — (n* — 3ni + 3i%)

= 3ni — n?
o . 2
=ni+2nt —n
. . 2 .
=ni — (n” — 2ni)

=ni—c

By Lemma 2.1 we can decompose the edges between U and W into a = ni
copies of S3;2_, with each vertex of U the center of one copy of S32_,. By
Lemma 2.1, we can also decompose the edges between U and W” into ¢ copies
of S,—,; with each vertex of W” the center of one copy of S,. We let D,,, be
the set of S32_,’s and D, be the set of S.’s in this decomposition.

Again, by Lemma 2.1, we can decompose the edges between V and W”
into ni copies of S,;_. with each vertex of V' the center of one copy of S,;_..
We will now show that by Lemma 3.1 we have a decomposition between the
edges of V and W' with ni copies of S,_p;+. with each vertex of V' the center
of one copy of S_,+. and c copies of Ss;2_, with each vertex of W’ the center

of one copy of S3;2_,

—ni+c 3% —z
Y +

c ne
n? — 4ni + 6i%2 — ni 3i2 — ni
= 5 . +1+—
n® — 2n ne
n? —5ni+6i> 3i—n
= 5 — + +1
n? — 2ni n
_ (n* —5ni+6i*) + (n — 2i)(3i —n) 1
B n(n — 21)
(n—2i)(n —3i)+ (n — 2i)(3i —n)
= - +1
(n? — 2ni)

= 1.

46

Let D,y be the set of S,;_.’s, Dy, be the set of S,_,1.’s and D, be the
set of S3;2_.’s.

We now let D, = D,, U D,,, observe that each vertex in U is the center
of one copy of S, and one copy of Ss;2_,, the union of which is isomorphic to
Ssi2. Similarly, we let D, = Dy, U D, U D,,,~; each vertex in V' is the center

of one copy of Ss;2_,, one copy of Sy;_. and one copy of S,_pi;., the union of

—ys
which is Ss;2. Finally, we let D, = D, U D,,, and note that each vertex in
W' is the center of one copy of S., and one copy of Ss;2_,, the union of which
gives us Ss;2.

Note that any positive integer solution for a,b,c,z,y, and z that satisfy

equations (3.1), (3.2), (3.3), (3.4) while fulfilling the bounds given in 3.8 can

construct a Ss;2 decomposition.
Case 3.3.2.2 : 3i <n < 4.

Let ¢ = n—3i and n’ = n —2q. Observe that 0 < ¢ <7 and 2i < n’ < 3i when
31 <n < 4i.

Let U,V and W be the partite sets of Ky; nini. We partition U into three
disjoint subsets Uy, Us and Us; V' into three disjoint subsets Vi, V5 and V3 and
W into three disjoint subsets Wy, Wy and W3 such that |Uy| = |Us| = |V4] =
|Va| = [Wy| = |Wa| = qi and |Us| = |V3] = |W5| = ni — 2qi. Let U’ = Uy U Us,
U'=U,0Us, V' = ViUV, V! =VoUu Vs, W =W, UW;3 and W = Wy U Ws.

Observe that n—q = 3i and |U'| = |U"| = [V'| = |V"]| = |W'| = [W"| = 3¢2.
By Lemma 2.1 we can decompose the edges between U; and V' using gi copies
of S3;2 with each vertex in U; the center of one copy of Ss;2. Similarly, we
can decompose the edges between U, and V", using ¢i copies of Ss;2 with each
vertex in U, the center of one copy of Ss;2; the edges between V; and U”; with
each vertex in V) the center of one copy of S3;2 and the edges between V5 and
U’ with each vertex in V5 the center of one copy of Ss;2, by Lemma 2.1. An
example of this decomposition is illustrated in Figure 3.2.

We repeat this for each pair of partite sets. The remaining set of edges

47

that is not decomposed in the steps above is isomorphic to K n/i . We can

then decompose this graph by referring to case 3.3.2.1.

Vi Vs Va
n="7
qg=1
=2

|Ur| = |Us| = qi = 2
Vil = |Va| = qi =2
[Us| = |Va| = (n — 2¢)i = 10

Us

U,

Figure 3.2: K14714 reduced to K10710.

Case 3.3.2.3 4i <n < 5.

Initially, we planned to use the strategy from Case 3.3.2.2 to reduce the
case into n’ = n— 27, however while constructing the decomposition, it became
apparent that this strategy did not work for odd values of 7. We can however
construct a new proof by construction using the techniques from case 3.3.2.1.

Let us assume that there exists a S3;2-decomposition with 2ni copies of Ss;2
with centers in partite set U where each vertex is a center of two copies of Ss;2,
such that one copy has z; edges to V' and the other copy has x5 edges to V,
and 2n7 copies of Ss;2 with centers in partite set V', where each vertex is the
center of two copies of S3;2 such that one copy has y; edges the other copy has
Yo edges to W; and ¢ copies of S3;2 with ¢ vertices of W a center of one copy

of S3;2 in partite set W with 2z edges to U.

48

For 4i < n < 5i, the bounds given by inequalities (3.5,(3.6),(3.7) gives us

0<z<3i% (3.11)

Moreover, by the decomposition described above, we have these additional

bounds

6i2 —ni < x4+ a9 < ni;
612 —ni < Y1 + yo < ni. (3.12)

We now set the following:

1 =1,
IQIZQ;

.9
Y1 =1

Looking at the edges between partite sets U and V' and referring to equality

(3.1), we have
ni(21) 4 ni(xs) + ni(3i% — y1) + ni(36% — o)

= ni(i® + i + (3° — i*) + (3° — (7% — ni)))

= ni(7i* + ni — 7i%) = n*i°. (3.13)

49

Looking at the edges between partite sets V' and W and referring to equality

(3.2), we have
ni(yr) + ni(ye) + (¢)(3® — 2)
=ni(i® + (7i* — ni)) + (n* — 4ni)(24°)
= ni(8i% — ni) + ni((n — 41)(20))

= ni(8i* — ni + 2ni — 8i%)

Looking at the edges between partite sets W and U and referring to equality
(3.3), we have

c(2) +ni(3i* — 1) + ni(3i* — x3)
= (n® — 4ni) (4%) + ni(3i* — i*) + ni(3i* — %)
= ni(ni — 4i%) + ni(4i%)
=nv.

Observe that 21 = x5 = y; = 2 = ¢2 fulfils the bounds given in inequalities
(3.11). Also observe that yo = 7i*> — ni fulfils the bound 0 < y, < 372 for
4i < n < 5i.

We also observe that inequalities (3.12) are satisfied by our choice of 1, x5, y;
and ys.

6i® —ni < x1 4+ 29 < ni
— 6i° —ni <2 <ni

<— n > 4.

61 —ni <y, +y2 < ni
= 6i2—ni <iPZ+ T2 —ni <ni
— &% < 2ni

<~ n > 4.

50

Note that y; + yo > ni — ¢ for ni > 44, the proof of which is as follows:
Yy1+y2 2 ni—c

& i* +T7i* —ni > ni — (n® — 4ni)
— 8i%> —ni > b5ni — n?
< n®—6ni+8i*>>0
<— (n—4i)(n—2i) >0
= n>4diorn <2
Observe that x; + x5 = 2i% and 6i® — y; — y» = ni — 2i?. Dividing equation
(3.13) by n%i? gives us the necessity condition for Lemma 3.1:

x x 3i% — 3% —
1 _2_|_ -yl_i_ .ZJ2

nt ne ni ni

_mtam 6i° — Y=
n nt

=1.

By Lemma 3.1, there exists a decomposition of the edges between U and
V' using a = ni copies of Sz, 44,)—2i2 With each vertex of U the center of a copy
of Syz and b = ni copies of S(gi2—y, —y,)—ni—2:2 With each vertex of V' the center
of a copy of S,;_a:2.

Let D,, be the set of Sy;2’s and D, be the set of S,,;_9;2’s in this decom-
position.

We can partition W into disjoint sets W’ and W”, such that |W'| = ¢ =
n? —4ni and |W”| = ni — ¢ = 5ni — n?. By Lemma 2.1 we can decompose the
edges between U and W into ni copies of Ss,;_,2 with each vertex of U the
center of one copy of Ss,i_n2.

Let k = n? — 5ni + 4i?, observe that k is positive for all n > 4i. Also

observe that k + 5ni — n? = 4i> = 61> — 1 — z5. We then have that:

koo 42

c m

n? — 5ni + 44>)

n? — 4ni n

ol

n? — 5ni + 44> 7

n(n — 4i) n
_ n?—bni+4i* + (n — 41)(7)
n(n — 4i)
~n?—dni
n(n — 4i)
=1.

By Lemma 3.1, we can decompose the edges between U and W' into a = ni
copies of S, with each vertex of U a center of one copy of S, and ¢ = n? — 4ni
copies of S,_;2 with each vertex in W’ a center of one copy of S,.

Let D, be the set of Ss,;_,2’s and D, be the set of S, and D,,, be the
set of S;2’s in this decomposition.

Again by Lemma 2.1, we can decompose the edges between V' and W into
ni copies of Ss,;_,2 with each vertex of V the center of one copy of Ss,;i_,2.
We let | = y; + yo — 5ni +n? = 8i2 — 6ni + n?. Observe that [is positive for

all n > 47. We can then show that,

[242

c ne

n* — 6ni + 8> 2i

n? — 4ni n

o —Gni 482 2

 n(n — 40) n

_ n? —6ni+ 8%+ (n — 41)(2i)
B n(n — 4i)
_on?—dni
n(n — 4i)
=1.

By Lemma 3.1, there is a decomposition of the edges between V and W' into
b = ni copies of S; and ¢ = n? — 4ni copies of Sy.

Let D, be the set of Ss,;_,,2’s and D, be the set of S; and D,,, be the
set of Sy;2’s in this decomposition.

We now let D, = D, U D, U D,,,; observe that each vertex in U is the

center of one copy of Sy;2, one copy of Ss,;_,2 and one copy of Sg—,2_snitai2,

52

the union of which gives us Sg;2. By Lemma 2.1, we can then decompose each
Sgiz into two copies of Ss;2.

Similarly, we let D, = D,, U Dy U D,,», observe that each vertex in
V' is the center of one copy of S,;_22, one copy of Ss,;_,2 and one copy of
S|—8i2_6ni+n2, the union of which gives us Sg;2. Again, by Lemma 2.1, we can
then decompose each Sg;2 into two copies of S3;2.

Finally, we let D,, = Dy, U D,,,, and note that each vertex in W’ is the
center of one copy of S;2, and one copy of Sz, the union of which gives us

53i2'
Case 3.3.2.4 n > bi.

Let m = ”gi"/ where 2i < n’ < 5i. Observe that we can partition U

into subsets U’ and U” such that |U’| = ni and |U”| = 3mi®. Similarly,

we can also partition V into V' and V” and W into W’ and W” such that
|U'| = |V'| = [W| =n/i and |V"| = |U"] = [W"| = 3mi®>. By Lemma 2.1,
there is a Ss;2 decomposition of the edges between U” and V', U” and W', U”
and V", U” and W, V" and W', V" and U’, V" and W", W" and U" , W"
and V’. The remaining edges that are not decomposed are the edges between
each of U’, V' and W, i.e. a graph isomorphic to K, n/; ;. We can then use

cases 3.3.2.1, 3.3.2.2, 3.3.2.3 to decompose the remaining edges.
Case 3.3.3 r = i%j,p = nij withp > r.

Observe that we can partition the edges of K,,,,,, into the union of 3 subgraphs

of K,, and we can then use Theorem 2.3 to decompose the graph into S,.
. :9 - _ .. . 2
Case 3.3.4 r =1ij,p = nij with 57 <p <.

Using Lemma 2.2, we can show that K, ,, has an S, decomposition if K; 5 ni
has a S? decomposition. Observe that when %r <p<r, % < n <14 Let
U,V and W be the three partite sets of K nini. Referring to case 3.3.2.1, we

define an S;2-decomposition with the following values:

53

¢ = 3n? — 2ni;
x = 3n% — 3ni + i*;

y = 3n? — 4ni + 24%;

We then assume there exists a S;2-decomposition where there are a = ni
copies of S? with each vertex of U a center of one copy of S? with x edges
between partite set U and V and i2 — x edges between partite set U and W;
b = ni copies of S? with each vertex of V a center of one copy of S? with y
edges between partite set V and W and i2 — y edges between partite set V' and
U; and c copies of S? with ¢ = 3n* — 2ni vertices of W a center of one copy of
S? with z edges between partite set W and U and i* — z edges between partite
set W and V. We will now show that our choice above fulfils the requirements
for such a decomposition to exist.

Referring to equations (3.1), (3.2), (3.3), we have
a(z) +b(i* — y)
=ni(3n* — 3ni + i) + ni(i* — (3n* — 4ni + 24%))
= ni(3n? — 3ni +14%) + ni(4ni — i* — 3n?)

=ni(3n? — 3ni + i + 4ni — i* — 3n?)

b(y) + c(i® — 2)
= ni(3n® — 4ni + 2i%) + (3n* — 2ni)(i* — ni)

= ni(3n® — 4ni + 2i*) + ni(3n — 2i)(i — n)

54

= ni(3n® — 4ni + 23> + 5ni — 3n* — 24°)

— n2i2;
c(z) + a(i®* —)
= (3n* — 2ni)(ni) + ni(i* — (3n* — 3ni + %))
= ni(3n? — 2ni) + ni(3n® + 3ni

= ni(3n* — 2ni + 3n* + 3ni)

From the description of the decomposition, the values of z,y and z are

bound by the following inequalities:

2

1 —nr < x < ni;

Z'Q—nigygm';

2

1 —nt < z < na.

From equation (3.1), we have
a(x) — b(i* —y) = n?i?

= ni(z) —ni(i® — y) = n?i*

Dividing both sides by n%? gives us

By Lemma 3.1, the edges between U and V' can be decomposed into ni copies
of S, and ni copies of S;2_, so that each vertex of U is the center of one copy
of S, and each vertex of V' is the center of one copy of S;2_,. Let D, be the
set of S;’s and D,,, be the set of S;2_,’s in this decomposition.

We can partition the W into disjoint sets W' and W”, such that |W'| = ¢

and |W"| =ni — c.

%)

Observe that 2 — x = ni — ¢
i2 — (3n? — 3ni + %)

= 3ni — 3n?
= ni + 2ni — 3n?
=ni— c.

By Lemma 2.1 we can decompose the edges between U and W” into ni
copies of S;2_, with each vertex of U the center of one copy of S;z_,. By
Lemma 2.1, we can also decompose the edges between U and W into ¢ copies
of S,; with each vertex of W” the center of one copy of S,;. We let D,,, be
the set of S;2_,’s and D, be the set of S,;’s in this decomposition.

Again, by Lemma 2.1 we can decompose the edges between V and W”
into ni copies of S,;_. with each vertex of V' the center of one copy of S,;_..

Observe that y > ni — ¢, the proof of which is as follows:
y>ni+c

<« 3n% —4ni+2i® > ni — 3n% + 2ni
— 6n>—Tni+22>0

<~ (2n—1)(3n —2i) >0

23
which is true since n > 3

2

Also observe that %”c + "T;Z = 1, the proof of which is as follows:

3n2—4nz’+22’2—m’+c+i2—z

c ni
B 3n2—4ni+2i2—m’+1+i2—m’
B 3n? — 2ni
3n?—bni+2* i—n
= . + +1
n(3n — 2i) n
30 —bni+2i* 4+ (3n — 2i)(i — n) +1
B n(3n — 2i)

302 — Bni + 2i2 + 5ni — 2% — 3n?

1=1
ni(n? — 2ni) N

56

By Lemma 3.1 we have a decomposition between the edges of V' and W’
with ni copies of Sy_,;1. with each vertex of V' the center of one copy of Sy_p; ¢
and ¢ copies of Sj2_,,; with each vertex of W' the center of one copy of Sj_,;.
Let D, be the set of Sy;_.’s, Dy, be the set of Sy_,it.’s and D, be the set
of Sp2_.’s.

We now let D, = D,, U D,,, observe that each vertex in U is the center of
one copy of S, and one copy of S;2_,, the union of which is S;2. Similarly, we
let Dy = Dy U Dy UD,,n, each vertex in V' is the center of one copy of S;2_,,
one copy of Sy;_. and one copy of S,_,;i., the union of which is S;2. Finally,
we let D, = D, U D,,, and note that each vertex in W’ is the center of one
copy of S,, and one copy of S;2_., the union of which gives us S;2. Figure 3.3

is an illustration of an Sig-decomposition of K 10,10-

3.3 S3-Decomposition of complete tripartite
graphs

Theorem 3.4 The complete tripartite graph K, ,, decomposes into Ss if and
only if one of the following conditions is true:
i. at least two of p,q, and r is divisible by 3.

1. pq+ pr + qr s divisible by 3 and p,q,r > 2.

Proof. Observe that edges of K, ,, is the union of the bipartite graphs K, ,,
K, ,, and K, ,. By the definition of a decomposition the number of edges in the
decomposition has to divide the total number of edges in the graph, therefore
pq + pr+ qr(mod 3) = 0.

Let p’ = p (mod 3), ¢ = g (mod 3), v = r (mod 3). We then construct a

table for the values of pg + pr + ¢r(mod 3).

o7

U
1=4
n=
a=12
b=12
c=3
=7

U y=11
z =12

W' =c=3

W' =ni—c=12-3=9

W/l

Figure 3.3: K2 12,12 decomposed into Sie.

From Table 3.1, we can divide our proof into two separate cases. Observe
that the statement of the first condition of Theorem 3.4 is equivalent to Case

3.4.1.
Case 3.4.1: At least two of p/, ¢’ and 7’ are equal to 0.

Case 3.4.2: p'=¢ =r'"=d #0.
Case 3.4.1 At least two of p',q and 1’ are equal to 0.

Without loss of generality let p’ = ¢’ = 0. Observe that K, ,, is the

and K ,. Observe that in each of

union of the bipartite graphs K, ,, K,,,

58

q
r=0|0[1]2
0 01010
ol 0]1]2
2 01211

J
r=1]0|1]|2
0 012
o1 1102
2 21212

q
r=210|1]2
0 01211
AR 21212
2 11210

Table 3.1: The value pq + gr + pr (mod 3) for different values of p/, ¢ and 7.

the three bipartite graphs, there is at least one of the partite set with size
divisible by three. By Lemma 2.1, we have an S3 decomposition. Note that

an Ss-decomposition exists when r = 1.

Case 3.4.2 p)=¢ =1r"=d#0

Without loss of generality let p > ¢ > r. Let U be the partite set with size
p, V be the partite set with size ¢ and W be the partite set with size r. Since
p>q>r,p=r-+3i;qg=r+3j for some 7,5 > 0. We then partition U into
U" and U” where |U'| = r and |U"| = 3i, and we partition V' into V' and V"

where |V’| = r and |V"| = 3j.

59

Observe that by Lemma 2.1, we can partition the edges between U” and V|
U" and V”, and U” and W, and V" and W into S3 as the vertices in partite
sets U” and V" of each subgraph has degree divisible by 3. The remaining
edges that are not decomposed are the edges between partite sets U, V'’ and
W. Observe that these edges, are the edges of graph K, ,, and from case 3.3.1
of Theorem 3.3, there is a S3 decomposition if p, ¢ and r is greater or equal to

2. 0J

3.4 Extending Theorem 3.3 for multipartite
graphs

The results of Ushio, Tazawa, and Yamamoto [37] shows that there is a S,-
decomposition of a complete m-partite graph K, , ., if and only if (T;) p? =
0 (mod r) and mp > 2r. In this section we discuss whether the methods of
Theorem 3.3 can be generalized to proof the same result.

We found that as m becomes larger, the number of variables and subdivi-
sion of cases increases. The following is not an exhaustive construct to cover
all possible decompositions. We outline a proof in the case 3t < n < 5, m = 4.

Let r = 63%j; observe that we can obtain a Si2j, Sai2; and Sy;2;-decomposition

from a Sg;2;-decomposition. We then have the following:
| 6p?
= %] | p?
=1j | p
= p=nij

By Lemma 2, there exists a S,-decomposition of K, , if there is a Sg;2-
decomposition of K ni nini-
We let T, U, V, W be the 4 partite sets of K; ninini- We define the decom-

position using by using the definition set in table 3.2.

60

number of centers

a |b |c |d
in the partite set
Number of edges
i [t2 | t3
to Partite set T
Number of edges
U1 U9 us
to Partite set U
Number of edges
vy | V2 U3

to Partite set V

Number of edges

to Partite set W

Table 3.2: Table describing the Sg;2 decomposition.

Observe that from Table 3.2, t1 +to +t3 = uy + us +us = v1 + vo + v3 =
wy + wy + w3 = 6i* — (1.1) is a necessary condition for this construction to
be a Sg;2-decomposition.

We then assume there exists a Sg;2-decomposition such that there are a =
ni copies of Sg;2 with each vertex of T" a center of one copy of Sg;2 with to = ni
edges between partite set 7" and V and t3 = 6i2 — ni edges between partite set
T and W. We also assume that there are b = ni copies of Sg;z with each vertex
of U a center of one copy of Sg;z with u; = ni edges between partite set T and
U and uz = 6i2 —ni edges between partite set U and W. We assume that there
are ¢ = ni copies of Sg;2 with each vertex of V' a center of one copy of Sg;2 with
vy = ni edges between partite set U and V and v3 = 6i® — ni edges between
partite set V' and W. Finally, we assume that there are d = n? — 3ni vertices
selected as centers of Sg2 in partite set W, with 2i edges to partite set T,
2i% edges to partite set U, 2i% edges to partite set V. This decomposition is

summarized in Table 3.3.

61

number of centers . . ») _
ne |ne | ne | n°—3n
in the partite set

Number of edges
0 ni | 612 —ni

to Partite set T

Number of edges

ni 0 | 6i%>—ni
to Partite set U
Number of edges

0 ni 612 — ni
to Partite set V
Number of edges

2i% | 242 | 242

to Partite set W

Table 3.3: Table of values for Sg;2-decomposition for graph /i i nini-

By considering the edges between each pair of the partite sets we have,
a(ty) + b(uy) = n?i?;
a(ty) + c(vy) = n*i*;
a(t3) + d(w;) = ni%;
b(ug) + c(vy) = n?i?;
b(ug) + d(wy) = n*i*;
c(vs) + d(ws) = n*>. (3.14)

The construction of the decomposition also gives us the following bounds,
0 < ty,t2,t3 < ni;

0 < uy,ug,uz < ni;
0 < vy, vz, v3 < ni;

0 < wy, wy, w3 < ni. (3.15)

62

We let,
a=>b=c=ni

Wy, Wo, Wy = 22’2;
to = U1 = vy = Ni;
t1 =us =v; =0;
t3 = ug :113:62'2—712';
d =n*— 3ni. (3.16)
We will now show that our choice fulfils equations (3.14),
a(ti) + b(uy)

=ni(0) + ni(ni) = n*?>;

a(ty) + c(vy) = n*?

= ni(ni) + ni(0) = n*i%
alts) + d(w;) = n??
= ni(6i*> — ni) + (n* — 3n4)(24%)
= ni(6i* — ni) + (ni)(n — 3i)(2i)
= ni(6i* — ni — 6i° + 2ni)

Since our choice is symmetric, it is not difficult to see that the rest of the

equations are also satisfied. We also note that our choice of the values fulfils

the bounds given in inequalities 3.15.
We verify that the sum of the edges totals 6i? as required in condition (1.1).

t3+t2+t1:U1+U2+U3:U1+’U2+U3

= ni + 6i°> — ni + 0 = 64°.

63

By Lemma 2.1, we can decompose the edges between T and V', using ni
copies of S,,; so that each of the vertex in partite set T" is a center of a copy of
Sni- We D, be the set of S,,; in this decomposition.

Similarly, we can decompose the edges between 17" and U using ni copies
of S,; so that each vertex in partite set U is a center of a copy of S,;. We
let D, be the set of S,,; in this decomposition. Finally, we can decompose the
edges between U and V using ni copies of .S,; so that each of the vertex in
partite set V is a center of a copy of S,;. We let D, be the set of S,; in this
decomposition.

Let d = n? — (3 + k)ni where k = floor(n/i — 3). We partition W into
two disjoint subsets W’ and W” where |W'| = ni — d and |W”| = d'. Let

r=(n—2k+1)i)(n— (3+k)i) = 6> + 8ki*> — 3kin + 2k*i*> — 5ni + n?

Observe that % + 2222 = 1, the proof of which is as follows:

_ 6i% — i — (67” + 8ki* — 3kin + 2k*” — 5ni +n%) | 2ki?

(44 k)ni — n?) ni
_ dni = 8k® — 2k%i% 4 3kin —n?) | 2ki
B (4 + k)ni — n?) n
_ 2kin— 8k = 2K 2ki
 n((d+k)i—n) n

 2kin — 8ki* — 2k%® + ((4 + k)i — n)(2k1)
B n((4+ k)i —n)
_ 2kin — 8ki® — 2k%i2 + (8ki? + 2k%2 — 2kin)
B n((4+ k)i —n)

+1

+1

=1.
Also observe that 4 + W = 1, the proof of which is as follows:
x (k+1)22
d ni
(n—2(k+1)i)(n — (3 + k)i) N 2(k + 1)¢?
B n? — (3+ k)ni ni
(n—2(k+ 1)i) N 2(k + 1)
N n n

=1.

By Lemma 3.1, we can decompose the edges between T and W' using

a = ni copies of Sg2_,;_, With each vertex of T as the center of a copy of

64

Sei2_ni—s and ni — d' copies of Sy;2 with each vertex of W’ a center of a copy
of Soi2. We can also decompose the edges between T' and W using a copies of
S, with each vertex of T as the center of a copy of S, and d’ copies of S(g2):2
with each vertex of W” a center of a copy of Sek+2)yi2. Let Dy be the set of
S6i2_ni—e and Dy, be the set of S, in this decomposition. Let D, be the set
of Sopiz and Dy be the set of S(gp49)2 in this decomposition.

Let Dy = D; U Dy, U Dy,r. Observe that each vertex in U is the center of
one copy of S,;, one copy of Sg;2_,i_, and one copy of S,, the union of which
gives us Sg;2.

Observe that since a = b = ¢ and t3 = ug = v3 and w; = wy = w3 the edges
between U and W and the edges between V and W decompose in the same
manner as the decomposition described for 7" and W. Since we have that the
decomposition between W and the other two partite sets are identical, each
vertex in W’ is the center of three copies of Sy;2. We can then rearrange
the decomposition such that each vertex in W’ is the center of k copies of
Sei2. Similarly, observe that each vertex in W” is the center of three copies of
Sear+2)i2. We can also rearrange the decomposition such that each vertex in
W' is the center of k + 1 copies of Sg;2.

What we have done here works for the case 371 < n < 5i. Note that z is
necessarily positive, therefore for n > 5i we have an obstacle. For these cases,
we may need to introduce a second star on one of the partite sets as in the
Case 3.3.2.3 to obtain a Sg;2-decomposition. For the cases where 7t < n < 9
we may use the strategy in Case 3.3.2.2 to reduce the case to 3i < n’ < bi.
Moreover, for the cases where 97 < n < 117 we may use the strategy in Case
3.3.2.4 to reduce the case to 3i < n’' < 5i.

We now discuss the case where there are more than four partite sets, i.e.
m > 4. As a general rule, the algorithm detailed here and in Theorem 3.3, the
Sy-decomposition of K,; »; i works best if we choose m — 1 partite sets to be
the centers of kn2 copies of S,. Observe that when Lemma 3.2 is extended to m-

partite graphs, it is necessary that every vertex of m — 1 partite sets are centers

65

of at least one copy of S,. Moreover, choosing every vertex of m — 1 partite
sets to be centers of k copies of S, reduces the number of partitions needed
on the partite sets and hence makes it simpler to ensure that the necessary
conditions for Lemma 3.1 are met. The remaining number of centers of S, for
the partite set (we call this partite set X) that is not an ni-multiple, would
then by construction, have the number of vertex used as the centers of a S,
being a multiple of n.

From here, we may choose a multiple of ¢ for the number of edges between
partite set X and the other partite sets. This helps ensures that we can obtain
integer solutions for equations (3.14). Finally, it is important to check that
the values selected are within the bounds given in (3.15). It may be necessary
to make each partite set the center of multiple copies of S, as in Case 3.3.2.3 if
the bounds are not satisfied. Observe also that for larger values of n, we may
be able to reduce the case using methods detailed in Case 3.3.2.2 and Case

3.3.2.4.

Chapter 4

Decomposition of regular

bipartite Graphs

In this chapter we study the decomposition of d-regular bipartite graphs into
S,-. In particular, we will discuss various strategies for the decomposition
of 4-regular bipartite graphs into S3 as a base case for the decomposition of
other d-regular bipartite graphs. In order to impose additional structure to
the bipartite graphs, we will study different strategies firstly on a class of
bipartite graphs discussed in the introduction section of this thesis as cyclic
bipartite graphs. For notation, we let B, , be a 4-regular cyclic bipartite
graph with n vertices on two partite sets labelled as U and V. While we have
introduced O(1) algorithms for the decompositions in the earlier sections, this

decomposition problem has been conjectured to be NP-complete [24].

4.1 Ss-decomposition of 4-regular bipartite graphs

4.1.1 Strategy 1: Picking one edge from each vertex in

one partite set to form S;.

Let U and V' be the two partite sets of G where G is a 4-regular bipartite
graph. Observe that the two partite sets of the bipartite graph are identically

sized. Let |U| = |V| = n. Observe that the number of edges in G is 4n. By the

67

definition of a decomposition 4n must divide 3, and therefore n is necessarily
divisible by 3.

For our initial analysis, we will look into a special class of 4-regular bipartite
graph that is said to be ‘cyclic’, as defined in the introduction. We let U =
{ug, ur,us ... u,} and V= {vg,v1,v9...v,}. Welet D = {dg, dy, ds, ds}, where
dp < di < dy < ds <n as the generator set D such that u; is adjacent to v; if
and only if i + di(mod n) = j for some dy € D.

Next, observe that, if we delete one edge from every vertex in V', then every
vertex in the partite set V' has degree 3, and by Lemma 2.1, we can decompose
the remaining edges into copies of S3. Hence, if we can form 7 copies of S3
using % vertices of partite set U as the center of one copy of S3, such that each
vertex of V' is used exactly once, we can say that there is a S3-decomposition of
the graph GG. We say that such a set of graphs is an Ss-cover for V. Figure 4.1
gives an illustration of this strategy. Observe that every vertex in the partite
set on the right has degree 3.

In our analysis, we found that we can reduce the number of test cases,
without losing generality. First, we can assume that the first difference dj is 0,
otherwise we can subtract every element of the generator set D by dy. Second,
we can assume that the difference between d3 — dy (mod n) = ds is not greater
than dy — d; (mod n), d; — dy (mod n) and dy — d3 (mod n), otherwise we can
reorder the generator set. Observe that ds — dy < %. The proof of which is

as follows:

We assume for the sake of contradiction that ds — do(mod n) > 2. Since

3n

dy = 0 and d3 < n, this assumption also gives us d3 > <. Since we have

dz > dy > di > dy, we can derive the following inequalities:

dg —dg (mod TL) > d3 > ?ZTn,

3
:>d2—d3—|—n>zn,
n

:>d2>d3—z;

Figure 4.1: S5 decomposition of a 4-regular graph using Strategy 1

dy — dy (mod n) > ds > %Tn’

3
:>d1—d2—|—n>zn,

n
=>d1>d2—z;

do —dl (IIlOd TL) > d3 > %Tn,

3
=>d0—d1+n>zn,

n
=>0—d1>—Z,

n
$d1<1.

69

By combining the inequalities, we then find a contradiction on d3,

%>@>@—%
d2<g;
§>d2>d3 %,
d3<%n.

Observe also that the difference between two successive elements of D is
less or equal to n — dsz. Finally, we can assume that vertex ug is always picked
as the center of a copy of Sj.

Let p(zy) is the number of edges between x and y. In the case of a simple
graph, p(zy) = 1 if and only if = is adjacent to y. Let ¢(z) be the center
function on z, where ¢(z) is the number of copies of Sj with x as the center
and let |E(S)| be the number of edges in the subgraph induced by S.

Hoffman [23], stated that a star-design, exists for a graph G if and only if
the following conditions are true,

Lk ev) = E(G)),

veG

ii. For all,
G
{eyh € {)) ulzy) < cz) +c(y)
iii. For all S CV,

EY) S IBS)+ Y min(e(a), play))

veES zeS,YeG/S

We apply the above result to the strategy outlined above. Note that each
vertex in V' is a center exactly once, and g vertices of U are centres exactly
once and the remaining vertices are not centers.

Condition 1 is trivially true by the definition of a decomposition. By the
construction of our strategy, every vertex in V is a center of a star Ss, and
since every edge of a bipartite graph is between partite sets U and V', condition
2 is trivially true as well. We then use the condition 3 to find copies of S5

which use each vertex from V exactly once.

70

Observe that condition 3 is most restrictive when S'is the subset containing
only the centers of Sg. Observe that |E(G)| = 4n. Observe also that S contains
n vertices in partite set V' and % vertices in partite set U, therefore we have

that [E(S)| = 4.

We then have,

k:ZC(v) < |E(S)| + Z min(c(z), u(zy))

veES zeS,yeV\S

= [E@)| < |ES)+ Y min(c(z), plzy))

z€S,yeG\S

4
o dn < ?n + > min(c(z), p(zy))
z€S,yeG\S

=< Y min(e(a), uley))

z€S,yeG\S
Observe that the number of edges between S and G\ S = 4(n — %). There-

fore - csyvea\s (@y) = 8. It is necessary that ¢(z) # 0 (i.e z is a center) for
every edge {x,y} where z € S and y € G\ S, otherwise the inequality above
is violated. From here, we say that the graph is “feasible” if and only if, every
edge that is between S and the V'\ S includes a center of Ss.

Trivially, this condition is necessary, but Hoffman’s result tells us this is
sufficient which aids us greatly in finding a decomposition by computer.

Using these generalization, and the algorithms detailed by Hoffman, we
wrote a simple JAVA program to find Ss-covers of the vertices in partite set
V', (source code is in Appendix 6.1). While the program is able to solve for
size n < 30 within a reasonable amount of time (under 1 second per generator
set, 10 minutes for the results for all the possible generator sets)), the runtime
increases exponentially with the number of vertices in the partite sets. It takes
approximately 1 day for the results for n = 42 and an estimated 1 week for
the results for n = 45. Output of the program for n < 18 is given in Appendix
6.2.

Table 4.1 is a sample output of the programme for n = 9.

Generator

Set

Star 3

{0,1,2,3}
{0,1,2,4}
{0,1,3,4}
{0,2,3,4}
{0,1,2,5}
{0,1,3,5}
{0,1,4,5}
{0,2,3,5}
{0,2,4,5}
{0,3,4,5}
{0,1,3,6}
{0,1,4,6}
{0,2,3,6}
{0,2,4,6}
{0,2,5,6}
{0,3,4,6}
{0,3,5,6}

U151, Vs, U7

Us

Us

Uy

Vg

)
vs)
V)
Us)
v4)
v6)
v6)
v6)
v6)
v7)
v7)
v7)
v7)
v7)
U6)
)

v7

U7

Ve

(ul; U1, U4, UG)

Us; Ve, U, U
Ug; Ve, U, Us
Uyq; Vg, U7, Vg
Uy, Vg, U7, Ug
Ue; Vg, U7, Ug
Ur7; vs, U7, Ug
Us; vs, U7, Ug

Us; Us, U7, Ug

Us; V1, Us, U
U9g; V3, U5, U
U2; V3, Vg, U
Ug; Vg, Us, U
Uyg; V1, Vg, U
U235 Vg, U7, Vg
Ug; V2, Vg, Ug

()
(vg)
(vg)
(vs)
(vg)
(vg)
(vs)
(vg)
(us; vs, v7, V8)
(vg)
(vs)
(vs)
(vg)
(vg)
(vs)
(vg)
()

Ug; V2, U7, Ug

Table 4.1: Ss-cover of Partite Set V for n =9

72
Extending Strategy 1

Hoffman proved the necessity of the conditions above in Section 4 [23], by
building a network of the design and by evaluating the flow capacity of the
network. By calculating the flow capacity of the min-cut-max-flow network,
and orienting the edges such that the each edge of Sy flows to from the center to
the leaves, Hoffman then states that there is an Sy, design on graph G, or equiv-
alently graph G has a Sj-decomposition if and only if f(e,,) = p(zy) where
f(esy) is total number of edges with ends = and y that are orientated from x
to y, or equivalently, all the edges of the graph belong to Si. Unfortunately,
most polynomial time algorithms for min-cut-max-flow such as Ford-Fulkerson
algorithm, allows for f(e,,) < p(zy). This problem is NP-Complete according
to Chekuri, Khanna and Shepherd [10].

We suggest that this problem may be solvable by computer using mathe-
matical optimizer software such as CVX [21]. We propose that we can model
the flow in as in Figure 4.2. From there, we can define an objective function,
such that the function is minimum when either 0 or 3 edges is selected for each
vertex of U. This is a modification of the Ford-Fulkerson algorithm used to
the maximum matching in bipartite graphs [27].

Using our program, we found that most (more than 90%) 4-regular cyclic
bipartite graphs have S3-decompositions. We managed to find certain classes
of graphs with no S3-decomposition. One such case are graphs with two or
more components. We can quickly determine a graph with this property by
checking for a value of k such that k divides dy, dy, ds, ds and n. If there exists a
k > 1, graph would then have £ components, with each component isomorphic
to a 4-regular cyclic bipartite with 7 vertices in each partite set, and generator
set D' = %0, %, %, d—lj’} We can then check if ¥ divides 3. If this is not true,
we conclude that the number of edges in each component is not divisible by 3,
hence the graph has no Ss-decomposition. Otherwise, we refer to the results

ofn’:%andD:D’.

73

We found that Strategy 1 failed to give an S3 decomposition for a single
component cyclic bipartite graph for n < 39 in two specific test cases. These
two cases are,

i. n=15,D ={0,1,3,7} labelled here as G1,

ii. n=15,D ={0,4,6,7} labelled here as G2.

We note that G1 and G2 are isomorphic to each other, with the partite
sets U and V swapped. We developed Strategy 2 after analysing this case.

Strategy 2 successfully generated Ss-decompositions of G1 and G2.

4.1.2 Strategy 2: Reducing the number of vertices to

be covered.

The general idea behind Strategy 2 is to reduce the number of vertices in
partite set V' that need to be covered with S5. Strategy 2 assumes that there
is no common difference between successive elements of D (i.e, dy — dy =
dy — dy = d3 — dy is not true).

Without loss of generality, we assume that the four vertices in U adjacent
to vy are each centers of one copy of S3. We label these four center vertices as
Ug, U1, Uz, and ug.

Next, we choose eight distinct vertices of V' \ vy that are adjacent to
up, U1, Uz, and uz. Observe that this is possible only if there are no com-
mon difference between the successive elements of D, otherwise there will only
be six distinct vertices. We label these vertices as {v; : 1 < i < 8}. We then
delete all four edges incident to vy, and we choose eight distinct edges between
u; and v; where 0 < ¢ < 3 and 1 < j < 8, such that each v; has one edge
deleted, and each u; has two edges deleted.

Observe that vy has no edges, and v;, 1 < j < 8 has degree 3, and by
Lemma 2.1, we can decompose the edges incident to v; into S3. We then use
Strategy 1, to delete n — 9 edges between the unlabelled vertices of U and
V such that each unlabelled vertex of U has either three edges deleted or no

edges deleted, and each unlabelled vertex of V' has one edge deleted. It may

74

be necessary to choose a different set of eight vertices if we are unable to do
the deletion with the unlabelled vertices of U and V.

Observe that the remaining edges are incident to the unlabelled vertices of
V', and each of these vertex has degree 3. We then have a S3 decomposition
by Lemma 2.1.

We found that Strategy 2 is generally easier to do by hand for cases n < 18
but becomes extremely tedious when n > 18. It may be worthwhile to see the
results of this strategy still holds when n > 18 using computers.

Figures 4.3, and 4.4 show the decomposition of G1 (n = 15, D = {0,1,3,7})
and G2 (n =15, D = {0, 4,6, 7}) using Strategy 2.

4.1.3 Structure of a cyclic bipartite graph

Another strategy we tried was converting the graph into a line graph and ob-
serving the geometry. Let G be a connected 4-regular bipartite graph with
partite sets U and V' with size n where n is divisible by 3. Our initial obser-
vation yielded the following properties for L(G):

a) there are 4n vertices in L(G), and 12n edges in L(G).

b) every vertex of L(G) has degree 6. (This comes from the fact that G is
4 regular, and each vertex of L(G) would then belong to 2 cliques of size 4).

¢) We can partition the edges into 2 disjoint subsets E1, F2, such that
every v € V(L(G)) is common to exactly one pair of {e;,e;} e; € El,e; € E2.
We can do this by choosing the elements of F1 to be the edges created from
the vertices in U and the elements of E2 to be the edges created from the
vertices in V.

We find that we can always factor L(G) into Ps, because L(G) is Hamilto-
nian and the number of vertices in L(G) is divisible by 3. We can just group
the vertices of L(G) into groups of three along the Hamilton cycle. How-
ever a P,-factor is insufficient to show that the G has a Ss;-decomposition.
We observed that if we can constraint the factors such that for every copy of

H = P, E(H) = {ej, e;}, if we have e;,e; € E1 or e;,e; € E2, then we have

75

an S3-decomposition of G.

One advantage of using this method is that we have a visual representation
of the decomposition problem. It is then more intuitive to find decompositions
visually. Figure 4.5 illustrates how we may use the graph for this purpose.
Note, we removed the edges between the cliques and replaced them with a line
for clarity purposes.

The results of strategies 1, 2 and 3, obtained through our computer pro-
gram showed that there is an S3-decomposition for all cyclic 4-regular bipartite
graphs with one component with size n < 42 if and only if n is divisible by
3. Cyclic 4-regular bipartite graphs with k£ components and size n < 42 have
an Ss-decomposition if and only if n divides 3 and k is not divisible by 3. If
k is divisible by 3, then the graph has an Ss;-decomposition if and only if n is
divisible by 9.

4.2 Probabilistic method on decomposition of
bipartite graphs

In this section we discuss the results of Yuster [39] on tree decompositions and
whether the results might be improved when applied to Si-decompositions of
bipartite graphs.

We say that a graph has property P(H) if the necessary conditions for
a H—decomposition is satisfied, namely, |E(H)| divides |E(G)| and ged(H)
divides ged(G). Since H is a star, ged(H) = 1 and ged(H) divides ged(G) is
trivially satisfied. Thus, P(H) is reduced to |E(H)| divides |E(G)].

We let n be the number of vertices in G and h be the number of vertices
in H. The star can then be denoted as Sj,_1.

In the wording of Yuster, we define the problem statement as follows. De-
termine fy(n), the smallest possible integer, such that whenever G has n
vertices and §(G) (the minimum degree of G)> fH(n), and G has property

P(H), then G also has a H-decomposition.

76

By Lemma 2.1 fy(n) is necessarily greater or equal to h — 1. Using the
example provided by Yuster as a guide, we can also show that for bipartite
graphs, fg(n) > % — 1. Consider a graph G where n = 4z > 4h , and E(H)
divides 222. Let G be 2 vertex-disjoint K, , labelled here as G; and Go. G
has n vertices and 6(G) = x. Since x > h — 1, by Theorem 2.3 the condition
h — 1| z* is the sufficient for a S;_;-decomposition. If h — 1 does not divide
22 then we are done, otherwise we delete 1 edge from G, and h — 2 edges from
(5. The resulting graph with minimum degree = — 1, and h — 1 divides E(G)
but G does not have a H-decomposition.

When G is a bipartite graph, we can tighten the bounds for an edge expand-
ing graph in Theorem 1 [39]. Here, Yuster states that a graph with minimum
degree 0(G) > 5+ is also r-edge expanding. We can show that for a bipartite
graph G, a graph with minimum degree 6(G) > § + r is r-edge expanding.

In the wording of Yuster, a graph is r-edge expanding if for every non-
empty X C V and |X| < %' there are at least r|X| edges between X and
V' \ X. Consider a bipartite graph G. Let U; and U, be the partite sets

of G. Let X; be m vertices of U; and X5 be | X| — m vertices of Us. Let

X1

X = Uy UU,. Without loss of generality, let m < =5,

otherwise we swap

2

partite sets. Observe that there are at most m|X| — m? edges between X

and X,. Observe that there at least (|X|—m)d(G) edges between X, and Uj.
Observe also that there at least (m)d(G) edges between X; and Us.

Hence, there are at least
(IX] =m)&(G) + (m)d(G) — 2m(|X]| — m)

= [X[0(G) = 2m(|X] —m)

>

edges between X and V'\ X. We can show that 2m(|X|—m) < XE the proof

of which is as follows:

X2

2m(| X | —m) < | 2‘
X2
< 2m|z| - 2m?* < %

which is clearly true.
Since we have that m < % and | X| < |2ﬂ, the number of edges between
X and V' \ X is at least

IXI8(G) — 2m(|X| ~ m) = |x]5(c) — L

- 1x16(6) - 5
> |x(3(c) - V),

Hence, a bipartite graph with §(G) = lT‘:' + r is also r-edge expanding.

Lemma 2.1 [39] states that if G(V, F) is a graph with property P(H), then
E can be partitioned into h — 1 disjoint subsets Ey, Fs, ..., E,_1 such that
|E;| =m for 1 <7< h—1 and if the degree a vertex v € V in G; = (V, E;) is
denoted by d;(v), then for every v € V| we have |d;(v) — %| < 2.5,/d(v)logn,
and each spanning subgraph G; is 5h34/d(v) log n.

Yuster constructed the proof by letting each edge e € E choose a random
integer between 0 and h—1 where 0 is chosen with probability 5 = n~% and the
other numbers are chosen with equal possibility o = % Fifor0<:<h-1
is defined as the set of edges which selected 7. We observed that the expected
value for the size of F;, E|[|F;|] = a|E| = m(1 — B) for i # 0.

Yuster then defined d}(v) as the number of edges adjacent to v which be-
longs to F;. Note that the expected value for d(v) = ad(v) for 1 <i < h—1
and Bd(v) for ¢ = 0. Using the large Chernoff deviation [2], Yuster showed
that with a probability greater than 0.9, we may obtain a “feasible” partition
by transferring vertices from Fj to Fj;.

Lemma 2.2 states that a feasible orientation exists for every feasible par-
tition of K. According to Yuster, an orientation is said to be Eulerian if the
indegree and outdegree of every vertex differs by at most one. The existence of

a feasible orientation is needed, as it defines a decomposition of the edges into

78

m sets L* of edge-disjoint connected graphs where m = % Yuster defined
di (v) as the outdegree of v in E;, and d; (v) as the indegree of v in E;. Note
that d;(v) = df (v) + d; (v).

When H is a star, the orientation of the leaf vertices is trivially Eulerian, as
the degree of every leaf vertex is 1. We can then obtain an Eulerian orientation
by orienting the edges of adjacent to the center vertex such that L%J edges
are oriented away from the center vertex, and f%} edges are oriented towards
the center vertex.

Yuster’s proof starts by selecting a leaf vertex using a breath first search
algorithm (BFS), and labelling the vertex as ¢. He then select an edge from
E1, q is then selected to be a leaf of H, and is given an orientation such that
q is the root of H. Observe that in the case of stars, the diameter of the tree
is two. Hence, we have the following for Lemma 2.2 [39].

When ¢ = 1, i.e. the edge adjacent to the leaf q. As in Yuster’s result, we

have the following,
df(v) — d; ()] €1 < 5+/mlogn.
For i = 2, we have j = p(2) = 1.
| (v) = dy (V)] = [2¢, = di(v)] = [2d1(v) = 2d} — da(v)]

<|2d] — dyi| + |di(v) — dy(v)|

< ldf — @)+ o) — 2| (o) — A
< 14 54y/d(v)logn
< 5y/nlogn.

Finally, when 3 <i < h—1. Observe that v is a leaf of H, and j = p(i) = 2.
|di (v) — di (v)| = |2¢, — di(v)]

= [2da(v) = 2d; — d;(v)]

< |2d;’ — d2| + |d2(v) — di(v)|

79

_ d(v) d(v)
< [df — dg (0)] + |da(v) — 2] + |di(w) — 3
< 5y/nlogn+ 54y/nlogn
< 10y/nlogn.

However, this improvement does not affect the overall result of Lemma 2.2
which states that in every feasible orientation, the outdegree d;” > 4h3\/nlogn
for all v € V and for all 2 <i < h — 1. We give an outline of the proof for the
rest of the paper.

Yuster states that every member of L* is homomorphic to S, and every
member that is a tree is isomorphic to H. Lemma 3.1 then states that, if all
the perfect matching are selected randomly and independently, then with a
probability of 0.9, there for all 0 < ¢ < h —1 and for all v € V(G),|N(v,1)| <
hy/(df (v)) where N(v,i) are the neighbours of v in partition i.

Yuster then defined L([u,j], [v,i]) as the set of the members of L* which
contains an edge of D; (v) and an edge of D;. Lemma 3.2 then showed
that if the perfect matching are selected randomly and independently, then
with a probability of 0.75, for every u,v € V(G) and for 0 < j < ¢ <
h —1,—L([u, j], [v,4])| < 2y/nlogn. Yuster then used the results of Lemma
3.1 and 3.2 to show that there is a probability of 0.65 that we can obtain a
decomposition L* with properties guaranteed by Lemma 3.1 and 3.2.

With the results of Lemma 3.1 and 3.2, Yuster then showed that we can
mend L* into a decomposition L consisting of only trees as the properties
allows us to change the “bad” edges (defined here as edges that creates a cycle
in L) with “good” edges.

Since the assumptions are unchanged, the results of Lemma 3.1 and Lemma
3.2 are therefore true, and we have that a 10h*\/nlog n-edge expanding graph
has a Sj,_1-decomposition. We note that, it may be possible to tighten the
bounds of the edge expansion by lowering the order of h. However as noted in
equation (4) in Theorem 1, we require an O(y/nlogn)-edge expanding order,

as a necessary condition for Lemma 3.2. Yuster conjectured that it may be

80

possible to remove the requirements for an O(y/nlogn)-edge expansion factor,
however we were unable show that we may remove the requirement is for
Sp_1-decompositions of bipartite graphs.

With results above, we say that there is a Sj_;-decomposition for all bi-

partite graphs with a minimum degree 6(G) = 2 + 10h*y/nlogn.

82

Figure 4.3: S3-Decomposition of G(n = 15, D = {0, 1, 3,7}); pink and yellow

blocks are S3 decompositions with centers in partite set U.

Figure 4.4: S3-Decomposition of G(n = 15, D = {0,4,6,7}); pink and yellow

blocks are S3 decompositions with centers in partite set U.

83

o—© 9
o ———©
o—————— 0

Figure 4.5: Modified line graph and Ss;-decomposition using Strategy 3.

Chapter 5

Conclusion

We began this project with the aim of finding Si-decompositions of bipartite
graphs and answering the question, “Does an Si-decomposition exist for a
given bipartite graph?”

Through this project, we showed a proof by construction that complete
bipartite graphs with n vertices on each partites set have an Si-decomposition,
if and only if k divides n? and k < n. We also showed that there is an Sj-
decomposition for crown graphs with n vertices if and only if k£ divides n(n—1)
and k£ < n — 1. We next showed that we can construct an Si-decomposition
for equipartite tripartite graphs with n vertices in each partite set, if and only
if k divides 3n? and k < %n We showed that a complete tripartite graph
K, ,» has a Ss-decomposition if and only if pg + pr + ¢r is divisible by 3, and
p,q,r > 2 or if any two of the three partite sets have size divisible by 3.

The main obstacle faced in this project was dealing with the NP-Completeness
of the decomposition problem. Often times we lose too much generality when
constructing the test case and obtain results that are not useful for the general
case of the graphs.

As noted in Chapter 4, it may be interesting to see if Strategy 2 is more
efficient when the number of vertices in each partite set is more than 18.
While Strategy 1 give results for n < 39 within a reasonable amount of time,

the runtime of Strategy 1 grows exponentially and struggles to give results

85

for n > 42. The results of Strategy 1 and 2 suggest that there is an Ss3-
decomposition for cyclic 4-regular bipartite graphs with one component when
n > 42. It would be interesting to see if this is true for all n. There may
be some additional structure not noted in Strategy 3 which may solve this
conjecture.

Future work may include extending the results of Chapter 4 for Sj -
decomposition of cyclic r-regular bipartite graphs where » > 5. The primary
reason why r = 4 was the focus of Chapter 4 was because, that case was the
most restrictive but is the easiest to analyse. One suggestion as to how we
may extend the case to r = 5 is to pick the first 4 elements of the generator set
and then find a value x such we can offset the centers in partite set U without
using the same center twice. Another suggestion is to check all five possible
combinations of the generator set, and then find two sets of centers such that

the two results do not use the same center twice.

Chapter 6

Appendix

6.1 Source Code for Strategy 1

In this section, we give the source code for the computer programme written
to find the Ss-cover of partite set V for cyclic bipartite graphs (see Section
4.1.1). Minor details of the algorithm is included in the comment blocks of the

source code.

6.1.1 The main wrapper program

import java.io.x;

import java.util .x;

public class genSolution {

VT

x @param args

*/

static boolean outputLatex=true;

//Generates Output as a Latex Table, worthwhile 3 hour

tnvestment

public static void main(String [] args) {

for (int a=2; a<40; at++) {

87

int size=ax3;
»”

String fileName = "cyclic_size_"+size+".tex”;

long start=System.nanoTime /() ;

try {

// FileReader reads text files in the default encoding

printWriterWrapper stream = new printWriterWrapper (

fileName , outputLatex) ;

stream . print (7 \\ begin{longtable }{|c|”);

for (int i=0; i<a;i++) {

stream . print ("c|”);

}

stream . print (” }\r\n”);

stream . println (”\\ hline”);

stream . print (”\\ begin{tabular }[c]{@{}c@{}} Generator
\\\\ Set\\end{tabular}& ”);

for (int i=1; i<a; i++) {

stream . print (" Star "+i+"\t& 7);

}

stream . print (” Star 7+a+” \\\\ \r\n”);

stream . println (”\\ hline”);

stream . println (”7\\ endfirsthead”);

stream . println (”\\multicolumn{”+(a+1)+" }{c}%”) ;

stream . println (7 {\\tablename\\ \\thetable\\ — \\
textit {Continued from previous page}} \\\\”);

stream . println (”\\ hline”);

stream . print (”\\begin{tabular }[c]{@{}c@Q{}} Generator
\\\\ Set\\end{tabular}& ”);

for (int i=1; i<a; i++) {

stream . print (” Star "+i+"\t& 7);

}

stream . print (”? Star 7+a+” \\\\ \r\n”);

stream . println (”\\ hline”);

stream . println (”\\endhead”) ;

stream . println (?\\ hline”);

38

stream . println (7 \\multicolumn{"+(a+1)+" }{c}%”) ;

stream . println (7 {\\tablename\\ \\thetable\\ — \\
textit {Continued on next page}} \\\\");

stream . println (”7\\endfoot”);

stream . println (”\\ hline”);

stream . println (”\\caption{$S_3§—factor for Cyclic
Bipartite Graph $n="+size+”$}\\\\”);

stream . println (”\\ endlastfoot”);

// Always close files.
double successRate=0;
int success=0;

int tries=0;

System.out.println (” Size: "+size);
for (int diff=3;diff<=(sizex3/4);diff++) {
stream . flush () ;
for (int i=1l;i<=size—diff;i++) {
for (int j=1;j<=size—diff;j++) {
int k=diff—i—j;
if (i+j>=diff) continue;
if (k>size—diff) continue;
int dl=i;
int d2=i+j;
int d3=i+j+k:
if ((1%3==0) && (j%3==0) && (k%3==0)) {
stream . println (”\\ cline{2—"+(a+1)+"}”);
if ((size/3)%3!=0) {
stream . print ("$\\{0, "+d1+”, "4+d2+"7, "4+d34"
\\}$ & \\multicolumn
{?+a+” }{c|}{Three component graph, no decomposition }\\\\\r\n")
} else {
String details="$n="+size/3+”$ $D=\\{0, "+d1
[3+7, THd2/3+7, "4+d3/3+7\\ 187

89

stream . print (?$\\{0, "+d1+", "+d2+7, "4+d34”
\\}$ & \\multicolumn
{?+a+” }{c|}{ Three component graph, see "4+details+” }F\\\\\r\n”)

)

}
stream . println (”\\cline{2-"+(a+1)+"}");
continue;
¥
i ((size%2==0) &k (i%2==0) && (j%2==0) && (k
%2——0)) {
stream . println (”\\cline{2-"+(a+1)+"}");
if ((size/2)%3!=0) {
stream . print (?$\\{0, "4+d147, "4+d2+7, "+d3+"
\\}§ & \\multicolumn

{7+a+" }{c|}{Two components graph, no decomposition }\\\\\r\n”);
} else {
String details="$n="+size/2+”$ $D=\\{0, 7+dl
[2+7, T4d2/247, "+d3 /247 \\}$7;

stream . print (?$\\{0, "+d1+”, "+d2+7, "4+d34”

\\}$ & \\multicolumn
{"+a+" }{c|}{Two component graph, see "+details+” }\\\\\r\n");
}
stream . println (?\\ cline{2—"+(a+1)+"}”);
continue;
}
if ((size%b==0) && (1%5==0) && (j%5==0) && (k
75==0)) {
stream . println (?\\ cline{2—"+(a+1)+"}");
if ((size /5)%3!=0) {
stream . print ("$\\{0, "+d1+", "4+d24+7, "4+d347
\\}8 & \\multicolumn

{"+a+" }{c|}{Five component graph, no decomposition }\\\\\r\n”);
} else {
String details="$n="+size/5+”$ $D=\\{0, 7+d1
[5+7, "+d2/5+7, "4+d3/5+7\\}$7;

90

stream . print (?$\\{0, "+d1+", "+d2+7, "4+d34”
\\}$ & \\multicolumn
{?+a+” }{c|}{Five component graph, see "4+details+” F\\\\\r\n”);
}
stream . println (”\\ cline{2—"+(a+1)+"}");
continue;
}
tries-++;
cyclic c=mew cyclic (0,1,i+j,i+j+k, size);
cyclicList l=mew cyclicList (¢);

List<Integer> solutions=new ArrayList<Integer >()

solutions=l.generateSolution (6) ;
if (solutions.size ()<size/3) {
System.out.print (1.generateList (0)+"\t”);
System.out.println ("No solution for this
cyclic pattern”);
stream . println ("\\ cline{2—"+(a+1)+"}");
stream . print ("$\\{0, "+d1+", "+d2+"7, "+d3+7\\}
$ & \\multicolumn{"+
at” }H{c|}{No solution using Strategy 1 }\\\\\r\n”);
stream . println (”\\cline{2-"+(a+1)+"}");
} else {
success—++;

latexTable (1, stream) ;

successRate=(double) success / (double) tries % 100 ;
System.out.println ("Runs: "+ success + ”/” +tries);
System.out.println (” Success Rate: "+ successRate);
long runtime=System .nanoTime () ;

double miliSec=(double) ((runtime—start)/1000000);

double avgRun=(double) miliSec/tries;

91

System.out.println (” Runtime: "+ miliSec + ”"ms\t

Average: "4avgRun);

stream . println (”\\end{longtable}”);
stream . close () ;

}

catch (IOException ex) {

ex.printStackTrace () ;

}

public static void latexTable(cyclicList 1, printWriterWrapper
stream) throws IOException {
int size=l1.Seed.size;
List<Integer> generator=l.generateList (0);
stream . print ("$\\{");
int flag=0;
for (int d:generator) {
if (flag!=0) {
stream . print (7, 7);
}
stream . print (d);
flag=1;
}

stream . print ("\\}$\t\t”);

for (int i=0; i<size; i++) {
if (1.solOut.get(i) != null) {
stream . print ("& $(u-{"+i+"};7);
List<Integer> list= 1.solOut.get(i);
Collections.sort (list);

flag=0;

92

for (int v:list) {
if (flag!=0) {

stream . print (7 ,”);
}
stream . print (”V,{”—FV—'—”}”) :
flag=1;
}
stream . print (7)$”);

}

stream . print ("\\\\\r\n”);

genSolution.java

93

6.1.2 The solver

import java.util.x;

public class cyclicList {

cyclic Seed;

HashMap<Integer , List<Integer>> solOut = new HashMap<Integer ,
List<Integer >>();

public cyclicList (cyclic s) {
Seed=s ;

}

public List<Integer> generateList (int offset) {
List<Integer> r = new ArrayList<Integer >();
int d=Seed.dl+offset>=Seed.size?Seed.dl+offset —Seed.size:Seed.
dl4+offset ;
r.add(d);
d=Seed .d2+offset >=Seed . size?Seed .d2+offset —Seed . size : Seed.d2+
offset ;
r.add(d);
d=Seed .d3+offset >=Seed . size?Seed .d3+offset —Seed . size:Seed.d3+
offset ;
r.add(d);
d=Seed .d4+offset >=Seed . size ?Seed .d4+offset —Seed . size : Seed . d4+
offset ;
r.add(d);
Collections.sort(r);

)

return r;

public List<Integer> generateSolution (int algorithm){

List<Integer> solutions=new ArrayList<Integer >();

if (algorithm==6) {
/x brute force, checks for entire search spacex/

int flag=0;

94

int runTime=0;
HashMap<Integer , Integer> counter = new HashMap<Integer ,
Integer >();
counter.put (0, 0);
for (int i=1; i<Seed.size/3; i++) {
counter.put(i, 1);
}
while (flag==0) {
runTime++;
if (runTime>1000000000) {
/+ always a good practice to make sure we don’t end in an
infinite loop x/
System.out.println ("runtime exceeded”);
flag=1;
}
int sum=0;
int partialFailed =0;
List<Integer> test = new ArrayList<Integer >();
test.add(0) ;
for (int i=1; i<Seed.size/3; i++) {
sumt=counter . get (1) ;
test .add (sum) ;
if (partialCheckSolution (test)=—false) {
partialFailed=i;

i=Seed . size;

}

if (partialFailed >0) {

for (int i=partialFailed+1;i<Seed.size /3;i++) {
counter.put(i,1);

}

for (int i=partialFailed;i>=1;i——) {
int val=counter.get (i);
sum=0;
for (int j=1; j<Seed.size/3; j++) {

sumt=counter.get (j);

95

}

if (sum<Seed. size) {
val++;
counter.put(i,val);
i=0;
continue;

} else {
if (i==1) {flag=1;}

counter.put(i,1);

}
} else if (checkSolution(test)) {

solutions=test ;
return solutions;
} else {
for (int i=Seed.size/3-1;i>=1;i——) {
int val=counter.get(i);
sum=0;
for (int j=1; j<Seed.size/3; j++) {
sumt=counter . get (j);
}
if (sum<Seed.size) {
val4+;
counter.put(i,val);
i=0;
continue;
} else {
if(i==1) {flag=1;}

counter.put(i,1);

sum=0;
for (int i=1; i<Seed.size/3; i++) {
sumt=counter.get (i) ;

if (sum>Seed. size) flag=1;

96

return solutions;

}

public boolean partialCheckSolution(List<Integer> test) {
int size=test.size();
HashMap<Integer , Integer> check = new HashMap<Integer , Integer
>0);
for (int offset:test) {
for (int val:generateList (offset)) {
check.put(val 1);

}

/x let k =n/3 — size of partial solution

x if n— edge covered by partial solutions > 3xk then clearly
adding

x k additional solutions mnot give us a solution

x this check speeds things up by a factor of 3

*/

if (check.size ()<3xsize) return false;

return true;

public HashMap<Integer , List<Integer>> getSolution (HashMap<
Integer , List<Integer>> candidates, List<Integer> unsolved,
HashMap<Integer , List<Integer>> out) {
HashMap<Integer , Integer> sizeOfCandidates = new HashMap<

Integer , Integer >();

97

HashMap<Integer , List<Integer>> sizeOfMissing = new HashMap<

Integer , List<Integer >>();

for (int i=0; i<b; i++) {
sizeOfMissing .put (i ,new ArrayList<Integer >());
}
for (int c¢1=0; cl<Seed.size; cl++) {
if (candidates.get(cl)!=null) {
List<Integer> hold = candidates.get(cl);
if (hold.size()>1) {
int sizeMiss=hold.size () ;
List<Integer> tempMiss=sizeOfMissing . get (sizeMiss);
tempMiss.add(cl);
sizeOfMissing . put(sizeMiss ,tempMiss) ;
for (int c2:hold) {
int size=out.get(c2).size();
sizeOfCandidates.put(c2,size);
}
} else {

candidates.remove(cl);

List<Integer> missing=new ArrayList<Integer >();
for (int i=0; i<4; i++) {
missing . addAll (sizeOfMissing.get (1)) ;
}
while (missing .isEmpty ()=false) {
int cl=missing.get (0);
List<Integer> list=candidates.get(cl);
int choice=—1;
int lowSeen=999;
for (int c2:1list) {
if (lowSeen>sizeOfCandidates.get(c2)){

choice=c2;

98

lowSeen=sizeOfCandidates.get (c2);

}
if (choicel=-1) {
List<Integer> temp=out.get (choice);
temp.add(cl);
int temp2=sizeOfCandidates.get(choice);
temp2++;
sizeOfCandidates.put(choice ,temp2);
candidates.remove(cl);
if (temp2==3) {
for (int 1=0; i<Seed.size; i++) {
if (candidates.get(i)!=null) {
List<Integer> hold = candidates.get(i);
if (hold.contains(choice)) hold.remove(hold.indexOf
(choice));

candidates.put(i, hold);

}
} else {

// This shouldn’t happen, since the previous step
guarantees that the edge belongs to
// at least ome center wu_i, but if this does happen then
clearly c(z) is not a wvalid center function
System.out.println ("No Solution”);
}
missing . clear () ;
for (int i=0; i<5; i++) {
sizeOfMissing .put (i ,new ArrayList<Integer >());
}
for (int ¢3=0; c3<Seed.size; c3++) {
if (candidates.get(c3)!=null) {
List<Integer> hold = candidates.get(c3);
int sizeMiss=hold.size () ;

List<Integer> tempMiss=sizeOfMissing . get (sizeMiss);

99

tempMiss.add (c3);

sizeOfMissing . put (sizeMiss ,tempMiss) ;

}
for (int i=0; i<4; i++) {

missing . addAll (sizeOfMissing.get(1));

}

return out;

public boolean checkSolution (List<Integer> solutions) {
HashMap<Integer , Integer> check = new HashMap<Integer , Integer
>();
for (int c¢1=0; cl<Seed.size; cl++) {
check.put(cl,0);
}
for (int offset:solutions) {
for (int val:generateList (offset)) {

check.put(val,(check.get(val)+1));

}

for (int c¢1=0; cl<Seed.size; cl++) {
//If edge {z,y} does not belong to a center c(z), then
condition 8 is wviolated

if (check.get(cl)==0) return false;

for (int offset:solutions) {
int count=0;
for (int val:generateList (offset)) {
if (check.get(val)==1) count++;
}

if (count==4) return false;

100

// Just because condition 3 is met, does not mean that c(x) is
a center function
// we need to make sure that c(z) is a wvalid center function;

return doubleCheckSolution (solutions);

public void printSolution (List<Integer> solutions) {
System.out.println (” Solution: ” + solutions + ”\tOutput: "+
solOut) ;

public boolean doubleCheckSolution (List<Integer> solutions) {

HashMap<Integer , List<Integer>> check = new HashMap<Integer ,
List<Integer >>();

HashMap<Integer , List<Integer>> candidates = new HashMap<Integer
, List<Integer >>();

HashMap<Integer , List<Integer>> out = new HashMap<Integer , List<
Integer >>();

HashMap<Integer , List<Integer>> list = new HashMap<Integer , List

<Integer >>();

/x We make sure that c(z) is a wvalid center function x/
List<Integer> missing=new ArrayList<Integer >();
for (int c1=0; cl<Seed.size; cl++) {

List<Integer> temp = new ArrayList<Integer >();

List<Integer> temp2 = new ArrayList<Integer >();

check.put(cl, temp);
candidates.put(cl,temp2);
}
for (int offset:solutions) {

List<Integer> temp2 = new ArrayList<Integer >();

101

out.put(offset ,temp2);

for (int val:generateList(offset)) {
List<Integer> temp=check.get (val);
temp.add (offset);

check.put(val ,temp) ;

}

for (int c¢1=0; cl<Seed.size; cl++) {
List<Integer> temp=check.get (cl);
if (temp.size ()==1) {
List<Integer> temp2=out.get (temp.get (0));
temp2.add(cl);
out.put(temp.get (0) ,temp2);
} else if (temp.size ()==0) {
// the v_cl is not adjacent to a center, therefore c(z) is
not a wvalid center function
// This should not happen since it is guaranteed by the
previous step that wv_cl is adjacent to a center
System.out.println (”Invalid Solution for "4cl);

return false;

¥
for (int c¢1=0; cl<Seed.size; cl4++) {

List<Integer> temp=check.get(cl);
if (temp.size ()>1) {
for (int test:temp) {
List<Integer> temp2=out.get (test);
if (temp2.size()<3) {
List<Integer> hold=candidates.get(cl);
hold .add(test);

candidates.put(cl, hold);

}

List<Integer> hold=candidates.get(cl);
if (hold.size ()==1) {

List<Integer> temp2=out.get (hold.get (0));

102

temp2.add(cl);
out.put(hold.get (0) ,temp2);
candidates.remove(cl);

else {

missing .add(cl);

list .put(cl, hold);

}

Collections.sort (solutions);

out

getSolution (list ,missing ,out);

for (int ¢3=0; c3<Seed.size; c3++) {
if (out.get(c3)!=null) {
if (out.get(c3).size()<3) {
// not every u_c3 has size 3,
valid function

return false;

}

solOut=out ;

return true;

therefore c(z) is not a

cyclicList.java

103

6.1.3 Supporting JAVA classes

import java.lang.x;
import java.util.x;

public class cyclic {

public int d1,d2,d3,d4;

public int size;

public cyclic(int d.1, int d_-2, int d.3, int d.4, int s) {
@SuppressWarnings (" unchecked”)

List<Integer> test=new ArrayList<Integer >();

test.add(d-1);
test.add(d_2);
test.add(d-3);
test.add(d-4);

Collections.sort (test);

dl=test .get (0);
1);
)
)

d2=test . get (
d3=test.get (2
(

t

)

dd=test .get (3

)

size=s;

cyclic.java

104

6.2 Ss3-cover of partite set V

In this section we give the results of the output of our computer programme
for cyclic bipartite graphs of size n < 18 (see Section 4.1.1). The following
tables gives us the copies of S5 with centers in U such that each vertex in V'

is used exactly once.

6.2.1 Ss-cover of partite set VV for n =6

Generator
Star 1 Star 2
Set
{0; 1, 273} <U0§U07U17U2) (U2703,U4,U5)
{0; 172,4} (UOQUO7U1>U4) (U17027U3>U5)
{07173,4} <U0§U07U1>U3) (U 027U4>U5)
{07 27374} <UO§UO7U2>U3> (U1;U17U4,U5)

Table 6.1: Ss-cover of Partite Set V' for n = 6

6.2.2 Ss;-cover of partite set V for n =9

Generator
Star 1 Star 2 Star 3
Set
{07 1,273} Uop; Vo, V1, V2 Ug; V3, V4, Vs Us; Vg, U7, Ug

{07172;4} Uy V2, U, Us Ue; Vg, U7, Ug

{0717374} Ug; V2, Us, Vg Uyg; Vg, V7, U8

()

()

()
{0,2,3,4} | ()
{0,1,2,5} | (uo; vo, v, vs)
()

()

()

()

U151, V4, Vs Uy; Vg, U7, Ug

{0,1,3,5}

{0,1,4,5}
{0,2,3,5}

Uy, V2, V4, Vg Ur7; Vs, U7, Ug

Uy; V2, Vs, Vs Us; v3, U7, Ug
U135 V1, V4, Vg Us; Vs, U7, Ug

U3; Vs, U7, Ug

() | ()
(vs) | (vs)
(ve) | (vs)
(vs) | (vg)
(ug; ve,v3,v4) | (us; Ve, V7, Ug)
(ve) | (vg)
(ve) | (vg)
() | (vg)
(()

{0,2,4,5}

uy; V1, U3, UG)

Table 6.2 — Continued on next page

105

Table 6.2 — Continued from previous page

Generator

Set

Star 1

Star 2

Star 3

{0,3,4,5}
{0,1,3,
{0,1,4,6}
{0,2,3,6}
{0,2,4,6}
{0,2,5,6}
{0,3,4,6}
{0,3,5,6}

Ug; Vo, U3, Vg
Up; Vo, V1, Vs

Up; Vo, V1, V4

Up; Vo, V2, Vg
Uop; Vo, V2, Vs
Ugp; Vo, U3, Vg

Uop; Vo, U3, Vs

()
(v6)
(v4)
(uo; vo, V2, Vg)
(v4)
(Us)
(v4)
()

(Ul; V1, V4, Uﬁ)

Table 6.2: Ss-cover of Partite Set V' for n = 9

6.2.3 Ss;-cover of partite set V for n =12

Generator
Star 1 Star 2 Star 3 Star 4
Set

{0,1,2,3} | (uo;v0,v1,03) | (ug;va,v4,v5) | (us;ve, v7,v8) | (us;vg, v1g, v11)
{0,1,2,4} | (ug;vo,v1,v4) | (u1;v2,v3,05) | (us; Vs, V7, V10) (ur; v8, Vg, v11)
{0,1,3,4} | (uo;vo,v3,v4) | (ug;vy,v9,05) | (us;ve,vs,v9) | (ur;v7,v10,011)
{0,2,3,4} | (uo;v0,v2,v3) | (ur;v1,v4,05) | (ug;v6,v7,08) | (u7;v9,v10,011)
{0,1,2,5} | (uo;vo,v1,05) | (ug;va,v3,v4) | (ug; v, v7,v11) | (us;vs, vg, v1p)
{0,1,3,5} | (ug;vo,v1,v3) | (ur;v9,v4,06) | (us;vs,vs,v10) | (ug;v7,v9,v11)
{0,1,4,5} | (ug; v, v1,vs) | (ug;va,v3,06) | (ug;vs,08,09) | (ug;vr,v10,011)
{0,2,3,5} | (up;vo,v2,v5) | (ur;vr,v3,04) | (ug;v6,v7,09) | (us;vs, v10,011)
{0,2,4,5} | (ug;vo,v2,vs) | (ug;v1,v3,05) | (us;vr,v9,v10) | (ue;ve, Vs, v11)
{0,3,4,5} | (uo;v0,vs3,v4) | (ug;v2,v6,v7) | (us;vs,v9,v10) | (us;v1,vs,v11)
{0,1,2,6} | (uo;vo,v1,v6) | (u2;v3,vs,v8) | (us;vs,v7,v11) (ug; va, Vg, V10)
{0,1,3,6} | (uo;v0,vs3,06) | (w1;v1,v9,v4) | (ug;vs,07,010) | (us;vs, vg,v11)

Table 6.3 — Continued on next page

Table 6.3 — Continued from previous page

106

Generator

Star 1 Star 2 Star 3 Star 4

Set

{0,1,4,6} | (uo;vo,va,v6) | (ur;v1,v2,vs) | (ur;vr,vs,v11) (ug; v3, V9, V10)
{0,1,5,6} | (uo;vo,v1,v5) | (u1;v2,v6,v7) | (us;v3,vs,v9) | (U105 V4, V10, V11)
{0,2,3,6} | (uo;vo,ve,v3) | (ursvi,va,v7) | (us;vs,ve,v9) | (us;vs, vio, U11)
{0,2,4,6} Two-component graph see n =6 and D = {0, 1,2, 3}
{0,2,5,6} | (uo;vo,v2,v5) | (ur;v1,v3,07) | (Ug;v4,v9,v10) | (us;vs, Vs, V11)
{0,3,4,6} | (uo;v0,v3,v6) | (u1;v1,vs,v7) | (us;v8,09,v11) | (U0} V2, V4, V10)
{0,3,5,6} | (ug;vo,vs,v5) | (ur;v1,04,06) | (Ug;07,09,010) | (us;v2,vs,v11)
{0,4,5,6} | (uo;v0,v4,06) | (u2;va,v7,08) | (us;vs,v10,011) | (ug; 01,03, 09)
{0,1,2,7} | (uo; v, v1,v7) | (ug;vg,v3,08) | (ug;vs,05,06) | (ug;vg, v10,v11)
{0,1,3,7} | (uo;vo,v1,v3) | (u1;v2,v4,v8) | (us; Vs, v7,v9) | (U105 Vs, V10, V11)
{0,1,4,7} | (uo; vo, va,v7) | (u1;v1,v2,08) | (ua;v3,06,v9) | (U105 Vs, V10, V11)
{0,1,5,7} | (uo;v0,v1,v7) | (u1;v2,v6,08) | (us;vs,vq,v10) | (u4;vs,vg, v11)
{0,1,6,7} | (uo;v0,v1,06) | (uq;v2,07,08) | (us;vs,v4,v9) | (u4;v5,v10,011)
{0,2,3,7} | (uo;v0,v2,v7) | (u1;v1,vs3,08) | (us;vs,ve,v10) | (uo; vy, vg,v11)
{0,2,4,7} | (uo;vo,v2,vs) | (ug;v1,vs3,05) | (ug;ve,vs,v10) | (ur;v7,v9,011)
{0,2,5,7} | (uo;vo,v2,v7) | (ug;v1,v3,06) | (us;vs,vs,v10) | (Ua;v4,v9,v11)
{0,2,6,7} | (uo;vo,v2,v7) | (ug;vy,vs,08) | (us;vs,v,v10) | (Ua;v4,ve,v11)
{0,3,4,7} | (uo;vo,v3,v4) | (ur;vr,vs,08) | (u2;v2,v6,09) | (u7;v7,v10,011)
{0,3,5,7} | (ug;vo,vs,v5) | (ur;v1,v6,08) | (Ug;04,09,v11) | (Ur;v2,v7,010)
{0,3,6,7} | (uo;vo,v3,06) | (ur;vr,v4,08) | (u2;v2,05,09) | (ug;v7,v10,011)
10,4,5,7} | (uo;vo,va,v7) | (u1;v1,v5,06) | (wa;vs,v9,v11) | (10} V2, V3, v10)
{0,4,6,7} | (uo;vo,v4,v6) | (ug;v1,vs5,08) | (us;vs,v9,v10) | (ur;ve,v7,v11)
{0,5,6,7} | (uo;v0,vs5,06) | (u1;v1,v7,08) | (ug;04,v10,011) | (Uo; e, V3, Vg)
{0,1,4,8} | (uo; vo, v1,v8) | (u1;v2,v5,09) | (uz;v3,vs,v10) (us; v4, v7,v11)
{0,1,5,8} | (uo;v0,v1,05) | (u1;v2,v6,09) | (u2;vs3,v7,v10) | (us;vy,vs,v11)
{0,2,4,8} Two-component graph see n =6 and D = {0, 1,2,4}

Table 6.3 — Continued on next page

Table 6.3 — Continued from previous page

107

Generator
Star 1 Star 2 Star 3 Star 4

Set
{0,2,5,8} | (uo;v0,v2,vs) | (u1;v1,v6,v9) | (U2;v4,v7,V10) (u3; v3, Vs, V11)
{0,2,6,8} Two-component graph see n =6 and D = {0, 1, 3,4}
{0,3,4,8} | (uo;v0,v3,08) | (u1;v1,04,09) | (u2;ve,v5,v10) | (us;ve, vz, v11)
{0,3,5,8} | (uo;vo,v3,v5) | (u1;v1,v4,09) | (uz;v2,v7,v10) (u3; ve, Vs, V11)
{0,3,6,8} | (uo;v0,vs3,08) | (u1;v1,v4,v7) | (u2;v2,v5,v10) | (us;ve, vo,v11)
{0,3,7,8} | (uo;vo, v3,v7) | (ur;v1,v4,v8) | (ug;va, vs,v) (u3; ve, V10, V11)
{0,4,5,8} | (uo;vo,v4,v5) | (ug;v1,v6,09) | (ug;v2,v7,v10) | (us;vs,vs,v11)
{0,4,6,8} Two-component graph see n =6 and D = {0,2, 3,4}
{0,4,7,8} | (uo;vo, va, v7) | (ursvi,vs,08) | (u2;v2,06,v9) | (us;vs, vig, V11)
{0,3,6,9} Three-component graphs, no decomposition

Table 6.3: Ss-cover of Partite Set V' for n = 12

108

obvd jToU U0 ponuuoy) — F°9 d[qe],

(Via ‘€10 ‘Ta €1n) | (Cla 0l ‘6a‘6n) | (Tla‘%a‘Satn) | (Za‘ta‘@a‘in) | (% ‘ta‘0aion) | {9‘¢ 10}
(Ela ‘@l Tig {Tin) | (V1g ‘0lg ‘8q ¢8n) (6a ‘% ‘va‘tn) | (La‘€a‘latin) | (% ‘a‘0a‘on) | {9z ‘T‘0}
(Vo ‘Tl ‘T {Tn) | (£Ta ‘€l ‘8 ‘%n) | (0la‘6a‘Satn) | (La‘% ‘Ca‘Zn) | (Ta‘ta‘0a‘on) | {c9‘¢‘0}
(Va‘Tla ‘6 6n) | (€10 ‘el ‘0T ‘8n) | (%a‘la‘ta'tn) | (% ‘Sa‘latin) | (Wa‘@a‘0aion) | {cp‘z0}
(Via “€la ‘Tl t6n) | (£Ta ‘0Tq ‘Sa ‘8n) (6a‘2aFavn) | (% ‘€ ‘Ta‘in) | (Sa‘Ca‘0aion) | {c‘c‘z‘0}
(V1o ‘Tla *0Tq {0Tn) | (§1a°Tla‘6aisn) | (Sa‘la‘tattn) | (% ‘% ‘%aitn) | (Wa‘la‘oaton) | {c§ 10}
(V1o ‘€l ‘01 t6n) | (£Ta ‘Tin ‘Sa 8n) (6a‘la‘atvn) | (% ‘ta‘taiin) | (fa‘Ta‘Oaton) | {c‘c‘10}
(Via ‘€1n ‘@lg teTn) | (0Ta ‘6n ‘8a i%n) (Ta“2a % 9n) | (Ya‘ta‘taten) | (S ‘Ta‘0a‘on) | {c‘z‘1'0}
(Via ‘€1a ‘@l 0T | (T1q ‘0T “6a in) (8a‘ta9a%n) | (Sa‘ta‘laiin) | (fa‘Ca‘Oaton) | {y‘c‘z‘0}
(V1o *€Ta *0Ta {0Tn) | (Tla‘Tla‘saisn) | (6a‘la*9aon) | (% ‘Pa‘%aitn) | (fa‘Ta‘0aton) | {p‘e‘10}
(la *€Ta *Tla (Sin) | (Ta‘6a‘Saiin) | (0Ta‘la‘9i9n) | (% ‘fa‘%aitn) | (Wa‘la‘oaton) | {y‘z‘1‘0}
(Via ‘€10 @ln {Tin) | (11 0lg ‘6q ¢8n) (82 ‘2% ‘en) | (% ‘va‘Cattn) | (fa‘Ta‘0a‘on) | {e‘z‘T‘0}
198
G 103G ¥ 181G ¢ 181G ¢ 1818 1 Ie)Q
I0JRIOUOL)

GI = u I0J A 99S 9j1yaed jo

I9A0D-¢C $°7°9

109

obod jxou Uo panuuUo;y) — F°9 S[qe],

Awswan@“w@mmHB\v Amaaﬁzbnmamm\;v Aoﬁxw"m@nm@mmﬁv Awaﬁub\m@m:@v A©§“H©ho®m03v ﬁb ‘9T ROW
Yin ‘€In ‘€ ‘CIn Tl ‘0T ‘S tSn 1T ‘60 ‘T tvn 80,90 ‘Cn tIn L0, 4T ‘0 0N, ‘et
()|«) | () | () | () | {z¢to}
€I ‘Clp ‘1In ‘Cin, Y1ig ‘Tl ‘0T ‘0In, 60,90 ‘€n tTn 81 ‘%0 ‘Cn tIn L0, Y ‘0 0N, S
() | ()| () | () | () | {2vtol
1 £89ye1)Q SUISN UOIIN[OS ON {L¢1°}
Yin ‘€I ‘Clp ‘CIn ITn ‘0T ‘60, 6m, 90 ‘Sn ‘T, thn 80 ‘€n ‘TIn tIn L0, 4%, ‘0 0N, 48 i
()| () | () | ()| () | {Le'to}
Amﬁb\ﬁm@hm@mm:& Awﬁbﬁmﬁanwéwwﬁv Azaﬁoﬁb\“m@mmﬁv A 29 ‘In ‘In v A 0 ‘Y ‘0 ‘0n v ﬁwﬁm nﬂROW
Vin ‘1lp ‘Cn ‘1in €In ‘Clp ‘01 ‘Ln 60 ‘8 ‘9 ‘€n v ftTn tIn n ‘€ ‘0n ‘0N ‘oot
() | ()| () | (+ n) | (% n) | {9'¢'¢0}
In ‘TIp ‘Cn tTin, €I ‘Clp ‘6 t6m, 0T ‘8n “La ‘Tn 0o fTn tn n ‘€ ‘0n 0N, ‘ot
(7 n) | () | () | (% n) | (% n) | {97°¢0}
In ‘€1 ‘0T ‘8N, Tn ‘T “8n ‘9N, 60,90 ‘T tvn, n‘en Tn tn 0 ‘Cn ‘0n 0N, ‘ol
(7 n) | (¢ n) | () | (+ n) | (% n) | {9'¢'z 0}
Vi ‘Tl ‘I ‘01N n ‘Tl 6, tin 0T, “8n, ‘9, ‘Tn, 0 ‘S0 ‘€ tn 0T ‘00 L0n, ‘p bt
() | (Fla n) | () | (ta n) | (" n) | {97z 0}
Amﬁgﬁmﬂb\ﬁoﬁamo:&v A Tn ‘T1n ‘8 ‘S, v Ammw“@@“mbmmj\v A a ‘Yo tln tin v A ‘T ‘0 ton, v ﬁwamnmﬁow
Awﬁanmﬂaﬁwamwﬁ\v Amﬂaﬁ:bﬁwaﬁwﬂwv Aoﬁénmmﬁw@mwﬁv A ‘€0 ‘e en v A 0 ‘Tn ‘0 ‘0n v ﬁwnm ‘1 HOW
Am:wnﬁ@“m@mmaﬁv A:D\hoH;Q@moHB\v Awﬁs\"m@nw@mwﬁv Anaﬁmb\m@nﬁﬁv A©§“w©ho®53v ﬁwﬁﬂuﬁ ROW
198
G 1838 p Te3s ¢ 1813 z 1033 [103G
MOP@H@Q@U

obod snowaad woif panuguoy) — 9 9lqe],

110

obod jxou Uo panuuUo;y) — F°9 S[qe],

Af@nmﬁaﬁm@mmaﬁv Avaaﬁoﬂbnwamw\;v A:D\@@nm@mmﬁv AQD\“N@Q@“:& Aw§“w©ho®53v ﬁwﬁﬂuﬁ ROW
Amﬁgﬁzghoﬁbmoﬁ;v Awﬂgnméﬁwamm\;v Amﬁbﬁghm@mwﬁv Awbﬁmb&:@“ﬁ v Awbﬁm@hogﬂo v ﬁwﬁm“«m ROW
Awﬁgﬁmﬂ@"mﬁammﬂﬁv AZQROH@&Q&@V Awghwgﬁmgmmﬁv Awaﬁmxw"m@nm v Aww@:@"o@no v ﬁwﬁNT_” ROW
ITn ‘€n ‘Cn ‘Tin, Vi ‘€I ‘Cln tLn, 0T, ‘60, ‘T ‘T 8n ‘Ln ‘In ‘In 90 ‘S ‘0 ‘0n, ‘9¢

() | () | () | () | () | {2'9'¢’o}
1 A893eI11g SUISN UOIIN[OS ON {L99%}

Amﬁb\ﬁm@hmgmm:@v Awﬁbﬁzaﬁépﬁv Amﬁaﬁoﬁb\“@@mmﬁv Awb\“@@:@“:&v Amb}wb\ho@“oﬁv AN ‘e nﬂROW
Aw:@amﬁb\poﬁawnﬁ\v Amﬁbp:énwéwmﬁv Amgamaﬁﬁwnm\;v A Ao fln fn V A n ‘€ ‘0 ‘0n v AN ‘9 nmpow
Aib\mﬁ@poﬂ@mnﬁ\v Amﬁap:@n@@m@ﬁv Amb\ﬁaﬁménm v A N ‘Yo ‘Tn tin v A ‘€ ‘0 t0n v ﬁh ‘e nmpow
Amﬂb\nmﬁ@n@@mma Aﬁ@nzépoﬂbmnﬁv Awéﬁmb\m:\ﬁm\;v A 0 ‘Yo ‘Tn tin v A Q ‘€ ‘0 ton v ﬁb «wﬁmnow
AwHQAN:@Q@WN:& Amﬂéﬁ:@nmgm:ﬂwv Aoﬂb\nm@ﬁm@mmj\v A n Lo tln fn v A n ‘T ‘0 ‘0n v AN ﬁwnNnOW
Am:@noﬁb\ﬁwaqu&v Awﬁanmﬂaﬁamg&v Azanm@ﬁw@mﬁ@v A n‘€n In tin v A ‘T ‘0 ton, v AN “mlNﬁOW
Awﬁgﬁmﬂb\noﬁamo:&v Amﬂaﬁ:bgammﬂwv Amb\n@@nw@mmiv A 0 ‘Sa ‘S fTn v A ‘% ‘0n ‘0N, v AN anNﬁOW
Awswnmﬁaﬁm@m:*wv Amaaﬁzbnm;m@\;v Aoﬁxw"@@nm@mmﬁv Awaﬁwb\ﬂ@n:@v Anb\“m@ho@noiv ﬁb ﬁMRNROW

14
¢ reyg p rerg ¢ 1erg z 1erg I 1818

MOP@H@Q@U

obod snowaad woif panuguoy) — 9 9lqe],

111

obod jxou Uo panuuUo;y) — F°9 S[qe],

(ETa “€a Ca (€Tn) (el ‘Tl ‘La‘tn) | (Via‘0Ta 909n) | (Sa ‘% ‘Ta‘tn) | (8a‘Ta‘0aton) | {g‘¢‘F‘0}
(Vo *$Ta *929n) | (STa‘Tla‘Za‘vn) | (0Ta‘Sa‘Za‘en) | (6a‘Pa‘Ta‘Tn) | (Sa‘ta‘0aton) | {g°s‘¢*0}
(Vo ‘Tla ‘60 9n) | (fla‘Tla‘Saten) | (0Ta‘Sa‘Za‘en) | (fa‘Pa‘TaiTn) | (% ‘sa‘0aton) | {g‘9‘¢‘0}
(Vo ‘Tla‘6a6n) | (Sla‘Tla‘saisn) | (0Ta‘la‘Za‘en) | (% ‘Fa‘TaiTn) | (%‘ta‘0aton) | {g‘c‘¢‘0}
(STa‘Tla ‘%o t6n) | (Y1a‘0la‘6aton) | (TTa‘la‘9%‘fn) | (% ‘Ta‘Taitn) | (Sa‘ta‘0aton) | {g%‘¢‘0}
(V1o ‘€10 8. ¢9n) (2Ta ‘9 “vaitn) | (Tg0lg‘Saten) | (6a‘ta‘latin) | (La‘@a‘0n‘on) | {822 0}
(Via‘ela Sa Cin) | (€l Tla‘daiSn) | (0T ‘8 Fatn) | (6a‘€a‘Ta‘in) | (% ‘%a‘0aion) | {8'0‘z‘0}
(Vi ‘ela Ca Cin) | (€la ‘Tl TaTin) | (0l ‘lo Vo fen) | (6a“% ‘€a‘tn) | (Ra‘Sa‘0afon) | {g‘¢c‘z‘0}
(E1a ‘%0 ‘T t€In) | (Vig ‘@la 0lg 0Tn) | (Tlg‘la‘Sa‘tn) | (6a‘€a‘latin) | (Sa‘ta‘0a‘on) | {89 70}
(Via ‘€Ta ‘Tl {Tin) | (Cla ‘Lo ‘% i7n) (0Ta “Sa “Ta n) | (6a‘ta‘Tatin) | (8a‘@a‘0a‘on) | {g‘e¢‘z 0}
(V1o “€Ta ‘90 49n) (¢Ta“Tla‘Sa‘vn) | (Ola‘Fa‘tattn) | (6a‘Sa‘Caitn) | (Xa‘Ta‘0afon) | {8110}
(Via ‘€T ‘90 €1n) | (2l ‘0l ‘S ‘vn) | (Tla‘Pa‘tattn) | (Sa‘la‘%aitn) | (8a‘Ta‘0aton) | {89 ‘T‘0}
(Via ‘€T ‘90 (€1n) | (1o Tlg ¥ tTin) | (0la‘la‘€nen) | (Sa‘%a‘la‘tn) | (8a‘%‘0a‘on) | {g‘¢‘T‘0}
198
G 103§ ¥ Ie1g ¢ 1019 FAR LIS 1 Ie)§ oy

obod snowaad woif panuguoy) — 9 9lqe],

112

obod jxou Uo panuuUo;y) — F°9 S[qe],

AALDXNH@“@@WNHB\V Amﬂbnw\w“m@mw\;v A:D\C.@QD\RNSV Aoﬂbnmaﬁbﬁﬁbv A®§“m©ho®53v ﬁmﬁmuNROW
Awﬁgﬁmﬂghoﬁbmoﬁ;v A:w@nm@“n@ﬁk@v A 10,8 ‘90 ‘n, v Ambﬁm\w:@m:@v A ‘2 “0p, ‘0 v ﬁ@J‘w“NROW
Awﬁgﬁmﬂ@"zam:ﬁv Awgﬁbﬁm@mmﬁv A 290 € ‘en, v Aoﬂénww@:@ﬁ:&v A 0 4%, 40, ‘0N, v AQAMRNROW
Aﬁﬁbﬁmﬁéﬁwgmmﬁv Amﬂéﬁmaﬁwbmw\;v A a6 “€n en v A 80t tin v A a ‘Tn ‘0 ‘0n v AQANT_” “OW
Aﬁﬂghm:@“w@mmﬂ@v ANHDZ\WD“NN@M:Q@V A 080 S ‘on, v A a‘La‘Ta ‘In v A 0 ‘90, 0, ‘0N, v ﬁmﬁwn._” “OW
Aw:@nmﬁb\;@mm:& Amﬂanwbﬁwb\mmﬁv A a€n ‘e ‘en v A a9 ‘In ‘In v A ‘S ‘0 ‘0n v ﬁmwﬁm?_” ROW
Aw:@amﬁb\ﬁ@mmﬁﬁ\v Amﬁanmépwb\mwﬁv A 10,90 ‘€, ‘2n, V A a‘Sn ‘e ‘In v A 0 “Tn ‘0n, ‘0N, v ﬁaﬁﬂnﬂpow
Aiaﬁﬁ@ﬁz@m:@v Amw@é@nm@mmj\v AmS@ﬁb\anw@v A ‘e ‘In tin v A 0 ‘€ ‘0n, t0n v ﬁmﬁm ‘1 pow
A:@Q@ﬁmanzﬁv Aﬁ@nwéﬁémwﬁv Amﬂb\ﬁmﬂénm@mmj\v A In ‘6n ‘T ‘Cn v A Q ‘90 ‘0 ‘0n v ﬁwﬁh :wnow
A In ‘¥ ‘T tCin v Awﬂéﬁmﬁénzamwﬁ\v Aoﬂb\nw@ﬁmgmmﬁwv Aaanwb\ﬁgﬁﬁwv A Q ‘Sa ‘0 0n, v ﬁwﬁhnmnow
A In ‘v ‘€ tein v Ql@ﬁmaan:xiwﬁ\v Aoﬂb\nw@&@mmﬁv Aaann\w:@nﬁ v A n ‘S ‘0p ‘0n v ﬁwawnmﬁow
Awﬁanmmﬁm@no:@v Amﬂaﬁoﬂbﬁwamwﬂwv Aﬁ@n:anw@mwﬁv Amaan\QD\Q v A a ‘Yo ‘0n ‘0n, v ﬁwnﬁ anow
AmHDAND\“o@mm\;V Aw?whmﬂaﬁoﬂbmwﬁv A:D\"m@nm@mmﬁv Anaﬁmb\ﬂ@nﬁﬁv Awb\“@@hw@“oiv ﬁwﬁw JNROW
14
¢ reyg p rerg ¢ 1erg z 1erg [1o
MOP@H@Q@U

obod snowaad woif panuguoy) — 9 9lqe],

113

obod jxou Uo panuuUo;y) — F°9 S[qe],

AOHD\Q@Q@MOHB\V Avaaﬁmﬂbnwaﬁw\;v Amﬁgﬁmblm@mmﬁv A:DQQAN@NN\DV A©§“m©ho®m03v ﬁmﬁwumnow
T&wtwgum@mm:& A I ‘€Tn ‘60 ‘SN, v Aﬁ@n:@“m@mm\;v A 10 S ‘It In v Awbﬁw@hogmoﬁv ﬁmﬁw anow
Amﬂgnmaﬁmgmmﬁv A I ¢CTn ‘S ‘SN, v A:wiw@&@nmﬁv A 280 ‘Tp ‘In, v AmaﬁwQ"om@moﬁv AQAN anow
Awﬂaﬁwgﬁmpmw\;v Amﬂaﬁ:@;@hg\@v A 10 60, ‘€ ‘SN v A 2Sn ‘Tp ‘In v Awaﬁwbﬁo@moﬁv ﬁ@&w Jw“OW
Aﬁﬁb\ﬁmﬁéﬁm@m@ﬁv Amﬂéﬁwaﬁmbmmﬁv A a“La ‘2 on, v A 29 ‘Tp ‘In, v Amb\ﬁw@ho@mo@v ﬁmﬁm nﬂ“Ow
Awﬁépab\“@@m@ﬁv Amﬁbﬁmﬁaﬁéwwﬁv A T, “Sn ‘2, ‘2n, V A 10 ‘P ‘10 ¢ In v Awb}m@ho@moﬁv ﬁmwﬁw FMROW
Amﬁapmb\p@@m@ﬁv Awﬁbpmﬁénwéwmﬁv A:b\pm@hmanmﬁv AOHQQQQQQQV Abbpmb\o@moﬁv ﬁmﬁh nmpow
uoryisoduodep ou ‘syders yuouodurod-0o1yJ, {6‘9‘¢‘0}

Aﬁ@nmﬁbn@@mma A:@nwépm@mwﬁv Amﬂb\nn@ﬁw@nwj\v AQH\@@@Q@WHB\V Aménménobncj\v ﬁmﬁm ﬁmnow
Awﬂgamﬂb\ﬁoﬂ@mo:@v Azanwénm@mwﬁv A In “La ‘90 ‘En v Amanﬂb\ﬁgmﬂﬁwv A 0 ‘€0 ‘0 t0n, v ﬁmﬁﬂnmnow
Awaaﬁanméwmﬁv Amﬁanmﬂanwamf&v A a ‘Yo ‘en tan v Aoﬁaﬁmaiéﬁs@v A 0 ‘S, ‘0n 0n, v ﬁmawnmﬁow
Amﬂaﬁwanmmﬁ@ﬁv Awﬂaﬁmﬂbﬁmammﬂwv A In, ‘6 ‘T ‘Tn, v A In €n ‘In ‘In v A ‘% ‘0n ‘0N, v ﬁmnﬁnmﬁow
Awswnmﬁaﬁm@mmaﬁv Amaaﬁmblmb\m:ﬁ\v A:D\"wblw@“mﬁv AOHDQQAH@N:& Aaaﬁmw@ho@noiv ﬁmﬁwuNROW

14
¢ reyg p rerg ¢ 1erg z 1erg [1o

MOP@H@Q@U

obod snowaad woif panuguoy) — 9 9lqe],

114

obod jxou Uo panuuUo;y) — F°9 S[qe],

?5 ‘Tip ‘Lo, :Sv
(€Ta ‘6 ‘9 :9n)
(V1 ‘Tia ‘8q (8n)
(Va ‘6 ‘Lo i¥n)
(Va ‘11 90 t7n)
(Vo ‘0Tq ‘€q ¢3n)
(V1 ‘6o ‘9 vn)
(V1o “0Ta ‘Sa t7n)
("o ‘6a ‘Sa i7n)
(TTa “Fa Ca {TTn)
(T1a ‘€a ‘Za {TIn)
(Va ‘6a ‘€q (6n)

ANHQ ‘90, ‘2 MNHB\V

(ETa ‘Tl 9 t€n)
(Vo ‘Tl 2o tvn)
(§Ta ‘6a ‘€n)
(€Ta ‘8 ‘9 n)
(£Ta *0Ta ‘S €n)
(€Ta *6a S t€n)
(€Ta ‘8a ‘S t€n)
(ETa ‘6a ‘¥ t€n)
(ETa ‘8a ‘T t€n)
?5 ‘€In ‘Sn mm:v
?5 ‘Tlp ‘Sn mmﬁv
(ETa ‘@l Vo tvn)

(V1a ‘6a ‘€q (6n)

0T ‘S ‘T ‘en
n,
n‘Sn ‘e ten
0490420, ¢
0 60 ‘7, ¢

“wb\ hﬂwb\“

Tn ‘Sn ‘et
08 4€n, ¢
T

N
N
N
n Lot ten
N
N

‘o ent

()
(¢ n)
(e n)
(e n)
(e n)
(¢la n)
(¢la n)
(¢la n)
(¢ n)
()

Clpn ‘60 ‘Cn ten
AmS ‘01 ‘T :Sv
A:\N ‘Lo ‘T, umﬁv

Af@ 1 ‘o ﬁw\;v

(6a ‘va ‘la iIn)
(8 ‘va ‘la in)
(La ‘va‘la in)
(Tha ‘Pa ‘1o iin)
(82 ‘€a ‘Ta in)
(TTa 4o “Ta {In)
(Tt ‘€0 *Ta tTn)
(TTa 4o Ca {Tn)
(112 % “Ca {Tn)
(01a ‘2o ‘1o {In)
(82 ‘La ‘Ta tTn)
(0Ta ‘% ‘Ta 1n)

(0Ta ‘8 ‘Ta In)

(8a ‘€a ‘0a :0n)
(0Ta ‘€q ‘0n {0n)
(0Ta 9 ‘0a {0n)
(0Ta ‘€q *0n {0n)
(La ‘@a ‘0n 10n)
(9 ‘@a ‘0n 10n)
(0Ta “2a ‘0 :0n)
(% ‘Ta ‘0n 10n)
(0Ta ‘T ‘0q (0n)
8a, ‘90 ‘0, {0n)

60,9 ‘0, ¢

L0, 490 ‘0 0N,

(
(
(
(

on)
80 “Sn “0p, ‘0, v
)

{o1°8‘¢‘0}
{or°2°¢'0}
{or‘9‘c 0}
{or‘c‘e 0}
{or 2z 0}
{o1'9°z 0}
{or'¢‘z0}
{or‘o‘1 0}
{or‘c‘10}
{6890}
{6290}
{6°8‘c‘0}
{6°2°c‘0}

¢ Iejlg

AR

¢ Iejg

¢ 11§

T IelsS

18

I0jeI9ULY)

obod snowaad woif panuguoy) — 9 9lqe],

115

GT = U 10J A 19S 9)13IeJ JO I9A00-£Q :F°Q 9[qR],

(€Ta ‘6a ‘Za (6n)
(€Ta ‘6a ‘Sa (6n)
(Sa ‘6a ‘Sa (6n)
Vin ‘€Iln ‘Y ‘vn
In ‘Tl ‘Y tvn,
a‘Tln ‘v tn
n ‘0T ‘v tvn,
n ‘el ‘8 ttn
0 ‘0T ‘T 9N,
In ‘T1n ‘T tin

Vi ‘Cln ‘€ ‘8N

()
(v n)
(Mo n)
(Mo n)
(Mo n)
(Mo n)
(v n)
()

(Va ‘6 ‘8a 7n)

AvHQ ‘0T, ‘9, hw\@v
(0a ‘% ‘Za :9n)
(€Ta ‘% ‘Za 9n)
(%o ‘8a ‘€n)
AMHQ ‘11 ‘€, Fmﬁv
AMHQ ‘01 ‘€n, pmﬁkv
€10 ‘60, ‘€ ten
T ‘Lo ‘€n ten

ala e ten

nla e ten
TIn ‘60 ‘Lo ten

€TI0 ‘L ‘€ tEn

()
(¢ n)
(Fla n)
(Fla n)
(¢ n)
()

(Tta ‘La ‘€q n)
(Vla ‘La ‘€a)
Aﬂ:w ‘0T, ‘€n "m\;v
I ‘L ‘T tTn
In “La ‘Cn tTn,
06t ttn
080,420, ‘Tn,
049,42, ‘en,
T

n ‘9 ‘T tTn

()
(° n)
(¥a n)
(¥ta n)
(Ma n)
(¢ n)
(210460 ‘9 5en))

(8 ‘9 ‘@n i2n)

(%ta ‘% ‘Ca tn)

(¢ta ‘Sa ‘o in)
(%ta ‘8 ‘1a In)
(8 ‘va ‘la in)
(0Ta ‘% ‘1o 1n)
(62 % ‘1a t1n)
(3% ‘1o t1n)
(TTa 2o “Ta {Tn)
(0T “Sa “Ta {Tn)
(T1a ‘6a ‘Sa {In)
(82 ‘Sa ‘Ta tTn)
(Tta ‘Sa ‘o in)

(Tt ‘Sa ‘o in)

(8 ‘va ‘0a :0n)
AZQ ‘¥, ‘0p, “o\;v
AZQ ‘L, “0p, 0 v
60, “Sn, ‘0n, noﬁv
n ‘S0 ‘0n ‘0N

n ‘S0 ‘0n ‘0N
On,

0 “Fa, <0, <o,

(

(%a n)
(+a n)
(0 “Sa ‘0 20n)
(6 n)
()

8 ‘T ‘0n (0

In ‘vq ‘0q

A OV
A Haﬁwaﬁo@ﬁo v
AOHD ‘Yo, ‘0n Aoﬁv

{r1'8v 0}
{tr°29%0}
{r1'2°¢’0}
{or6°c 0}
{or‘s‘c'o}
{or 20}
{or‘9‘c'o}
{or'6v 0}
{or'sv o}
{o1°27 0}
{01970}
{or‘s 7 0}

¢ Iejlg

AR

¢ Iejg

¢ 11§

T IelsS

18

I0jeI9ULY)

obod snowaad woif panuguoy) — 9 9lqe],

116

obvd JToU U0 PoNUWUO,) — G d[qe],

(L1a Vi Clg {Tip) | (91 €Tn ‘TIq ¢0Tn) | (S1q ‘0T ‘6a {6n) (8a % ‘€a t2n) (0 ‘va ‘e tTn) (92 “Ta ‘0a t0n) {o¢‘T0}
(410910 STn {STn) | (€10 Cln ‘Tla¢Tin) | (Vi ‘0l ‘8a ‘8n) (6 Sa ‘o t€n) (0 “€a ‘1o t1n) (9 ‘% ‘0a t0n) {oz'T0}
(L1 Vig Ta i¥in) | (9a‘Sla‘Tla‘Tin) | (€la‘Glg‘8a8n) | (0ln‘6a ‘S %n) | (La ‘% ‘%a itn) (Va ‘€ 0n ¢On) {c'p¢0}
(410910 Vg {2lpn) | (91 Gl ‘01q ¢0Tn) | (€1q ‘Tl ‘6n i6n) (8a ‘Lo ‘%o t€n) (92 “€a 1o {1n) (¥ “%a ‘0a t0n) {cpz0}
(410910 Vg {VIn) | (91 ‘€Tn ‘@l ¢0Tn) | (Tig ‘0T ‘8a ‘8n) (62 “La ‘%0 t7n) (Vo ‘€a ‘1o t1n) (% ‘% ‘0a t0n) {ce‘zo}
(41a 910 eln (21p) | (91 VIn ‘TIg t0Tn) | (€1q ‘0T ‘6n {6n) (82 “La ‘€a t€n) (924 %o tTn) (Va “Ta ‘0a t0n) {e9 10}
(L1a 910 €Tn (2In) | (91 FIn ‘Tln ¢TIn) | (3lg ‘0T ‘8a iLn) (62 ‘Lo ‘%o t7n) (9 ¥ %o tTn) (£ “Ta ‘0a t0n) {ce‘T0}
(9T “STa V1 {¥In) | (L1a ‘€10 ‘eln &In) | (Olq ‘6q ‘8q (8n) (T ‘29 9n) | (Vo ‘€a‘%a ‘en) (S ‘T ‘0n ¢on) {c'z10}
(LTa 9Ta ‘S1q (€Tn) | (Vig ‘€10 ‘@Tn ¢0Tn) | (11a ‘0Tq ‘6a ln) (82 “2a 9) (S0 P ‘Ta ¢Tn) (£a ‘2 0n ¢0n) {vezo}
(LTa 9Ta ‘€10 (€Tn) | (9Ta V1 ‘@la ¢Tin) | (11a‘0ln ‘Lo in) (6“8 9) (% ‘e ‘Tatin) (Va ‘€ 0 ¢0n) {y'e10}
(410 ‘910 Vg {€1n) | (91 €Tn ‘Cla &in) | (Tn ‘6o ‘8q iin) (0Ta *La 9a.¢9n) | (Sa ‘ta‘Ca ‘Tn) (Yo “Ta ‘0a {0n) {vz10}
(410910 STn V1) | (Vi €Tn ‘Cla ¢Tin) | (Tig ‘0T ‘6a 8n) (82 “La ‘%0 t%n) (S0 ‘v ‘eq ten) (€ “Ta ‘0a ‘0n) {ez'T0}
198
9 Ie31S G 1039 ¥ 181G ¢ 103G ¢ 10318 1 Ie)Q SR

QT = u J0J A 19s 93j13aed JO I9A00-£¢ G'Z'Q

117

obod jxou U0 panuUUO,) — G B[R],

(41a 4910 ‘1T {0Tp)
(41a ‘€10 ‘2T (21p)
(4Ta ‘V1g 1T {0Tp)
(4Ta *STq VTg {V1n)
(410 *91a ¥a STn)
(STa ‘€a ‘% t9Tn)

(410 49T V1 T1p)
(410 910 “TTg {T1p)

AS@ ‘91 ‘€1, m:j\v

(§Ta V1 “6a 8n)
(T “Tig ‘01q {0Tp)
(9T “€Tq ‘01 t6n)
(9T “2la ‘01g t6n)
VIg ‘€l Tl CIn

091 ‘1T ¢TIn,

T
In ‘Vip ‘€1 ‘0In

STp ‘Tl ‘0Ip ‘01N

()
(4 n)
(70, 610,407 {0Tp)
(9 n)
()

(ETa “€la ‘Lo t9n)
(9T “¥a ‘60 t6n)
(§Ta “la ‘8a 8n)
(€Ta ‘6 ‘90 :9n)

(€Ta *01q “6a 8n)
(Via ‘€1q 2Ta {%n)
a ‘Tl ‘6 63

(¢ta
A I, ‘0T, 60, ‘90
AEQ ‘I 6 ‘61,

n)
)

(0Ta ‘Sa ‘va ivn)
(8 ‘va ‘€a itn)
(6a ‘9 ‘€a :Zn)
(Tt ‘2a ‘Sa ivn)
(Tt 9 ‘Sa ivn)
(0Ta ‘6a ‘80, :¥n)
(8a ‘La ‘Cn ien)
Awaéa&@&:v
A

80 ‘La ‘T, ﬁmﬁv

{e‘z10}

= (] pue g = u 99s ydeis yuouodurod-om J,

?5 Yip ‘€l 53
Ahﬂ@ ‘9T ‘11p, mzﬁv

ANHD\ ‘GIp ‘Clp, m:g@v

Am:; ‘¢Ip ‘0Ip, mo:@v
AmHD YIp ‘0Ip, umﬁv

Am:@ Vi ‘11, mo:@v

Am:@ ‘TTp, “6p, nmiv
AmﬁD ‘TIn ‘S, ﬁ\;v

AmﬁQ ‘0Tp, “6p, umﬁ\v

(8 ‘Sa ‘Ta iZn)
(6a ‘¥a ‘€a itn)

(8 ‘9 ‘€a :2n)

(La‘€a ‘T iin)
(La‘2a ‘T iin)

(La‘Sa ‘a in)

(% ‘2a ‘0n 10n)
(9 “%a 0n 10n)

(Va ‘Ta ‘0a :0n)

{2910}
{L¢‘T 0}
{2910}
{L¢“T'0}
{Lz'1'0}
{9‘¢ 70}
{9°¢ e 0}
{997c‘0}
{9‘c‘z‘0}
{97z 0}
{9‘c‘z‘0}
{9‘¢‘T‘0}
{9710}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

118

obod jxou U0 panuUUO,) — G B[R],

(41a V1g €T (€1n)
(410 *91q 90 9Tn)
(9T *STa VTg {V1p)
(§Ta ‘o ‘T t5Tn)
(V1a ‘€a ‘T FIn)
(9T ‘€a ‘2 t9Tn)
(41a 49T *0Tn 0Tp)
(90 ‘FTa ‘11 T1p)
(410 ‘9T ‘€10 €1n)
TS ‘ST, ‘T, EH:V
(41a ‘ST “2Tn 0Tp)
TS Yig ‘Clp, BEV

AmHD\ Vi ‘2lp, WN:@v

(9T la *60 8n)

(§Ta Vg ‘7o {V1n)
(LT g ‘01g t6n)
(LTa 9Ta ‘T1g {T1p)
(L1 9T *01g {0Tp)
(4Ta ‘V1q 0T {0Tp)
(§Ta V1 “T1g (%n)
(41a ‘910 €T {01p)
(§Ta ‘elq ‘11 {%n)
(9T Cla ‘01g (0Tp)
(9T V1 “T1q {6n)
(9T “€Tq ‘T1g t6n)

ANHD\ ‘€T ‘0Ip, mo:@v

AmS ‘TTp ‘Lo, mgv
(ETa TTq ‘0o {0Tp)
(€Ta ‘2a ‘9 Sn)
(Vi “€Ta ‘lg tLn)
(§Ta *€1a “6a 6n)
(§Ta ‘€1q ‘2Tq %n)
Q ‘el 6. 9n)
q ‘0T ‘8 ¢

0, 40T, ‘L, tim,

0 ‘0T “8, ‘S,
Tn ‘0T ‘8n, ‘8N,

91 ‘TIp ‘6, t6m

(Fla

(¢t n)
("o tn)
(Vo *¥la ‘6a tin)
(Fla #n)
(¢ #n)
()

(0T “9q ‘€q t2n)
(3t “La “sa ¥n)
(Ta “Sa ‘Fa t¥n)
(0Ta “6a ‘€q t€n)
(2T ‘Tia ‘Sa ton)
(Tl ‘60 ‘8a 1¥n)
(8 ‘Sa ‘Cn ien)
(6 ‘Sa ‘Ca ien)
(6a ‘9 ‘a i2n)
(11a “2a ‘Sa t<n)
(6a ‘La ‘va iZn)

(6a ‘9 ‘Va :Zn)

(% ‘Sa ‘€a itn)

S0 ‘%0 ‘In FHB\V
0 ‘en fTn tn
0 ‘€n ‘e tn
0 Lo T ¢
0 Lo T ¢
0 ¢S T, ¢

H
-
-
-

0N Yo tTn tin
0 ‘Sn fTn tin
0 ‘e ‘Tn tIn
0 € 4T, fIn,
060 4T, fIn,

82 ‘va ‘Tn tIn

(

(5 n)
(5 n)
(%0 n)
(%0 n)
(% n)
(*a7a‘latin)
(% n)
(% n)
(% n)
(% n)
(% n)
()

{8710}
{sc‘T0}
{8‘z‘10}
{L9‘c‘0}
{2990}
{L¢% 0}
{L9°¢"0}
{L¢‘¢‘0}
{L7¢0}
{L9°C 0}
{26z 0}
{2720}
{L¢T 0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

119

obod jxou U0 panuUUO,) — G B[R],

(9T 9 € $9Tn)

(LT Cla ‘60 6n)

(LT “Cla ‘60 t6n)
(LT “9Ta ‘lg (2Tn)
(4Ta ‘910 ‘€T (€1n)

ANHQ ‘CTp ‘Sp Wm:wv

(LTa *V1g ‘€T {6n)
(9T *STa ‘1T 8n)
(9T Vi ‘1T ‘8n)
(9Ta ‘€10 ‘8 8n)

(§Ta V1 ‘TTg {Tip)

A@ﬁb ‘01 “Sp, nwﬁv

(STa ‘el ‘Tig tLn)
(VT “€Ta 9 49n)
(STa ‘€Tq ¢0Tq tLn)
(Via ‘Tiq ‘60 49n)
(el ‘la ‘Yo ivn)

A:@ ‘€1 ‘90, nw\;v

(0Ta ‘4o Ca Zn)
(0Ta ‘Sa ‘Ca ien)
(8 ‘Sa ‘a :Zn)
(0Ta “2a ‘Ca en)
(0Ta “9a ‘Za en)

ANHQ I ‘T, QB\V

60 ‘Sn ‘Tn FHB\V

0 a1 fIn,

Aﬂb\“ﬁb\pﬁ
nm;nﬁb\pﬁ

60 ‘€n ‘Tn tIn

(

(% n)
(*0 72 Tatin)
(% n)
(5 n)
()

Ln, T, ‘0, t0n,

()
(4)
(90 €0 *0q ‘0n)
(%)
(%a)
()

{Te‘1°0}

= (pue g = u 99s ydeisd jusuoduod-om T,

AS@ Y ‘11, m@;v

Ag@ ‘€1n ‘01p, mwiv

AmH:\ ‘Tlp “6p, mhﬁv

(La ‘o ‘Ca ien)

(% ‘€a‘ta iIn)

(8 ‘a0 :0n)

{F‘z10}

= (] pue g = u 99s ydeis yuouodurod-om J,

Ahﬂé ‘91 ‘Y, QHB\V
ANHD ‘910, ‘9, nwﬁj\v
AwHD ‘€I ‘€ ‘CIn v

)

AmHQ Vi ‘Yo Vin

Amﬂb\ ‘Clp ‘0Ip, moHS\V
AmHD Vi ‘o mij\v
Awﬂa ‘1T, “01p, mo:@v

ANHD ‘€Tn ‘T, mmﬁﬁv

(STa ‘6a ‘Lo iln)
Am:@ ‘2Tp “Sp, nmiv
AnﬁD ‘CIp ‘60 umiv

Amz; ‘Tl ‘11p, ::&

(TTa 9 ‘Sa tn)
A:D ‘0T, ‘€, ﬁmﬁv
(ela ‘Sa ‘va ivn)

(0Ta “2a ‘€q en)

a0 ‘€n ‘Tn Qﬁv

60, ‘S ‘¢ tIn
L0 ‘e fTn tIn,

6090 ‘Tn tIn

(
(n)
(n)
()

80 ‘Cn, ‘0p, uoj\v

L0 T ‘0 ¢

80, ¢S ‘0, 0N,

(
(
(
(

on)
81, 9, “0p, 0, v
)

{s‘cv'0}
{s‘2¢‘0}
{8‘9°¢‘0}
{8‘c‘c‘0}
{8F7‘c‘0}
{8‘2c‘0}
{8920}
{8‘c‘z‘0}
{8720}
{8‘c‘z‘0}
{8210}
{8910}
{810}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

120

obod jxou U0 panuUUO,) — G B[R],

9T ‘ST ‘€In ‘€In LT ¢TI ‘0T 8N Y1n “8n ‘Lo Sn Cln ‘90 ‘Sn ten Yo ‘€n tTn tIn 60, ‘T, ‘00 L0n, &
()| ()|) | ()|«) | () | {6¢'c'o}
AN.H@@H@Q@"@TDV AmHDQﬁD@D“@ﬁv Amﬂgﬂmﬂbﬁmgmwﬁv A:xiﬁ@nm@mm\@v AS@"@@ANDQ\DV A QSROSROBV Amﬁw“«m “OW
A I ‘910 ‘Lo ‘910 v Am:@“m@nm@mwﬂ v Awﬂgﬂmﬂgﬁwgmmﬁv AMHQQHDQ@QQ& A 10, ¢80, ‘%, tIn, v A QQho@noﬁv AQRNTH “OW
AN.H@“@H@Q@GH v Amﬂéﬁwﬂgﬁméwwﬂg@v Amﬂéﬁmﬁbﬁmémm:& A:Q“wéﬁmammﬁv A ko 1n fIn v A 6@5@5&& ﬁmwﬁ@“._” NOW

LT ‘91 ‘L 491N Vi ‘€In ‘T ‘€In ST ‘110 ‘90 ‘9n ¢l ‘8n ‘e ten nCn Tn ttn 0 S0 0n ‘0 ‘ot
() | ()| () | () | (Ot n) | (%) | {6's‘T'0}
Ahﬁb\hwﬁaﬁmﬂémms@v Amﬁbﬁmﬂaﬁzbm:ﬁv Awﬁm@ﬁw@ﬁ@mnj\v Awanmbﬁmbmwﬁv A ‘S ‘1n tn v A nwaﬁoénoﬁv ﬁ@&wnﬂ ﬁOW
Ahﬁbpwﬂaﬁém@:@v Amﬁb\pmﬁapmﬁ@mm:& Aﬁ:@ﬁw@nwammﬁ\v A:Qnmanmammﬁv A In ‘Tn ‘e tIn, v A ano@no\;v ﬁaﬁm}ﬂ pow
A@H@hmﬁépiamﬁﬁv Amﬂapmﬂanmagﬂiv Aﬁb\noﬂaﬁw@mw\;v Ananwapmb\mmﬁv Azgﬁuaﬁm:\m\;v A Qb\oaﬁoﬁv AQAN ‘1 pow

Vg ‘¥p ‘o ‘¥in LT, ‘91 ST t6m, €I ‘Clpn ‘Sn ‘Sn, 1T ‘01 ‘€n ten, 60 ‘Ln ‘T tIn 0 ‘90 ‘0n, 0N, “99¢
() | (n) | () | ()| () | (e) | {8290}

ST ‘¥ ‘Cn tSIn LT ‘91 VI t6m €T ¢TI ‘0T L9 110 ‘80 ‘€n ten 60,90 ‘Tn tIn n ‘S ‘0n 0N, N ATch
() | ()| ()| () | n) | (t) | {s‘L¢'o}
Amﬂanmaﬁmb\mmﬁﬁ\v A»ﬂanwﬁan:x@m:ﬁ@v Aw:@nmﬂ@“wbmwj\v Amﬁb\ﬁo:@nw;mw@v AQDANDQQQ v A 5@5@5»\& ﬁwuwnmnow
Amﬂaﬁmﬂbﬁmammﬁiv A@HDnmﬁguwémwS\v Amﬂbﬁwﬁgﬁ:b\mhﬁv Ao:@nwaﬁm;mmﬁwv Amgﬁmbﬁbgﬁv Auéhv§n09no§v ﬁwuﬁ JNAOW
{v‘¢‘z‘0} = @ pue 6 = u 90s ydeisd jueuoduod-om T, {8970}

14

9 1S ¢ 1S RS ¢ g z 1S I 1815

MOP@M@Q@U

obnd snowaid woif panuuoy) — 9 aqr],

121

obod jxou U0 panuUUO,) — G B[R],

(9T 2lq ‘Eq 2n)
(§Ta ‘90 ‘€ t5Tn)
(4Ta *9Tq ‘€q 2Tn)
(4Ta *9Tq “TTq ‘8n)

A©H§ ‘€1 ‘T, Wmﬂﬁv

(4Ta ‘V1g ‘0T {01p)
(LTa ‘Vig ‘2T 8n)
(§Ta ‘V1q ‘0T {0Tp)
(5Ta ‘7109 9n)

ABHQ ‘GIp ‘TIp, nwﬁv

STn ‘€10 ‘90 ‘9In
Tn ‘€1 ‘L tin
0 ‘Sl ‘8 ‘8n,

TIn ‘Clp ‘Lo ‘Tn

VI ‘Tl ‘S ‘Sn

()
(9 n)
(Fa n)
(¥ n)
()

A:Q ‘60, ‘T, en
A 10 “8n, ‘0 ‘on,
A a‘La ‘2 fon
AOHQ ‘G, “Cn, fon

)
n)
n)
n)
)

AOHD ‘90, ‘€n, ‘en

(8 ‘%a ‘Ta in)
(0Ta “Sa ‘o ‘in)
(% ‘%a ‘Ta iin)
(6a‘¥a ‘T ln)

Awa Ya ‘T {in)

{ez'T'0}

= (] pPu®e 9 = U 998

ydeis jueuodurod-o91y T,

91 ‘€I ‘T t€In
In ‘Vip ‘Sn Vin
n

9T, Vi ‘S VIin

()
(- n)
A aSTn ‘9n ¢S v
(n)
Awaa Vi ‘Sn nw:&v
TS ‘Yip ‘Tl mm:@v

ANHQ ‘GIp ‘T, mmﬁﬁ\v

Ahﬁb\ ‘GIp “CIp, mm:&
AS@ ‘ST “Clp, mm:&
Ag@ Vg ‘T, mﬁﬁv
LT ¢Tlp ‘0Tp ﬁoﬂj\v
TIn ‘€In ‘TIn ‘TIn,
TIn ‘€I ‘TIp ‘TIn,

V1 ‘Clp ‘0Tp ‘0In,

(
(+ n)
(° n)
()

("1 ‘8a ‘Sa Sn)
(£Ta 8 ‘Lo)
(¢Ta ‘Lo ‘<a in)
(ST ‘€T 9 49n)
(ST ‘2l 8 49n)
(STa ‘8a ‘90 :9n)

A@ﬁ@ ‘T ‘Lo, uh\;v

(Tl ‘Lo ‘2a ien)
(112 ‘9 ‘2a ien)
(2Ta “Tla ‘€q t€n)
(TTa ‘6 ‘Fa Zn)
AOS ‘90, ‘T, Q:v
(La ‘va ‘Ta i2n)

(§Ta ‘8a 90 :7n)

(0T 90 ‘Ta ‘In)
(0T ‘va ‘1o iIn)
(0T *6a ‘1o iIn)
(8 ‘€a ‘T iTn)
(La‘€a ‘T iin)
(0Ta ‘€ ‘Ta In)

(S ‘€a ‘Tailn)

{6270}
{6970}
{6‘¢7‘0}
{6°s‘c‘0}
{6°2c‘0}
{6‘9‘c‘0}
{6°¢c 0}
{67c‘0}
{6°8°c‘0}
{6°2c‘0}
{6°9°c‘0}
{6°¢‘z‘0}
{6720}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

122

obod jxou U0 panuUUO,) — G B[R],

LT 910 ‘S0 491N,

()
(L0 9Ta ‘7o {91n)
(9T “4Ta ‘Lo {9Tn)
(9T “4Ta *La {9Tn)
(§Ta ‘€1q 2Tg (21n)
(4Ta 4910 ‘ST {STn)

SIn ‘90 P SIn

In ‘Sn ‘€n S

H
a ‘Yo € tSn,
T
T

a9 ‘cn tSIn,

9T ‘T, “€n ‘91N,

()
(¢ n)
(e n)
(£1a 7 ‘€a :¥1n)
(e n)
()

Amﬁ; ‘Tlp ‘2, mmsgv

(§Ta V1 90 ¥1n)
(Vo ‘€10 ‘S £Tn)
(4Ta ‘2ln ‘8 tn)
(4Ta ‘V1g €T (€1n)
(410 ‘0T ‘8q tin)
(V1o ‘€1 ‘2ln 21p)
(1o ‘€ “Tn t2Tn)
(41a ‘9T ‘71a 8n)
(4Ta ‘11 ‘2o ¢1Tn)
TS YIp “6p, mazv
(41a ‘el ‘€q t2Tn)
TS Y ‘€lp, mwsv

Ahﬁ@ ‘€Tn ‘6 um\;v

(ETa “0Ta ‘7o t€n)
(ST 0Tq ‘60, 6n)
(Va6 ‘S)
(%la ‘6a ‘8a 8n)
(9Ta ‘60 ‘90 ¢9n)
(6 ‘8a ‘Lo iln)
(410 4910 “8q 8n)
(ETa ‘@la Vo tvn)
(9T “€Ta ‘Lo ttn)
(9T STa ‘@l1g tLn)
AE@ Yin ‘Lo, ﬁzv
(ST €la ‘T1g t9n)

A@.ﬁ@ Y1 ‘9n uwﬁv

(eTa ‘6a ‘€q 2n)
(%la ‘8a ‘€a en)
(€T ‘Ta ‘€q tn)
(% ‘€a ‘Ta :2n)
("I ‘2a ‘Sa ivn)
(% ‘S ‘va ivn)
(V1o “€Ta ‘Sa tSn)
(1T 0Ta ‘%a {en)
AEQ ‘¢lp, ‘Sp, ﬁm:v
(TTa ‘Lo T Tn)
?5 AN 7 :Sv
(8 ‘La ‘Ta iTn)

(TTa ‘2a ‘€q tn)

A:® ‘80, ‘2 Qﬁv

T ‘Lo ‘2o ‘In,

9% ‘e tIn
H
In ‘Va ‘T tIn

ITn ‘€n ‘Cn ‘In

(n)
(Mo n)
(Ma S ‘latin)
(! n)
()
(T “0Tq ‘%q (en))
(6a ‘Lo ‘tailn)
0Tq ‘8 ‘T ¢Tn)
Ia 9 T ¢1n)
Q80 ¢Ta tIn
In 490 In tIn

0T ‘S ‘TIn tIn

(
(°
(“a n)
(° n)
()

(La ‘Ta 0n :0n)
(% ‘Ta 0a :0n)
(0a ‘T ‘0q (0n)
(0Ta ‘Pa ‘0 (0n)

Ama ‘In ‘0n :0n)

AOHQ ‘I “0p, noﬁv

{or°21°0}
{or‘o‘t o}
{or‘s ‘T 0}
{or1 710}
{or'e‘t°0}
{or‘z'1°0}
{6°8°L°0}
{6890}
{6°29‘0}
{6°8‘c‘0}
{6°2°c‘0}
{6°9‘c‘0}
{6970}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

123

obod jxou U0 panuUUO,) — G B[R],

TS S AN mgv
(41a V1 TTg {Tip)
(9T ‘8a ‘€a 9N
(410 910 ‘€T (€1n)

(LTa ‘6a ‘Lo iln)

(9Ta €T 9 ¢9n)

(9Ta ¢ETq “0Tq 40Tn)

(STa ‘€Tq ‘2q {0Tp)
(STa ‘6a ‘Sa Sn)

Awﬁb ‘ST “8p, nwﬁv

A@.ﬁ@ ‘CIn ‘8, umﬁv
Amﬂb ‘TIp “‘6q, ﬁmﬁv
ANHQ ‘eI ‘Lo, C.»Dv
("1a ‘8 ‘Lo vn)
(

Via ‘9 ‘o ivn)

(6a ‘Sa ‘Ta :Zn)
(8 ‘Sa ‘a :Zn)
("1a ‘6 ‘o ivn)
(eTa ‘9a ‘Ca en)

AMHQ ‘eIn ‘Sp Fmﬁv

(TTa 7o “Ta)
(La‘¥a ‘la:in)
(TTa % ‘o ‘in)
(TTa ‘va ‘1o In)

(TTa ‘€a ‘Ta In)

(La ‘€a 0n :0n)
%@ ‘€ ‘0n mo:v
?5 ‘G ‘0n 63
?5 ‘€ ‘0n 65
)

(0T ‘@a *0q (0n

{e¥v1°0}

= (pue g = u 99s ydeisd jusuodurod-om T,

ANHQ ‘CTp ‘Lo, Wm:@v

Awﬁa YIn ‘9 W:\;v

Am:@ ‘Sn ‘€n, pmﬁ\v

(el ‘6a ‘Yo en)

A:Q ‘80 ‘T, Qﬁv

(0Ta “2a ‘0 :0n)

{g‘¢‘1°0}

= (pue g = u 99s ydeisd juouoduod-om T,

AmHQ ‘€1n ‘Sn mmH\;v

AS:\ ‘Tl ‘L, mnﬁv

(9Ta ‘80 ‘9, :9n)

("Ta ‘6 ‘o iTn)

(TTa ‘€a ‘Ta In)

(0Ta ‘e ‘0a (0n)

{ez10}

= (] pue g = u 99s ydeis yuouodurod-om J,

?5 ‘91 ‘T, Q:@V
ANHD ‘9T, ‘8p, ﬁﬁv

ANHD ‘ST ‘8p, ﬁﬁ\v

Am:@ ‘TTp, “6p, ﬁaﬁv
(STa “2a ‘9 :9n)

(9Ta “2a ‘9 :9n)

(STa ‘8a ‘Lo Sn)
Awﬁb ‘€I ‘Sn uwiv

AE; ‘2Ip “Sp, :SV

(€T 9 ‘Sa tn)
(el ‘Ta ‘€q tn)

(§Ta ‘Pa ‘€q tn)

(Ya ‘€a ‘1o iin)
ASD ‘01p, ‘Tn Qﬁv

(TTa ‘6 ‘Ca iin)

(0Ta ‘@ ‘0 (0n)
(6a ‘Ta ‘0n :0n)

(0Ta ‘T ‘0q (0n)

{or°2¢'0}
{o1°9‘¢‘0}
{o1‘c‘c‘0}
{o17°¢ 0}
{0162 0}
{or°s°z 0}
for<zz'o}
{019z 0}
{o1°c‘z 0}
{01720}
{or°¢‘z 0}
{o1°6‘1°0}
{o1°8°1°0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

1S

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

124

obod jxou U0 panuUUO,) — G B[R],

{¢¥'¢0} = @ pue 6 = u 90s ydeisd jueuoduwod-om T,

(9T 8“5 9Tn)
(T 0T ‘2q {01p)
(LT v % 2in)
(4T v % t9Tn)
(9Ta ‘o ‘€ 9Tn)

AmHQ ‘11 ‘€n W:\;v

(§Ta “¥a ‘ta (STn)
(4T 9Tq “2a t1n)
(¢Ta *¥a ‘Lo tn)
(910 “¥1a 6a 6n)
(ST ‘¥1q ‘60 t6n)
()

LT ‘91 ‘L tin

(LTa ‘V1g ‘€T {Ln)
(Via ‘€10 Vo trn)
(9T V1 TTa t9n)
(41a ‘el ‘Lo tin)
(41a ‘€T 2lg tin)

AEQ ‘€10 ‘S, nﬁ\;v

ANHQ ‘6, ‘Cn, hmﬁv
cln, ‘8n ‘e ten
€n

(
AMHQ ‘80, ¢€n, ¢
Amﬁb ‘80, ‘€n, ‘en

n)
n)
)
(%0 “2a ‘%a ten)

(el ‘9 ‘2a ien)

(Tt ‘2a ‘1o in)
(TTa % ‘o ‘in)
(629 ‘T i1n)
(112 9 ‘Ta In)
(112 9 ‘Ta ‘In)

(0Ta ‘S ‘Ta {Tn)

(0Ta ‘9 ‘0 :0n)
(6a ‘%a 0a :0n)
(0Ta ‘S ‘0q (0n)
(0Ta “Sa ‘0n {0n)
(0T S 0q {0n)
)

(6a ‘va ‘0q :0n

{sv‘c‘0}

= (pue g = u 99s ydeisd juouoduod-om T,

AmHQ ‘IIg ‘€n m:3v

AS:\ Y ‘Lo, mnﬁv

A@HQ ‘€1 ‘90, mw\;v

(eTa ‘6a ‘Cn ien)

(82 ¢a ‘Tatn)

(0Ta ‘7a ‘0a (0n)

{cez0}

= (] pue g = u 99s ydeis yuouodurod-om J,

ANHD ‘€1 ‘Sn mm:&v
ASD ‘91 ‘Lo, mnﬁv

AZD ‘GIp “Lp, mnﬁv

Am:D ‘ST ‘€, mzj\v
Amﬁb Y1 ‘Sp ﬁmj\v

A@ﬁ@ YIn ‘60 uw\z\v

AE@ ‘60 ‘S, :Sv
AmﬁD ‘2T ‘9, umiv

(€Ta 9 ‘€q)

(ela ‘2a ‘Ca o)
(TTa ‘Sa ‘Ca ien)

(ela ‘Sa ‘Ca ien)

(TTa % ‘o {Tn)
(0Ta ‘7a ‘o iIn)

(Tt ‘Pa ‘1o In)

(0Ta ‘7a ‘0q :0n)
(6a ‘€q ‘0n 10n)

(0Ta ‘8a ‘0 (0n)

{or‘s‘9°0}
{or°29°0}
{o1°6‘c 0}
{o1'8‘c‘0}
{or°2c‘0}
{o1°9‘c‘0}
{o16 70}
{o1°8°7 0}
{o1°27 0}
{01970}
{o1°¢v 0}
{o1°6‘¢ 0}
{or‘s‘c o}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

125

obod jxou U0 panuUUO,) — G B[R],

(9T “TTa ‘60 6n)
(LTa “STa ‘80 19Tn)
(LT Vg ‘Clg (2Tn)
(LTa “4Ta ‘80 {9Tn)
(9T “4Ta ‘S0 49Tn)

(9T *01q “6a 6
(4Ta 4910 ‘60 $9Tn)
(L1a 4910 ‘60 $9Tn)
%5 ‘ST, ‘8p, WE:V

(870 9 “Sa {5Tn)

(Sa ‘va ‘ta i€in)

(9T 9 S $9Tn)

ANHD ‘T, €n MNHB\V

TS ‘€Tn “Sn mw:v
(9T 0T ‘€0 {0Tp)
(ETa ‘0Ta ‘80 8n)
(V1 “2ln ‘01q {0Tp)
(L1 ‘L 9 :9n)
(4Ta ‘€109 $9n)
(§Ta *01q “Sa tvn)
(§Ta ‘T1q ‘0T {01p)
(€T ‘0Tq ‘60 6n)
(2T ‘€ T &in)
(LTa 9Tq ‘V1g t1n)
(2T ‘v Ca &in)

ANHD ‘9T ‘€1 ﬁﬁv

ST ‘90 ‘Yo thn

nm.b\smgn

(

A 10, 60, ‘S, ‘SN,
A an
AS@ ‘60, “La, fSn,

)
n)
n)
)
(Via ‘Tl ¥a €n)
(§Ta ‘Tia S tvn)
(Via ‘7o ‘€q tEn)

("1 ‘8a ‘Y tn)

(41a ‘Lo 90 49n)

(4104910 “2a tn)
(§Ta “€Ta ‘90, 49n)
TS ‘GTp Vg, ﬁzv

A@.ﬁ@ Y1 ‘Sn umﬁ\v

(V1a ‘0Tq ‘Sq ten)
(§Ta ‘Pa ‘Ca en)
(STa ‘6 ‘o ivn)
(€T ‘9 ‘va Tn)
(€Ta ‘0Tq ‘€q t2n)
via ¥ € En)

Tn ‘8 ‘Cnt

VYin ‘¥ ‘€n ‘en

(
(sa 50 %a en)
A 10 ‘L ‘€ tCn, v
()
A 555@;%3
(eTa ‘0Ta ‘€q tEn)
AmHD ‘0T ‘€, :mB\v

(TTa ‘8a ‘Ca ien)

(%la ‘ta ‘o In)
(el ‘2a ‘o ‘in)
(% ‘€a ‘T iln)
(S ‘€a ‘Taln)
¢ln ‘60 T tIn

1080 ‘% tIn

()
(¢ n)
A QLo tin tIn v
A 29, ¢Cn, In v
(¢la ‘S ‘T t1n)
(T1a *01q “Ta {Tn)
(1o ‘8a ‘T tTn)
(TTa ‘60 ‘T tTn)
()

0T ‘L ‘TIn tIn

(La ‘%a 0n :0n)
(11a ‘% ‘0 t0n)
(11a ‘ea ‘0 t0n)
(11a ‘eq ‘0 t0n)
(8a ‘Ta 0g t0n)
(La ‘1o ‘0q {on)
(11a “90 ‘0q 0n)
(Sa ‘1o ‘0q {on)
(T1a “1a ‘0q {0n)
(60 ‘82 40a t0n)
(6a ‘Lo ‘0a {On)
(8a ‘La ‘0a {On)
()

60, ‘9 ‘0, 0N,

{r1°2z'0}
{r1'9°z 0}
{1r°¢‘z 0}
{11720}
{11°8°'1°0}
{rr21°0}
{11°9T°0}
{rrc'1'0}
{r1v1'0}
{o1°6‘3°0}
{o1°6°L 0}
{or°8°L 0}
{or‘6‘9 0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

126

obod jxou U0 panuUUO,) — G B[R],

(L1a ‘€Tq ‘Eq (€Tn)
(9Ta ‘6a ‘Za 6n)
(LT ‘ST “TTa {TTn)
(410 49Tq ‘2Tq (2Tn)
(STa ‘8a ‘Lo {¢Tn)
(4T “STa ‘90, 49n)
(LT “F1a ‘90, 49n)
(ST Cla ‘Sa (81n)
(LTa Fg ‘T1g {T1n)
(LTa “¥g ‘Lo {V1n)
(91a ‘6a ‘ea {9Tn)
(9T 6 ‘Lo tn)

ANHD Y1 ‘Sn Fwﬁ\v

(9T 2lq ‘2q 2in)
(4Ta ‘€109 490
(9T ‘V1g ‘0T {0Tp)
(V1 *01q “€q 0Tn)
(410 ‘9T *60.49)
(9Ta ‘¥Ta ‘8q ton)
(970 ‘€T ‘8a t5n)
(9Ta ‘60 ‘o t6n)
(9T ‘€Tq *01n 01p)
(9Ta *01a “8q tn)
(V1o ‘€T ‘€q 0Tn)
TS ‘SIn “Sn 63

(9Ta ‘2a ‘Sa Sn)

AmS ‘TTp ‘Lo, mgv
(§Ta “Tia ‘8a t¥n)
(6a ‘La ‘€a :tn)
(STa ‘6a ‘80 ¥n)
(Via ‘€1 ‘9 (€n)
(¢1a ‘L ‘Yo ivn)
(§Ta ‘el Lo tvn)
(41a ‘€109 $9n)
(ST Cla ‘60 6n)
(STa ‘6 Vo iTn)
TS ‘0T ‘90 sz
(ETa 9 Fa)

A@.ﬁ@ ‘TIn ‘90 uw\;v

AvHD ‘0T, ‘9, FQB\V

A I ‘0T ‘€ Fmﬁv

€10, “8n, ‘Cn ‘Tn
a Lo et

T N
0%, 4%0, 4T,
T m

()
(¥ n)
(¢la n)
(Tl ‘a ‘Ca i%n)
(0Ta ‘S Ca Tn)
(V1o “0Ta ‘€q t€n)
(8a ‘Sa ‘a i2n)

(§Ta ‘% ‘Ca o)
AmS ‘8n, “Ln, :Sv
(V1a ‘ela ‘Sa ten)
(

€I ‘0T ‘T FNB\V

(6 ‘Sa ‘Tain)
(%l ‘Sa ‘o ‘in)
(el ‘Sa ‘o ‘in)
(% ‘%a ‘Ta in)
(TTa ‘va ‘Ta In)
(2Ta 0Tq ‘Ta {Tn)
(6a ‘va ‘o iln)
(82 ‘va ‘o iln)
(La ‘7o ‘Taiin)
(et % ‘o Tn)
(el ‘Sa ‘o Tn)
(0Ta ‘€ ‘Ta In)

(6 ‘€a ‘T in)

(8 ‘Va 0n :0n)
(La ‘Va 0a :0n)
(% ‘Va 0a :0n)
(Tta ‘Pa ‘0q (0n)
(0Ta ‘€q *0n {0n)
(6a ‘€ “0n ¢On)
(TTa “€q 0 {On)
(TTa “4a 0 {On)
(9 ‘€a 0n 10n)
(T1a ‘€a ‘0a {0n)
(T1a ‘¥a ‘0q {0n)
(Tt ‘2a “0a 0n)
()

1T ‘T ‘0, ‘0N,

{r1'8v 0}
{r12%0}
{11970}
{r1c'v o}
{1t'ot ‘e 0}
{11°6 ‘¢ 0}
{11'8'¢ 0}
{rr2c'o}
{r1'9‘c‘o}
{r1c‘c’o}
{r1vc'o}
{r16‘z'0}
{r1'8°z 0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

127

obod jxou U0 panuUUO,) — G B[R],

(STa ‘9 ‘7o {¢Tn)
(STa ‘S ‘7o {¢Tn)
(L1 ¢T1q Fq {TTp)
(STa ‘8a ‘€a {¢Tn)
(9Ta ‘% ‘¥ (9Tn)
(9Ta “Sa ‘Pa 91n)
(60 ‘8 ‘€q 9Tn)
(9T “Tla ‘7o {Tin

)
AS@ Tl ‘Tin v
)

A®H§ Tl ‘T Tin

Ahﬂé ‘9T ‘TIg, mzﬁv

(€Ta ‘6a ‘Za 6n)

Am:D ‘60, ‘2, mmﬂﬁ\v

(LT *01q “€q 0TD)
(410 4910 ‘2 6n)
(9Ta *9Ta S tSn)
(4Ta ‘T1g ‘2 {TTn)
(§Ta ‘S “€a t9Tn)
(S1a ‘6a ‘2 6n)
(41a ‘9T ‘T1q (9n)
(410 *STa 90 490
(1o *0Tq “€q L0Tn)
(41a ‘910 0T {01p)
AmS ‘0Tp ‘T, :Sv
TS ‘910 ‘90, 63

Ahﬁ@ ‘0T ‘9 uw\;v

(9T VT “Sa t5n)
(VT “€Ta 9 49n)
(Va ‘6a ‘€q)
(9T ¥Ta “Sa t5n)
(L1 ¥1q ‘2Tn 9n)
(LT “€Tq ‘1g t9n)
(§Ta ‘¥ia ‘7o {vn)
(V1o 8 € En)
(4Ta ¥1a ‘90, 49n)
(V1 ‘8a ‘€q ton)
("a ‘6a ‘€a tn)
(§Ta 8 T ¥n)

A@.ﬁ@ ‘€1 ‘S, uw\;v

(€Ta ‘Tiq ‘2q t2n)
(TTa ¢0Tq ‘€q ten)
(€Ta ‘8a ‘Cn ien)
(€Ta ‘0Ta Fa t7n)
(€Ta ‘01q ‘2q ten)
(V1o “0Ta ‘€q t€n)

€In ‘L ‘T tTn
QL on ten

In ‘Ln ‘%0 ‘on
0 ‘8n, ‘%0, ‘Tn,
T

Lo ten ttn

()
(¥ n)
(¥t n)
(£1a ‘6 ‘Za ten)
(Fla n)
(v n)
()

Vin ‘Lo ‘€ tEn

Aﬁb\ ‘8, ‘I Qﬁv
¢ln ‘60, ‘1 tIn,
In

(
ANS@ ‘L Tt
ANS@ ‘L T fTn,

n)
n)
)
(6 ‘2a‘Taln)
(82 ‘ta‘tailn)
(ela 9 ‘Ta In)
(2T “0Ta ‘Ta {Tn)
(2Ta 60 “Ta ¢Tn)
(21a“9a ‘1q {Tn)
A QLo Tt In v
(21a ‘S ‘1a {Tn)
()

Cln ‘Sn ‘In tIn

(6a ‘2a ‘0n :0n)
(8 “2a ‘0n :0n)
(0Ta ‘9 ‘0 (0n)
(60 ‘9 0a :0n)
(TTa ‘8 ‘0q (0n)
(TTa 9 0 {0n
(0T “Sa <0 L0n,
60, ‘S, *0n, 0n
0 “Sn ‘0, <0n

9, ¢S ‘0, 0N,

n)
n)
(n)
(%o n)
(#a*4n “0a t0n)
()

A:D\ ‘0Tp, “0p, ho\\@v

(Tta ‘Pa ‘0q (0n)

{r16°L0}
{rr'g°L0}
{r1'o19°0}
{11°6'9°0}
{11°8'9°0}
{r1°2°9°0}
{1101 ‘¢ ‘0}
{r1'6‘c'0}
{r1's‘c'o}
{r12c'o}
{r19‘c‘0}
{r1'01 70}
{r1°6 70}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

128

obod jxou U0 panuUUO,) — G B[R],

{9920} = @ pue 6 = u 90s ydeisd jueuoduwod-om T,

A\LHQ ‘Tl ‘6p, ﬁmﬁv

A@H@ ‘11, “8p, jwﬁv

Amﬂb ‘01p ‘€, “mﬁv

("1 9 ‘Ca ien)

(§Ta ‘Sa ‘o ‘in)

Ta ‘¥ ‘0n mo:v

{9‘¢‘20} = @ pue 6 = u 99s ydeisd jueuoduwod-om T,

{F¢‘1°0} = @ pue 9 = u 99s ydeis jueuoduwod-eo1y T,

ANHD ‘€1 ‘S, nmﬁv

(L1 ‘8a ‘Sa iSn)

A@HQ ‘eI ‘Lo, nwj\v

A@ﬁb I ‘L, nwﬁv

Amﬂg ‘I, 9q, nmﬁv

Amﬁb ‘01 “9q, nm\;v

AwHQ ‘0Ip ‘Cn, Fmﬁv

(V1a ‘6a ‘2a i%n)

A@.; Ya ‘T {in)

(§1a ‘va ‘Ta In)

Awa ‘€q ‘00 :0n)

ANHQ ‘€ “0p, noﬁv

{7210} = @ pue 9 = u s9s ydeisd juounodurod-eo1y T,

{9710} = @ pur g = u 99s ydeid juouoduod-om T,

ANHQ ‘TIn ‘Sn mmﬁ\v

A@HQ ‘I, 490, mj@v

AmHQ ‘01 ‘€, mm3v

("Ta ‘6 ‘7o en)

(§Ta ‘8a ‘Ta ‘In)

(La ‘2a ‘0n 10n)

{9‘¢‘10}

= (] pue g = u 99s ydeis yuouodurod-om J,

?S ‘Cln ‘90 mms\v
Anﬂb ‘110, ‘9 ﬁmﬁv

Am:D ‘60, ‘S0, mmﬂﬁ\v

A,OS ‘ITp, ‘S, :Sv
A@ﬁ@ ‘0T ‘Sp QNS\V

Aoﬁb ‘€ ‘2, moﬁ;v

Am:@ ‘0T ‘T nmiv
Am:@ ‘6, ‘T, ﬁmﬁv

ANﬁ@ ‘€1 ‘9 uwﬁ\v

("Ta ‘6a ‘€q en)
("Ta ‘8a ‘€a en)

AmHD Vi ‘o QB\V

(§Ta ‘8 ‘Ca iTn)
(§Ta ‘2a ‘Ca iin)

(%la ‘8 ‘Ta ‘In)

(La ‘Ta ‘0n :0n)
(¢ta ‘Ta ‘0q (0n)

(Tta ‘2 ‘0q (0n)

{z187 0}
{c127 0}
{z1°9% 0}
{er'6 0}
{er'g'eo}
{z1L°¢ 0}
{er'9'¢0}
{z1'8°2 0}
{z1°22'0}
{z19°2 0}
{z1°21°0}
{z191 0}
{rr'o1°2°0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

129

obod jxou U0 panuUUO,) — G B[R],

ANHD ‘91 ‘S, Fmﬁ\v

AmHQ ‘0T ‘Tp, mwﬁv

Aws@ ‘6 ‘€n Fmﬁ\v

AmﬁD ‘8n, ‘T, ‘en

)

Aﬁb\ ‘Lo ‘T Qﬁv

Aza ‘9n, ‘0n “oiv

{9‘¢‘e‘0} = @ pue ¢ = u 90s yderd juouodurod-omJ,

{F¢‘c‘0} = @ pue 9 = u 99s ydeis jueuoduwrod-9o1y T,

{97¢0} = @ pue 6 = u 99s ydeis jueuoduwos-om T,

(4Ta Tla S ton)
(4o ‘9T *0Tq t9n)
(41a ‘2T ‘To tLn)
(1o ‘¥Ta ‘0Tq t9n)
A T ‘€1, ‘01, S, v
(L1a ‘2lq 0T {9n)
()

LT ¢TI ‘0T L9

(9T ‘Tia Vo tvn)
(§Ta 6 Fa)
(91a ‘60 ‘Yo i¥n)
(9T 6 Fa)
(9T Cla Vo tvn)
(9T ‘Tia ‘7o tvn)

AwS ‘6, ‘T :Sv

(Ta “0Tq ‘€q t€n)
(V1o 8 € En)
(ST ‘8a ‘€q i)
(§Ta 8 ‘€ En)
(ST ‘Tl “Eq tEn)
(STa ‘8a ‘€a i)

(STa ‘8a ‘€q i)

AwHD ‘60, Cn, on
€I ‘Ln ‘Cn tTn

n Lt ttn
n Lt ttn
n,
Tn ‘60, ‘Cn tTn,

(
("
(M
(Vla ‘Lo ‘e
(v
(

Vi ‘L ‘T tn

)

n)
n)
n)
n)
n)
)

(¢1a ‘8a ‘Ta {In)
(ela 9 ‘Ta In)
(ETa ‘TTa ‘90 {Tn)
(¢1a 9 ‘Ta In)
(69 ‘T iTn)
(§Ta % ‘o {Tn)

(§Ta % ‘o (Tn)

(La ‘9 0a 10n)
(TTa “Sa 0 {0n)
(0T S 0q L0n)
(2T “Sa 0 On)
(8 “%a ‘0n 10n)

(La “Sa ‘0n 10n)

(eTa “Sa ‘0a :0n)

{9‘¢z 0}

= (pur g = u 99s ydeisd juouoduod-om T,

ANHD YIn ‘60 Fmﬁ\v

A@ﬁ@ ‘€1 ‘S, uw\;v

(STa ‘2a ‘€a)

(Tt ‘9 ‘Ca en

)

(0Ta “Sa ‘o ‘In)

(¢ta ‘Pa ‘0q (0n)

{z1°11°9°0}
{z1°01°9°0}
{zr°6‘9 0}
{er°8'9°0}
{z1°29°0}
{er‘1r'c’o}
{e1iot‘c‘0}
{z1'6‘c 0}
{z1°%°c'0}
{z1°2'c'0}
{z19°c‘0}
{z1'01 70}
{z167 0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

130

QT = U 10] A 19S 9)1}IRJ JO I19A00-£Q :G'Q 9[qR],

(§Ta *0Tq “2q L0Tn)
(9Ta ‘1T *90 ¢1Tn)
(§Ta *01q “Gq 0Tn)
%S ‘1T, ‘2, mgv
(§Ta ‘Tl ‘T {T1n)

AmHQ ‘0T “Sp, mosgv

(41a ‘eTn ‘Lo tin)
(410 ‘€Ta ‘Ta t¥n)
ANS ‘Lo ‘T mgv
(§Ta *01a 9 9
(410 ‘eTa ‘8 t¥n)

(STa ‘2a ‘Ca iln)

(V1o ‘6 ‘To t¥n)
(1o ‘8 €q tEn)
?5 ‘60, ‘T :Sv
(410 ‘€T ‘8a t¥n)
(9Ta ‘2a ‘€q tEn)

ASD Tl ‘T mwﬁv

(9Ta ‘8a ‘€q)
?5 ‘Lo, ‘T, mmzv
%5 ‘ITn, ‘€, mmsv
(ela ‘La ‘€a tn)
(0Ta ‘9 ‘Ca ien)

Am:; ‘110, ‘9, FMB\V

(112 9 ‘Ta In)
(Vg 01 ‘1 ¢1n)
(Via‘9a ‘1a tTn)
("l ‘Sa ‘o Tn)
("1a ‘6 ‘Sa Tn)
()

Y1n ‘60 ‘Tn tIn

(€Ta “Sa ‘0 :0n)
(60 “Sa ‘0n 10n)
(€Ta ‘8 ‘0a (0n)
(6a ‘¥a 0n :0n)
(§Ta ‘Pa ‘0q (0n)

(8 ‘€a ‘0n 10n)

{er o1 ‘c‘0}
{e16°c 0}
{e1°8°¢ 0}
{e16 v 0}
{e18°7 0}
{e1'%‘¢‘0}

9 TeIg

G Telg

p 11y

¢ TeIg

¢ 1els

T IelsS

BN

I0jeI9uaY)

obnd snowaid woif panuuoy) — 9 aqr],

References

1]

N. Alon. A note on the decomposition of graphs into isomorphic match-

ings. Acta Mathematica Hungarica, 42(3-4):221-223, 1983.
N. Alon and J. Spencer. Probabilistic Method. John Wiley & Sons, 1991.

L. W. Beineke and R. J. Wilson. Topics in Algebraic Graph Theory.

Cambridge University Press, 2004.

A. Bockmayr and K. Reinert. Discrete math for bioinformatics. Re-
trieved from: http://www.mi.fu-berlin.de/en/inf/groups/abi/

teaching/lectures_past/WS1112/V Discrete_Mathematics_for_

Bioinformatics__P1/index.html, November 2010.

J. Bondy and U. Murty. Graph Theory with Application. Elsevier Science
Ltd/North-Holland, Nowhere, 1974.

M. A. Boutiche. Control of some graph invariants in dynamic rout-
ing. Modelling, Computation and Optimization in Information Systems

and Management Sciences Communications in Computer and Informa-

tion Science, 14:52-58, 2008.

N. Bray. Graph lexicographic product. http://mathworld.wolfram.

com/GraphLexicographicProduct.html.

P. Cain. Decomposition of complete graphs into star. Bulletin of the

Australian Mathematical Society, 10:23-30, 1974.

N. Cavenagh. Decomposition of complete tripartite graphs into k-cycles.

Australasian Journal of Combinatorics, 18:193-200, 1998.

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

132

C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-nothing multi-
commodity flow problem. SIAM Journal on Computing, 42:1467-1493,
2013.

S. Cichacz, D. Froncek, and P. Kovar. Decomposition of complete bipar-
tite graphs into generalized prisms. Decomposition of complete bipartite

graphs into Generalized prisms, 34(1):104-110, 2012.

E. Cohen and M. Tarsi. NP completeness of graph decomposition prob-
lems. Journal of Complexity, 7(2):200-212, June 1991.

C. Colbourn and J. Dinitz. Handbook of Combinatorial Designs, Second

Edition. Discrete Mathematics and Its Applications. CRC Press, 2010.

I. Csiszar and J. Korner. Graph decomposition: A new key to coding the-
orems. Information Theory, IEEE Transactions on, 27(1):5-12, January
1981.

J. Deuerlein, A. Wolters, L. Meyer-Harries, and A. R. Simpson. Graph
Decomposition in Risk Analysis and Sensor Placement for Water Distri-
bution Network Security, chapter 37, pages 394—411. American Society of

Civil Engineers, 2010.

D. Dor and M. Tarsi. Graph decomposition is NP-complete, a complete
proof of Holyer’s conjecture. In Proc. 20" ACM STOC, ACM Press, pages
252-263. Press, 1995.

D. Dor and M. Tarsi. Graph decomposition is NP-complete: A complete
proof of Holyer’s conjecture. SIAM Journal on Computing, 26(4):1166—
1187, 1997.

P. Erdos. Graph theory and probability. Canadian Journal of Mathemat-

1cs, 11:34-38, 1959.

P. Erdos, A. Goodman, and L. Posa. The representation of a graph by

set intersection. Canadian Journal of Mathematics, 18:106-112, 1966.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

133

O. Favaron, Z. Lonc, and M. Truszczynski. Decompositions of graphs into

graphs with three edges. Ars Combinatoria, 20:125-146, 1984.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx, March 2014.

[. S. Hamid and M. Joseph. A variation of decomposition under a length

constraint. International J. Math. Combin. Vol, 4:35-45, 2011.

D. G. Hoffman. The real truth about star designs. Discrete Mathematics,

284(1-3), July 2004.

[. Holyer. The Computational Complexity of Graph Theory Problems.

Doctoral dissertation, University of Cambridge, 1981.

W. Imrich, S. Klavzar, and D. F. Rall. Graphs and their Cartesian Prod-
uct. A.K. Peters, 2008.

M. S. Jacobson, M. Truszczynski, and Z. Tuza. Decompositions of regular

bipartite graphs. Discrete mathematics, 89(1):17-27, 1991.
J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.

H.-C. Lee and J.-J. Lin. Decomposition of the complete bipartite graph
with a 1-factor removed into cycles and stars. Discrete Mathematics,

313(20):2354-2358, 2013.

Z. Lonc. Towards a solution of the holyer’s problem. In J. van Leeuwen,
editor, Graph-Theoretic Concepts in Computer Science, volume 790 of
Lecture Notes in Computer Science, pages 144—152. Springer Berlin Hei-
delberg, 1994.

I. Mandoiu and A. Zelikovsky. Bioinformatics Algorithms: Techniques

and Applications. John Wiley & Sons, 2010.

M. Priesler and M. Tarsi. On the decomposition of graphs into copies

PstK,. Ars Combinatoria, 35:325-333, 1993.

[32]

33]

[34]

[35]

[38]

134

S. Severini and E. W. Weisstein. Crown graph. http://mathworld.

wolfram.com/CrownGraph.html.

T. W. Shyu. The Decomposition of Complete Graphs, Complete Bipartite
Graphs and Crowns. Doctoral dissertation, National Central University,

Taiwan, 1996.

S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph

Theory with Mathematica. Addison-Wesley, 1990. pp. 128 and 135-139.

D. Sotteau. Decompositions of K,,, (K,,*) into cycles (circuits) of
length 2k. Journal of Combinatorial Theory, Series B, 30(1):75-81, Febru-

ary 1981.

T. Sousa. The H-decomposition problem for graphs. Applied Mathemat-
ics, 3(11):1719, 2012.

K. Ushio, S. Tazawa, and S. Yamamoto. On claw-decomposition of a
complete multipartite graph. Hiroshima Math. Journal, 8(1):207—2-1,
1978.

S. Yamamoto, H. Tkeda, S. Shige-eda, K. Ushio, and N. Hamada. On
claw-decomposition of complete graphs and complete bigraphs. Hiroshima

Mathematical Journal, 5(1):33-42, 1975.

R. Yuster. Tree decomposition of graphs. Random Structures and Algo-

rithms, 12(3):237-251, 1998,

