

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

Star Decompositions of Bipartite

Graphs

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Masters of Science

at the

University of Waikato

by

J.S. Lim

University of Waikato

2015

Abstract

In Chapter 1, we will introduce the definitions and the notations used through-

out this thesis. We will also survey some prior research pertaining to graph

decompositions, with special emphasis on star-decompositions and decompo-

sitions of bipartite graphs. Here we will also introduce some basic algorithms

and lemmas that are used in this thesis.

In Chapter 2, we will focus primarily on decomposition of complete bipar-

tite graphs. We will also cover the necessary and sufficient conditions for the

decomposition of complete bipartite graphs minus a 1-factor, also known as

crown graphs and show that all complete bipartite graphs and crown graphs

have a decomposition into stars when certain necessary conditions for the

decomposition are met. This is an extension of the results given in “On claw-

decomposition of complete graphs and complete bigraphs” by Yamamoto, et.

al [38]. We will propose a construction for the decomposition of the graphs.

In Chapter 3, we focus on the decomposition of complete equipartite tripar-

tite graphs. This result is similar to the results of “On Claw-decomposition of

complete multipartite graphs” by Ushio and Yamamoto. Our proof is again by

construction and we propose how it might extend to equipartite multipartite

graphs. We will also discuss the 3-star decomposition of complete tripartite

graphs.

In Chapter 4 , we will discuss the star decomposition of r-regular bipartite

graphs, with particular emphasis on the decomposition of 4-regular bipartite

graphs into 3-stars. We will propose methods to extend our strategies to

model the problem as an optimization problem. We will also look into the

probabilistic method discussed in “Tree decomposition of Graphs” by Yuster

[39] and how we might modify the results of this paper to star decompositions

of bipartite graphs.

In Chapter 5, we summarize the findings in this thesis, and discuss the

future work and research in star decompositions of bipartite and multipartite

graphs.

ii

Acknowledgement

I would like to take this opportunity to express my special appreciation and

thank you to my supervisor and advisor Dr. Nicholas Cavenagh, for his support

and guidance throughout this project. I would like to thank him especially

for his extra time, wisdom, patience, advice and in keeping me focused in this

project. He has truly been instrumental in helping me develop the necessary

skills to complete this dissertation.

I would like to thank the Faculty and the School of Mathematics in Uni-

versity of Waikato for the opportunity to pursue my post-graduate studies. I

appreciate especially the knowledge imparted by the professors and how the

academic staff made the post graduate students feel special. I would like

to acknowledge my fellow post-graduates in the School of Mathematics and

Statistics who have made the office entertaining and homely with the lively

discussions and by mutually motivating each other in our respective projects.

I thank my friends in Hamilton, with very special emphasis to my house-

mates. They have been my family away from home, supporting me and keeping

me motivated. I thank them especially for going the extra mile to make my

post-graduate life a joy. I also would like to thank my friends back in Malaysia

for their encouragement throughout my life as a post-graduate.

Last but absolutely not least, I would also like to thank my family members

who have supported me and kept me in their daily prayers. Their constant

encouragement and support have been a driving force in completing this dis-

sertation.

I dedicate this dissertation to my grandmother. It has been a difficult year

being apart from her in the time of her illness, but her love has sustained me

throughout this project.

Contents

Acknowledgement . ii

1 Introduction 2

1.1 Definitions . 2

1.2 Known results in Graph Decompositions 13

1.2.1 Graph Decomposition is NP-Complete 13

1.2.2 Graph Decomposition of Complete Graphs 14

1.2.3 Probabilistic Methods 15

1.2.4 Solutions and Algorithms for S1-decomposition and S2-

decomposition . 16

1.3 Representation of a decomposition in the thesis 16

2 Decomposition of complete Bipartite Graphs 19

2.1 Preliminary Lemmas . 19

2.2 Decomposition of Complete Square Bipartite Graphs 20

2.3 Decomposition of Complete Bipartite

Graphs . 25

2.4 Decomposition of Crown Graphs 28

3 Decomposition of complete Tripartite Graphs 35

3.1 Preliminary lemmas . 35

3.2 Decomposition of equipartite tripartite

graphs . 37

3.3 S3-Decomposition of complete tripartite

graphs . 56

3.4 Extending Theorem 3.3 for multipartite graphs 59

4 Decomposition of regular bipartite Graphs 66

4.1 S3-decomposition of 4-regular bipartite graphs 66

4.1.1 Strategy 1: Picking one edge from each vertex in one

partite set to form S3. 66

4.1.2 Strategy 2: Reducing the number of vertices to be covered. 73

4.1.3 Structure of a cyclic bipartite graph 74

iv

4.2 Probabilistic method on decomposition of bipartite graphs . . 75

5 Conclusion 84

6 Appendix 86

6.1 Source Code for Strategy 1 . 86

6.1.1 The main wrapper program 86

6.1.2 The solver . 93

6.1.3 Supporting JAVA classes 103

6.2 S3-cover of partite set V . 104

6.2.1 S3-cover of partite set V for n = 6 104

6.2.2 S3-cover of partite set V for n = 9 104

6.2.3 S3-cover of partite set V for n = 12 105

6.2.4 S3-cover of partite set V for n = 15 108

6.2.5 S3-cover of partite set V for n = 18 116

List of Figures

1.1 Path from v1 to vn. 3

1.2 Cycle of length 6. 3

1.3 Graph G and its Line Graph L(G). 4

1.4 A graph and its incident matrix. 5

1.5 A Graph and its adjacency matrix. 6

1.6 Complete graph K6. 6

1.7 Example of a bipartite graph. 7

1.8 The complete bipartite graph K5,3. 7

1.9 3-Regular Cyclic Bipartite Graph with n = 4 and D = {0, 1, 3}. 8

1.10 Example of a tree. 9

1.11 Graph S6; v0 is the center; v1, v2, v3, v4, v5, v6 are the leaves. . . 10

1.12 P2-decomposition of a graph. 10

1.13 P2-factor of a graph. 11

1.14 C6-factorization of Graph G. 11

1.15 Lexicographical product of Graph G = K2,2 and H = K2. . . . 12

1.16 Polynomial time algorithm for S2 decomposition. 17

1.17 Graphical representation of the decomposition of the edges be-

tween partite set U and V . 18

1.18 Graphical representation of the decomposition of the edges be-

tween partite set V and W when there are more than 2 partite

sets and the graph is not complete 18

2.1 K6,6 decomposes into S4. 23

2.2 K24,24 decomposes into S16. 24

vi

2.3 K18,18 as the lexicographical product of K4,4⊗K3 decomposing

into S4 ⊗K3 and into S12 . 25

2.4 K8,9 decomposing into S6. 29

2.5 K12,15 decomposing into S9. 29

2.6 K9,9 minus 1-factor decomposing into S3. 31

2.7 S0
22 partitioned into subgraphs. 32

2.8 S0
10 decomposing into S6. 34

3.1 Vertex u and v not picked as centers 37

3.2 K14,14 reduced to K10,10. 47

3.3 K12,12,12 decomposed into S16. 57

4.1 S3 decomposition of a 4-regular graph using Strategy 1 68

4.2 Using optimization software to find a S3-cover of V 81

4.3 S3-Decomposition of G(n = 15, D = {0, 1, 3, 7}); pink and yel-

low blocks are S3 decompositions with centers in partite set U . 82

4.4 S3-Decomposition of G(n = 15, D = {0, 4, 6, 7}); pink and yel-

low blocks are S3 decompositions with centers in partite set U . 82

4.5 Modified line graph and S3-decomposition using Strategy 3. . 83

List of Tables

3.1 The value pq+ qr+ pr (mod 3) for different values of p′, q′ and r′. 58

3.2 Table describing the S6i2 decomposition. 60

3.3 Table of values for S6i2-decomposition for graph Kni,ni,ni,ni. . . 61

4.1 S3-cover of Partite Set V for n = 9 71

6.1 S3-cover of Partite Set V for n = 6 104

6.2 S3-cover of Partite Set V for n = 9 105

6.3 S3-cover of Partite Set V for n = 12 107

6.4 S3-cover of Partite Set V for n = 15 115

6.5 S3-cover of Partite Set V for n = 18 130

Chapter 1

Introduction

1.1 Definitions

Unless stated, all definitions are consistent with “Graph Theory with Appli-

cations” [5].

A graph is an ordered pair G = (V,E) where V is a non-empty set of

vertices and E is a set of edges which are subsets of V of size 2. The order

of the graph |V | is the number of vertices and the graph size |E| is the number

of edges in the graph.

In the case of directed graphs or digraphs, the order of the 2 elements

is considered unique and each element of the set E is known as an arc or

directed edge. A loop is an edge with the starting and ending vertices

equal. We say that the graph contains a multiple edge if the graph contains

two or more edges joining the same pair of vertices. A vertex is said to be

adjacent to another vertex if there is an edge between the two vertices. A

vertex is said to be incident to an edge if the vertex is contained in the edge.

Simple graphs are undirected graphs that do not contain any loops or

multiple edges. Thus each edge in a simple graph is a distinct unordered pair

of vertices.

From here onwards a graph is assumed to be simple and undirected unless

otherwise stated.

3

A walk of length n is a sequence [v1, v2, . . . , vn+1] of vertices, such that

{vi, vi+1} is an edge for each 1 ≤ i ≤ n. If the edges are all distinct from one

another, the walk is called a trail. If the both the edges and vertices are all

distinct, the walk is called a path. A path is denoted by Pn where n is the

number of vertices in the path.

v0 v1 v2 ... vn

Figure 1.1: Path from v1 to vn.

A circuit is a non-trivial trail in a graph from a vertex to itself. If all the

vertices except for the first vertex and last vertex in the circuit are distinct, the

circuit is called a cycle. A graph that does not contain any cycles is known as

a cycle-free graph. A cycle is denoted by Cn where n is the number of vertices

in the cycle.

Formally, let V = {vi : 1 ≤ i ≤ n} be a set of distinct vertices, and let

E = {ei : 1 ≤ i ≤ n} where ei = {vi, vi+1} for 1 ≤ i ≤ n− 1 and en = {vn, v1}.

Then the graph Cn = G(V,E) is a cycle of length n.

C6

V1 V2

V3

V4V5

V6

Figure 1.2: Cycle of length 6.

A connected component or component of a graph is a subgraph such

that for every pair of vertices {u, v} within the component there exists at least

one path from u to v. If the graph consists of exactly one connected component

the graph is called a connected graph. A bridge is an edge such that the

removal of the edge results in an increase in the number of components in the

4

graph. If H1, H2, . . . Hn are the components of the graph G then we can also

use the notation G = H1

⋃
H2 · · ·

⋃
Hn.

A connected graph is said to have an Eulerian Trail if there exists a trail

such that each edge of the graph is used exactly once. If the trail starts and

ends on the same vertex, the graph is said to have an Eulerian Circuit. A

graph that has an Eulerian Circuit is also said to be Eulerian. An Eulerian

Circuit exists in a connected graph if and only if every vertex in the graph has

even degree.

A graph is said to have a Hamilton Path if there exists a path such that

each vertex of the graph is visited exactly once. If there exists a cycle such

that every vertex of the graph belongs to the cycle, the graph is said to have

a Hamilton Cycle. Equivalently, the graph is said to be Hamiltonian.

The line graph L(G) is a graph such that the edge set of G is the vertex

set of L(G), and the edge set E(L(G)) is such that there is an edge if and only

if there is a vertex in common with the corresponding edges in G.

Formally, V (L(G)) = E(G) and E(G) = {ei, ej} if and only if ei and

ej share a common vertex in G. Figure 1.3 shows an example graph G and

the corresponding line graph. According to Skiena [34], the line graph of an

Eulerian graph is both Hamiltonian and Eulerian.

e1 e1 e2

e2

e3

e4

e5

e6

e3 e4

e5
e6

G L(G)

Figure 1.3: Graph G and its Line Graph L(G).

5

The degree δ(v) of vertex v is the number of edges incident to the vertex

v. If every vertex in a graph has the same degree r, the graph is said to be

r-regular.

A graph H is said to be isomorphic to graph G, if there is a bijection f :

V (G)→ V (H) such that {v, w} ∈ E(G) if and only if {f(v), f(w)} ∈ E(H).

An incidence matrix is an n×m matrix B = [bij] where n is the number

of vertices and m is the number of edges, subject to the following. If the vertex

set V = {v1, v2, . . . vn} and the edge set E = {e1, e2, . . . em} then bij=1 if the

vertex vi and edge ej is incident and bij = 0 otherwise.‘

v1 v2

v3 v4

e1 e2 e3 e4

v1 1 1 0 0

v2 0 0 1 1

v3 1 0 1 0

v4 0 1 0 1

Figure 1.4: A graph and its incident matrix.

An adjacency matrix is a n×n matrix B = [bij] where n is the number of

vertices, subject to the following. If the vertex set V = {v1, v2, . . . vn}, we let

bij = 1 if vertex vi and vertex vj are adjacent and bij = 0 otherwise. Observe

that for simple graphs, the diagonal of the adjacency matrix is 0. Also observe

that for an undirected graph, the adjacency matrix is symmetric.

A complete graph is a graph in which every pair of distinct vertices is

connected by a unique edge. A complete graph is denoted by Kn where n is

the number of vertices in the graph. The edge set of Kn is all the possible

edges on the vertex set of G.

Formally G is complete if and only if E(G) = {vi, vj} where vi ∈ V (G), vj ∈

V (G), vi 6= vj.

6

v1 v2

v3 v4

v1 v2 v3 v4

v1 0 1 1 0

v2 1 0 0 1

v3 1 0 0 1

v4 0 1 1 0

Figure 1.5: A Graph and its adjacency matrix.

Figure 1.6: Complete graph K6.

We say that G is the complement of a graph G such that the vertex set

V (G) = V (G) and the edge set of G consists of all the possible edges that are

not present in G. Observe that E(G) + E(G) = E(Kn) where n = |V (G)|.

Formally G is the complement of G if and only if V (G) = V (G) and

E(G) = {vi, vj where vi ∈ V (G), vj ∈ V (G), vi 6= vj and {vi, vj} /∈ E(G)}..

A bipartite graph (sometimes known as bigraph) is a graph in which

the vertex set V can be partitioned into two disjoint sets V1 and V2 such that

every edge is incident with a vertex in V1 and a vertex in V2. The sets V1

and V2 are known as partite sets. Observe that a bipartite graph is either

cycle-free or has at least one even cycle. Equivalently, a graph that does not

contains an odd cycle is bipartite.

7

Partite
Set 1

Partite
Set 2

Figure 1.7: Example of a bipartite graph.

A graph G is said to be multipartite or m-partite if the vertex set V

can be partitioned into m disjoint sets V1, V2, . . . , Vm such that every edge of

G is incident to vertices from two different partite sets. A multipartite graph

is said to be equipartite every partite set has an identical size. In the case

where m = 3 the graph is also known as tripartite.

A complete bipartite graph is a bipartite graph in which every vertex in

V1 is adjacent to every vertex in V2. Formally G is a complete bipartite graph

if and only if E(G) = {vi, vj : vi ∈ V1, vj ∈ V2}. A complete bipartite graph

is denoted by Kn,m where n = |V1| and m = |V2|. We say that a complete

square bipartite graph is a complete bipartite graph with an equal number

of vertices in each partite set.

Figure 1.8: The complete bipartite graph K5,3.

An r-regular bipartite graph is a bipartite graph where every vertex of

the bipartite graph has degree r. Observe that an r-regular bipartite graph

always has an equal number of vertices in each partite set.

8

We say that a r-regular bipartite graph is “cyclic” if the edges of the

graph are induced by ordering the vertices of partite sets U and V and defining

an adjacency based on a cyclic difference between the vertices of the partite

sets.

We define a generator Gn(D) of a r-regular cyclic bipartite graph as the

function describing the adjacency between the two partite sets. We call D

here the generator set where D is of size r. A vertex u in U is adjacent to a

vertex v in V if and only if the index of v minus the index of u modulo n is

equal to an element in D.

Formally, let U = {ui : 1 ≤ i ≤ n} and V = {vj : 1 ≤ j ≤ n} be the partite

sets of the bipartite graph. Let D = {dk : 1 ≤ k ≤ r} where 0 ≤ dj < n.

The vertices ui and vj are adjacent if and only if j = i + dk(mod n) for some

dk ∈ D. Figure 1.9, is an example of a cyclic 4-regular bipartite graph.

Figure 1.9: 3-Regular Cyclic Bipartite Graph with n = 4 and D = {0, 1, 3}.

A matching is a set of edges of a graph such no two edges have a vertex in

common. A perfect matching is when every vertex of the graph is incident

to exactly one edge of the matching. A perfect matching is also called a

1-factor of the graph. A complete bipartite graph Kn,n that has a perfect

matching removed is known as the crown graph of size n [32]. Thus G is

a crown graph of size n if E(G) = {ui, vj : ui ∈ V1, vj ∈ V2, i 6= j} where

9

V1 = {u1, u2, . . . , un} and V2 = {v1, v2, . . . , vn} are the two partite sets of G.

A crown graph of size n is denoted by K0
n.

A tree is a graph in which every pair of vertices is connected by a unique

path. The leaves of a tree are the vertices of the tree with vertex degree 1.

An internal vertex is a vertex of degree at least 2. The diameter of a tree is

the length of the longest path in the tree. Observe that a tree is cycle-free and

thus bipartite.

v1 v2

v3

v4 v5

v6 v7 v8

v9

v1, v2, v6, v8, v9 are leaves

Figure 1.10: Example of a tree.

A k-star is a special case of a tree in which there is only one internal

vertex which is also known as the center and k leaves. A k-star is denoted

by Sk where k is the number of leaves. A k-star can also be represented as

the complete bipartite graph K1,k. A 3-star is sometimes known as a claw.

Observe that the center of Sk has degree k and the leaves of Sk have degree 1.

Observe also that the diameter of Sk, where k ≥ 2 is always two.

We say that the greatest common divisor of a graph G, (denoted here

as GCD(G) is the greatest common divisor of the degrees of the vertices in G.

Observe that when G is a tree or a star, GCD(G)=1.

The graph H(V ′, E ′) is a subgraph of G(V,E) if V ′ ⊆ V and E ′ ⊆ E.

A graph G is said to decompose into {G1, G2, . . . Gi} where G1, G2 . . . Gi

are subgraphs of G if E(G) has the partition {E(G1), E(G2), . . . , E(Gi)}.

If G1, G2, . . . Gi are all isomorphic to H then we say that there is an H-

Decomposition of the graphG. Observe that, in order for anH-decomposition

10

v1 v2

v3

v4v5

v6
v0

Figure 1.11: Graph S6; v0 is the center; v1, v2, v3, v4, v5, v6 are the leaves.

to exist, the number of edges in G must be divisible by the numbers of edges

in H. Moreover the GCD(G) must also be divisible by GCD(H) [39].

A graph G is said to factor into subgraphs G1, G2 . . . Gi if every vertex

V (G) has a partition {V (G1), V (G2), . . . , V (Gi)}. If G1, G2, . . . , Gi are all

isomorphic to H, then we say that there is an H-Factor in the graph G. If

H is the path P2, then this is equivalently a 1-Factor of the graph G. An

H-factorization of a graph G is a decomposition of G into H-Factors.

Figure 1.12 illustrates an example of a P2-decomposition of a graph, with

each coloured lines a copy of a P2. Figure 1.13 illustrates an example of a P2-

factor of a graph with each bolded lines a P2 factor, and Figure 1.14 illustrates

an example of a C6-factorization of a graph with the bolded lines a copy of C6.

Figure 1.12: P2-decomposition of a graph.

11

Figure 1.13: P2-factor of a graph.

G

Figure 1.14: C6-factorization of Graph G.

12

A graph product of G1 and G2 is a new graph H where V (H) = V (G1)×

V (G2). A special graph product that is used in this thesis is the lexicographi-

cal product. This was first introduced by Hausdorff according to Imrich and

Klavzar [25] [7]. The lexicographical product of G1 and G2 is denoted by

G1 ⊗ G2. A lexicographical product is a product such that an edge between

vertices (u, v) and (x, y) exists if and only if an edge exists between u and x

in G1 or u = x and an edge exists between v and y in G2. Figure 1.15, shows

an example of a lexicographical product.

Formally, if V (U) = {ui : 1 ≤ i ≤ n} and V (V) = {Vj : 1 ≤ j ≤ m} and

H = U⊗V then V (H) = {hi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(H) = {hi,j, hk,l}

if and only if {ui, uk} ∈ E(U) or ui = uk and {vj, vl} ∈ E(V).

G H

G⊗H

Figure 1.15: Lexicographical product of Graph G = K2,2 and H = K2.

A clique of the graph G is a complete subgraph of G. If the clique is the

maximum possible size, the clique said to be the maximum clique. Observe

that the size of the maximum clique of a bipartite graph is 2. A bipartite

analogous equivalent of cliques is a biclique. A biclique of the graph G is a

complete bipartite subgraph of G. [3]

13

1.2 Known results in Graph Decompositions

Graph decomposition has been a prominent research area in graph theory

and combinatorics since the 1960s [22]. Although not referred to as a graph

decomposition, graph decomposition and factorization can be seen in various

combinatorial problems in the 19th century such as “Kirkman’s 15 strolling

school girls” [22], Dudney’s handcuffed prisoners [22] and Euler’s 36 army

officer problem [22]. In 1966, Erdös, Goodman and Posa first introduced the

concept of H-decomposition in their paper “The representation of a graph by

set intersection” [19, 36]. The interest in graph decomposition is not surprising

as graph decomposition has many real world application such as bioinformatics

[30, 4], social science research, network and topology research [15], coding

theory [14], and in many other computer science applications [6].

1.2.1 Graph Decomposition is NP-Complete

Given graphs G and H we may ask whether G decomposes into H. We call

this the “Graph decomposition problem”. According to Lonc [29], Ian Holyer

in his dissertation “The computational complexity of Graph Theory problems”

[24] conjectured in 1980 that the graph decomposition problem is NP-complete

if the graph H has at least three edges. Holyer proved the conjecture for the

cases where H is a complete graph and G is a simple circuit. Daniel Leven

presented an unpublished proof for the case where H is a star. In 1991, Cohen

and Tarsi extended the proof to include trees [12]. Finally in 1992 and 1995,

Dor and Tarsi generalized the proof to include graphs that contains a con-

nected component of at least three edges [16]. However, Holyer’s conjecture

was proven false when H is not a connected graph [17]. Bialoski and Rod-

dity showed that the problem is polynomial when H is a set of three disjoint

edges (3K2 [see definition of a complete graph]). This was further generalized

by Alon [1] where H is a set of s disjoint edges (sK2). Favaron, Lonc and

Truszczynski [20], also showed that the problem has polynomial complexity

14

for the case where H = K1,2

⋃
K2 [17] . This result was further extended

when Priesler and Tarsi [31] showed that the problem is still polynomial when

H=K1,2

⋃
tK2.

The result of these findings gave strong evidence for a revised version of

the Holyer’s conjecture, that is, a H-decomposition of graphs is NP-complete

if and only if the graph H contains a connected component of at least three

edges [17].

1.2.2 Graph Decomposition of Complete Graphs

While the graph decomposition problem in general is NP-complete, by impos-

ing conditions on the graphs G and H, researchers have proven the existence

of certain H-decomposition should these criteria be met on the graph G. We

first briefly give a survey of decomposition results into stars. In 1974, Cain

showed that complete graphs Kn and Kn+1 decompose into m-stars, if and

only if m is odd or n is an even multiple of m and n > m [8].

In 1974, Yamamoto, Ikeda, Shige-eda, Ushio and Hamada [38] showed that

Km,n decomposes into k-stars if and only if k divides m × n for k ≤ m,

k ≤ n or k divides m or n . This result is later extended by Ushio and

Yamamoto [37], who showed that there is a k-star decomposition for complete

equal sized m-partite graphs of size n if m×(m−1)
2

n2 divides c and mn ≥ 2c.

This result is then further extended by Shyu, [33] showing that a crown graph

S0
n can be decomposed into Kl,m if there is a positive integer value for λ such

that n = λlm + 1 [33]. In 2013, Lee and Lin [28] showed that a (Ck, SK)-

decomposition of crown graphs such that there is at least one copy of Ck and

one copy of Sk when 4 ≤ k ≤ n−1
2

, k is even and k divides n(n− 1).

There has been some research into regular bipartite graphs, namely by

Jacobson, Truszczynski and Tuza [26] who proved that a 2r-regular bipartite

graph has a decomposition into trees of size r. They also prove that every

r-regular bipartite graph can be decomposed into double stars (a tree with

2 internal vertices and r leaves) of size r. They also proved that 4-regular

15

bipartite graphs can be decomposed into paths of length 4. Moreover, they

also proved that a r−dimensional cube decomposes into a tree of size r.

There has also been substantial research into the decomposition of com-

plete bipartite graphs. In 1981, Sotteau [35] showed that there is a 2k-cycle

decomposition for all complete Km,n bipartite graphs if 2k divides mn, and

both m and n are even, and k < m and k < n. An extension of this result

presented by Cichacz, Froncek, Kovar shows that a Kn,n bipartite graphs can

be decomposed into prisms [11].

There are many more proven decomposition for complete graphs such as

decomposition into trees, (Lonc (1988), Yu Min Li (1990)), cycles (Farrell

(1982)) and paths, however these decompositions are beyond the scope of this

thesis. Further results on graph decompositions may be found in VI. 24 of

Handbook of Combinatorial Designs [13].

1.2.3 Probabilistic Methods

As the problem of graph decomposition is conjectured to be NP-complete,

especially when weak conditions are imposed on the graph G, we also look

into the probabilistic method pioneered by Erdös in his paper “Graph Theory

and Probability” published in 1959 [18] and expanded upon in 1961. Despite

the name and the use of probability, the probabilistic method gives a conclusive

proof on the existence (or the non-existence) of a mathematical object.

In their book “Probabilistic Method”, Alon and Spencer state that the idea

behind the probabilistic method is to create an appropriate probability space,

and then show that a randomly chosen object has a positive probability to

have specified properties in order to prove the existence of such object [2].

In the paper by Yuster [39], this method was used to show that there is

H-decomposition where H is a tree with at least h vertices if the minimum

degree of the graph δ(g) is greater than |V |
2

+ 10h4
√
|V | log |V | . It was shown

that with the minimum degree, and by applying the Chernoff bound, there is

a positive probability that the graph would have the required properties for

16

such an H-decomposition.

We will explore whether Yuster’s result can be strengthened in the case

when H is a star and G is a bipartite graph in Section 4.2.

1.2.4 Solutions and Algorithms for S1-decomposition and

S2-decomposition

Finding a H-Decomposition where of H = S1 (equivalently K1,1 or P2) is

trivial. Since there is only a single edge in the graph H, the set of edges E(G)

is itself the graph decomposition.

In the case of H = S2 (equivalently K1,2 or P3), we first check if two divides

|E(G)| in each connected component. Having an even number of edges in each

connected component is in fact the only necessary and sufficient criteria for a

S2 decomposition. First, we randomly assign directions to each of the edges

and assign weight to each of the vertices in the graph by counting the number

of directed edges pointing towards the vertex. Next, we find a pair of vertices

with odd weights, and flip the direction of the edges in a path between these

two vertices. Note that flipping the edges along the path does not change the

parity of the weights of the vertices along the path, while changing the parity

of the weights of the end vertices. We repeat this for every pair of vertices

of odd weight. Finally we pair off the edges according to the direction of the

edges to form copies of S2, on the vertices with weight two and higher. This

algorithm is folklore. Figure 1.16 illustrates this algorithm on a graph G, with

the coloured lines representing the S2 decomposition.

1.3 Representation of a decomposition in the

thesis

In this section, we will explain how a graph decomposition is represented pic-

torially throughout the thesis.

17

1

2

2

1

20

0

0

1

1 0

2

2

0

20

0

0

1

1

0

0

2

0

20

0

2

2

2 0

0

2

0

20

0

2

2

2

Figure 1.16: Polynomial time algorithm for S2 decomposition.

Let U and V be 2 partite sets from a bipartite graph. In the illustration

provided in figures 1.17, 1.18 the rows represents the vertices from partite set

U and the columns represents the vertices from partite set V . A shaded area

(possibly non-contiguous) of the same colour within a row or column of size r

units, represents a copy of Sr.

In the cases where the bipartite graph is not complete, we denote the edges

that are not part of the graph with a solid black region. In the cases where

the graph has more than two partite sets, we will indicate the partite set in

which the rows are represented on the left of the graph, and the partite set in

which the columns are represented on the top of the graph.

18

u1

u2

u3

u4

u5

u6

u7

u8

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 1.17: Graphical representation of the decomposition of the edges be-

tween partite set U and V

V

W

Figure 1.18: Graphical representation of the decomposition of the edges be-

tween partite set V and W when there are more than 2 partite sets and the

graph is not complete

Chapter 2

Decomposition of complete

Bipartite Graphs

In this section we give the necessary and sufficient conditions to decompose

complete bipartite graphs and crown graphs into stars. Our proofs are by

direct construction.

2.1 Preliminary Lemmas

Here we introduce some lemmas that will be used for Sr-decompositions of

bipartite and multi-partite graphs.

Lemma 2.1 If the degree of every vertex in a partite set U of a bipartite graph

G is divisible by r, then there exists an Sr-decomposition of G.

Proof. We can greedily choose r edges adjacent to a vertex in the partite set

U to form a copy of Sr. We repeat this process until all the edges adjacent

to the vertex are chosen. Then we repeat this process for each vertex in the

partite set U until all the remaining edges have been chosen. �

The following proof is an extension to Corollary 2.2 and 2.5 [9] that shows

that if the graph Km,m decomposes into k-cycles, then the graph Kml,ml =

Km,m ⊗ Kl also decomposes into k-cycles. Moreover, if the graph Km,m de-

composes into k−cycles, the graph Kml,ml also decomposes into kl-cycles.

20

Lemma 2.2 If the graph G decomposes into Sr, there exists an Sr and an Srl

decomposition for the lexicographical product G⊗Kl.

Proof. We let H = Sr ⊗ Kl. We then label the leaf vertices of Sr with

integers from 1 to r, the center vertex of Sr as u and the vertices of Kl with

integers from 1 to l. The resulting graph H = Sr ⊗ Kl has the partite sets

U = {uy : 1 ≤ y ≤ l}, V = {vx,y : 1 ≤ x ≤ r, 1 ≤ y ≤ l} and edge set,

E(H) = {ex,y,z : 1 ≤ x ≤ r, 1 ≤ y ≤ l, 1 ≤ z ≤ l} where ex,y,z is the edge

between vx,y and uz. Observe that H is isomorphic to Kl,rl.

Observe that the each vertex in the partite set U has degree rl. By Lemma

2.1, we can decompose H into Sr. Moreover, we can also decompose H into

Srl.

Formally, we partition the edges of H into graphs Hx,y where 1 ≤ x ≤

l, 1 ≤ y ≤ l and

E(Hx,y) = {e1,x,y, e2,x,y, . . . , er,x,y},

V (Hx,y) = {v1,x, v2,x, . . . , vr,x, uy}.

Note that each Hx,y is isomorphic to Sr. We can also partition the edges

of H into graphs Jy where 1 ≤ y ≤ l and

E(Jy) = {e1,1,y, e2,1,y, . . . , er,j,y},

V (Jy) = {v1,1, v2,1, . . . , vr,j, uy}

and we also note that Jy is isomorphic to Srl. �

2.2 Decomposition of Complete Square Bipar-

tite Graphs

In this section we will prove that the complete bipartite graph Kp,p has an

Sr-decomposition if p2 is divisible by r and r is less or equal to p by giving

a construction of such decomposition. This theorem is also proven by Ya-

mamoto, Ikeda, Shige-eda, Ushio and Hamada [38]. In the proof given in that

21

paper, the authors showed that the bipartite graph Km,n can be represented

as mn lattice points. From there, they showed that they can represent the

decomposition using claw-type subsets of size r. They then show that each

subset represents a claw or a Sr graph, and showed that there is always an

arrangement for the subsets when the conditions above are met.

The construction of our proof here, although similar to the techniques given

in the paper, was developed independently of the paper and is original.

Theorem 2.3 The graph Kp,p decomposes into Sr if and only if p2 is divisible

by r and r ≤ p.

Proof. We first show the necessity of the conditions r | p2 and r ≤ p. Suppose

that r does not divide p2. The number of edges in a Kp,p graph is equal to

the product of the number of vertices in the two partite set, i.e. p2. By the

definition of a decomposition, the number of edges of a decomposition of Sr

must divide the number of edges in Kp,p and therefore r | p2.

Suppose r > p. We will show that Kp,p has no subgraph isomorphic to Sr.

Thus Kp,p has no decomposition into Sr. Each vertex in Kp,p has degree p.

Therefore, any subgraph of Kp,p has degree of at most p. Since Sr has a vertex

degree of r, Kp,p has no subgraph isomorphic to Sr.

We now show the conditions r | p2 and r ≤ p are sufficient. We methodi-

cally divide the proof to according to the following cases:

Case 2.3.1: r | p.

Case 2.3.2: r - p and r is square.

Case 2.3.3: r - p and r is not square.

Case 2.3.1 r divides p.

Let m = p
r
. Note that every vertex in the partite set V has degree mr. By

Lemma 2.1, there is a Sr-decomposition of the graph.

Formally, let U = {ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ r}, and let V = {vk : 1 ≤ k ≤

p} be the partite sets of Kp,p.

22

We can then define the Sr-decomposition of Kp,p as follows:

V (Hi,k) = {vk, ui,j : 1 ≤ j ≤ r}

with 1 ≤ i ≤ m and 1 ≤ k ≤ p.

Observe that each Hi,k is isomorphic to Sr.

Case 2.3.2 r does not divide p and r is square.

Let r = i2. Let n = p−p′
r

where r ≤ p′ ≤ 2r, and let U and V be the two

partite sets of Kp,p. We partition U into disjoint subsets U ′ and U ′′ such that

|U ′| = p′ and |U ′′| = nr. Similarly, we partition V into disjoint subsets V ′ and

V ′′ such that |V ′| = p′ and |V ′′| = nr.

By Lemma 2.1 we can partition the edges between U ′′ and V into copies

of Sr. Similarly, by Lemma 2.1 we can partition the edges between V ′′ and U

into copies of Sr. The remaining edges not partitioned by the steps above are

the edges between U ′ and V ′.

Since r | p2, we have

r | (p′ + nr)2

⇒ r | p′2 + 2nrp′ + 4n2r2

⇒ r | p′2

⇒ i2 | p′2

⇒ i | p′.

We let j = p′

i
. Observe that, since r ≤ p′ ≤ 2r, we have i ≤ j′ ≤ 2i. We

now let b = j′ − i. Note that 0 ≤ j′b ≤ p′. The proof for this is as follows.

i ≤ j′ ≤ 2i

⇒ 0 ≤ j′ − i ≤ i

⇒ 0 ≤ j′(j′ − i) ≤ ij′ = p′.

We also note that ib = p′ − r. We partition U ′ into disjoint subsets

U0, U1, U2 . . . Uj′−1 such that |Ux| = i where 0 ≤ x ≤ j′− 1. Since 0 ≤ j′b ≤ p′,

23

we can partition V ′ into disjoint subsets V0, V1, V2, . . . Vj′−1 and V∗ such that

|Vx| = b where 0 ≤ x ≤ j′ − 1 and |V∗| = p′ − jb.

By Lemma 2.1, we can decompose the edges between U0, U1 . . . Ui−1 and

V0 into copies of Si2 with the vertices of V0 as centers. We then repeat this

for the edges between Ux, Ux + 1 . . . Ux+i−1(mod j′) and Vx, for 0 ≤ x ≤ j′ − 1.

We have used bj′i2 edges altogether using vertices from V ′ regularly. Thus we

have used bj′i2

j′i
= ib edges incident with each vertex from U ′. By Lemma 2.1,

we can decompose the remaining edges using p′ copies of Sr with each vertex

in U ′ the center of one Sr.

Formally, let U ′ = {Ug : 0 ≤ g ≤ j′ − 1, } where Ug = {ug,h : 1 ≤ h ≤ i}.

Let V ′ = {Vg, V ∗ : 0 ≤ g ≤ j′ − 1}, where Vg = {vg,h : 1 ≤ h ≤ b} and

V ∗ = {xl : 1 ≤ l ≤ p− j′b}. We can then define the decomposition as

V (Hg,h) = {vg,h}
⋃

g≤l≤g+i
Ul mod j′ where vg,h ∈ Vg

with the vertex vg,h the center of a copy of Si2 and

V (H ′g,h) = {ug,h}
⋃

g−i≤l≤g−1
Vl mod j′ ∪ V∗ where ug,h ∈ Ug

with vertex ug,h the center of a copy of Si2 .

We illustrate this in Figures 2.1, 2.2.

p = 6
r = 4
i = 2
j′ = 3
b = 1
|Ug| = i = 2
|Vh| = b = 1
|V ∗| = p− j′b = 3

U1

U2

V1 V2 V3 V ∗

U0

Figure 2.1: K6,6 decomposes into S4.

24

p = 24

r = 16

i = 4

j′ = 6

b = 2

|Ug| = i = 4

|Vh| = b = 2

|V ∗| = p− j′b = 12

U0

U1

U2

U3

U4

U5

V0 V1 V2 V3 V4 V5 V ∗

Figure 2.2: K24,24 decomposes into S16.

Case 2.3.3 r does not divide p and r is not square.

Let r = i2j where j is a square free number,

r | p2

⇒ i2j | p2

⇒ ij | p.

We let p = kij.

We first observe that Kp,p is the lexicographic product Kik,ik ⊗Kj. Since

r ≤ p, we have i ≤ k. From Case 2.3.2, we have shown that Kik,ik decomposes

into Si2 . Using Lemma 2.2, it then follows that Kp,p decomposes into Sji2 .

This is illustrated in Figure 2.3.

�

25

r = 12
k = 3
i = 2
j = 3

Figure 2.3: K18,18 as the lexicographical product of K4,4 ⊗ K3 decomposing

into S4 ⊗K3 and into S12

2.3 Decomposition of Complete Bipartite

Graphs

In this section we will show that the complete bipartite graph Kp,q has a Sr-

decomposition if at least one of the following two cases is satisfied:

Case 1: pq is divisible by r and r ≤ p and r ≤ q.

Case 2: p is divisible by r or q is divisible by r.

As mentioned in the earlier section, this theorem was proven by Yamamoto,

Ikeda, Shige-eda, Ushio and Hamada [38]. The construction of our proof here

although similar to the techniques given in that paper, was developed inde-

pendently of the paper and is original.

Theorem 2.4 The complete bipartite graph Kp,q decomposes into Sr if and

only if one of the following cases is true:

Case 1: pq is divisible by r and r ≤ p and r ≤ q.

Case 2: p is divisible by r or q is divisible by r.

Proof. We first show the necessity of the conditions r | pq. Suppose that r

does not divide pq. The number of edges in Kp,q is equal to the product of the

26

number of vertices in the two partite set, pq. By the definition of decomposition

the number of edges in the decomposition must divide the number of edges in

the graph; thus r must divide pq.

Now we will show the necessity of the condition r ≤ p and r ≤ q when

r - p and r - q. Without loss of generality let p ≥ q, otherwise we swap the

partite sets. Suppose r | pq, r - p, r - q and r > q. Let c be the center vertex

of a subgraph. Since the degree of each vertex in U is q and the degree of c is

greater than q, c cannot be in U . However, since r - p, there will be edges left

over incident to vertex in V if all the center vertices in the Sr-decomposition

belong to V . Therefore if r > p or r > q there is no Sr decomposition of Kp,q

in the case where r - p and r - q.

From here, we can separate the proof to the following cases,

Case 2.4.1: r divides p or r divides q.

Case 2.4.2: r does not divide p and r does not divide q.

Case 2.4.1 r divides p or r divides q.

Without loss of generality, let r divide p, otherwise we swap the partite sets

U and V .

Let m = p
r
. Note that the vertex degree on every vertex of the partite set

V is mr, therefore by Lemma 2.1, there is an Sr decomposition of the graph.

Case 2.4.2 r does not divide p and r does not divide q.

We let gcd(r,p)=i. This gives us, r = ij and p = ix, gcd(j,x)= 1. Now,

r | pq

⇒ ij | ixq

⇒ j | xq

⇒ j | q since gcd(j, x) = 1.

Therefore we have i | p and j | q.

27

Let U and V be the partite sets of Kp,q with U be size p and V size q

respectively. Let p′ = p − nr where r < p′ < 2r and let q′ = q − mr where

r < q′ < 2r. We can partition U into two disjoint subsets U ′ and U ′′ such

that |U ′| = p′ and |U ′′| = nr. Similarly, we can partition V into two disjoint

subsets V ′ and V ′′ such that |V ′| = q′ and |V ′′| = mr.

By Lemma 2.1 we can partition the edges between U ′′ and V into copies

of Sr. Likewise, by Lemma 2.1 we can partition the edges between V ′′ and U

into copies of Sr.

Since r | p2, we have

r | (p′ + nr)(q′ +mr)

⇒ r | p′q′ + nrq′ +mrp′ +mnr2

⇒ r | p′q′

⇒ ij | p′q′.

We also have

i | p

⇒ i | (p′ + nr)

⇒ i | p′

and

j | q

⇒ j | (q′ +mr)

⇒ j | q′.

We let k′ = p′

i
and l′ = q′

j
. Observe that i < l′ < 2i. We let b = l′− i. Note

that 0 < k′b ≤ q′ and the proof of this is as follows:

k′(l′ − i) = k′l′ − p′ ≤ q′

⇐⇒ k′l′ ≤ p′ + q′

⇐⇒ p′q′

r
≤ p′ + q′.

28

We separate the remainder of the proof into two cases, p ≥ q and p < q:

Case i: p′ ≥ q′

p′q′

r
<

2rq′

r
= 2q′ ≤ p′ + q′

⇐⇒ q′ ≤ p′.

Case ii: p′ < q′

p′q′

r
<

2rp′

r
= 2p′ ≤ p′ + q′

⇐⇒ p′ ≤ q′.

We also note that jb = q′ − r.

We partition U ′ into disjoint subsets U0, U1, U2 . . . Uk′−1 such that |Ux| = i

where 0 ≤ x ≤ k′−1. Since 0 < k′b ≤ q′, we can also partition V ′ into disjoint

subsets V0, V1, V2, . . . Vk′−1 and V ∗ such that |Vx| = b where 0 ≤ x ≤ k′−1 and

|V ∗| = q′ − k′b.

By Lemma 2.1, we can decompose the edges between U0, U1 . . . Uj−1 and V0

into copies of Sij with each vertex of V0 a center of Sij. We then repeat this for

the edges between Ux, Ux+1 . . . Ux+j−1(mod k′) and Vx, for 0 ≤ x ≤ k′ − 1. We

have used ijbk′ edges altogether using vertices from V ′ regularly. Thus we have

used ijbk′

ik′
= jb edges incident with each vertex from U ′. Our decomposition

thus removes exactly q′ − r edges incident to each vertices in U ′. By Lemma

2.1, we can decompose the remaining edges using p′ copies of Sr with each

vertex in U ′ the center of one Sr.

Figures 2.4 and 2.5, illustrates an example of this algorithm.

�

2.4 Decomposition of Crown Graphs

In this section, we extend the results of Theorem 2.3 and Theorem 2.4 to crown

graphs. Here we show that a crown graph has a Sr-decomposition if and only

if r divides p2 − p and r is less or equal to p− 1.

29

p = 8

q = 9

i = 2

j = 3

k′ = 4

l′ = 3

b = 1

|Ug| = i = 2

|Vh| = b = 1

|V ∗| = q − k′b = 5

V0 V1 V2 V3

U0

U1

U2

U3

V ∗

Figure 2.4: K8,9 decomposing into S6.

p = 12

q = 15

r = 9

i = 3

j = 3

k′ = 4

l′ = 5

b = 2

|Ug| = i = 3

|Vh| = b = 2

|V ∗| = q − k′b = 7

U0

U1

U2

U3

V0 V1 V2 V3 V ∗

Figure 2.5: K12,15 decomposing into S9.

Theorem 2.5 The crown graph Kp,p minus a 1-factor decomposes into Sr if

and only if p2 − p is divisible by r and r ≤ p− 1.

Proof. Observe that Kp,p minus a 1-factor is isomorphic to S0
p (see Introduc-

tion).

We first show the necessity of the conditions r | (p2 − p) and r ≤ (p − 1).

Suppose that r does not divide p2−p. The number of edges in S0
p equals p2−p.

30

By the definition of a decomposition, r must divide p2 − p.

Suppose r > p − 1. We will show that S0
p has no subgraph isomorphic to

Sr. Every vertex in S0
p has the degree p− 1. Thus, every vertex in a subgraph

of S0
p has degree at most p − 1. Since the center vertex of Sr has a degree of

r, S0
p has no subgraphs isomorphic to Sr.

From here, we can separate the proof to the following cases:

Case 2.5.1: r divides p− 1.

Case 2.5.2: r divides p.

Case 2.5.3: r does not divide p, r does not divide p− 1.

Case 2.5.1 r divides p− 1.

Observe that each vertex in S0
p has the degree p − 1. By Lemma 2.1, we

can use a greedy algorithm to pick out the edges from one bipartite set to form

p2−p
r

copies of Sr.

Case 2.5.2 r divides p.

Let m = p
r

and let U and V be the 2 partite sets of the graph. We can

partition V into m disjoint subsets V1, V2, . . . Vm, each with size r. Let Gi be

the subgraph induced by U and Vi where 1 ≤ i ≤ m.

Observe that in each Gi, there are r vertices in partite set U with degree

r − 1 and p− r vertices with degree r.

From here, we partition U into two disjoint subsets U ′i and U ′′i such that U ′′i

is the set of p− r− 1 vertices with degree r and U ′i is the set of r vertices with

degree r − 1 and one vertex with degree r. Let G′′i be the subgraph induced

by U ′′i and Vi. Observe that every vertex in U ′′i has degree r, and by Lemma

2.1 we can decompose the edges between U ′′i and Vi into Sr. We now define

G′i as the subgraph induced by U ′i and Vi. Observe again that each vertex in

Vi in subgraph G′i has degree r. By Lemma 2.1 we can decompose the edges

of this subgraph into stars Sr. We repeat for each i, 1 ≤ i ≤ m.

Figure 2.6 illustrates an example of this algorithm.

31

V1 V1 V1

U ′′
3

U ′
3

U ′
1

U ′′
1

Figure 2.6: K9,9 minus 1-factor decomposing into S3.

Case 2.5.3 r does not divide p and r does not divide p− 1.

Recall that r | p(p− 1). Let gcd(r, p) = i, we then have

r = ij and p = ix.

Now,

r | p(p− 1)

⇒ ij | ix(p− 1)

⇒ j | x(p− 1)

since gcd(j, x) = 1

⇒ j | (p− 1).

Let n = p−p′
r

where r < p′ < 2r.

Since n ≥ 0, we can partition the graph into a union of graphs S0
p′ ∪

nS0
r+1 ∪ 2Kp′−1,nr ∪ (n)(n− 1)Kr,r as illustrated in Figure 2.7. By Lemma 2.1,

we can decompose S0
r+1 (refer to case 2.5.1), and Kp′−1,nr (refer to Theorem

2.4, case 2.4.1), Kr,r (refer to Theorem 2.3, case 2.3.1) into Sr and the edges

not partitioned are the edges in S0
p′ .

32

S0
p

S0
r+1

S0
r+1

Kr,r

Kp,2r

Kp,2r

Kr,r

p = 22
p′ = 10
r = 6

Figure 2.7: S0
22 partitioned into subgraphs.

Observe that p′ is divisible by i and p′ − 1 is divisible by j. The proof of

this is as follows. Since

i | p,

i | nr + p′

and since r = ij, we have

⇒ i | p′.

Similarly,

j | (p− 1),

j | (nr + p′ − 1)

and since r = ij, we have

⇒ j | (p′ − 1).

We let x′ = p′

i
and y′ = p′−1

j
. Let b = x′(y′ − i).

33

Observe that y′ − i ≥ 0, since

r < p′ < 2r

⇒ r ≤ p′ − 1 < 2r

⇒ ij ≤ jy′

⇒ j(y′ − i) ≥ 0.

Also observe that j
b
x′ = p′ − 1− r the proof of which is as follows:

bj

x′
= (y′ − i)j

= jy′ − ij

= p′ − 1− r. (2.1)

Let U and V be the partite sets of S0
p′ . We partition U into two disjoint

subsets U1 and U2 such that |U1| = b and |U2| = p − b. We then partition V

into i disjoint subsets Vk of size x′ where 1 ≤ k ≤ i. For each vertex in U1, we

pick out j edges in each Vk, offsetting by one each time until we are done with

each vertex in U1.

We have used ijb edges altogether using vertices from U1 regularly. Thus

we have used ijb
ix′

= jb
x′

edges incident with each vertex from V . Thus, our

decomposition removes exactly (p′ − 1) − r edges incident to each vertices in

V . By Lemma 2.1, the remaining edges forms p copies Sr using each vertex in

V as the center vertex for one copy of Sr.

Formally, we let U = U1 ∪ U2 where U1 = {uk : 1 ≤ k ≤ b} and U2 = {ui :

b + 1 ≤ i ≤ p}. Let V =
⋃

1≤k≤i Vk, where Vk = {vk,l : 1 ≤ l ≤ x}. Let there

be an edge between um and vk,l unless kx+ l = m.

For each 1 ≤ m ≤ b we define the decomposition Hm to be

V (Hm) = {um, vk,(l mod x) : 1 ≤ k ≤ i,m+ 1 ≤ l ≤ m+ j + 1}.

By equation (2.1) we have bj
x

= p′ − 1 − r edges used up for every vertex

in V . Therefore, we have exactly r edges incident to the vertices in V . By

Lemma 2.1 we have an Sr-decomposition.

Figure 2.8 illustrates an example of this algorithm. �

34

r = 6
i = 2
j = 3
x = 5
b = 5(3− 2) = 5
|Vh| = x = 5
|U1| = b = 5
|U2| = p− b = 5

V1 V2

U1

U2

Figure 2.8: S0
10 decomposing into S6.

Chapter 3

Decomposition of complete

Tripartite Graphs

In this section, we give necessary and sufficient conditions to decompose com-

plete equipartite tripartite graphs into stars. This result was proven by Ushio

[37] in 1982. The proof by construction given below is original, and uses

methods similar to those in Chapter 2. We will also extend the result for

S3-decompositions of Kp,q,r where p, q and, r are not equal. We conclude this

section by discussing how we might extend our results to Sr-decompositions

of multipartite graphs.

3.1 Preliminary lemmas

Lemma 3.1 If a
n

+ b
m

= 1 , there exists a decomposition of Km,n into m copies

of Sa and n copies of Sb such that each vertex in the partite set of size m is

the center of one copy of Sa and each vertex in the partite set of size n is the

center of one copy of Sb.

Proof. Without loss of generality, let m ≥ n otherwise we may swap the

partite sets. To highlight the necessity of the condition, let a
n

+ b
m

= 1; then

multiplying mn to both sides gives us ma+nb = mn. Since the total number of

edges of the m copies of Sa and n copies of Sb must equal the number of edges

36

in Km,n this condition is necessary. We can then construct a decomposition

to partition the edges into m copies of Sa and n copies of Sb. Let U and V be

the two partite sets of Km,n containing m and n vertices respectively. Observe

that vertices in U each have degree n and the vertices in V each have degree

m. We use each vertex of U as the center vertex of a star Sa, offsetting each

of the vertices used in V by one each time. This uses am
n

edges incident with

each of the n vertices of V . Since

a

n
+

b

m
= 1

⇒ a
m

n
= m− b,

there are exactly b edges incident with each of the vertices of V . By Lemma

2.1, we can then pick out the remaining b edges incident to each vertex of V

creating n copies of Sb.

Formally, the decomposition is as follow. Let U = {ui : 1 ≤ i ≤ m} and

V = {vi : 1 ≤ i ≤ n} then

V (Hi) = {ui, vc mod m : i ≤ c ≤ (i+ a− 1)}

V (H ′j) = {vj, uc mod n : j − b ≤ c ≤ j − 1}

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Observe that each Hi is isomorphic to Sa

and each H ′j is isomorphic to Sb. �

Lemma 3.2 If Kp,p,p has a Sr-decomposition then at least p vertices are cen-

ters of Sr in two of the three partite sets.

Proof. We let U, V,W be the 3 partite sets of Kp,p,p. We then define c(X) to

the be the number of vertices chosen to be a center of Sr in partite set X. Let

a = c(U), b = c(V) and c = c(W). Without loss of generality, let us assume

that there exists an Sr-decomposition with a < p and b < p. Since a and b are

less than p, there exists vertices u ∈ U and v ∈ V that are not chosen to be

centers of Sr. Note that every edge of Sr is an edge between the center and

a leaf vertex. However, since both u and v are not the center vertex of some

37

Sr, the edge {u, v} cannot be in a Sr decomposition. This is a contradiction,

therefore both a < p and b < p cannot be true. �

u v

centers
of Sr in
partite
set U

centers
of Sr in
partite
set V

Figure 3.1: Vertex u and v not picked as centers

3.2 Decomposition of equipartite tripartite

graphs

In this section we will prove that the complete tripartite graph Kp,p,p has a

Sr-decomposition if and only if 3p2 is divisible by r and r is less or equal

to 2p
3

. We will provide a proof by construction of such decomposition. This

theorem was also proven by Ushio, Tazawa, and Yamamoto [37]. In the proof

by given in that paper, the authors showed that an adjacency matrix admits

a Sr decomposition if the row sum vector equals r. The authors then showed

that for all equipartite multipartite graphs, this condition is met when the

necessity conditions are met.

Theorem 3.3 The complete tripartite graph Kp,p,p decomposes into Sr if and

only if 3p2 is divisible by r and p ≥ 2
3
r and r | 3p2.

Proof. We first show the necessity of the conditions r | 3p2 and p ≥ 2
3
r. Let

U, V,W be the three partite sets of Kp,p,p. Note that the graphs formed from

the edges between U and V , V and W , and U and W , are each isomorphic

to Kp,p. Hence the total number of edges in Kp,p,p is 3p2. By the definition of

decomposition, the edges in a decomposition must divide the total number of

edges in the graph. Thus, r must divide 3p2.

38

Suppose p < 2
3
r. Let c(X) be the number of vertices chosen to be a center

of Sr in partite set X, and let a = c(U), b = c(V) and c = c(W). By Lemma

3.2, at least two of the three partite sets have p vertices chosen as centers of Sr.

Without loss of generality let a ≥ p and b ≥ p. Also note that r(a+b+c) = 3p2.

We can then derive the following inequality:

r(a+ b+ c) = 3(p2)

⇒ r(p+ p+ c) ≤ 3(p2)

⇒ r(2p+ c) ≤ 3(p2).

Since it is impossible for c to be negative, we have the following;

r(2p) ≤ 3(p2)

⇒ 2r ≤ 3(p)

⇒ p ≥ 2

3
r.

We now show the sufficiency of the conditions, by separating proofs into

the following cases:

Case 3.3.1: gcd(r, 3)= 3, r = 3j, j | p.

Case 3.3.2: gcd(r, 3)= 3, r = 3k, k - p.

Case 3.3.3: gcd(r, 3)= 1, r ≤ p.

Case 3.3.4: gcd(r, 3)= 1, 2
3
r ≤ p ≤ r.

Case 3.3.1 gcd(r, 3)= 3, r = 3j, j | p.

Let n = p
j
. By Lemma 2.2, since Kp,p,p = Kn,n,n⊗Kj, if Kn,n,n decomposes

into S3 then Kp,p,p decomposes into S3j for all p ≥ 2j. Let U, V,W be the 3

partite sets of Kn,n,n.

There exists a ≥ 0 and 0 ≤ b ≤ 2 that satisfies n = 3a + 2b for all n ≥ 2,

since gcd(3, 2) = 1. We first pick out a total of b edge disjoint 1-factors between

partite sets U and V , and a total of 2b edge disjoint 1-factors between partite

sets U and W . Note that we can use these edges to form b copies of S3 using

39

each vertex in partite set U as a center. We then pick out another b edge-

disjoint 1-factors between partite sets U and V , and 2b edge disjoint 1-factors

between partite sets V and W . We also note that we can use these edges to

form b copies of S3 using each vertex in partite set V as a center. Observe

each vertex in U is now incident with 3a edges between partite sets U and

V . Also observe that each vertex in V is now incident with 3a edges between

partite sets V and W , and each vertex in W is also incident with 3a edges

between partite set W and U . By Lemma 1, we have a S3 decomposition of

the remaining edges.

Case 3.3.2 gcd(r, 3)= 3, r = 3k, k - p.

Let k = i2j where j is square-free. Since r | 3p2,

k | p2

⇒ i2j | p2

⇒ ij | p

⇒ p = nij.

Let ni = p
j
. By Lemma 2.2,since Kp,p,p = Kni,ni,ni ⊗Kj, if Kni,ni,ni decom-

poses into S3i2 then Kp,p,p decomposes into Sr. Using the strategy from Case

3.3.1, we can divide the decomposition problem into partial decompositions of

3Kni,ni. By the necessary conditions, we have ni ≥ 2
3
(3i2); we can then sim-

plify this to n ≥ 2i. We can now show a proof by construction of the existence

of a S3i2-decomposition. Let us assume that there exists a S3i2-decomposition

with a copies of S3i2 with centers in partite set U each using x edges to V ;

b copies of S3i2 with centers in partite set V each using y edges to W and c

copies of S3i2 with centers in partite set W each using z edges to U .

40

By summing the edges between partite sets U and V we have the following

equality

a(x) + b(3i2 − y) = (ni)2. (3.1)

By considering the edges between partite sets V and W we have

b(y) + c(3i2 − z) = (ni)2. (3.2)

By considering the edges between partite sets U and W we have

c(z) + a(3i2 − x) = (ni)2. (3.3)

Summing the three equations gives us

(3i2)(a+ b+ c) = 3(ni)2

⇒ (3i2)(a+ b+ c) = 3(ni)2

⇒ a+ b+ c = n2. (3.4)

The values of x,y and z are bound by the following

0 ≤ x ≤ min(3i2, ni);

0 ≤ y ≤ min(3i2, ni);

0 ≤ z ≤ min(3i2, ni).

Moreover we also have the following bounds

0 ≤ 3i2 − x ≤ min(3i2, ni);

0 ≤ 3i2 − y ≤ min(3i2, ni);

0 ≤ 3i2 − z ≤ min(3i2, ni).

Now,

0 ≥ x− 3i2 ≥ −min(3i2, ni)

⇒ 3i2 ≥ x ≥ max(0, 3i2 − ni).

41

We obtain similar bounds on y and z. Combining these bounds gives us

max(3i2 − ni, 0) ≤ x ≤ min(3i2, ni); (3.5)

max(3i2 − ni, 0) ≤ y ≤ min(3i2, ni); (3.6)

max(3i2 − ni, 0) ≤ z ≤ min(3i2, ni). (3.7)

We then consider the following sub-cases:

Case: 3.3.2.1 2i ≤ n ≤ 3i.

Case: 3.3.2.2 3i ≤ n ≤ 4i.

Case: 3.3.2.3 4i ≤ n ≤ 5i.

Case: 3.3.2.4 n ≥ 5i.

Case 3.3.2.1 2i ≤ n ≤ 3i.

Using inequalities (3.5), (3.6), (3.7) we have the following bounds for x,y,z

for 2i ≤ n ≤ 3i:

3i2 − ni ≤ x ≤ ni;

3i2 − ni ≤ y ≤ ni;

3i2 − ni ≤ z ≤ ni. (3.8)

We now set the following,

a = ni,

b = ni,

c = n2 − 2ni,

x = n2 − 3ni+ 3i2,

y = n2 − 4ni+ 6i2,

z = ni.

We will now show that our choice above satisfies equations (3.1), (3.2),

(3.3), (3.4), and the inequalities (3.8). Looking at equation 3.4, we have

a+ b+ c = ni+ ni+ (n2 − 2ni) = n2.

42

We can also show that equations (3.1), (3.2), (3.3) are satisfied by our

choice of a, b, c, x, y, and z. The left hand side of equation (3.1) is equal to

a(x) + b(3i2 − y)

= ni(n2 − 3ni+ 3i2) + ni(3i2 − (n2 − 4ni+ 6i2))

= ni(n2 − 3ni+ 3i2) + ni(4ni− 3i2 − n2)

= n2i2.

Again, the left hand side of equation (3.2) is equal to

b(y) + c(3i2 − z)

= ni(n2 − 4ni+ 6i2) + (n2 − 2ni)(3i2 − (ni))

= ni(n2 − 4ni+ 6i2) + ni(n− 2i)(3i− n)

= ni(n2 − 4ni+ 6i2 − (n2 − 5ni+ 6i2))

= n2i2.

Finally, the left hand side of equation (3.3) is equal to

a(3i2 − x) + c(z)

= ni(3i2 − (n2 − 3ni+ 3i2)) + (n2 − 2ni)(ni)

= ni(3ni− n2) + (n2 − 2ni)(ni) = n2i2.

Now we can show that our choice of x, y, z satisfies bounds given by

inequalities (3.8) for 2i ≤ n ≤ 3i. Checking for the lower bounds for x we have

x ≥ 3i2 − ni

⇐⇒ n2 − 3ni+ 3i2 ≥ 3i2 − ni

⇐⇒ n2 − 2ni ≥ 0

⇐⇒ n(n− 2i) ≥ 0

⇐⇒ n ≤ 0 or n ≥ 2i.

43

Checking for the upper bounds for x we have

x ≤ ni

⇐⇒ n2 − 3ni+ 3i2 ≤ ni

⇐⇒ n2 − 4ni+ 3i2 ≤ 0

⇐⇒ (n− 3i)(n− i) ≤ 0

⇐⇒ i ≤ n ≤ 3i which is true because 2i ≤ n ≤ 3i.

Moreover, for 2i ≤ n ≤ 3i, we can also show that the lower bound of y is

y ≥ ni− c ≥ r − ni. We first show the second inequality

ni− c ≥ r − ni

⇐⇒ ni− n(n− 2i) ≥ r − ni

⇐⇒ n(4i− n)− 3i2 ≥ 0

⇐⇒ n2 − 4ni+ 3i2 ≤ 0

⇐⇒ (n− 3i)(n− i) ≤ 0

⇐⇒ i ≤ n ≤ 3i.

Now we verify that y ≥ ni− c

n2 − 4ni+ 6i2 ≥ ni− c

⇐⇒ n2 − 4ni+ 6i2 ≥ ni− n(n− 2i)

⇐⇒ 2n2 − 7ni+ 6i2 ≥ 0

⇐⇒ 2n2 − 7ni+ 6i2 ≥ 0

⇐⇒ (2n− 3)(n− 2i) ≥ 0

⇐⇒ n ≤ 3

2
i or n ≥ 2i (3.9)

which is true because 2i ≤ n ≤ 3i.

44

Looking at the upper bounds of y, we have

n2 − 4ni+ 6i2 ≤ ni

⇐⇒ n2 − 5ni+ 6i2 ≤ 0

⇐⇒ n2 − 5ni+ 6i2 ≤ 0

⇐⇒ (n− 2i)(n− 3i) ≤ 0

⇐⇒ 2i ≤ n ≤ 3i.

Finally z = ni clearly satisfies the inequality r − ni ≤ z ≤ ni.

Observe that for 2i ≤ n ≤ 3i,

0 ≤ c ≤ ni. (3.10)

The proof of which is as follows:

n(n− 2i) ≥ 0

⇒ n ≤ 0 or n ≥ 2i;

n(n− 2i) ≤ ni

⇐⇒ n(n− 3i) ≤ 0

⇒ 0 ≤ n ≤ 3i.

By equation (3.1), we have

a(x)− b(3i2 − y) = n2i2

⇒ ni(x)− ni(3i2 − y) = n2i2.

Dividing both sides by n2i2 gives us

⇒ x

ni
− 3i2 − y

ni
= 1.

Thus by Lemma 3.1, the edges between U and V can be decomposed into ni

copies of Sx and ni copies of S3i2−y so that each vertex of U is the center of

one copy of Sx and each vertex of V is the center of one copy of S3i2−y.

45

Let Duv be the set of Sx’s and Dvu be the set of S3i2−y’s in this decompo-

sition.

We next partition W into disjoint sets W ′ and W ′′, such that |W ′| = c and

|W ′′| = ni− c. Observe that 3i2 − x = ni− c:

3i2 − (n2 − 3ni+ 3i2)

= 3ni− n2

= ni+ 2ni− n2

= ni− (n2 − 2ni)

= ni− c

By Lemma 2.1 we can decompose the edges between U and W ′′ into a = ni

copies of S3i2−x with each vertex of U the center of one copy of S3i2−x. By

Lemma 2.1, we can also decompose the edges between U and W ′′ into c copies

of Sz=ni with each vertex of W ′′ the center of one copy of Sz. We let Duw be

the set of S3i2−x’s and Dwu be the set of Sz’s in this decomposition.

Again, by Lemma 2.1, we can decompose the edges between V and W ′′

into ni copies of Sni−c with each vertex of V the center of one copy of Sni−c.

We will now show that by Lemma 3.1 we have a decomposition between the

edges of V and W ′ with ni copies of Sy−ni+c with each vertex of V the center

of one copy of Sy−ni+c and c copies of S3i2−z with each vertex of W ′ the center

of one copy of S3i2−z
y − ni+ c

c
+

3i2 − z
ni

=
n2 − 4ni+ 6i2 − ni

n2 − 2ni
+ 1 +

3i2 − ni
ni

=
n2 − 5ni+ 6i2

n2 − 2ni
+

3i− n
n

+ 1

=
(n2 − 5ni+ 6i2) + (n− 2i)(3i− n)

n(n− 2i)
+ 1

=
(n− 2i)(n− 3i) + (n− 2i)(3i− n)

(n2 − 2ni)
+ 1

= 1.

46

Let Dvw′′ be the set of Sni−c’s, Dvw′ be the set of Sy−ni+c’s and Dwv be the

set of S3i2−z’s.

We now let Du = Duv ∪Duw, observe that each vertex in U is the center

of one copy of Sx and one copy of S3i2−x, the union of which is isomorphic to

S3i2 . Similarly, we let Dv = Dvu ∪Dvw′ ∪Dvw′′ ; each vertex in V is the center

of one copy of S3i2−y, one copy of Sni−c and one copy of Sy−ni+c, the union of

which is S3i2 . Finally, we let Dw = Dwu ∪Dwv, and note that each vertex in

W ′ is the center of one copy of Sz, and one copy of S3i2−z, the union of which

gives us S3i2 .

Note that any positive integer solution for a, b, c, x, y, and z that satisfy

equations (3.1), (3.2), (3.3), (3.4) while fulfilling the bounds given in 3.8 can

construct a S3i2 decomposition.

Case 3.3.2.2 : 3i ≤ n ≤ 4i.

Let q = n− 3i and n′ = n− 2q. Observe that 0 ≤ q ≤ i and 2i ≤ n′ ≤ 3i when

3i ≤ n ≤ 4i.

Let U, V and W be the partite sets of Kni,ni,ni. We partition U into three

disjoint subsets U1, U2 and U3; V into three disjoint subsets V1, V2 and V3 and

W into three disjoint subsets W1, W2 and W3 such that |U1| = |U2| = |V1| =

|V2| = |W1| = |W2| = qi and |U3| = |V3| = |W3| = ni− 2qi. Let U ′ = U1 ∪ U3,

U ′′ = U2 ∪U3, V
′ = V1 ∪V3, V ′′ = V2 ∪V3, W ′ = W1 ∪W3 and W ′′ = W2 ∪W3.

Observe that n−q = 3i and |U ′| = |U ′′| = |V ′| = |V ′′| = |W ′| = |W ′′| = 3i2.

By Lemma 2.1 we can decompose the edges between U1 and V ′ using qi copies

of S3i2 with each vertex in U1 the center of one copy of S3i2 . Similarly, we

can decompose the edges between U2 and V ′′, using qi copies of S3i2 with each

vertex in U2 the center of one copy of S3i2 ; the edges between V1 and U ′′; with

each vertex in V1 the center of one copy of S3i2 and the edges between V2 and

U ′ with each vertex in V2 the center of one copy of S3i2 , by Lemma 2.1. An

example of this decomposition is illustrated in Figure 3.2.

We repeat this for each pair of partite sets. The remaining set of edges

47

that is not decomposed in the steps above is isomorphic to Kn′i,n′i,n′i. We can

then decompose this graph by referring to case 3.3.2.1.

V1 V2V3

U1

U3

U2

ni = 14
n = 7
q = 1
i = 2
|U1| = |U2| = qi = 2
|V1| = |V2| = qi = 2
|U3| = |V3| = (n− 2q)i = 10

Figure 3.2: K14,14 reduced to K10,10.

Case 3.3.2.3 4i ≤ n ≤ 5i.

Initially, we planned to use the strategy from Case 3.3.2.2 to reduce the

case into n′ = n−2i, however while constructing the decomposition, it became

apparent that this strategy did not work for odd values of i. We can however

construct a new proof by construction using the techniques from case 3.3.2.1.

Let us assume that there exists a S3i2-decomposition with 2ni copies of S3i2

with centers in partite set U where each vertex is a center of two copies of S3i2 ,

such that one copy has x1 edges to V and the other copy has x2 edges to V ,

and 2ni copies of S3i2 with centers in partite set V , where each vertex is the

center of two copies of S3i2 such that one copy has y1 edges the other copy has

y2 edges to W ; and c copies of S3i2 with c vertices of W a center of one copy

of S3i2 in partite set W with z edges to U .

48

For 4i ≤ n ≤ 5i, the bounds given by inequalities (3.5,(3.6),(3.7) gives us

0 ≤ x1 ≤ 3i2;

0 ≤ x2 ≤ 3i2;

0 ≤ y1 ≤ 3i2;

0 ≤ y2 ≤ 3i2;

0 ≤ z ≤ 3i2. (3.11)

Moreover, by the decomposition described above, we have these additional

bounds

6i2 − ni ≤ x1 + x2 ≤ ni;

6i2 − ni ≤ y1 + y2 ≤ ni. (3.12)

We now set the following:

a = ni;

b = ni;

c = n2 − 4ni;

x1 = i2;

x2 = i2;

y1 = i2;

y2 = 7i2 − ni;

z = i2.

Looking at the edges between partite sets U and V and referring to equality

(3.1), we have

ni(x1) + ni(x2) + ni(3i2 − y1) + ni(3i2 − y2)

= ni(i2 + i2 + (3i2 − i2) + (3i2 − (7i2 − ni)))

= ni(7i2 + ni− 7i2) = n2i2. (3.13)

49

Looking at the edges between partite sets V andW and referring to equality

(3.2), we have

ni(y1) + ni(y2) + (c)(3i2 − z)

= ni(i2 + (7i2 − ni)) + (n2 − 4ni)(2i2)

= ni(8i2 − ni) + ni((n− 4i)(2i))

= ni(8i2 − ni+ 2ni− 8i2)

= n2i2.

Looking at the edges between partite setsW and U and referring to equality

(3.3), we have

c(z) + ni(3i2 − x1) + ni(3i2 − x2)

= (n2 − 4ni)(i2) + ni(3i2 − i2) + ni(3i2 − i2)

= ni(ni− 4i2) + ni(4i2)

= n2i2.

Observe that x1 = x2 = y1 = z = i2 fulfils the bounds given in inequalities

(3.11). Also observe that y2 = 7i2 − ni fulfils the bound 0 ≤ y2 ≤ 3i2 for

4i ≤ n ≤ 5i.

We also observe that inequalities (3.12) are satisfied by our choice of x1, x2, y1

and y2.

6i2 − ni ≤ x1 + x2 ≤ ni

⇐⇒ 6i2 − ni ≤ 2i2 ≤ ni

⇐⇒ n ≥ 4i.

6i2 − ni ≤ y1 + y2 ≤ ni

⇐⇒ 6i2 − ni ≤ i2 + 7i2 − ni ≤ ni

⇐⇒ 8i2 ≤ 2ni

⇐⇒ n ≥ 4i.

50

Note that y1 + y2 ≥ ni− c for ni ≥ 4i, the proof of which is as follows:

y1 + y2 ≥ ni− c

⇐⇒ i2 + 7i2 − ni ≥ ni− (n2 − 4ni)

⇐⇒ 8i2 − ni ≥ 5ni− n2

⇐⇒ n2 − 6ni+ 8i2 ≥ 0

⇐⇒ (n− 4i)(n− 2i) ≥ 0

⇐⇒ n ≥ 4i or n ≤ 2i

Observe that x1 + x2 = 2i2 and 6i2− y1− y2 = ni− 2i2. Dividing equation

(3.13) by n2i2 gives us the necessity condition for Lemma 3.1:

x1
ni

+
x2
ni

+
3i2 − y1
ni

+
3i2 − y2
ni

=
x1 + x2
ni

+
6i2 − y1 − y2

ni

= 1.

By Lemma 3.1, there exists a decomposition of the edges between U and

V using a = ni copies of S(x1+x2)=2i2 with each vertex of U the center of a copy

of S2i2 and b = ni copies of S(6i2−y1−y2)=ni−2i2 with each vertex of V the center

of a copy of Sni−2i2 .

Let Duv be the set of S2i2 ’s and Dvu be the set of Sni−2i2 ’s in this decom-

position.

We can partition W into disjoint sets W ′ and W ′′, such that |W ′| = c =

n2− 4ni and |W ′′| = ni− c = 5ni− n2. By Lemma 2.1 we can decompose the

edges between U and W ′′ into ni copies of S5ni−n2 with each vertex of U the

center of one copy of S5ni−n2 .

Let k = n2 − 5ni + 4i2, observe that k is positive for all n ≥ 4i. Also

observe that k + 5ni− n2 = 4i2 = 6i2 − x1 − x2. We then have that:

k

c
+
i2

ni

=
n2 − 5ni+ 4i2

n2 − 4ni
+
i

n

51

=
n2 − 5ni+ 4i2

n(n− 4i)
+
i

n

=
n2 − 5ni+ 4i2 + (n− 4i)(i)

n(n− 4i)

=
n2 − 4ni

n(n− 4i)

= 1.

By Lemma 3.1, we can decompose the edges between U and W ′ into a = ni

copies of Sk with each vertex of U a center of one copy of Sk and c = n2− 4ni

copies of Sz=i2 with each vertex in W ′ a center of one copy of Sz.

Let Duw be the set of S5ni−n2 ’s and Duw′ be the set of Sk and Dwu be the

set of Si2 ’s in this decomposition.

Again by Lemma 2.1, we can decompose the edges between V and W ′′ into

ni copies of S5ni−n2 with each vertex of V the center of one copy of S5ni−n2 .

We let l = y1 + y2 − 5ni + n2 = 8i2 − 6ni + n2. Observe that l is positive for

all n ≥ 4i. We can then show that,

l

c
+

2i2

ni

=
n2 − 6ni+ 8i2

n2 − 4ni
+

2i

n

=
n2 − 6ni+ 8i2

n(n− 4i)
+

2i

n

=
n2 − 6ni+ 8i2 + (n− 4i)(2i)

n(n− 4i)

=
n2 − 4ni

n(n− 4i)

= 1.

By Lemma 3.1, there is a decomposition of the edges between V and W ′ into

b = ni copies of Sl and c = n2 − 4ni copies of S2i2 .

Let Dvw be the set of S5ni−n2 ’s and Dvw′ be the set of Sl and Dwv be the

set of S2i2 ’s in this decomposition.

We now let Du = Duv ∪Duw ∪Duw′ ; observe that each vertex in U is the

center of one copy of S2i2 , one copy of S5ni−n2 and one copy of Sk=n2−5ni+4i2 ,

52

the union of which gives us S6i2 . By Lemma 2.1, we can then decompose each

S6i2 into two copies of S3i2 .

Similarly, we let Dv = Dvu ∪ Dvw′ ∪ Dvw′′ , observe that each vertex in

V is the center of one copy of Sni−2i2 , one copy of S5ni−n2 and one copy of

Sl=8i2−6ni+n2 , the union of which gives us S6i2 . Again, by Lemma 2.1, we can

then decompose each S6i2 into two copies of S3i2 .

Finally, we let Dw = Dwu ∪ Dwv, and note that each vertex in W ′ is the

center of one copy of Si2 , and one copy of S2i2 , the union of which gives us

S3i2 .

Case 3.3.2.4 n ≥ 5i.

Let m = n−n′

3i
where 2i < n′ ≤ 5i. Observe that we can partition U

into subsets U ′ and U ′′ such that |U ′| = n′i and |U ′′| = 3mi2. Similarly,

we can also partition V into V ′ and V ′′ and W into W ′ and W ′′ such that

|U ′| = |V ′| = |W ′| = n′i and |V ′′| = |U ′′| = |W ′′| = 3mi2. By Lemma 2.1,

there is a S3i2 decomposition of the edges between U ′′ and V ′, U ′′ and W ′, U ′′

and V ′′, U ′′ and W ′′, V ′′ and W ′, V ′′ and U ′, V ′′ and W ′′, W ′′ and U ′ , W ′′

and V ′. The remaining edges that are not decomposed are the edges between

each of U ′, V ′ and W ′, i.e. a graph isomorphic to Kn′i,n′i,n′i. We can then use

cases 3.3.2.1, 3.3.2.2, 3.3.2.3 to decompose the remaining edges.

Case 3.3.3 r = i2j, p = nij with p ≥ r.

Observe that we can partition the edges of Kp,p,p into the union of 3 subgraphs

of Kp,p and we can then use Theorem 2.3 to decompose the graph into Sr.

Case 3.3.4 r = i2j, p = nij with 2
3
r ≤ p ≤ r.

Using Lemma 2.2, we can show that Kp,p,p has an Sr decomposition if Kni,ni,ni

has a S2
i decomposition. Observe that when 2

3
r ≤ p ≤ r, 2i

3
≤ n ≤ i. Let

U ,V and W be the three partite sets of Kni,ni,ni. Referring to case 3.3.2.1, we

define an Si2-decomposition with the following values:

53

a = ni;

b = ni;

c = 3n2 − 2ni;

x = 3n2 − 3ni+ i2;

y = 3n2 − 4ni+ 2i2;

z = ni.

We then assume there exists a Si2-decomposition where there are a = ni

copies of S2
i with each vertex of U a center of one copy of S2

i with x edges

between partite set U and V and i2 − x edges between partite set U and W ;

b = ni copies of S2
i with each vertex of V a center of one copy of S2

i with y

edges between partite set V and W and i2−y edges between partite set V and

U ; and c copies of S2
i with c = 3n2− 2ni vertices of W a center of one copy of

S2
i with z edges between partite set W and U and i2− z edges between partite

set W and V . We will now show that our choice above fulfils the requirements

for such a decomposition to exist.

Referring to equations (3.1), (3.2), (3.3), we have

a(x) + b(i2 − y)

= ni(3n2 − 3ni+ i2) + ni(i2 − (3n2 − 4ni+ 2i2))

= ni(3n2 − 3ni+ i2) + ni(4ni− i2 − 3n2)

= ni(3n2 − 3ni+ i2 + 4ni− i2 − 3n2)

= n2i2;

b(y) + c(i2 − z)

= ni(3n2 − 4ni+ 2i2) + (3n2 − 2ni)(i2 − ni)

= ni(3n2 − 4ni+ 2i2) + ni(3n− 2i)(i− n)

54

= ni(3n2 − 4ni+ 2i2 + 5ni− 3n2 − 2i2)

= n2i2;

c(z) + a(i2 − x)

= (3n2 − 2ni)(ni) + ni(i2 − (3n2 − 3ni+ i2))

= ni(3n2 − 2ni) + ni(3n2 + 3ni

= ni(3n2 − 2ni+ 3n2 + 3ni)

= n2i2.

From the description of the decomposition, the values of x,y and z are

bound by the following inequalities:

i2 − ni ≤ x ≤ ni;

i2 − ni ≤ y ≤ ni;

i2 − ni ≤ z ≤ ni.

From equation (3.1), we have

a(x)− b(i2 − y) = n2i2

⇒ ni(x)− ni(i2 − y) = n2i2.

Dividing both sides by n2i2 gives us

⇒ x

ni
− 3i2 − y

ni
= 1.

By Lemma 3.1, the edges between U and V can be decomposed into ni copies

of Sx and ni copies of Si2−y so that each vertex of U is the center of one copy

of Sx and each vertex of V is the center of one copy of Si2−y. Let Duv be the

set of Sx’s and Dvu be the set of Si2−y’s in this decomposition.

We can partition the W into disjoint sets W ′ and W ′′, such that |W ′| = c

and |W ′′| = ni− c.

55

Observe that i2 − x = ni− c:

i2 − (3n2 − 3ni+ i2)

= 3ni− 3n2

= ni+ 2ni− 3n2

= ni− c.

By Lemma 2.1 we can decompose the edges between U and W ′′ into ni

copies of Si2−x with each vertex of U the center of one copy of Si2−x. By

Lemma 2.1, we can also decompose the edges between U and W ′′ into c copies

of Sni with each vertex of W ′′ the center of one copy of Sni. We let Duw be

the set of Si2−x’s and Dwu be the set of Sni’s in this decomposition.

Again, by Lemma 2.1 we can decompose the edges between V and W ′′

into ni copies of Sni−c with each vertex of V the center of one copy of Sni−c.

Observe that y ≥ ni− c, the proof of which is as follows:

y ≥ ni+ c

⇐⇒ 3n2 − 4ni+ 2i2 ≥ ni− 3n2 + 2ni

⇐⇒ 6n2 − 7ni+ 2i2 ≥ 0

⇐⇒ (2n− i)(3n− 2i) ≥ 0

which is true since n ≥ 2i

3
.

Also observe that y−ni+c
c

+ i2−z
ni

= 1, the proof of which is as follows:

3n2 − 4ni+ 2i2 − ni+ c

c
+
i2 − z
ni

=
3n2 − 4ni+ 2i2 − ni

3n2 − 2ni
+ 1 +

i2 − ni
n

=
3n2 − 5ni+ 2i2

n(3n− 2i)
+
i− n
n

+ 1

=
3n2 − 5ni+ 2i2 + (3n− 2i)(i− n)

n(3n− 2i)
+ 1

=
3n2 − 5ni+ 2i2 + 5ni− 2i2 − 3n2

ni(n2 − 2ni)
+ 1 = 1

56

By Lemma 3.1 we have a decomposition between the edges of V and W ′

with ni copies of Sy−ni+c with each vertex of V the center of one copy of Sy−ni+c

and c copies of Si2−ni with each vertex of W ′ the center of one copy of Si2−ni.

Let Dvw′′ be the set of Sni−c’s, Dvw′ be the set of Sy−ni+c’s and Dwv be the set

of Si2−z’s.

We now let Du = Duv ∪Duw, observe that each vertex in U is the center of

one copy of Sx and one copy of Si2−x, the union of which is Si2 . Similarly, we

let Dv = Dvu∪Dvw′∪Dvw′′ , each vertex in V is the center of one copy of Si2−y,

one copy of Sni−c and one copy of Sy−ni+c, the union of which is Si2 . Finally,

we let Dw = Dwu ∪Dwv, and note that each vertex in W ′ is the center of one

copy of Sz, and one copy of Si2−z, the union of which gives us Si2 . Figure 3.3

is an illustration of an S16-decomposition of K10,10,10.

�

3.3 S3-Decomposition of complete tripartite

graphs

Theorem 3.4 The complete tripartite graph Kp,q,r decomposes into S3 if and

only if one of the following conditions is true:

i. at least two of p, q, and r is divisible by 3.

ii. pq + pr + qr is divisible by 3 and p, q, r ≥ 2.

Proof. Observe that edges of Kp,q,r is the union of the bipartite graphs Kp,q,

Kp,r, and Kq,r. By the definition of a decomposition the number of edges in the

decomposition has to divide the total number of edges in the graph, therefore

pq + pr + qr(mod 3) = 0.

Let p′ = p (mod 3), q′ = q (mod 3), r′ = r (mod 3). We then construct a

table for the values of pq + pr + qr(mod 3).

57

i = 4

n = 3

a = 12

b = 12

c = 3

x = 7

y = 11

z = 12

|W ′| = c = 3

|W ′′| = ni− c = 12− 3 = 9

U

V

U

W ′′ W ′

V

W ′′ W ′

Figure 3.3: K12,12,12 decomposed into S16.

From Table 3.1, we can divide our proof into two separate cases. Observe

that the statement of the first condition of Theorem 3.4 is equivalent to Case

3.4.1.

Case 3.4.1: At least two of p′, q′ and r′ are equal to 0.

Case 3.4.2: p′ = q′ = r′ = d 6= 0.

Case 3.4.1 At least two of p′, q′ and r′ are equal to 0.

Without loss of generality let p′ = q′ = 0. Observe that Kp,q,r is the

union of the bipartite graphs Kp,q, Kp,r, and Kq,r. Observe that in each of

58

q′

r′ = 0 0 1 2

p′

0 0 0 0

1 0 1 2

2 0 2 1

q′

r = 1 0 1 2

p′

0 0 1 2

1 1 0 2

2 2 2 2

q′

r′ = 2 0 1 2

p′

0 0 2 1

1 2 2 2

2 1 2 0

Table 3.1: The value pq + qr + pr (mod 3) for different values of p′, q′ and r′.

the three bipartite graphs, there is at least one of the partite set with size

divisible by three. By Lemma 2.1, we have an S3 decomposition. Note that

an S3-decomposition exists when r = 1.

Case 3.4.2 p′ = q′ = r′ = d 6= 0

Without loss of generality let p ≥ q ≥ r. Let U be the partite set with size

p, V be the partite set with size q and W be the partite set with size r. Since

p ≥ q ≥ r, p = r + 3i; q = r + 3j for some i, j ≥ 0. We then partition U into

U ′ and U ′′ where |U ′| = r and |U ′′| = 3i, and we partition V into V ′ and V ′′

where |V ′| = r and |V ′′| = 3j.

59

Observe that by Lemma 2.1, we can partition the edges between U ′′ and V ′,

U ′′ and V ′′, and U ′′ and W , and V ′′ and W into S3 as the vertices in partite

sets U ′′ and V ′′ of each subgraph has degree divisible by 3. The remaining

edges that are not decomposed are the edges between partite sets U ′, V ′ and

W . Observe that these edges, are the edges of graph Kr,r,r and from case 3.3.1

of Theorem 3.3, there is a S3 decomposition if p, q and r is greater or equal to

2. �

3.4 Extending Theorem 3.3 for multipartite

graphs

The results of Ushio, Tazawa, and Yamamoto [37] shows that there is a Sr-

decomposition of a complete m-partite graph Kp,p,...,p if and only if
(
m
2

)
p2 ≡

0 (mod r) and mp ≥ 2r. In this section we discuss whether the methods of

Theorem 3.3 can be generalized to proof the same result.

We found that as m becomes larger, the number of variables and subdivi-

sion of cases increases. The following is not an exhaustive construct to cover

all possible decompositions. We outline a proof in the case 3i ≤ n ≤ 5i, m = 4.

Let r = 6i2j; observe that we can obtain a Si2j, S2i2j and S3i2j-decomposition

from a S6i2j-decomposition. We then have the following:

r | 6p2

⇒ i2j | p2

⇒ ij | p

⇒ p = nij

By Lemma 2, there exists a Sr-decomposition of Kp,p,p,p if there is a S6i2-

decomposition of Kni,ni,ni,ni.

We let T, U, V,W be the 4 partite sets of Kni,ni,ni,ni. We define the decom-

position using by using the definition set in table 3.2.

60

T U V W

number of centers

in the partite set
a b c d

Number of edges

to Partite set T
t1 t2 t3

Number of edges

to Partite set U
u1 u2 u3

Number of edges

to Partite set V
v1 v2 v3

Number of edges

to Partite set W
w1 w2 w3

Table 3.2: Table describing the S6i2 decomposition.

Observe that from Table 3.2, t1 + t2 + t3 = u1 + u2 + u3 = v1 + v2 + v3 =

w1 + w2 + w3 = 6i2 → (1.1) is a necessary condition for this construction to

be a S6i2-decomposition.

We then assume there exists a S6i2-decomposition such that there are a =

ni copies of S6i2 with each vertex of T a center of one copy of S6i2 with t2 = ni

edges between partite set T and V and t3 = 6i2−ni edges between partite set

T and W . We also assume that there are b = ni copies of S6i2 with each vertex

of U a center of one copy of S6i2 with u1 = ni edges between partite set T and

U and u3 = 6i2−ni edges between partite set U and W . We assume that there

are c = ni copies of S6i2 with each vertex of V a center of one copy of S6i2 with

v2 = ni edges between partite set U and V and v3 = 6i2 − ni edges between

partite set V and W . Finally, we assume that there are d = n2 − 3ni vertices

selected as centers of S6i2 in partite set W , with 2i2 edges to partite set T ,

2i2 edges to partite set U , 2i2 edges to partite set V . This decomposition is

summarized in Table 3.3.

61

T U V W

number of centers

in the partite set
ni ni ni n2 − 3ni

Number of edges

to Partite set T
0 ni 6i2 − ni

Number of edges

to Partite set U
ni 0 6i2 − ni

Number of edges

to Partite set V
0 ni 6i2 − ni

Number of edges

to Partite set W
2i2 2i2 2i2

Table 3.3: Table of values for S6i2-decomposition for graph Kni,ni,ni,ni.

By considering the edges between each pair of the partite sets we have,

a(t1) + b(u1) = n2i2;

a(t2) + c(v1) = n2i2;

a(t3) + d(w1) = n2i2;

b(u2) + c(v2) = n2i2;

b(u3) + d(w2) = n2i2;

c(v3) + d(w3) = n2i2. (3.14)

The construction of the decomposition also gives us the following bounds,

0 ≤ t1, t2, t3 ≤ ni;

0 ≤ u1, u2, u3 ≤ ni;

0 ≤ v1, v2, v3 ≤ ni;

0 ≤ w1, w2, w3 ≤ ni. (3.15)

62

We let,

a = b = c = ni;

w1, w2, w3 = 2i2;

t2 = u1 = v2 = ni;

t1 = u2 = v1 = 0;

t3 = u3 = v3 = 6i2 − ni;

d = n2 − 3ni. (3.16)

We will now show that our choice fulfils equations (3.14),

a(t1) + b(u1)

= ni(0) + ni(ni) = n2i2;

a(t2) + c(v1) = n2i2

= ni(ni) + ni(0) = n2i2;

a(t3) + d(w1) = n2i2

= ni(6i2 − ni) + (n2 − 3ni)(2i2)

= ni(6i2 − ni) + (ni)(n− 3i)(2i)

= ni(6i2 − ni− 6i2 + 2ni)

= n2i2.

Since our choice is symmetric, it is not difficult to see that the rest of the

equations are also satisfied. We also note that our choice of the values fulfils

the bounds given in inequalities 3.15.

We verify that the sum of the edges totals 6i2 as required in condition (1.1).

t3 + t2 + t1 = u1 + u2 + u3 = v1 + v2 + v3

= ni+ 6i2 − ni+ 0 = 6i2.

63

By Lemma 2.1, we can decompose the edges between T and V , using ni

copies of Sni so that each of the vertex in partite set T is a center of a copy of

Sni. We Dt be the set of Sni in this decomposition.

Similarly, we can decompose the edges between T and U using ni copies

of Sni so that each vertex in partite set U is a center of a copy of Sni. We

let Du be the set of Sni in this decomposition. Finally, we can decompose the

edges between U and V using ni copies of Sni so that each of the vertex in

partite set V is a center of a copy of Sni. We let Dv be the set of Sni in this

decomposition.

Let d′ = n2 − (3 + k)ni where k = floor(n/i − 3). We partition W into

two disjoint subsets W ′ and W ′′ where |W ′| = ni − d′ and |W ′′| = d′. Let

x = (n− 2(k + 1)i)(n− (3 + k)i) = 6i2 + 8ki2 − 3kin+ 2k2i2 − 5ni+ n2.

Observe that 6i2−ni−x
ni−d′ + 2ki2

ni
= 1, the proof of which is as follows:

=
6i2 − ni− (6i2 + 8ki2 − 3kin+ 2k2i2 − 5ni+ n2)

((4 + k)ni− n2)
+

2ki2

ni

=
4ni− 8ki2 − 2k2i2 + 3kin− n2)

((4 + k)ni− n2)
+

2ki

n

=
2kin− 8ki2 − 2k2i2

n((4 + k)i− n)
+ 1 +

2ki

n

=
2kin− 8ki2 − 2k2i2 + ((4 + k)i− n)(2ki)

n((4 + k)i− n)
+ 1

=
2kin− 8ki2 − 2k2i2 + (8ki2 + 2k2i2 − 2kin)

n((4 + k)i− n)
+ 1

= 1.

Also observe that x
d′

+ (k+1)2i2

ni
= 1, the proof of which is as follows:

x

d′
+

(k + 1)2i2

ni

=
(n− 2(k + 1)i)(n− (3 + k)i)

n2 − (3 + k)ni
+

2(k + 1)i2

ni

=
(n− 2(k + 1)i)

n
+

2(k + 1)i

n

= 1.

By Lemma 3.1, we can decompose the edges between T and W ′ using

a = ni copies of S6i2−ni−x with each vertex of T as the center of a copy of

64

S6i2−ni−x and ni− d′ copies of S2ki2 with each vertex of W ′ a center of a copy

of S2ki2 . We can also decompose the edges between T and W ′′ using a copies of

Sx with each vertex of T as the center of a copy of Sx and d′ copies of S(2k+2)i2

with each vertex of W ′′ a center of a copy of S(2k+2)i2 . Let Dtw′ be the set of

S6i2−ni−x and Dtw′′ be the set of Sx in this decomposition. Let Dwt′ be the set

of S2ki2 and Dwt′′ be the set of S(2k+2)i2 in this decomposition.

Let DT = Dt ∪Dtw′ ∪Dtw′′ . Observe that each vertex in U is the center of

one copy of Sni, one copy of S6i2−ni−x and one copy of Sx, the union of which

gives us S6i2 .

Observe that since a = b = c and t3 = u3 = v3 and w1 = w2 = w3 the edges

between U and W and the edges between V and W decompose in the same

manner as the decomposition described for T and W . Since we have that the

decomposition between W and the other two partite sets are identical, each

vertex in W ′ is the center of three copies of S2ki2 . We can then rearrange

the decomposition such that each vertex in W ′ is the center of k copies of

S6i2 . Similarly, observe that each vertex in W ′′ is the center of three copies of

S(2k+2)i2 . We can also rearrange the decomposition such that each vertex in

W ′′ is the center of k + 1 copies of S6i2 .

What we have done here works for the case 3i ≤ n ≤ 5i. Note that x is

necessarily positive, therefore for n ≥ 5i we have an obstacle. For these cases,

we may need to introduce a second star on one of the partite sets as in the

Case 3.3.2.3 to obtain a S6i2-decomposition. For the cases where 7i ≤ n ≤ 9i

we may use the strategy in Case 3.3.2.2 to reduce the case to 3i ≤ n′ ≤ 5i.

Moreover, for the cases where 9i ≤ n ≤ 11i we may use the strategy in Case

3.3.2.4 to reduce the case to 3i ≤ n′ ≤ 5i.

We now discuss the case where there are more than four partite sets, i.e.

m > 4. As a general rule, the algorithm detailed here and in Theorem 3.3, the

Sr-decomposition of Kni,ni,...,ni works best if we choose m−1 partite sets to be

the centers of kni copies of Sr. Observe that when Lemma 3.2 is extended tom-

partite graphs, it is necessary that every vertex of m−1 partite sets are centers

65

of at least one copy of Sr. Moreover, choosing every vertex of m − 1 partite

sets to be centers of k copies of Sr reduces the number of partitions needed

on the partite sets and hence makes it simpler to ensure that the necessary

conditions for Lemma 3.1 are met. The remaining number of centers of Sr for

the partite set (we call this partite set X) that is not an ni-multiple, would

then by construction, have the number of vertex used as the centers of a Sr

being a multiple of n.

From here, we may choose a multiple of i for the number of edges between

partite set X and the other partite sets. This helps ensures that we can obtain

integer solutions for equations (3.14). Finally, it is important to check that

the values selected are within the bounds given in (3.15). It may be necessary

to make each partite set the center of multiple copies of Sr as in Case 3.3.2.3 if

the bounds are not satisfied. Observe also that for larger values of n, we may

be able to reduce the case using methods detailed in Case 3.3.2.2 and Case

3.3.2.4.

Chapter 4

Decomposition of regular

bipartite Graphs

In this chapter we study the decomposition of d-regular bipartite graphs into

Sr. In particular, we will discuss various strategies for the decomposition

of 4-regular bipartite graphs into S3 as a base case for the decomposition of

other d-regular bipartite graphs. In order to impose additional structure to

the bipartite graphs, we will study different strategies firstly on a class of

bipartite graphs discussed in the introduction section of this thesis as cyclic

bipartite graphs. For notation, we let Bn,n be a 4-regular cyclic bipartite

graph with n vertices on two partite sets labelled as U and V . While we have

introduced O(1) algorithms for the decompositions in the earlier sections, this

decomposition problem has been conjectured to be NP-complete [24].

4.1 S3-decomposition of 4-regular bipartite graphs

4.1.1 Strategy 1: Picking one edge from each vertex in

one partite set to form S3.

Let U and V be the two partite sets of G where G is a 4-regular bipartite

graph. Observe that the two partite sets of the bipartite graph are identically

sized. Let |U | = |V | = n. Observe that the number of edges in G is 4n. By the

67

definition of a decomposition 4n must divide 3, and therefore n is necessarily

divisible by 3.

For our initial analysis, we will look into a special class of 4-regular bipartite

graph that is said to be ‘cyclic’, as defined in the introduction. We let U =

{u0, u1, u2 . . . un} and V = {v0, v1, v2 . . . vn}. We let D = {d0, d1, d2, d3}, where

d0 < d1 < d2 < d3 < n as the generator set D such that ui is adjacent to vj if

and only if i+ dk(mod n) = j for some dk ∈ D.

Next, observe that, if we delete one edge from every vertex in V , then every

vertex in the partite set V has degree 3, and by Lemma 2.1, we can decompose

the remaining edges into copies of S3. Hence, if we can form n
3

copies of S3

using n
3

vertices of partite set U as the center of one copy of S3, such that each

vertex of V is used exactly once, we can say that there is a S3-decomposition of

the graph G. We say that such a set of graphs is an S3-cover for V . Figure 4.1

gives an illustration of this strategy. Observe that every vertex in the partite

set on the right has degree 3.

In our analysis, we found that we can reduce the number of test cases,

without losing generality. First, we can assume that the first difference d0 is 0,

otherwise we can subtract every element of the generator set D by d0. Second,

we can assume that the difference between d3−d0 (mod n) = d3 is not greater

than d0− d1 (mod n), d1− d2 (mod n) and d2− d3 (mod n), otherwise we can

reorder the generator set. Observe that d3 − d0 ≤ 3n
4

. The proof of which is

as follows:

We assume for the sake of contradiction that d3 − d0(mod n) > 3n
4

. Since

d0 = 0 and d3 < n, this assumption also gives us d3 >
3n
4

. Since we have

d3 > d2 > d1 > d0, we can derive the following inequalities:

d2 − d3 (mod n) ≥ d3 >
3n

4
,

⇒ d2 − d3 + n >
3n

4
,

⇒ d2 > d3 −
n

4
;

68

Figure 4.1: S3 decomposition of a 4-regular graph using Strategy 1

d1 − d2 (mod n) ≥ d3 >
3n

4
,

⇒ d1 − d2 + n >
3n

4
,

⇒ d1 > d2 −
n

4
;

d0 − d1 (mod n) ≥ d3 >
3n

4
,

⇒ d0 − d1 + n >
3n

4
,

⇒ 0− d1 > −
n

4
,

⇒ d1 <
n

4
.

69

By combining the inequalities, we then find a contradiction on d3,

n

4
> d1 > d2 −

n

4
,

d2 <
n

2
;

n

2
> d2 > d3 −

n

4
,

d3 <
3n

4
.

Observe also that the difference between two successive elements of D is

less or equal to n− d3. Finally, we can assume that vertex u0 is always picked

as the center of a copy of S3.

Let µ(xy) is the number of edges between x and y. In the case of a simple

graph, µ(xy) = 1 if and only if x is adjacent to y. Let c(x) be the center

function on x, where c(x) is the number of copies of Sk with x as the center

and let |E(S)| be the number of edges in the subgraph induced by S.

Hoffman [23], stated that a star-design, exists for a graph G if and only if

the following conditions are true,

i. k
∑

v∈G
c(v) = |E(G)|,

ii. For all,

{x, y} ∈
(
G

2

)
, µ(xy) ≤ c(x) + c(y)

iii. For all S ⊆ V,

k
∑

v∈S
c(v) ≤ |E(S)|+

∑

x∈S,Y ∈G/S
min(c(x), µ(xy)).

We apply the above result to the strategy outlined above. Note that each

vertex in V is a center exactly once, and n
3

vertices of U are centres exactly

once and the remaining vertices are not centers.

Condition 1 is trivially true by the definition of a decomposition. By the

construction of our strategy, every vertex in V is a center of a star S3, and

since every edge of a bipartite graph is between partite sets U and V , condition

2 is trivially true as well. We then use the condition 3 to find copies of S3

which use each vertex from V exactly once.

70

Observe that condition 3 is most restrictive when S is the subset containing

only the centers of Sk. Observe that |E(G)| = 4n. Observe also that S contains

n vertices in partite set V and n
3

vertices in partite set U , therefore we have

that |E(S)| = 4n
3

.

We then have,

k
∑

v∈S
c(v) ≤ |E(S)|+

∑

x∈S,y∈V \S
min(c(x), µ(xy))

⇒ |E(G)| ≤ |E(S)|+
∑

x∈S,y∈G\S
min(c(x), µ(xy))

⇒ 4n ≤ 4n

3
+

∑

x∈S,y∈G\S
min(c(x), µ(xy))

⇒ 8n

3
≤

∑

x∈S,y∈G\S
min(c(x), µ(xy)).

Observe that the number of edges between S and G\S = 4(n− n
3
). There-

fore
∑

x∈S,Y ∈G\S µ(xy) = 8n
3

. It is necessary that c(x) 6= 0 (i.e x is a center) for

every edge {x, y} where x ∈ S and y ∈ G \ S, otherwise the inequality above

is violated. From here, we say that the graph is “feasible” if and only if, every

edge that is between S and the V \ S includes a center of S3.

Trivially, this condition is necessary, but Hoffman’s result tells us this is

sufficient which aids us greatly in finding a decomposition by computer.

Using these generalization, and the algorithms detailed by Hoffman, we

wrote a simple JAVA program to find S3-covers of the vertices in partite set

V , (source code is in Appendix 6.1). While the program is able to solve for

size n ≤ 30 within a reasonable amount of time (under 1 second per generator

set, 10 minutes for the results for all the possible generator sets)), the runtime

increases exponentially with the number of vertices in the partite sets. It takes

approximately 1 day for the results for n = 42 and an estimated 1 week for

the results for n = 45. Output of the program for n ≤ 18 is given in Appendix

6.2.

Table 4.1 is a sample output of the programme for n = 9.

71

Generator

Set
Star 1 Star 2 Star 3

{0, 1, 2, 3} (u0; v0, v1, v2) (u2; v3, v4, v5) (u5; v6, v7, v8)

{0, 1, 2, 4} (u0; v0, v1, v4) (u1; v2, v3, v5) (u6; v6, v7, v8)

{0, 1, 3, 4} (u0; v0, v1, v3) (u2; v2, v5, v6) (u4; v4, v7, v8)

{0, 2, 3, 4} (u0; v0, v2, v3) (u1; v1, v4, v5) (u4; v6, v7, v8)

{0, 1, 2, 5} (u0; v0, v1, v5) (u2; v2, v3, v4) (u6; v6, v7, v8)

{0, 1, 3, 5} (u0; v0, v1, v5) (u1; v2, v4, v6) (u7; v3, v7, v8)

{0, 1, 4, 5} (u0; v0, v1, v4) (u1; v2, v5, v6) (u3; v3, v7, v8)

{0, 2, 3, 5} (u0; v0, v2, v3) (u1; v1, v4, v6) (u5; v5, v7, v8)

{0, 2, 4, 5} (u0; v0, v2, v4) (u1; v1, v3, v6) (u3; v5, v7, v8)

{0, 3, 4, 5} (u0; v0, v3, v4) (u2; v2, v6, v7) (u5; v1, v5, v8)

{0, 1, 3, 6} (u0; v0, v1, v6) (u1; v2, v4, v7) (u2; v3, v5, v8)

{0, 1, 4, 6} (u0; v0, v1, v4) (u1; v2, v5, v7) (u2; v3, v6, v8)

{0, 2, 3, 6} (u0; v0, v2, v6) (u1; v1, v3, v7) (u2; v4, v5, v8)

{0, 2, 4, 6} (u0; v0, v2, v4) (u1; v3, v5, v7) (u4; v1, v6, v8)

{0, 2, 5, 6} (u0; v0, v2, v5) (u1; v1, v3, v6) (u2; v4, v7, v8)

{0, 3, 4, 6} (u0; v0, v3, v4) (u1; v1, v5, v7) (u2; v2, v6, v8)

{0, 3, 5, 6} (u0; v0, v3, v5) (u1; v1, v4, v6) (u2; v2, v7, v8)

Table 4.1: S3-cover of Partite Set V for n = 9

72

Extending Strategy 1

Hoffman proved the necessity of the conditions above in Section 4 [23], by

building a network of the design and by evaluating the flow capacity of the

network. By calculating the flow capacity of the min-cut-max-flow network,

and orienting the edges such that the each edge of Sk flows to from the center to

the leaves, Hoffman then states that there is an Sk design on graph G, or equiv-

alently graph G has a Sk-decomposition if and only if f(exy) = µ(xy) where

f(exy) is total number of edges with ends x and y that are orientated from x

to y, or equivalently, all the edges of the graph belong to Sk. Unfortunately,

most polynomial time algorithms for min-cut-max-flow such as Ford-Fulkerson

algorithm, allows for f(exy) ≤ µ(xy). This problem is NP-Complete according

to Chekuri, Khanna and Shepherd [10].

We suggest that this problem may be solvable by computer using mathe-

matical optimizer software such as CVX [21]. We propose that we can model

the flow in as in Figure 4.2. From there, we can define an objective function,

such that the function is minimum when either 0 or 3 edges is selected for each

vertex of U . This is a modification of the Ford-Fulkerson algorithm used to

the maximum matching in bipartite graphs [27].

Using our program, we found that most (more than 90%) 4-regular cyclic

bipartite graphs have S3-decompositions. We managed to find certain classes

of graphs with no S3-decomposition. One such case are graphs with two or

more components. We can quickly determine a graph with this property by

checking for a value of k such that k divides d0, d1, d2, d3 and n. If there exists a

k > 1, graph would then have k components, with each component isomorphic

to a 4-regular cyclic bipartite with n
k

vertices in each partite set, and generator

set D′ = {d0
k
, d1
k
, d2
k
, d3
k
}. We can then check if n

k
divides 3. If this is not true,

we conclude that the number of edges in each component is not divisible by 3,

hence the graph has no S3-decomposition. Otherwise, we refer to the results

of n′ = n
k

and D = D′.

73

We found that Strategy 1 failed to give an S3 decomposition for a single

component cyclic bipartite graph for n ≤ 39 in two specific test cases. These

two cases are,

i. n = 15, D = {0, 1, 3, 7} labelled here as G1,

ii. n = 15, D = {0, 4, 6, 7} labelled here as G2.

We note that G1 and G2 are isomorphic to each other, with the partite

sets U and V swapped. We developed Strategy 2 after analysing this case.

Strategy 2 successfully generated S3-decompositions of G1 and G2.

4.1.2 Strategy 2: Reducing the number of vertices to

be covered.

The general idea behind Strategy 2 is to reduce the number of vertices in

partite set V that need to be covered with S3. Strategy 2 assumes that there

is no common difference between successive elements of D (i.e, d1 − d0 =

d2 − d1 = d3 − d2 is not true).

Without loss of generality, we assume that the four vertices in U adjacent

to v0 are each centers of one copy of S3. We label these four center vertices as

u0, u1, u2, and u3.

Next, we choose eight distinct vertices of V \ v0 that are adjacent to

u0, u1, u2, and u3. Observe that this is possible only if there are no com-

mon difference between the successive elements of D, otherwise there will only

be six distinct vertices. We label these vertices as {vi : 1 ≤ i ≤ 8}. We then

delete all four edges incident to v0, and we choose eight distinct edges between

ui and vj where 0 ≤ i ≤ 3 and 1 ≤ j ≤ 8, such that each vj has one edge

deleted, and each ui has two edges deleted.

Observe that v0 has no edges, and vj, 1 ≤ j ≤ 8 has degree 3, and by

Lemma 2.1, we can decompose the edges incident to vj into S3. We then use

Strategy 1, to delete n − 9 edges between the unlabelled vertices of U and

V such that each unlabelled vertex of U has either three edges deleted or no

edges deleted, and each unlabelled vertex of V has one edge deleted. It may

74

be necessary to choose a different set of eight vertices if we are unable to do

the deletion with the unlabelled vertices of U and V .

Observe that the remaining edges are incident to the unlabelled vertices of

V , and each of these vertex has degree 3. We then have a S3 decomposition

by Lemma 2.1.

We found that Strategy 2 is generally easier to do by hand for cases n ≤ 18

but becomes extremely tedious when n > 18. It may be worthwhile to see the

results of this strategy still holds when n > 18 using computers.

Figures 4.3, and 4.4 show the decomposition ofG1 (n = 15, D = {0, 1, 3, 7})

and G2 (n = 15, D = {0, 4, 6, 7}) using Strategy 2.

4.1.3 Structure of a cyclic bipartite graph

Another strategy we tried was converting the graph into a line graph and ob-

serving the geometry. Let G be a connected 4-regular bipartite graph with

partite sets U and V with size n where n is divisible by 3. Our initial obser-

vation yielded the following properties for L(G):

a) there are 4n vertices in L(G), and 12n edges in L(G).

b) every vertex of L(G) has degree 6. (This comes from the fact that G is

4 regular, and each vertex of L(G) would then belong to 2 cliques of size 4).

c) We can partition the edges into 2 disjoint subsets E1, E2, such that

every v ∈ V (L(G)) is common to exactly one pair of {ei, ej} ei ∈ E1, ej ∈ E2.

We can do this by choosing the elements of E1 to be the edges created from

the vertices in U and the elements of E2 to be the edges created from the

vertices in V .

We find that we can always factor L(G) into P2, because L(G) is Hamilto-

nian and the number of vertices in L(G) is divisible by 3. We can just group

the vertices of L(G) into groups of three along the Hamilton cycle. How-

ever a P2-factor is insufficient to show that the G has a S3-decomposition.

We observed that if we can constraint the factors such that for every copy of

H = P2, E(H) = {ei, ej}, if we have ei, ej ∈ E1 or ei, ej ∈ E2, then we have

75

an S3-decomposition of G.

One advantage of using this method is that we have a visual representation

of the decomposition problem. It is then more intuitive to find decompositions

visually. Figure 4.5 illustrates how we may use the graph for this purpose.

Note, we removed the edges between the cliques and replaced them with a line

for clarity purposes.

The results of strategies 1, 2 and 3, obtained through our computer pro-

gram showed that there is an S3-decomposition for all cyclic 4-regular bipartite

graphs with one component with size n ≤ 42 if and only if n is divisible by

3. Cyclic 4-regular bipartite graphs with k components and size n ≤ 42 have

an S3-decomposition if and only if n divides 3 and k is not divisible by 3. If

k is divisible by 3, then the graph has an S3-decomposition if and only if n is

divisible by 9.

4.2 Probabilistic method on decomposition of

bipartite graphs

In this section we discuss the results of Yuster [39] on tree decompositions and

whether the results might be improved when applied to Sk-decompositions of

bipartite graphs.

We say that a graph has property P (H) if the necessary conditions for

a H−decomposition is satisfied, namely, |E(H)| divides |E(G)| and gcd(H)

divides gcd(G). Since H is a star, gcd(H) = 1 and gcd(H) divides gcd(G) is

trivially satisfied. Thus, P (H) is reduced to |E(H)| divides |E(G)|.

We let n be the number of vertices in G and h be the number of vertices

in H. The star can then be denoted as Sh−1.

In the wording of Yuster, we define the problem statement as follows. De-

termine fH(n), the smallest possible integer, such that whenever G has n

vertices and δ(G) (the minimum degree of G)≥ fH(n), and G has property

P (H), then G also has a H-decomposition.

76

By Lemma 2.1 fH(n) is necessarily greater or equal to h − 1. Using the

example provided by Yuster as a guide, we can also show that for bipartite

graphs, fH(n) > n
4
− 1. Consider a graph G where n = 4x ≥ 4h , and E(H)

divides 2x2. Let G be 2 vertex-disjoint Kx,x labelled here as G1 and G2. G

has n vertices and δ(G) = x. Since x > h − 1, by Theorem 2.3 the condition

h − 1 | x2 is the sufficient for a Sh−1-decomposition. If h − 1 does not divide

x2 then we are done, otherwise we delete 1 edge from G1 and h− 2 edges from

G2. The resulting graph with minimum degree x− 1, and h− 1 divides E(G)

but G does not have a H-decomposition.

When G is a bipartite graph, we can tighten the bounds for an edge expand-

ing graph in Theorem 1 [39]. Here, Yuster states that a graph with minimum

degree δ(G) ≥ n
2

+r is also r-edge expanding. We can show that for a bipartite

graph G, a graph with minimum degree δ(G) ≥ n
4

+ r is r-edge expanding.

In the wording of Yuster, a graph is r-edge expanding if for every non-

empty X ⊂ V and |X| ≤ |V |
2

there are at least r|X| edges between X and

V \ X. Consider a bipartite graph G. Let U1 and U2 be the partite sets

of G. Let X1 be m vertices of U1 and X2 be |X| − m vertices of U2. Let

X = U1 ∪ U2. Without loss of generality, let m ≤ |X|
2

, otherwise we swap

partite sets. Observe that there are at most m|X| − m2 edges between X1

and X2. Observe that there at least (|X| −m)δ(G) edges between X2 and U1.

Observe also that there at least (m)δ(G) edges between X1 and U2.

Hence, there are at least

(|X| −m)δ(G) + (m)δ(G)− 2m(|X| −m)

= |X|δ(G)− 2m(|X| −m)

edges between X and V \X. We can show that 2m(|X|−m) ≤ |X|2
2

, the proof

of which is as follows:

2m(|X| −m) ≤ |X|
2

2

⇐⇒ 2m|x| − 2m2 ≤ |X|
2

2

⇐⇒ m|X| −m2 ≤ |X|
2

4

77

⇐⇒ m2 −m|X|+ |X|
2

4
≥ 0

⇐⇒ (m− |X|
2

)2 ≥ 0

which is clearly true.

Since we have that m ≤ |X|
2

and |X| ≤ |V |
2

, the number of edges between

X and V \X is at least

|X|δ(G)− 2m(|X| −m) ≥ |X|δ(G)− |X|
2

2

= |X|(δ(G)− |X|
2

)

≥ |X|(δ(G)− |V |
4

).

Hence, a bipartite graph with δ(G) = |V |
4

+ r is also r-edge expanding.

Lemma 2.1 [39] states that if G(V,E) is a graph with property P (H), then

E can be partitioned into h − 1 disjoint subsets E1, E2, . . . , Eh−1 such that

|Ei| = m for 1 ≤ i ≤ h− 1 and if the degree a vertex v ∈ V in Gi = (V,Ei) is

denoted by di(v), then for every v ∈ V , we have |di(v)− d(v)
h−1 | ≤ 2.5

√
d(v)logn,

and each spanning subgraph Gi is 5h3
√
d(v) log n.

Yuster constructed the proof by letting each edge e ∈ E choose a random

integer between 0 and h−1 where 0 is chosen with probability β = n−
1
2 and the

other numbers are chosen with equal possibility α = 1−β
h−1 . Fi for 0 ≤ i ≤ h− 1

is defined as the set of edges which selected i. We observed that the expected

value for the size of Fi, E[|Fi|] = α|E| = m(1− β) for i 6= 0.

Yuster then defined d′i(v) as the number of edges adjacent to v which be-

longs to Fi. Note that the expected value for d′i(v) = αd(v) for 1 ≤ i ≤ h− 1

and βd(v) for i = 0. Using the large Chernoff deviation [2], Yuster showed

that with a probability greater than 0.9, we may obtain a “feasible” partition

by transferring vertices from F0 to Fi.

Lemma 2.2 states that a feasible orientation exists for every feasible par-

tition of E. According to Yuster, an orientation is said to be Eulerian if the

indegree and outdegree of every vertex differs by at most one. The existence of

a feasible orientation is needed, as it defines a decomposition of the edges into

78

m sets L∗ of edge-disjoint connected graphs where m = |E(G)|
h−1 . Yuster defined

d+i (v) as the outdegree of v in Ei, and d−i (v) as the indegree of v in Ei. Note

that di(v) = d+i (v) + d−i (v).

When H is a star, the orientation of the leaf vertices is trivially Eulerian, as

the degree of every leaf vertex is 1. We can then obtain an Eulerian orientation

by orienting the edges of adjacent to the center vertex such that bh−1
2
c edges

are oriented away from the center vertex, and dh−1
2
e edges are oriented towards

the center vertex.

Yuster’s proof starts by selecting a leaf vertex using a breath first search

algorithm (BFS), and labelling the vertex as q. He then select an edge from

E1, q is then selected to be a leaf of H, and is given an orientation such that

q is the root of H. Observe that in the case of stars, the diameter of the tree

is two. Hence, we have the following for Lemma 2.2 [39].

When i = 1, i.e. the edge adjacent to the leaf q. As in Yuster’s result, we

have the following,

|d+1 (v)− d−1 (v)| ≤ 1 < 5
√
n log n.

For i = 2, we have j = p(2) = 1.

|d+2 (v)− d−2 (v)| = |2cv − di(v)| = |2d1(v)− 2d+1 − d2(v)|

≤ |2d+1 − d1|+ |d1(v)− d2(v)|

≤ |d+1 − d1(v)|+ |d1(v)− d(v)

h− 1
|+ |d2(v)− d(v)

h− 1
|

≤ 1 + 5
√
d(v) log n

≤ 5
√
n log n.

Finally, when 3 ≤ i ≤ h−1. Observe that v is a leaf of H, and j = p(i) = 2.

|d+i (v)− d−i (v)| = |2cv − di(v)|

= |2d2(v)− 2d+2 − di(v)|

≤ |2d+2 − d2|+ |d2(v)− di(v)|

79

≤ |d+2 − d−2 (v)|+ |d2(v)− d(v)

h− 1
|+ |di(v)− d(v)

h− 1
|

≤ 5
√
n log n+ 5

√
n log n

≤ 10
√
n log n.

However, this improvement does not affect the overall result of Lemma 2.2

which states that in every feasible orientation, the outdegree d+i ≥ 4h3
√
n log n

for all v ∈ V and for all 2 ≤ i ≤ h− 1. We give an outline of the proof for the

rest of the paper.

Yuster states that every member of L∗ is homomorphic to Sk, and every

member that is a tree is isomorphic to H. Lemma 3.1 then states that, if all

the perfect matching are selected randomly and independently, then with a

probability of 0.9, there for all 0 ≤ i ≤ h− 1 and for all v ∈ V (G), |N(v, i)| ≤

h
√

(d+i (v)) where N(v, i) are the neighbours of v in partition i.

Yuster then defined L([u, j], [v, i]) as the set of the members of L∗ which

contains an edge of D−i (v) and an edge of D−j . Lemma 3.2 then showed

that if the perfect matching are selected randomly and independently, then

with a probability of 0.75, for every u, v ∈ V (G) and for 0 ≤ j < i ≤

h − 1,—L([u, j], [v, i])| ≤ 2
√
n log n. Yuster then used the results of Lemma

3.1 and 3.2 to show that there is a probability of 0.65 that we can obtain a

decomposition L∗ with properties guaranteed by Lemma 3.1 and 3.2.

With the results of Lemma 3.1 and 3.2, Yuster then showed that we can

mend L∗ into a decomposition L consisting of only trees as the properties

allows us to change the “bad” edges (defined here as edges that creates a cycle

in L) with “good” edges.

Since the assumptions are unchanged, the results of Lemma 3.1 and Lemma

3.2 are therefore true, and we have that a 10h4
√
n log n-edge expanding graph

has a Sh−1-decomposition. We note that, it may be possible to tighten the

bounds of the edge expansion by lowering the order of h. However as noted in

equation (4) in Theorem 1, we require an O(
√
n log n)-edge expanding order,

as a necessary condition for Lemma 3.2. Yuster conjectured that it may be

80

possible to remove the requirements for an O(
√
n log n)-edge expansion factor,

however we were unable show that we may remove the requirement is for

Sh−1-decompositions of bipartite graphs.

With results above, we say that there is a Sh−1-decomposition for all bi-

partite graphs with a minimum degree δ(G) = n
4

+ 10h4
√
n log n.

81

fi = ((
∑

1≤j≤4

xi,j − 3)(
∑

1≤j≤4

xi,j))
2

1 ≤ yi ≤ 4

xi,j = 1 ⇐⇒ j = yk
xi,j = 0 ⇐⇒ j 6= yk

Minimize

∑

1≤i≤n

fi

Input

Figure 4.2: Using optimization software to find a S3-cover of V .

82

Figure 4.3: S3-Decomposition of G(n = 15, D = {0, 1, 3, 7}); pink and yellow

blocks are S3 decompositions with centers in partite set U .

Figure 4.4: S3-Decomposition of G(n = 15, D = {0, 4, 6, 7}); pink and yellow

blocks are S3 decompositions with centers in partite set U .

83

Figure 4.5: Modified line graph and S3-decomposition using Strategy 3.

Chapter 5

Conclusion

We began this project with the aim of finding Sk-decompositions of bipartite

graphs and answering the question, “Does an Sk-decomposition exist for a

given bipartite graph?”

Through this project, we showed a proof by construction that complete

bipartite graphs with n vertices on each partites set have an Sk-decomposition,

if and only if k divides n2 and k ≤ n. We also showed that there is an Sk-

decomposition for crown graphs with n vertices if and only if k divides n(n−1)

and k ≤ n − 1. We next showed that we can construct an Sk-decomposition

for equipartite tripartite graphs with n vertices in each partite set, if and only

if k divides 3n2 and k ≤ 2
3
n. We showed that a complete tripartite graph

Kp,q,r has a S3-decomposition if and only if pq + pr + qr is divisible by 3, and

p, q, r ≥ 2 or if any two of the three partite sets have size divisible by 3.

The main obstacle faced in this project was dealing with the NP-Completeness

of the decomposition problem. Often times we lose too much generality when

constructing the test case and obtain results that are not useful for the general

case of the graphs.

As noted in Chapter 4, it may be interesting to see if Strategy 2 is more

efficient when the number of vertices in each partite set is more than 18.

While Strategy 1 give results for n < 39 within a reasonable amount of time,

the runtime of Strategy 1 grows exponentially and struggles to give results

85

for n ≥ 42. The results of Strategy 1 and 2 suggest that there is an S3-

decomposition for cyclic 4-regular bipartite graphs with one component when

n > 42. It would be interesting to see if this is true for all n. There may

be some additional structure not noted in Strategy 3 which may solve this

conjecture.

Future work may include extending the results of Chapter 4 for S3 -

decomposition of cyclic r-regular bipartite graphs where r ≥ 5. The primary

reason why r = 4 was the focus of Chapter 4 was because, that case was the

most restrictive but is the easiest to analyse. One suggestion as to how we

may extend the case to r = 5 is to pick the first 4 elements of the generator set

and then find a value x such we can offset the centers in partite set U without

using the same center twice. Another suggestion is to check all five possible

combinations of the generator set, and then find two sets of centers such that

the two results do not use the same center twice.

Chapter 6

Appendix

6.1 Source Code for Strategy 1

In this section, we give the source code for the computer programme written

to find the S3-cover of partite set V for cyclic bipartite graphs (see Section

4.1.1). Minor details of the algorithm is included in the comment blocks of the

source code.

6.1.1 The main wrapper program

import java . i o . ∗ ;

import java . u t i l . ∗ ;

public class genSo lut ion {

/∗∗

∗ @param args

∗/

stat ic boolean outputLatex=true ;

//Generates Output as a Latex Table , wor thwhi l e 3 hour

inves tment

public stat ic void main (St r ing [] a rgs) {

for (int a=2; a<40; a++) {

87

int s i z e=a ∗3 ;

S t r ing f i leName = ” c y c l i c s i z e ”+s i z e+” . tex ” ;

long s t a r t=System . nanoTime () ;

try {

// Fi leReader reads t e x t f i l e s in the d e f a u l t encoding

.

printWriterWrapper stream = new printWriterWrapper (

f i leName , outputLatex) ;

stream . p r i n t (”\\ begin { l ong tab l e }{ | c | ”) ;

for (int i =0; i<a ; i++) {

stream . p r i n t (”c | ”) ;

}

stream . p r i n t (”}\ r \n”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

stream . p r i n t (”\\ begin { tabu la r } [c]{@{}c@{}}Generator

\\\\ Set \\end{ tabu la r}& ”) ;

for (int i =1; i<a ; i++) {

stream . p r i n t (” Star ”+i+”\ t& ”) ;

}

stream . p r i n t (” Star ”+a+”\\\\ \ r \n”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

stream . p r i n t l n (”\\ end f i r s th ead ”) ;

stream . p r i n t l n (”\\multicolumn{”+(a+1)+”}{ c}%”) ;

stream . p r i n t l n (”{\\ tablename \\ \\ th e tab l e \\ −− \\

t e x t i t {Continued from prev ious page}} \\\\”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

stream . p r i n t (”\\ begin { tabu la r } [c]{@{}c@{}}Generator

\\\\ Set \\end{ tabu la r}& ”) ;

for (int i =1; i<a ; i++) {

stream . p r i n t (” Star ”+i+”\ t& ”) ;

}

stream . p r i n t (” Star ”+a+”\\\\ \ r \n”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

stream . p r i n t l n (”\\ endhead”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

88

stream . p r i n t l n (”\\multicolumn{”+(a+1)+”}{ c}%”) ;

stream . p r i n t l n (”{\\ tablename \\ \\ th e tab l e \\ −− \\

t e x t i t {Continued on next page}} \\\\”) ;

stream . p r i n t l n (”\\ endfoot ”) ;

stream . p r i n t l n (”\\ h l i n e ”) ;

stream . p r i n t l n (”\\ capt ion {$S 3$−f a c t o r f o r Cyc l i c

B i pa r t i t e Graph $n=”+s i z e+”$}\\\\”) ;

stream . p r i n t l n (”\\ end l a s t f o o t ”) ;

// Always c l o s e f i l e s .

double successRate=0;

int su c c e s s =0;

int t r i e s =0;

System . out . p r i n t l n (” S i z e : ”+s i z e) ;

for (int d i f f =3; d i f f <=(s i z e ∗3/4) ; d i f f++) {

stream . f l u s h () ;

for (int i =1; i<=s i z e−d i f f ; i++) {

for (int j =1; j<=s i z e−d i f f ; j++) {

int k=d i f f−i−j ;

i f (i+j>=d i f f) continue ;

i f (k>s i z e−d i f f) continue ;

int d1=i ;

int d2=i+j ;

int d3=i+j+k ;

i f ((i%3==0) && (j%3==0) && (k%3==0)) {

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

i f ((s i z e /3)%3!=0) {

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{Three component graph , no decomposit ion }\\\\\ r \n”)

;

} else {

St r ing d e t a i l s=”$n=”+s i z e /3+”$ $D=\\{0 , ”+d1

/3+” , ”+d2/3+” , ”+d3/3+”\\}$” ;

89

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{Three component graph , s ee ”+d e t a i l s+” }\\\\\ r \n”)

;

}

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

continue ;

} ;

i f ((s i z e%2==0) && (i%2==0) && (j%2==0) && (k

%2==0)) {

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

i f ((s i z e /2)%3!=0) {

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{Two components graph , no decomposit ion }\\\\\ r \n”) ;

} else {

St r ing d e t a i l s=”$n=”+s i z e /2+”$ $D=\\{0 , ”+d1

/2+” , ”+d2/2+” , ”+d3/2+”\\}$” ;

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{Two component graph , s ee ”+d e t a i l s+” }\\\\\ r \n”) ;

}

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

continue ;

}

i f ((s i z e%5==0) && (i%5==0) && (j%5==0) && (k

%5==0)) {

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

i f ((s i z e /5)%3!=0) {

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{ Five component graph , no decompos it ion }\\\\\ r \n”) ;

} else {

St r ing d e t a i l s=”$n=”+s i z e /5+”$ $D=\\{0 , ”+d1

/5+” , ”+d2/5+” , ”+d3/5+”\\}$” ;

90

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”

\\}$ & \\multicolumn

{”+a+”}{ c | }{ Five component graph , s ee ”+d e t a i l s+” }\\\\\ r \n”) ;

}

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

continue ;

}

t r i e s ++;

c y c l i c c=new c y c l i c (0 , i , i+j , i+j+k , s i z e) ;

c y c l i c L i s t l=new c y c l i c L i s t (c) ;

L i s t<Integer> s o l u t i o n s=new ArrayList<Integer >()

;

s o l u t i o n s=l . g ene ra t eSo lu t i on (6) ;

i f (s o l u t i o n s . s i z e ()<s i z e /3) {

System . out . p r i n t (l . g en e r a t eL i s t (0)+”\ t ”) ;

System . out . p r i n t l n (”No s o l u t i o n f o r t h i s

c y c l i c pattern ”) ;

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

stream . p r i n t (”$ \\{0 , ”+d1+” , ”+d2+” , ”+d3+”\\}

$ & \\multicolumn{”+

a+”}{ c | }{No so l u t i o n us ing Strategy 1 }\\\\\ r \n”) ;

stream . p r i n t l n (”\\ c l i n e {2−”+(a+1)+”}”) ;

} else {

su c c e s s++;

latexTable (l , stream) ;

}

}

}

}

successRate=(double) su c c e s s / (double) t r i e s ∗ 100 ;

System . out . p r i n t l n (”Runs : ”+ suc c e s s + ”/” +t r i e s) ;

System . out . p r i n t l n (” Success Rate : ”+ successRate) ;

long runtime=System . nanoTime () ;

double mi l i S e c=(double) ((runtime−s t a r t) /1000000) ;

double avgRun=(double) m i l i S e c / t r i e s ;

91

System . out . p r i n t l n (”Runtime : ”+ mi l i S e c + ”ms\ t

Average : ”+avgRun) ;

stream . p r i n t l n (”\\end{ l ong tab l e }”) ;

stream . c l o s e () ;

}

catch (IOException ex) {

ex . pr intStackTrace () ;

}

}

}

public stat ic void l a texTable (c y c l i c L i s t l , printWriterWrapper

stream) throws IOException {

int s i z e=l . Seed . s i z e ;

L i s t<Integer> generato r=l . g en e r a t eL i s t (0) ;

stream . p r i n t (”$\\{”) ;

int f l a g =0;

for (int d : genera tor) {

i f (f l a g !=0) {

stream . p r i n t (” , ”) ;

}

stream . p r i n t (d) ;

f l a g =1;

}

stream . p r i n t (”\\}$\ t \ t ”) ;

for (int i =0; i<s i z e ; i++) {

i f (l . solOut . get (i) != null) {

stream . p r i n t (”& $ (u {”+i+” } ; ”) ;

L i s t<Integer> l i s t= l . solOut . get (i) ;

Co l l e c t i o n s . s o r t (l i s t) ;

f l a g =0;

92

for (int v : l i s t) {

i f (f l a g !=0) {

stream . p r i n t (” , ”) ;

}

stream . p r i n t (” v {”+v+”}”) ;

f l a g =1;

}

stream . p r i n t (”) $”) ;

}

}

stream . p r i n t (”\\\\\ r \n”) ;

}

}

genSolution.java

93

6.1.2 The solver

import java . u t i l . ∗ ;

public class c y c l i c L i s t {

c y c l i c Seed ;

HashMap<Integer , L i s t<Integer>> solOut = new HashMap<Integer ,

L i s t<Integer >>() ;

public c y c l i c L i s t (c y c l i c s) {

Seed=s ;

}

public List<Integer> g ene r a t eL i s t (int o f f s e t) {

List<Integer> r = new ArrayList<Integer >() ;

int d=Seed . d1+o f f s e t>=Seed . s i z e ?Seed . d1+o f f s e t−Seed . s i z e : Seed .

d1+o f f s e t ;

r . add (d) ;

d=Seed . d2+o f f s e t>=Seed . s i z e ?Seed . d2+o f f s e t−Seed . s i z e : Seed . d2+

o f f s e t ;

r . add (d) ;

d=Seed . d3+o f f s e t>=Seed . s i z e ?Seed . d3+o f f s e t−Seed . s i z e : Seed . d3+

o f f s e t ;

r . add (d) ;

d=Seed . d4+o f f s e t>=Seed . s i z e ?Seed . d4+o f f s e t−Seed . s i z e : Seed . d4+

o f f s e t ;

r . add (d) ;

Co l l e c t i o n s . s o r t (r) ;

return r ;

}

public List<Integer> gene ra t eSo lu t i on (int a lgor i thm) {

List<Integer> s o l u t i o n s=new ArrayList<Integer >() ;

i f (a lgor i thm==6) {

/∗ bru t e force , checks f o r en t i r e search space ∗/

int f l a g =0;

94

int runTime=0;

HashMap<Integer , Integer> counter = new HashMap<Integer ,

Integer >() ;

counter . put (0 , 0) ;

for (int i =1; i<Seed . s i z e /3 ; i++) {

counter . put (i , 1) ;

}

while (f l a g==0) {

runTime++;

i f (runTime>1000000000) {

/∗ always a good p r a c t i c e to make sure we don ’ t end in an

i n f i n i t e loop ∗/

System . out . p r i n t l n (” runtime exceeded ”) ;

f l a g =1;

}

int sum=0;

int pa r t i a l F a i l e d =0;

Lis t<Integer> t e s t = new ArrayList<Integer >() ;

t e s t . add (0) ;

for (int i =1; i<Seed . s i z e /3 ; i++) {

sum+=counter . get (i) ;

t e s t . add (sum) ;

i f (pa r t i a lCheckSo lu t i on (t e s t)==fa l se) {

pa r t i a l F a i l e d=i ;

i=Seed . s i z e ;

}

}

i f (p a r t i a lFa i l e d >0) {

for (int i=p a r t i a l F a i l e d +1; i<Seed . s i z e /3 ; i++) {

counter . put (i , 1) ;

}

for (int i=p a r t i a l F a i l e d ; i>=1; i−−) {

int va l=counter . get (i) ;

sum=0;

for (int j =1; j<Seed . s i z e /3 ; j++) {

sum+=counter . get (j) ;

95

}

i f (sum<Seed . s i z e) {

va l++;

counter . put (i , va l) ;

i =0;

continue ;

} else {

i f (i==1) { f l a g =1;}

counter . put (i , 1) ;

}

}

} else i f (checkSo lut ion (t e s t)) {

s o l u t i o n s=t e s t ;

return s o l u t i o n s ;

} else {

for (int i=Seed . s i z e /3−1; i>=1; i−−) {

int va l=counter . get (i) ;

sum=0;

for (int j =1; j<Seed . s i z e /3 ; j++) {

sum+=counter . get (j) ;

}

i f (sum<Seed . s i z e) {

va l++;

counter . put (i , va l) ;

i =0;

continue ;

} else {

i f (i==1) { f l a g =1;}

counter . put (i , 1) ;

}

}

sum=0;

for (int i =1; i<Seed . s i z e /3 ; i++) {

sum+=counter . get (i) ;

i f (sum>Seed . s i z e) f l a g =1;

96

}

}

}

}

return s o l u t i o n s ;

}

public boolean par t i a lCheckSo lu t i on (Lis t<Integer> t e s t) {

int s i z e=t e s t . s i z e () ;

HashMap<Integer , Integer> check = new HashMap<Integer , Integer

>() ;

for (int o f f s e t : t e s t) {

for (int va l : g en e r a t eL i s t (o f f s e t)) {

check . put (val , 1) ;

}

}

/∗ l e t k = n/3 − s i z e o f p a r t i a l s o l u t i o n

∗ i f n− edge covered by p a r t i a l s o l u t i o n s > 3∗k then c l e a r l y

adding

∗ k a d d i t i o n a l s o l u t i o n s not g i v e us a s o l u t i o n

∗ t h i s check speeds t h i n g s up by a f a c t o r o f 3

∗/

i f (check . s i z e ()<3∗ s i z e) return fa l se ;

return true ;

}

public HashMap<Integer , L i s t<Integer>> ge tSo lu t i on (HashMap<

Integer , L i s t<Integer>> candidates , L i s t<Integer> unsolved ,

HashMap<Integer , L i s t<Integer>> out) {

HashMap<Integer , Integer> s i zeOfCandidates = new HashMap<

Integer , Integer >() ;

97

HashMap<Integer , L i s t<Integer>> s i z eOfMis s ing = new HashMap<

Integer , L i s t<Integer >>() ;

for (int i =0; i <5; i++) {

s i z eOfMi s s ing . put (i ,new ArrayList<Integer >()) ;

}

for (int c1=0; c1<Seed . s i z e ; c1++) {

i f (cand idate s . get (c1) !=null) {

List<Integer> hold = cand idate s . get (c1) ;

i f (hold . s i z e ()>1) {

int s i z eMi s s=hold . s i z e () ;

L i s t<Integer> tempMiss=s i z eOfMis s ing . get (s i z eMi s s) ;

tempMiss . add (c1) ;

s i z eOfMis s ing . put (s i zeMis s , tempMiss) ;

for (int c2 : hold) {

int s i z e=out . get (c2) . s i z e () ;

s i zeOfCandidates . put (c2 , s i z e) ;

}

} else {

cand idate s . remove (c1) ;

}

}

}

List<Integer> miss ing=new ArrayList<Integer >() ;

for (int i =0; i <4; i++) {

miss ing . addAll (s i z eOfMi s s ing . get (i)) ;

}

while (miss ing . isEmpty ()==fa l se) {

int c1=miss ing . get (0) ;

L i s t<Integer> l i s t=cand idate s . get (c1) ;

int cho i c e=−1;

int lowSeen=999;

for (int c2 : l i s t) {

i f (lowSeen>s i zeOfCandidates . get (c2)) {

cho i c e=c2 ;

98

lowSeen=s izeOfCandidates . get (c2) ;

}

}

i f (cho i c e !=−1) {

List<Integer> temp=out . get (cho i c e) ;

temp . add (c1) ;

int temp2=s izeOfCandidates . get (cho i c e) ;

temp2++;

s i zeOfCandidates . put (cho ice , temp2) ;

cand idate s . remove (c1) ;

i f (temp2==3) {

for (int i =0; i<Seed . s i z e ; i++) {

i f (cand idate s . get (i) !=null) {

List<Integer> hold = cand idate s . get (i) ;

i f (hold . conta in s (cho i c e)) hold . remove (hold . indexOf

(cho i c e)) ;

cand idate s . put (i , hold) ;

}

}

}

} else {

// This shouldn ’ t happen , s ince the prev ious s t ep

guarantees t ha t the edge be l ong s to

// at l e a s t one cen ter u i , but i f t h i s does happen then

c l e a r l y c (x) i s not a v a l i d cen ter f unc t i on

System . out . p r i n t l n (”No So lu t i on ”) ;

}

miss ing . c l e a r () ;

for (int i =0; i <5; i++) {

s i z eOfMis s ing . put (i ,new ArrayList<Integer >()) ;

}

for (int c3=0; c3<Seed . s i z e ; c3++) {

i f (cand idate s . get (c3) !=null) {

List<Integer> hold = cand idate s . get (c3) ;

int s i z eMi s s=hold . s i z e () ;

L i s t<Integer> tempMiss=s i z eOfMis s ing . get (s i z eMi s s) ;

99

tempMiss . add (c3) ;

s i z eOfMis s ing . put (s i zeMis s , tempMiss) ;

}

}

for (int i =0; i <4; i++) {

miss ing . addAll (s i z eOfMi s s ing . get (i)) ;

}

}

return out ;

}

public boolean checkSo lut ion (Lis t<Integer> s o l u t i o n s) {

HashMap<Integer , Integer> check = new HashMap<Integer , Integer

>() ;

for (int c1=0; c1<Seed . s i z e ; c1++) {

check . put (c1 , 0) ;

}

for (int o f f s e t : s o l u t i o n s) {

for (int va l : g en e r a t eL i s t (o f f s e t)) {

check . put (val , (check . get (va l)+1)) ;

}

}

for (int c1=0; c1<Seed . s i z e ; c1++) {

// I f edge {x , y} does not be long to a cen ter c (x) , then

cond i t i on 3 i s v i o l a t e d

i f (check . get (c1)==0) return fa l se ;

}

for (int o f f s e t : s o l u t i o n s) {

int count=0;

for (int va l : g en e r a t eL i s t (o f f s e t)) {

i f (check . get (va l)==1) count++;

}

i f (count==4) return fa l se ;

100

}

// Just because cond i t i on 3 i s met , does not mean tha t c (x) i s

a cen ter func t ion ,

// we need to make sure t ha t c (x) i s a v a l i d cen ter f unc t i on ;

return doubleCheckSolut ion (s o l u t i o n s) ;

}

public void p r i n tSo l u t i on (Lis t<Integer> s o l u t i o n s) {

System . out . p r i n t l n (” So lu t i on : ” + s o l u t i o n s + ”\ tOutput : ”+

solOut) ;

}

public boolean doubleCheckSolut ion (Lis t<Integer> s o l u t i o n s) {

HashMap<Integer , L i s t<Integer>> check = new HashMap<Integer ,

L i s t<Integer >>() ;

HashMap<Integer , L i s t<Integer>> cand idate s = new HashMap<Integer

, L i s t<Integer >>() ;

HashMap<Integer , L i s t<Integer>> out = new HashMap<Integer , L i s t<

Integer >>() ;

HashMap<Integer , L i s t<Integer>> l i s t = new HashMap<Integer , L i s t

<Integer >>() ;

/∗ We make sure t ha t c (x) i s a v a l i d cen ter func t i on ∗/

List<Integer> miss ing=new ArrayList<Integer >() ;

for (int c1=0; c1<Seed . s i z e ; c1++) {

List<Integer> temp = new ArrayList<Integer >() ;

L i s t<Integer> temp2 = new ArrayList<Integer >() ;

check . put (c1 , temp) ;

cand idate s . put (c1 , temp2) ;

}

for (int o f f s e t : s o l u t i o n s) {

List<Integer> temp2 = new ArrayList<Integer >() ;

101

out . put (o f f s e t , temp2) ;

for (int va l : g en e r a t eL i s t (o f f s e t)) {

List<Integer> temp=check . get (va l) ;

temp . add (o f f s e t) ;

check . put (val , temp) ;

}

}

for (int c1=0; c1<Seed . s i z e ; c1++) {

List<Integer> temp=check . get (c1) ;

i f (temp . s i z e ()==1) {

List<Integer> temp2=out . get (temp . get (0)) ;

temp2 . add (c1) ;

out . put (temp . get (0) , temp2) ;

} else i f (temp . s i z e ()==0) {

// the v c1 i s not ad jacen t to a center , t h e r e f o r e c (x) i s

not a v a l i d cen ter f unc t i on

// This shou ld not happen s ince i t i s guaranteed by the

prev ious s t ep t ha t v c1 i s ad jacen t to a cen ter

System . out . p r i n t l n (” Inva l i d So lu t i on f o r ”+c1) ;

return fa l se ;

}

}

for (int c1=0; c1<Seed . s i z e ; c1++) {

List<Integer> temp=check . get (c1) ;

i f (temp . s i z e ()>1) {

for (int t e s t : temp) {

List<Integer> temp2=out . get (t e s t) ;

i f (temp2 . s i z e ()<3) {

List<Integer> hold=cand idate s . get (c1) ;

hold . add (t e s t) ;

cand idate s . put (c1 , hold) ;

}

}

List<Integer> hold=cand idate s . get (c1) ;

i f (hold . s i z e ()==1) {

List<Integer> temp2=out . get (hold . get (0)) ;

102

temp2 . add (c1) ;

out . put (hold . get (0) , temp2) ;

cand idate s . remove (c1) ;

} else {

miss ing . add (c1) ;

l i s t . put (c1 , hold) ;

}

}

}

Co l l e c t i o n s . s o r t (s o l u t i o n s) ;

out = ge tSo lu t i on (l i s t , miss ing , out) ;

for (int c3=0; c3<Seed . s i z e ; c3++) {

i f (out . get (c3) !=null) {

i f (out . get (c3) . s i z e ()<3) {

// not every u c3 has s i z e 3 , t h e r e f o r e c (x) i s not a

v a l i d f unc t i on

return fa l se ;

}

}

}

solOut=out ;

return true ;

}

}

cyclicList.java

103

6.1.3 Supporting JAVA classes

import java . lang . ∗ ;

import java . u t i l . ∗ ;

public class c y c l i c {

public int d1 , d2 , d3 , d4 ;

public int s i z e ;

public c y c l i c (int d 1 , int d 2 , int d 3 , int d 4 , int s) {

@SuppressWarnings (”unchecked”)

Lis t<Integer> t e s t=new ArrayList<Integer >() ;

t e s t . add (d 1) ;

t e s t . add (d 2) ;

t e s t . add (d 3) ;

t e s t . add (d 4) ;

Co l l e c t i o n s . s o r t (t e s t) ;

d1=t e s t . get (0) ;

d2=t e s t . get (1) ;

d3=t e s t . get (2) ;

d4=t e s t . get (3) ;

s i z e=s ;

}

}

cyclic.java

104

6.2 S3-cover of partite set V

In this section we give the results of the output of our computer programme

for cyclic bipartite graphs of size n ≤ 18 (see Section 4.1.1). The following

tables gives us the copies of S3 with centers in U such that each vertex in V

is used exactly once.

6.2.1 S3-cover of partite set V for n = 6

Generator

Set
Star 1 Star 2

{0, 1, 2, 3} (u0; v0, v1, v2) (u2; v3, v4, v5)

{0, 1, 2, 4} (u0; v0, v1, v4) (u1; v2, v3, v5)

{0, 1, 3, 4} (u0; v0, v1, v3) (u1; v2, v4, v5)

{0, 2, 3, 4} (u0; v0, v2, v3) (u1; v1, v4, v5)

Table 6.1: S3-cover of Partite Set V for n = 6

6.2.2 S3-cover of partite set V for n = 9

Generator

Set
Star 1 Star 2 Star 3

{0, 1, 2, 3} (u0; v0, v1, v2) (u2; v3, v4, v5) (u5; v6, v7, v8)

{0, 1, 2, 4} (u0; v0, v1, v4) (u1; v2, v3, v5) (u6; v6, v7, v8)

{0, 1, 3, 4} (u0; v0, v1, v3) (u2; v2, v5, v6) (u4; v4, v7, v8)

{0, 2, 3, 4} (u0; v0, v2, v3) (u1; v1, v4, v5) (u4; v6, v7, v8)

{0, 1, 2, 5} (u0; v0, v1, v5) (u2; v2, v3, v4) (u6; v6, v7, v8)

{0, 1, 3, 5} (u0; v0, v1, v5) (u1; v2, v4, v6) (u7; v3, v7, v8)

{0, 1, 4, 5} (u0; v0, v1, v4) (u1; v2, v5, v6) (u3; v3, v7, v8)

{0, 2, 3, 5} (u0; v0, v2, v3) (u1; v1, v4, v6) (u5; v5, v7, v8)

{0, 2, 4, 5} (u0; v0, v2, v4) (u1; v1, v3, v6) (u3; v5, v7, v8)

Table 6.2 – Continued on next page

105

Table 6.2 – Continued from previous page

Generator

Set
Star 1 Star 2 Star 3

{0, 3, 4, 5} (u0; v0, v3, v4) (u2; v2, v6, v7) (u5; v1, v5, v8)

{0, 1, 3, 6} (u0; v0, v1, v6) (u1; v2, v4, v7) (u2; v3, v5, v8)

{0, 1, 4, 6} (u0; v0, v1, v4) (u1; v2, v5, v7) (u2; v3, v6, v8)

{0, 2, 3, 6} (u0; v0, v2, v6) (u1; v1, v3, v7) (u2; v4, v5, v8)

{0, 2, 4, 6} (u0; v0, v2, v4) (u1; v3, v5, v7) (u4; v1, v6, v8)

{0, 2, 5, 6} (u0; v0, v2, v5) (u1; v1, v3, v6) (u2; v4, v7, v8)

{0, 3, 4, 6} (u0; v0, v3, v4) (u1; v1, v5, v7) (u2; v2, v6, v8)

{0, 3, 5, 6} (u0; v0, v3, v5) (u1; v1, v4, v6) (u2; v2, v7, v8)

Table 6.2: S3-cover of Partite Set V for n = 9

6.2.3 S3-cover of partite set V for n = 12

Generator

Set
Star 1 Star 2 Star 3 Star 4

{0, 1, 2, 3} (u0; v0, v1, v3) (u2; v2, v4, v5) (u5; v6, v7, v8) (u8; v9, v10, v11)

{0, 1, 2, 4} (u0; v0, v1, v4) (u1; v2, v3, v5) (u6; v6, v7, v10) (u7; v8, v9, v11)

{0, 1, 3, 4} (u0; v0, v3, v4) (u1; v1, v2, v5) (u5; v6, v8, v9) (u7; v7, v10, v11)

{0, 2, 3, 4} (u0; v0, v2, v3) (u1; v1, v4, v5) (u4; v6, v7, v8) (u7; v9, v10, v11)

{0, 1, 2, 5} (u0; v0, v1, v5) (u2; v2, v3, v4) (u6; v6, v7, v11) (u8; v8, v9, v10)

{0, 1, 3, 5} (u0; v0, v1, v3) (u1; v2, v4, v6) (u5; v5, v8, v10) (u6; v7, v9, v11)

{0, 1, 4, 5} (u0; v0, v1, v4) (u2; v2, v3, v6) (u4; v5, v8, v9) (u6; v7, v10, v11)

{0, 2, 3, 5} (u0; v0, v2, v5) (u1; v1, v3, v4) (u4; v6, v7, v9) (u8; v8, v10, v11)

{0, 2, 4, 5} (u0; v0, v2, v4) (u1; v1, v3, v5) (u5; v7, v9, v10) (u6; v6, v8, v11)

{0, 3, 4, 5} (u0; v0, v3, v4) (u2; v2, v6, v7) (u5; v5, v9, v10) (u8; v1, v8, v11)

{0, 1, 2, 6} (u0; v0, v1, v6) (u2; v3, v4, v8) (u5; v5, v7, v11) (u8; v2, v9, v10)

{0, 1, 3, 6} (u0; v0, v3, v6) (u1; v1, v2, v4) (u4; v5, v7, v10) (u8; v8, v9, v11)

Table 6.3 – Continued on next page

106

Table 6.3 – Continued from previous page

Generator

Set
Star 1 Star 2 Star 3 Star 4

{0, 1, 4, 6} (u0; v0, v4, v6) (u1; v1, v2, v5) (u7; v7, v8, v11) (u9; v3, v9, v10)

{0, 1, 5, 6} (u0; v0, v1, v5) (u1; v2, v6, v7) (u3; v3, v8, v9) (u10; v4, v10, v11)

{0, 2, 3, 6} (u0; v0, v2, v3) (u1; v1, v4, v7) (u3; v5, v6, v9) (u8; v8, v10, v11)

{0, 2, 4, 6} Two-component graph see n = 6 and D = {0, 1, 2, 3}

{0, 2, 5, 6} (u0; v0, v2, v5) (u1; v1, v3, v7) (u4; v4, v9, v10) (u6; v6, v8, v11)

{0, 3, 4, 6} (u0; v0, v3, v6) (u1; v1, v5, v7) (u5; v8, v9, v11) (u10; v2, v4, v10)

{0, 3, 5, 6} (u0; v0, v3, v5) (u1; v1, v4, v6) (u4; v7, v9, v10) (u8; v2, v8, v11)

{0, 4, 5, 6} (u0; v0, v4, v6) (u2; v2, v7, v8) (u5; v5, v10, v11) (u9; v1, v3, v9)

{0, 1, 2, 7} (u0; v0, v1, v7) (u1; v2, v3, v8) (u4; v4, v5, v6) (u9; v9, v10, v11)

{0, 1, 3, 7} (u0; v0, v1, v3) (u1; v2, v4, v8) (u6; v6, v7, v9) (u10; v5, v10, v11)

{0, 1, 4, 7} (u0; v0, v4, v7) (u1; v1, v2, v8) (u2; v3, v6, v9) (u10; v5, v10, v11)

{0, 1, 5, 7} (u0; v0, v1, v7) (u1; v2, v6, v8) (u3; v3, v4, v10) (u4; v5, v9, v11)

{0, 1, 6, 7} (u0; v0, v1, v6) (u1; v2, v7, v8) (u3; v3, v4, v9) (u4; v5, v10, v11)

{0, 2, 3, 7} (u0; v0, v2, v7) (u1; v1, v3, v8) (u3; v5, v6, v10) (u9; v4, v9, v11)

{0, 2, 4, 7} (u0; v0, v2, v4) (u1; v1, v3, v5) (u6; v6, v8, v10) (u7; v7, v9, v11)

{0, 2, 5, 7} (u0; v0, v2, v7) (u1; v1, v3, v6) (u3; v5, v8, v10) (u4; v4, v9, v11)

{0, 2, 6, 7} (u0; v0, v2, v7) (u1; v1, v3, v8) (u3; v5, v9, v10) (u4; v4, v6, v11)

{0, 3, 4, 7} (u0; v0, v3, v4) (u1; v1, v5, v8) (u2; v2, v6, v9) (u7; v7, v10, v11)

{0, 3, 5, 7} (u0; v0, v3, v5) (u1; v1, v6, v8) (u4; v4, v9, v11) (u7; v2, v7, v10)

{0, 3, 6, 7} (u0; v0, v3, v6) (u1; v1, v4, v8) (u2; v2, v5, v9) (u4; v7, v10, v11)

{0, 4, 5, 7} (u0; v0, v4, v7) (u1; v1, v5, v6) (u4; v8, v9, v11) (u10; v2, v3, v10)

{0, 4, 6, 7} (u0; v0, v4, v6) (u1; v1, v5, v8) (u3; v3, v9, v10) (u7; v2, v7, v11)

{0, 5, 6, 7} (u0; v0, v5, v6) (u1; v1, v7, v8) (u4; v4, v10, v11) (u9; v2, v3, v9)

{0, 1, 4, 8} (u0; v0, v1, v8) (u1; v2, v5, v9) (u2; v3, v6, v10) (u3; v4, v7, v11)

{0, 1, 5, 8} (u0; v0, v1, v5) (u1; v2, v6, v9) (u2; v3, v7, v10) (u3; v4, v8, v11)

{0, 2, 4, 8} Two-component graph see n = 6 and D = {0, 1, 2, 4}

Table 6.3 – Continued on next page

107

Table 6.3 – Continued from previous page

Generator

Set
Star 1 Star 2 Star 3 Star 4

{0, 2, 5, 8} (u0; v0, v2, v5) (u1; v1, v6, v9) (u2; v4, v7, v10) (u3; v3, v8, v11)

{0, 2, 6, 8} Two-component graph see n = 6 and D = {0, 1, 3, 4}

{0, 3, 4, 8} (u0; v0, v3, v8) (u1; v1, v4, v9) (u2; v2, v5, v10) (u3; v6, v7, v11)

{0, 3, 5, 8} (u0; v0, v3, v5) (u1; v1, v4, v9) (u2; v2, v7, v10) (u3; v6, v8, v11)

{0, 3, 6, 8} (u0; v0, v3, v8) (u1; v1, v4, v7) (u2; v2, v5, v10) (u3; v6, v9, v11)

{0, 3, 7, 8} (u0; v0, v3, v7) (u1; v1, v4, v8) (u2; v2, v5, v9) (u3; v6, v10, v11)

{0, 4, 5, 8} (u0; v0, v4, v5) (u1; v1, v6, v9) (u2; v2, v7, v10) (u3; v3, v8, v11)

{0, 4, 6, 8} Two-component graph see n = 6 and D = {0, 2, 3, 4}

{0, 4, 7, 8} (u0; v0, v4, v7) (u1; v1, v5, v8) (u2; v2, v6, v9) (u3; v3, v10, v11)

{0, 3, 6, 9} Three-component graphs, no decomposition

Table 6.3: S3-cover of Partite Set V for n = 12

108

6
.2

.4
S
3
-c

o
v
e
r

o
f

p
a
rt

it
e

se
t
V

fo
r
n

=
15

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,1
,2
,3
}

(u
0
;v

0
,v

1
,v

3
)

(u
2
;v

2
,v

4
,v

5
)

(u
5
;v

6
,v

7
,v

8
)

(u
8
;v

9
,v

1
0
,v

1
1
)

(u
1
1
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,2
,4
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

3
,v

5
)

(u
6
;v

6
,v

7
,v

1
0
)

(u
7
;v

8
,v

9
,v

1
1
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,3
,4
}

(u
0
;v

0
,v

1
,v

3
)

(u
1
;v

2
,v

4
,v

5
)

(u
6
;v

6
,v

7
,v

9
)

(u
8
;v

8
,v

1
1
,v

1
2
)

(u
1
0
;v

1
0
,v

1
3
,v

1
4
)

{0
,2
,3
,4
}

(u
0
;v

0
,v

2
,v

3
)

(u
1
;v

1
,v

4
,v

5
)

(u
4
;v

6
,v

7
,v

8
)

(u
7
;v

9
,v

1
0
,v

1
1
)

(u
1
0
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,2
,5
}

(u
0
;v

0
,v

1
,v

5
)

(u
2
;v

2
,v

3
,v

4
)

(u
6
;v

6
,v

7
,v

1
1
)

(u
8
;v

8
,v

9
,v

1
0
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,3
,5
}

(u
0
;v

0
,v

1
,v

3
)

(u
1
;v

2
,v

4
,v

6
)

(u
4
;v

5
,v

7
,v

9
)

(u
8
;v

8
,v

1
1
,v

1
3
)

(u
9
;v

1
0
,v

1
2
,v

1
4
)

{0
,1
,4
,5
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

5
,v

6
)

(u
3
;v

3
,v

7
,v

8
)

(u
8
;v

9
,v

1
2
,v

1
3
)

(u
1
0
;v

1
0
,v

1
1
,v

1
4
)

{0
,2
,3
,5
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

6
)

(u
4
;v

4
,v

7
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
3
)

(u
9
;v

1
1
,v

1
2
,v

1
4
)

{0
,2
,4
,5
}

(u
0
;v

0
,v

2
,v

4
)

(u
1
;v

1
,v

5
,v

6
)

(u
3
;v

3
,v

7
,v

8
)

(u
8
;v

1
0
,v

1
2
,v

1
3
)

(u
9
;v

9
,v

1
1
,v

1
4
)

{0
,3
,4
,5
}

(u
0
;v

0
,v

3
,v

4
)

(u
2
;v

2
,v

6
,v

7
)

(u
5
;v

5
,v

9
,v

1
0
)

(u
8
;v

8
,v

1
2
,v

1
3
)

(u
1
1
;v

1
,v

1
1
,v

1
4
)

{0
,1
,2
,6
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

3
,v

7
)

(u
3
;v

4
,v

5
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
4
)

(u
1
1
;v

1
1
,v

1
2
,v

1
3
)

{0
,1
,3
,6
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

2
,v

4
,v

7
)

(u
5
;v

5
,v

8
,v

1
1
)

(u
9
;v

9
,v

1
0
,v

1
2
)

(u
1
3
;v

1
,v

1
3
,v

1
4
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

109

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,1
,4
,6
}

(u
0
;v

0
,v

4
,v

6
)

(u
1
;v

2
,v

5
,v

7
)

(u
8
;v

8
,v

9
,v

1
4
)

(u
1
0
;v

1
,v

1
0
,v

1
1
)

(u
1
2
;v

3
,v

1
2
,v

1
3
)

{0
,1
,5
,6
}

(u
0
;v

0
,v

1
,v

5
)

(u
2
;v

2
,v

3
,v

7
)

(u
4
;v

4
,v

9
,v

1
0
)

(u
6
;v

6
,v

1
1
,v

1
2
)

(u
8
;v

8
,v

1
3
,v

1
4
)

{0
,2
,3
,6
}

(u
0
;v

0
,v

2
,v

3
)

(u
1
;v

1
,v

4
,v

7
)

(u
3
;v

5
,v

6
,v

9
)

(u
8
;v

8
,v

1
1
,v

1
4
)

(u
1
0
;v

1
0
,v

1
2
,v

1
3
)

{0
,2
,4
,6
}

(u
0
;v

0
,v

2
,v

4
)

(u
1
;v

3
,v

5
,v

7
)

(u
4
;v

6
,v

8
,v

1
0
)

(u
7
;v

9
,v

1
1
,v

1
3
)

(u
1
0
;v

1
,v

1
2
,v

1
4
)

{0
,2
,5
,6
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

7
)

(u
4
;v

4
,v

6
,v

9
)

(u
6
;v

8
,v

1
1
,v

1
2
)

(u
8
;v

1
0
,v

1
3
,v

1
4
)

{0
,3
,4
,6
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

5
)

(u
4
;v

7
,v

8
,v

1
0
)

(u
9
;v

9
,v

1
2
,v

1
3
)

(u
1
1
;v

2
,v

1
1
,v

1
4
)

{0
,3
,5
,6
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

4
,v

7
)

(u
3
;v

6
,v

8
,v

9
)

(u
7
;v

1
0
,v

1
2
,v

1
3
)

(u
1
1
;v

2
,v

1
1
,v

1
4
)

{0
,4
,5
,6
}

(u
0
;v

0
,v

4
,v

5
)

(u
1
;v

1
,v

6
,v

7
)

(u
5
;v

9
,v

1
0
,v

1
1
)

(u
8
;v

8
,v

1
3
,v

1
4
)

(u
1
2
;v

2
,v

3
,v

1
2
)

{0
,1
,2
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

8
)

(u
4
;v

4
,v

5
,v

6
)

(u
9
;v

9
,v

1
0
,v

1
1
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,3
,7
}

N
o

so
lu

ti
on

u
si

n
g

S
tr

at
eg

y
1

{0
,1
,4
,7
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

2
,v

5
,v

8
)

(u
2
;v

3
,v

6
,v

9
)

(u
1
0
;v

1
0
,v

1
1
,v

1
4
)

(u
1
2
;v

1
,v

1
2
,v

1
3
)

{0
,1
,5
,7
}

(u
0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

6
,v

8
)

(u
4
;v

4
,v

9
,v

1
1
)

(u
5
;v

5
,v

1
0
,v

1
2
)

(u
1
3
;v

3
,v

1
3
,v

1
4
)

{0
,1
,6
,7
}

(u
0
;v

0
,v

1
,v

6
)

(u
1
;v

2
,v

7
,v

8
)

(u
3
;v

3
,v

9
,v

1
0
)

(u
5
;v

5
,v

1
1
,v

1
2
)

(u
1
3
;v

4
,v

1
3
,v

1
4
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

110

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,2
,3
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

4
,v

8
)

(u
3
;v

5
,v

6
,v

1
0
)

(u
9
;v

9
,v

1
1
,v

1
2
)

(u
1
1
;v

3
,v

1
3
,v

1
4
)

{0
,2
,4
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

3
,v

5
,v

8
)

(u
2
;v

4
,v

6
,v

9
)

(u
9
;v

1
,v

1
1
,v

1
3
)

(u
1
0
;v

1
0
,v

1
2
,v

1
4
)

{0
,2
,5
,7
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

6
)

(u
4
;v

4
,v

9
,v

1
1
)

(u
7
;v

7
,v

1
2
,v

1
4
)

(u
8
;v

8
,v

1
0
,v

1
3
)

{0
,2
,6
,7
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

7
,v

8
)

(u
3
;v

5
,v

9
,v

1
0
)

(u
1
1
;v

3
,v

1
1
,v

1
3
)

(u
1
2
;v

4
,v

1
2
,v

1
4
)

{0
,3
,4
,7
}

(u
0
;v

0
,v

3
,v

7
)

(u
1
;v

1
,v

4
,v

8
)

(u
2
;v

2
,v

5
,v

6
)

(u
7
;v

1
0
,v

1
1
,v

1
4
)

(u
9
;v

9
,v

1
2
,v

1
3
)

{0
,3
,5
,7
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

4
,v

8
)

(u
2
;v

2
,v

7
,v

9
)

(u
6
;v

6
,v

1
1
,v

1
3
)

(u
7
;v

1
0
,v

1
2
,v

1
4
)

{0
,3
,6
,7
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

9
)

(u
5
;v

8
,v

1
1
,v

1
2
)

(u
7
;v

1
0
,v

1
3
,v

1
4
)

{0
,4
,5
,7
}

(u
0
;v

0
,v

4
,v

5
)

(u
1
;v

1
,v

6
,v

8
)

(u
5
;v

9
,v

1
0
,v

1
2
)

(u
7
;v

7
,v

1
1
,v

1
4
)

(u
1
3
;v

2
,v

3
,v

1
3
)

{0
,4
,6
,7
}

N
o

so
lu

ti
on

u
si

n
g

S
tr

at
eg

y
1

{0
,5
,6
,7
}

(u
0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

8
)

(u
4
;v

4
,v

9
,v

1
0
)

(u
7
;v

1
2
,v

1
3
,v

1
4
)

(u
1
1
;v

2
,v

3
,v

1
1
)

{0
,1
,2
,8
}

(u
0
;v

0
,v

1
,v

8
)

(u
2
;v

2
,v

3
,v

4
)

(u
5
;v

5
,v

6
,v

7
)

(u
9
;v

9
,v

1
0
,v

1
1
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

{0
,1
,3
,8
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

2
,v

4
)

(u
4
;v

5
,v

7
,v

1
2
)

(u
6
;v

6
,v

9
,v

1
4
)

(u
1
0
;v

1
0
,v

1
1
,v

1
3
)

{0
,1
,4
,8
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

2
,v

9
)

(u
3
;v

3
,v

7
,v

1
1
)

(u
6
;v

6
,v

1
0
,v

1
4
)

(u
1
2
;v

5
,v

1
2
,v

1
3
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

111

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,1
,5
,8
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

2
,v

9
)

(u
2
;v

3
,v

7
,v

1
0
)

(u
1
1
;v

4
,v

1
1
,v

1
2
)

(u
1
3
;v

6
,v

1
3
,v

1
4
)

{0
,1
,6
,8
}

(u
0
;v

0
,v

1
,v

8
)

(u
1
;v

2
,v

7
,v

9
)

(u
3
;v

3
,v

4
,v

1
1
)

(u
4
;v

5
,v

1
0
,v

1
2
)

(u
1
3
;v

6
,v

1
3
,v

1
4
)

{0
,1
,7
,8
}

(u
0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

9
)

(u
3
;v

3
,v

4
,v

1
0
)

(u
4
;v

5
,v

1
1
,v

1
2
)

(u
6
;v

6
,v

1
3
,v

1
4
)

{0
,2
,3
,8
}

(u
0
;v

0
,v

2
,v

8
)

(u
1
;v

1
,v

3
,v

9
)

(u
2
;v

4
,v

5
,v

1
0
)

(u
4
;v

6
,v

7
,v

1
2
)

(u
1
1
;v

1
1
,v

1
3
,v

1
4
)

{0
,2
,4
,8
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

3
,v

9
)

(u
3
;v

5
,v

7
,v

1
1
)

(u
1
0
;v

1
0
,v

1
2
,v

1
4
)

(u
1
3
;v

2
,v

6
,v

1
3
)

{0
,2
,5
,8
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

3
,v

6
,v

9
)

(u
2
;v

4
,v

7
,v

1
0
)

(u
1
1
;v

1
,v

1
1
,v

1
3
)

(u
1
2
;v

2
,v

1
2
,v

1
4
)

{0
,2
,6
,8
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

3
,v

9
)

(u
2
;v

4
,v

8
,v

1
0
)

(u
5
;v

7
,v

1
1
,v

1
3
)

(u
1
2
;v

5
,v

1
2
,v

1
4
)

{0
,2
,7
,8
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

9
)

(u
3
;v

5
,v

1
0
,v

1
1
)

(u
4
;v

4
,v

6
,v

1
2
)

(u
6
;v

8
,v

1
3
,v

1
4
)

{0
,3
,4
,8
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

5
)

(u
3
;v

6
,v

7
,v

1
1
)

(u
6
;v

9
,v

1
0
,v

1
4
)

(u
9
;v

2
,v

1
2
,v

1
3
)

{0
,3
,5
,8
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

4
,v

6
)

(u
2
;v

2
,v

7
,v

1
0
)

(u
8
;v

8
,v

1
1
,v

1
3
)

(u
9
;v

9
,v

1
2
,v

1
4
)

{0
,3
,6
,8
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
5
;v

8
,v

1
1
,v

1
3
)

(u
6
;v

9
,v

1
2
,v

1
4
)

{0
,3
,7
,8
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

9
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
4
;v

7
,v

1
1
,v

1
2
)

(u
6
;v

6
,v

1
3
,v

1
4
)

{0
,4
,5
,8
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

9
)

(u
6
;v

6
,v

1
0
,v

1
4
)

(u
7
;v

7
,v

1
1
,v

1
2
)

(u
1
3
;v

2
,v

3
,v

1
3
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

112

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,4
,6
,8
}

(u
0
;v

4
,v

6
,v

8
)

(u
1
;v

1
,v

5
,v

7
)

(u
3
;v

3
,v

9
,v

1
1
)

(u
6
;v

1
0
,v

1
2
,v

1
4
)

(u
9
;v

0
,v

2
,v

1
3
)

{0
,4
,7
,8
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

9
)

(u
4
;v

8
,v

1
1
,v

1
2
)

(u
6
;v

6
,v

1
0
,v

1
3
)

(u
1
0
;v

2
,v

3
,v

1
4
)

{0
,5
,6
,8
}

(u
0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

9
)

(u
2
;v

2
,v

8
,v

1
0
)

(u
6
;v

1
1
,v

1
2
,v

1
4
)

(u
1
3
;v

3
,v

4
,v

1
3
)

{0
,5
,7
,8
}

(u
0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

6
,v

9
)

(u
3
;v

3
,v

8
,v

1
0
)

(u
6
;v

1
1
,v

1
3
,v

1
4
)

(u
1
2
;v

2
,v

4
,v

1
2
)

{0
,6
,7
,8
}

(u
0
;v

0
,v

6
,v

7
)

(u
2
;v

2
,v

9
,v

1
0
)

(u
5
;v

5
,v

1
2
,v

1
3
)

(u
8
;v

1
,v

8
,v

1
4
)

(u
1
1
;v

3
,v

4
,v

1
1
)

{0
,1
,3
,9
}

(u
0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

2
,v

1
0
)

(u
4
;v

4
,v

7
,v

1
3
)

(u
5
;v

5
,v

6
,v

8
)

(u
1
1
;v

1
1
,v

1
2
,v

1
4
)

{0
,1
,4
,9
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

5
,v

1
0
)

(u
2
;v

3
,v

6
,v

1
1
)

(u
8
;v

8
,v

9
,v

1
2
)

(u
1
3
;v

7
,v

1
3
,v

1
4
)

{0
,1
,5
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

3
,v

1
1
)

(u
3
;v

4
,v

8
,v

1
2
)

(u
1
3
;v

7
,v

1
3
,v

1
4
)

{0
,1
,6
,9
}

(u
0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

1
0
)

(u
2
;v

3
,v

8
,v

1
1
)

(u
1
1
;v

2
,v

5
,v

1
2
)

(u
1
3
;v

4
,v

1
3
,v

1
4
)

{0
,1
,7
,9
}

(u
0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

1
0
)

(u
2
;v

3
,v

9
,v

1
1
)

(u
4
;v

4
,v

5
,v

1
3
)

(u
5
;v

6
,v

1
2
,v

1
4
)

{0
,2
,3
,9
}

(u
0
;v

0
,v

2
,v

9
)

(u
1
;v

1
,v

4
,v

1
0
)

(u
3
;v

3
,v

6
,v

1
2
)

(u
5
;v

5
,v

7
,v

8
)

(u
1
1
;v

1
1
,v

1
3
,v

1
4
)

{0
,2
,4
,9
}

(u
0
;v

0
,v

2
,v

4
)

(u
1
;v

1
,v

3
,v

5
)

(u
4
;v

6
,v

8
,v

1
3
)

(u
7
;v

7
,v

9
,v

1
1
)

(u
1
0
;v

1
0
,v

1
2
,v

1
4
)

{0
,2
,5
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

3
,v

1
0
)

(u
2
;v

4
,v

7
,v

1
1
)

(u
8
;v

2
,v

8
,v

1
3
)

(u
1
2
;v

6
,v

1
2
,v

1
4
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

113

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,2
,6
,9
}

(u
0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

1
0
)

(u
2
;v

4
,v

8
,v

1
1
)

(u
1
1
;v

2
,v

5
,v

1
3
)

(u
1
2
;v

3
,v

1
2
,v

1
4
)

{0
,2
,7
,9
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

1
0
)

(u
2
;v

4
,v

9
,v

1
1
)

(u
5
;v

5
,v

1
2
,v

1
4
)

(u
6
;v

6
,v

8
,v

1
3
)

{0
,2
,8
,9
}

(u
0
;v

0
,v

8
,v

9
)

(u
1
;v

1
,v

3
,v

1
0
)

(u
2
;v

2
,v

4
,v

1
1
)

(u
4
;v

6
,v

1
2
,v

1
3
)

(u
5
;v

5
,v

7
,v

1
4
)

{0
,3
,4
,9
}

(u
0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

4
,v

5
)

(u
3
;v

6
,v

7
,v

1
2
)

(u
8
;v

2
,v

8
,v

1
1
)

(u
1
0
;v

1
0
,v

1
3
,v

1
4
)

{0
,3
,5
,9
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
4
;v

4
,v

7
,v

1
3
)

(u
8
;v

2
,v

8
,v

1
1
)

(u
9
;v

9
,v

1
2
,v

1
4
)

{0
,3
,6
,9
}

T
h
re

e-
co

m
p

on
en

t
gr

ap
h
s,

n
o

d
ec

om
p

os
it

io
n

{0
,3
,7
,9
}

(u
0
;v

0
,v

3
,v

7
)

(u
1
;v

1
,v

4
,v

1
0
)

(u
2
;v

2
,v

5
,v

1
1
)

(u
5
;v

8
,v

1
2
,v

1
4
)

(u
6
;v

6
,v

9
,v

1
3
)

{0
,3
,8
,9
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

1
0
)

(u
2
;v

2
,v

5
,v

1
1
)

(u
4
;v

7
,v

1
2
,v

1
3
)

(u
6
;v

6
,v

9
,v

1
4
)

{0
,4
,5
,9
}

(u
0
;v

0
,v

4
,v

5
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
2
)

(u
9
;v

9
,v

1
3
,v

1
4
)

{0
,4
,6
,9
}

(u
0
;v

0
,v

4
,v

6
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
3
;v

3
,v

9
,v

1
2
)

(u
7
;v

7
,v

1
1
,v

1
3
)

(u
8
;v

2
,v

8
,v

1
4
)

{0
,4
,7
,9
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

8
,v

1
0
)

(u
2
;v

2
,v

6
,v

1
1
)

(u
5
;v

5
,v

1
2
,v

1
4
)

(u
9
;v

3
,v

9
,v

1
3
)

{0
,4
,8
,9
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
3
;v

3
,v

1
1
,v

1
2
)

(u
5
;v

9
,v

1
3
,v

1
4
)

(u
1
3
;v

2
,v

6
,v

7
)

{0
,5
,6
,9
}

(u
0
;v

0
,v

5
,v

6
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
3
;v

3
,v

9
,v

1
2
)

(u
8
;v

8
,v

1
3
,v

1
4
)

(u
1
0
;v

1
,v

4
,v

1
0
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

114

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,5
,7
,9
}

(u
0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

8
,v

1
0
)

(u
4
;v

4
,v

1
1
,v

1
3
)

(u
9
;v

3
,v

9
,v

1
4
)

(u
1
2
;v

2
,v

6
,v

1
2
)

{0
,5
,8
,9
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
4
;v

4
,v

1
2
,v

1
3
)

(u
9
;v

3
,v

9
,v

1
4
)

{0
,6
,7
,9
}

(u
0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

8
)

(u
4
;v

4
,v

1
0
,v

1
3
)

(u
5
;v

5
,v

1
2
,v

1
4
)

(u
1
1
;v

2
,v

3
,v

1
1
)

{0
,6
,8
,9
}

(u
0
;v

0
,v

6
,v

8
)

(u
1
;v

1
,v

7
,v

1
0
)

(u
3
;v

3
,v

9
,v

1
2
)

(u
5
;v

5
,v

1
3
,v

1
4
)

(u
1
1
;v

2
,v

4
,v

1
1
)

{0
,1
,5
,1

0}
(u

0
;v

0
,v

1
,v

1
0
)

(u
1
;v

2
,v

6
,v

1
1
)

(u
2
;v

3
,v

7
,v

1
2
)

(u
3
;v

4
,v

8
,v

1
3
)

(u
4
;v

5
,v

9
,v

1
4
)

{0
,1
,6
,1

0}
(u

0
;v

0
,v

1
,v

6
)

(u
1
;v

2
,v

7
,v

1
1
)

(u
2
;v

3
,v

8
,v

1
2
)

(u
3
;v

4
,v

9
,v

1
3
)

(u
4
;v

5
,v

1
0
,v

1
4
)

{0
,2
,5
,1

0}
(u

0
;v

0
,v

2
,v

1
0
)

(u
1
;v

1
,v

3
,v

1
1
)

(u
2
;v

4
,v

7
,v

1
2
)

(u
3
;v

5
,v

8
,v

1
3
)

(u
4
;v

6
,v

9
,v

1
4
)

{0
,2
,6
,1

0}
(u

0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

7
,v

1
1
)

(u
2
;v

4
,v

8
,v

1
2
)

(u
3
;v

5
,v

9
,v

1
3
)

(u
8
;v

3
,v

1
0
,v

1
4
)

{0
,2
,7
,1

0}
(u

0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

8
)

(u
2
;v

4
,v

9
,v

1
2
)

(u
3
;v

5
,v

1
0
,v

1
3
)

(u
4
;v

6
,v

1
1
,v

1
4
)

{0
,3
,5
,1

0}
(u

0
;v

0
,v

3
,v

1
0
)

(u
1
;v

1
,v

4
,v

1
1
)

(u
2
;v

2
,v

5
,v

1
2
)

(u
3
;v

6
,v

8
,v

1
3
)

(u
4
;v

7
,v

9
,v

1
4
)

{0
,3
,6
,1

0}
(u

0
;v

0
,v

6
,v

1
0
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

1
2
)

(u
3
;v

3
,v

9
,v

1
3
)

(u
8
;v

8
,v

1
1
,v

1
4
)

{0
,3
,7
,1

0}
(u

0
;v

0
,v

3
,v

1
0
)

(u
1
;v

1
,v

4
,v

8
)

(u
2
;v

2
,v

5
,v

1
2
)

(u
4
;v

7
,v

1
1
,v

1
4
)

(u
6
;v

6
,v

9
,v

1
3
)

{0
,3
,8
,1

0}
(u

0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

9
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
3
;v

6
,v

1
1
,v

1
3
)

(u
4
;v

7
,v

1
2
,v

1
4
)

T
ab

le
6.

4
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

115

T
ab

le
6.

4
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

{0
,4
,5
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

5
,v

1
1
)

(u
2
;v

2
,v

6
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
3
)

(u
4
;v

8
,v

9
,v

1
4
)

{0
,4
,6
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

5
,v

1
1
)

(u
2
;v

2
,v

6
,v

8
)

(u
3
;v

7
,v

9
,v

1
3
)

(u
8
;v

3
,v

1
2
,v

1
4
)

{0
,4
,7
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

5
,v

8
)

(u
2
;v

6
,v

9
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
3
)

(u
7
;v

2
,v

1
1
,v

1
4
)

{0
,4
,8
,1

0}
(u

0
;v

0
,v

4
,v

8
)

(u
1
;v

5
,v

9
,v

1
1
)

(u
2
;v

2
,v

6
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
3
)

(u
6
;v

1
,v

1
0
,v

1
4
)

{0
,4
,9
,1

0}
(u

0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
2
;v

2
,v

6
,v

1
1
)

(u
3
;v

3
,v

7
,v

1
2
)

(u
4
;v

8
,v

1
3
,v

1
4
)

{0
,5
,6
,1

0}
(u

0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

1
1
)

(u
2
;v

2
,v

8
,v

1
2
)

(u
3
;v

3
,v

9
,v

1
3
)

(u
4
;v

4
,v

1
0
,v

1
4
)

{0
,5
,7
,1

0}
(u

0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

6
,v

8
)

(u
2
;v

2
,v

9
,v

1
2
)

(u
3
;v

3
,v

1
0
,v

1
3
)

(u
4
;v

4
,v

1
1
,v

1
4
)

{0
,5
,8
,1

0}
(u

0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

6
,v

9
)

(u
2
;v

2
,v

7
,v

1
0
)

(u
3
;v

3
,v

1
1
,v

1
3
)

(u
4
;v

4
,v

1
2
,v

1
4
)

{0
,5
,9
,1

0}
(u

0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
2
)

(u
4
;v

4
,v

1
3
,v

1
4
)

{0
,3
,7
,1

1}
(u

0
;v

0
,v

7
,v

1
1
)

(u
1
;v

1
,v

4
,v

8
)

(u
3
;v

3
,v

1
0
,v

1
4
)

(u
6
;v

2
,v

6
,v

1
3
)

(u
9
;v

5
,v

9
,v

1
2
)

{0
,4
,7
,1

1}
(u

0
;v

0
,v

4
,v

1
1
)

(u
1
;v

1
,v

8
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
4
)

(u
6
;v

2
,v

6
,v

1
0
)

(u
9
;v

5
,v

9
,v

1
3
)

{0
,4
,8
,1

1}
(u

0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
1
)

(u
6
;v

6
,v

1
0
,v

1
4
)

(u
9
;v

2
,v

9
,v

1
3
)

T
ab

le
6.

4:
S
3
-c

ov
er

of
P

ar
ti

te
S
et
V

fo
r
n

=
15

116

6
.2

.5
S
3
-c

o
v
e
r

o
f

p
a
rt

it
e

se
t
V

fo
r
n

=
18

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,1
,2
,3
}

(u
0
;v

0
,v

1
,v

3
)

(u
2
;v

2
,v

4
,v

5
)

(u
5
;v

6
,v

7
,v

8
)

(u
8
;v

9
,v

1
0
,v

1
1
)

(u
1
1
;v

1
2
,v

1
3
,v

1
4
)

(u
1
4
;v

1
5
,v

1
6
,v

1
7
)

{0
,1
,2
,4
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

3
,v

5
)

(u
6
;v

6
,v

7
,v

1
0
)

(u
7
;v

8
,v

9
,v

1
1
)

(u
1
2
;v

1
2
,v

1
3
,v

1
6
)

(u
1
3
;v

1
4
,v

1
5
,v

1
7
)

{0
,1
,3
,4
}

(u
0
;v

0
,v

3
,v

4
)

(u
1
;v

1
,v

2
,v

5
)

(u
5
;v

6
,v

8
,v

9
)

(u
7
;v

7
,v

1
0
,v

1
1
)

(u
1
1
;v

1
2
,v

1
4
,v

1
5
)

(u
1
3
;v

1
3
,v

1
6
,v

1
7
)

{0
,2
,3
,4
}

(u
0
;v

0
,v

2
,v

3
)

(u
1
;v

1
,v

4
,v

5
)

(u
4
;v

6
,v

7
,v

8
)

(u
7
;v

9
,v

1
0
,v

1
1
)

(u
1
0
;v

1
2
,v

1
3
,v

1
4
)

(u
1
3
;v

1
5
,v

1
6
,v

1
7
)

{0
,1
,2
,5
}

(u
0
;v

0
,v

1
,v

5
)

(u
2
;v

2
,v

3
,v

4
)

(u
6
;v

6
,v

7
,v

1
1
)

(u
8
;v

8
,v

9
,v

1
0
)

(u
1
2
;v

1
2
,v

1
3
,v

1
7
)

(u
1
4
;v

1
4
,v

1
5
,v

1
6
)

{0
,1
,3
,5
}

(u
0
;v

0
,v

1
,v

3
)

(u
1
;v

2
,v

4
,v

6
)

(u
4
;v

5
,v

7
,v

9
)

(u
7
;v

8
,v

1
0
,v

1
2
)

(u
1
1
;v

1
1
,v

1
4
,v

1
6
)

(u
1
2
;v

1
3
,v

1
5
,v

1
7
)

{0
,1
,4
,5
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

5
,v

6
)

(u
3
;v

3
,v

7
,v

8
)

(u
9
;v

9
,v

1
0
,v

1
3
)

(u
1
0
;v

1
1
,v

1
4
,v

1
5
)

(u
1
2
;v

1
2
,v

1
6
,v

1
7
)

{0
,2
,3
,5
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

4
)

(u
4
;v

6
,v

7
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
1
)

(u
1
0
;v

1
2
,v

1
3
,v

1
5
)

(u
1
4
;v

1
4
,v

1
6
,v

1
7
)

{0
,2
,4
,5
}

(u
0
;v

0
,v

2
,v

4
)

(u
1
;v

1
,v

3
,v

6
)

(u
3
;v

5
,v

7
,v

8
)

(u
9
;v

9
,v

1
1
,v

1
3
)

(u
1
0
;v

1
0
,v

1
2
,v

1
5
)

(u
1
2
;v

1
4
,v

1
6
,v

1
7
)

{0
,3
,4
,5
}

(u
0
;v

0
,v

3
,v

4
)

(u
2
;v

2
,v

6
,v

7
)

(u
5
;v

5
,v

9
,v

1
0
)

(u
8
;v

8
,v

1
2
,v

1
3
)

(u
1
1
;v

1
1
,v

1
5
,v

1
6
)

(u
1
4
;v

1
,v

1
4
,v

1
7
)

{0
,1
,2
,6
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

3
,v

7
)

(u
3
;v

4
,v

5
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
4
)

(u
1
1
;v

1
1
,v

1
2
,v

1
3
)

(u
1
5
;v

1
5
,v

1
6
,v

1
7
)

{0
,1
,3
,6
}

(u
0
;v

0
,v

1
,v

6
)

(u
1
;v

2
,v

4
,v

7
)

(u
2
;v

3
,v

5
,v

8
)

(u
9
;v

9
,v

1
0
,v

1
5
)

(u
1
0
;v

1
1
,v

1
3
,v

1
6
)

(u
1
1
;v

1
2
,v

1
4
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

117

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,1
,4
,6
}

(u
0
;v

0
,v

1
,v

4
)

(u
1
;v

2
,v

5
,v

7
)

(u
2
;v

3
,v

6
,v

8
)

(u
9
;v

9
,v

1
0
,v

1
3
)

(u
1
0
;v

1
1
,v

1
4
,v

1
6
)

(u
1
1
;v

1
2
,v

1
5
,v

1
7
)

{0
,1
,5
,6
}

(u
0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

2
,v

7
)

(u
3
;v

3
,v

4
,v

9
)

(u
7
;v

8
,v

1
2
,v

1
3
)

(u
9
;v

1
0
,v

1
4
,v

1
5
)

(u
1
1
;v

1
1
,v

1
6
,v

1
7
)

{0
,2
,3
,6
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

3
,v

7
)

(u
2
;v

4
,v

5
,v

8
)

(u
9
;v

9
,v

1
1
,v

1
5
)

(u
1
0
;v

1
0
,v

1
2
,v

1
6
)

(u
1
1
;v

1
3
,v

1
4
,v

1
7
)

{0
,2
,4
,6
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,1
,2
,3
}

{0
,2
,5
,6
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

6
)

(u
2
;v

4
,v

7
,v

8
)

(u
9
;v

9
,v

1
1
,v

1
4
)

(u
1
0
;v

1
0
,v

1
2
,v

1
5
)

(u
1
1
;v

1
3
,v

1
6
,v

1
7
)

{0
,3
,4
,6
}

(u
0
;v

0
,v

3
,v

4
)

(u
1
;v

1
,v

5
,v

7
)

(u
2
;v

2
,v

6
,v

8
)

(u
6
;v

9
,v

1
0
,v

1
2
)

(u
1
0
;v

1
3
,v

1
4
,v

1
6
)

(u
1
1
;v

1
1
,v

1
5
,v

1
7
)

{0
,3
,5
,6
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

4
,v

6
)

(u
2
;v

2
,v

7
,v

8
)

(u
6
;v

9
,v

1
1
,v

1
2
)

(u
1
0
;v

1
0
,v

1
3
,v

1
5
)

(u
1
1
;v

1
4
,v

1
6
,v

1
7
)

{0
,4
,5
,6
}

(u
0
;v

0
,v

4
,v

5
)

(u
1
;v

1
,v

6
,v

7
)

(u
4
;v

8
,v

9
,v

1
0
)

(u
8
;v

1
2
,v

1
3
,v

1
4
)

(u
1
1
;v

1
1
,v

1
6
,v

1
7
)

(u
1
5
;v

2
,v

3
,v

1
5
)

{0
,1
,2
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

8
)

(u
4
;v

5
,v

6
,v

1
1
)

(u
8
;v

9
,v

1
0
,v

1
5
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

(u
1
5
;v

4
,v

1
6
,v

1
7
)

{0
,1
,3
,7
}

(u
0
;v

0
,v

1
,v

3
)

(u
1
;v

2
,v

4
,v

8
)

(u
4
;v

5
,v

7
,v

1
1
)

(u
6
;v

6
,v

9
,v

1
3
)

(u
9
;v

1
0
,v

1
2
,v

1
6
)

(u
1
4
;v

1
4
,v

1
5
,v

1
7
)

{0
,1
,4
,7
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

2
,v

5
)

(u
2
;v

3
,v

6
,v

9
)

(u
8
;v

8
,v

1
2
,v

1
5
)

(u
9
;v

1
0
,v

1
3
,v

1
6
)

(u
1
0
;v

1
1
,v

1
4
,v

1
7
)

{0
,1
,5
,7
}

(u
0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

2
,v

6
)

(u
3
;v

3
,v

4
,v

8
)

(u
9
;v

9
,v

1
4
,v

1
6
)

(u
1
0
;v

1
0
,v

1
1
,v

1
5
)

(u
1
2
;v

1
2
,v

1
3
,v

1
7
)

{0
,1
,6
,7
}

(u
0
;v

0
,v

1
,v

6
)

(u
2
;v

2
,v

3
,v

8
)

(u
4
;v

4
,v

5
,v

1
0
)

(u
6
;v

7
,v

1
2
,v

1
3
)

(u
8
;v

9
,v

1
4
,v

1
5
)

(u
1
0
;v

1
1
,v

1
6
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

118

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,2
,3
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

4
,v

8
)

(u
3
;v

3
,v

5
,v

6
)

(u
9
;v

9
,v

1
1
,v

1
6
)

(u
1
0
;v

1
0
,v

1
3
,v

1
7
)

(u
1
2
;v

1
2
,v

1
4
,v

1
5
)

{0
,2
,4
,7
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

5
)

(u
2
;v

4
,v

6
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
5
)

(u
9
;v

1
1
,v

1
3
,v

1
6
)

(u
1
0
;v

1
2
,v

1
4
,v

1
7
)

{0
,2
,5
,7
}

(u
0
;v

0
,v

2
,v

5
)

(u
1
;v

1
,v

3
,v

6
)

(u
2
;v

4
,v

7
,v

9
)

(u
8
;v

8
,v

1
0
,v

1
3
)

(u
9
;v

1
1
,v

1
4
,v

1
6
)

(u
1
0
;v

1
2
,v

1
5
,v

1
7
)

{0
,2
,6
,7
}

(u
0
;v

0
,v

2
,v

6
)

(u
1
;v

1
,v

3
,v

8
)

(u
5
;v

5
,v

7
,v

1
1
)

(u
7
;v

9
,v

1
3
,v

1
4
)

(u
1
0
;v

1
0
,v

1
2
,v

1
6
)

(u
1
5
;v

4
,v

1
5
,v

1
7
)

{0
,3
,4
,7
}

(u
0
;v

0
,v

3
,v

4
)

(u
1
;v

1
,v

5
,v

8
)

(u
2
;v

2
,v

6
,v

9
)

(u
7
;v

7
,v

1
0
,v

1
4
)

(u
8
;v

1
1
,v

1
2
,v

1
5
)

(u
1
3
;v

1
3
,v

1
6
,v

1
7
)

{0
,3
,5
,7
}

(u
0
;v

0
,v

3
,v

7
)

(u
1
;v

1
,v

4
,v

6
)

(u
2
;v

2
,v

5
,v

9
)

(u
5
;v

8
,v

1
0
,v

1
2
)

(u
1
0
;v

1
3
,v

1
5
,v

1
7
)

(u
1
1
;v

1
1
,v

1
4
,v

1
6
)

{0
,3
,6
,7
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

8
)

(u
6
;v

9
,v

1
2
,v

1
3
)

(u
8
;v

1
1
,v

1
4
,v

1
5
)

(u
1
0
;v

1
0
,v

1
6
,v

1
7
)

{0
,4
,5
,7
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

6
)

(u
4
;v

8
,v

9
,v

1
1
)

(u
8
;v

1
2
,v

1
3
,v

1
5
)

(u
1
0
;v

1
0
,v

1
4
,v

1
7
)

(u
1
6
;v

2
,v

3
,v

1
6
)

{0
,4
,6
,7
}

(u
0
;v

0
,v

4
,v

6
)

(u
1
;v

1
,v

7
,v

8
)

(u
5
;v

5
,v

1
1
,v

1
2
)

(u
9
;v

9
,v

1
3
,v

1
5
)

(u
1
0
;v

1
0
,v

1
6
,v

1
7
)

(u
1
4
;v

2
,v

3
,v

1
4
)

{0
,5
,6
,7
}

(u
0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

8
)

(u
3
;v

3
,v

9
,v

1
0
)

(u
7
;v

1
2
,v

1
3
,v

1
4
)

(u
1
1
;v

1
1
,v

1
6
,v

1
7
)

(u
1
5
;v

2
,v

4
,v

1
5
)

{0
,1
,2
,8
}

(u
0
;v

0
,v

1
,v

8
)

(u
1
;v

2
,v

3
,v

9
)

(u
4
;v

4
,v

5
,v

1
2
)

(u
5
;v

6
,v

7
,v

1
3
)

(u
9
;v

1
0
,v

1
1
,v

1
7
)

(u
1
4
;v

1
4
,v

1
5
,v

1
6
)

{0
,1
,3
,8
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

2
,v

9
)

(u
4
;v

5
,v

7
,v

1
2
)

(u
1
0
;v

1
0
,v

1
1
,v

1
3
)

(u
1
4
;v

4
,v

1
4
,v

1
5
)

(u
1
6
;v

6
,v

1
6
,v

1
7
)

{0
,1
,4
,8
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

2
,v

5
)

(u
2
;v

3
,v

6
,v

1
0
)

(u
7
;v

7
,v

1
1
,v

1
5
)

(u
8
;v

9
,v

1
2
,v

1
6
)

(u
1
3
;v

1
3
,v

1
4
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

119

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,1
,5
,8
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

6
,v

9
)

(u
2
;v

3
,v

7
,v

1
0
)

(u
1
1
;v

1
1
,v

1
2
,v

1
6
)

(u
1
2
;v

2
,v

1
3
,v

1
7
)

(u
1
4
;v

4
,v

1
4
,v

1
5
)

{0
,1
,6
,8
}

(u
0
;v

0
,v

6
,v

8
)

(u
1
;v

1
,v

2
,v

7
)

(u
4
;v

4
,v

5
,v

1
2
)

(u
9
;v

9
,v

1
5
,v

1
7
)

(u
1
0
;v

1
0
,v

1
1
,v

1
6
)

(u
1
3
;v

3
,v

1
3
,v

1
4
)

{0
,1
,7
,8
}

(u
0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

9
)

(u
3
;v

3
,v

1
0
,v

1
1
)

(u
5
;v

5
,v

1
2
,v

1
3
)

(u
1
4
;v

4
,v

1
4
,v

1
5
)

(u
1
6
;v

6
,v

1
6
,v

1
7
)

{0
,2
,3
,8
}

(u
0
;v

0
,v

2
,v

8
)

(u
1
;v

1
,v

3
,v

4
)

(u
3
;v

5
,v

6
,v

1
1
)

(u
7
;v

7
,v

9
,v

1
5
)

(u
1
0
;v

1
0
,v

1
2
,v

1
3
)

(u
1
4
;v

1
4
,v

1
6
,v

1
7
)

{0
,2
,4
,8
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,1
,2
,4
}

{0
,2
,5
,8
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

3
,v

6
)

(u
2
;v

2
,v

4
,v

7
)

(u
7
;v

9
,v

1
2
,v

1
5
)

(u
8
;v

1
0
,v

1
3
,v

1
6
)

(u
9
;v

1
1
,v

1
4
,v

1
7
)

{0
,2
,6
,8
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,1
,3
,4
}

{0
,2
,7
,8
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

9
)

(u
4
;v

4
,v

1
1
,v

1
2
)

(u
6
;v

6
,v

1
3
,v

1
4
)

(u
8
;v

8
,v

1
0
,v

1
6
)

(u
1
5
;v

5
,v

1
5
,v

1
7
)

{0
,3
,4
,8
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

5
,v

9
)

(u
2
;v

2
,v

6
,v

1
0
)

(u
4
;v

4
,v

7
,v

1
2
)

(u
1
1
;v

1
1
,v

1
4
,v

1
5
)

(u
1
3
;v

1
3
,v

1
6
,v

1
7
)

{0
,3
,5
,8
}

(u
0
;v

0
,v

3
,v

5
)

(u
1
;v

1
,v

4
,v

6
)

(u
2
;v

2
,v

7
,v

1
0
)

(u
6
;v

9
,v

1
1
,v

1
4
)

(u
8
;v

8
,v

1
3
,v

1
6
)

(u
1
2
;v

1
2
,v

1
5
,v

1
7
)

{0
,3
,6
,8
}

(u
0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

8
)

(u
7
;v

1
0
,v

1
3
,v

1
5
)

(u
8
;v

1
1
,v

1
4
,v

1
6
)

(u
9
;v

9
,v

1
2
,v

1
7
)

{0
,3
,7
,8
}

(u
0
;v

0
,v

3
,v

7
)

(u
1
;v

1
,v

4
,v

8
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
6
;v

6
,v

1
3
,v

1
4
)

(u
8
;v

1
1
,v

1
5
,v

1
6
)

(u
9
;v

9
,v

1
2
,v

1
7
)

{0
,4
,5
,8
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

9
)

(u
2
;v

2
,v

7
,v

1
0
)

(u
7
;v

1
1
,v

1
2
,v

1
5
)

(u
9
;v

1
3
,v

1
4
,v

1
7
)

(u
1
6
;v

3
,v

6
,v

1
6
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

120

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,4
,6
,8
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,2
,3
,4
}

{0
,4
,7
,8
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

9
)

(u
2
;v

2
,v

6
,v

1
0
)

(u
7
;v

1
1
,v

1
4
,v

1
5
)

(u
8
;v

8
,v

1
2
,v

1
6
)

(u
1
3
;v

3
,v

1
3
,v

1
7
)

{0
,5
,6
,8
}

(u
0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

9
)

(u
4
;v

4
,v

1
0
,v

1
2
)

(u
8
;v

8
,v

1
3
,v

1
4
)

(u
1
1
;v

1
1
,v

1
6
,v

1
7
)

(u
1
5
;v

2
,v

3
,v

1
5
)

{0
,5
,7
,8
}

(u
0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

6
,v

9
)

(u
3
;v

3
,v

8
,v

1
1
)

(u
5
;v

1
0
,v

1
2
,v

1
3
)

(u
9
;v

1
4
,v

1
6
,v

1
7
)

(u
1
5
;v

2
,v

4
,v

1
5
)

{0
,6
,7
,8
}

(u
0
;v

0
,v

6
,v

8
)

(u
1
;v

1
,v

7
,v

9
)

(u
3
;v

3
,v

1
0
,v

1
1
)

(u
5
;v

5
,v

1
2
,v

1
3
)

(u
9
;v

1
5
,v

1
6
,v

1
7
)

(u
1
4
;v

2
,v

4
,v

1
4
)

{0
,1
,2
,9
}

(u
0
;v

0
,v

1
,v

9
)

(u
2
;v

3
,v

4
,v

1
1
)

(u
5
;v

5
,v

6
,v

7
)

(u
8
;v

8
,v

1
0
,v

1
7
)

(u
1
1
;v

2
,v

1
2
,v

1
3
)

(u
1
4
;v

1
4
,v

1
5
,v

1
6
)

{0
,1
,3
,9
}

(u
0
;v

0
,v

1
,v

9
)

(u
1
;v

2
,v

4
,v

1
0
)

(u
2
;v

3
,v

5
,v

1
1
)

(u
5
;v

6
,v

8
,v

1
4
)

(u
1
2
;v

1
2
,v

1
3
,v

1
5
)

(u
1
6
;v

7
,v

1
6
,v

1
7
)

{0
,1
,4
,9
}

(u
0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
2
;v

2
,v

3
,v

6
)

(u
7
;v

7
,v

8
,v

1
6
)

(u
1
1
;v

1
1
,v

1
2
,v

1
5
)

(u
1
3
;v

1
3
,v

1
4
,v

1
7
)

{0
,1
,5
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

2
,v

1
0
)

(u
3
;v

3
,v

8
,v

1
2
)

(u
6
;v

6
,v

1
1
,v

1
5
)

(u
1
3
;v

4
,v

1
3
,v

1
4
)

(u
1
6
;v

7
,v

1
6
,v

1
7
)

{0
,1
,6
,9
}

(u
0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

1
0
)

(u
2
;v

2
,v

8
,v

1
1
)

(u
1
2
;v

3
,v

1
2
,v

1
3
)

(u
1
4
;v

5
,v

1
4
,v

1
5
)

(u
1
6
;v

4
,v

1
6
,v

1
7
)

{0
,1
,7
,9
}

(u
0
;v

0
,v

1
,v

9
)

(u
1
;v

2
,v

8
,v

1
0
)

(u
4
;v

4
,v

1
1
,v

1
3
)

(u
5
;v

6
,v

1
2
,v

1
4
)

(u
1
4
;v

3
,v

5
,v

1
5
)

(u
1
6
;v

7
,v

1
6
,v

1
7
)

{0
,1
,8
,9
}

(u
0
;v

0
,v

1
,v

8
)

(u
1
;v

2
,v

9
,v

1
0
)

(u
3
;v

3
,v

4
,v

1
1
)

(u
4
;v

5
,v

1
2
,v

1
3
)

(u
6
;v

6
,v

1
4
,v

1
5
)

(u
1
6
;v

7
,v

1
6
,v

1
7
)

{0
,2
,3
,9
}

(u
0
;v

0
,v

2
,v

9
)

(u
1
;v

1
,v

3
,v

4
)

(u
3
;v

5
,v

6
,v

1
2
)

(u
5
;v

7
,v

8
,v

1
4
)

(u
8
;v

1
0
,v

1
1
,v

1
7
)

(u
1
3
;v

1
3
,v

1
5
,v

1
6
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

121

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,2
,4
,9
}

(u
0
;v

0
,v

2
,v

9
)

(u
1
;v

1
,v

3
,v

5
)

(u
4
;v

6
,v

8
,v

1
3
)

(u
7
;v

7
,v

1
1
,v

1
6
)

(u
1
0
;v

1
0
,v

1
2
,v

1
4
)

(u
1
3
;v

4
,v

1
5
,v

1
7
)

{0
,2
,5
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

3
,v

1
0
)

(u
2
;v

2
,v

4
,v

7
)

(u
6
;v

6
,v

8
,v

1
5
)

(u
1
1
;v

1
1
,v

1
3
,v

1
6
)

(u
1
2
;v

1
2
,v

1
4
,v

1
7
)

{0
,2
,6
,9
}

(u
0
;v

0
,v

2
,v

9
)

(u
1
;v

1
,v

3
,v

7
)

(u
4
;v

4
,v

6
,v

1
0
)

(u
6
;v

8
,v

1
2
,v

1
5
)

(u
1
1
;v

1
1
,v

1
3
,v

1
7
)

(u
1
4
;v

5
,v

1
4
,v

1
6
)

{0
,2
,7
,9
}

(u
0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

8
)

(u
2
;v

4
,v

9
,v

1
1
)

(u
6
;v

6
,v

1
3
,v

1
5
)

(u
1
0
;v

1
0
,v

1
2
,v

1
7
)

(u
1
4
;v

5
,v

1
4
,v

1
6
)

{0
,2
,8
,9
}

(u
0
;v

0
,v

2
,v

8
)

(u
1
;v

1
,v

9
,v

1
0
)

(u
3
;v

3
,v

1
1
,v

1
2
)

(u
5
;v

5
,v

7
,v

1
3
)

(u
1
4
;v

4
,v

1
4
,v

1
6
)

(u
1
5
;v

6
,v

1
5
,v

1
7
)

{0
,3
,4
,9
}

(u
0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

4
,v

1
0
)

(u
2
;v

2
,v

6
,v

1
1
)

(u
4
;v

7
,v

8
,v

1
3
)

(u
1
2
;v

1
2
,v

1
5
,v

1
6
)

(u
1
4
;v

5
,v

1
4
,v

1
7
)

{0
,3
,5
,9
}

(u
0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
5
;v

5
,v

8
,v

1
4
)

(u
1
2
;v

1
2
,v

1
5
,v

1
7
)

(u
1
3
;v

4
,v

1
3
,v

1
6
)

{0
,3
,6
,9
}

T
h
re

e-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
6

an
d
D

=
{0
,1
,2
,3
}

{0
,3
,7
,9
}

(u
0
;v

0
,v

7
,v

9
)

(u
1
;v

1
,v

4
,v

8
)

(u
3
;v

3
,v

6
,v

1
0
)

(u
5
;v

5
,v

1
2
,v

1
4
)

(u
8
;v

1
1
,v

1
5
,v

1
7
)

(u
1
3
;v

2
,v

1
3
,v

1
6
)

{0
,3
,8
,9
}

(u
0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

9
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
4
;v

7
,v

1
2
,v

1
3
)

(u
6
;v

6
,v

1
4
,v

1
5
)

(u
8
;v

1
1
,v

1
6
,v

1
7
)

{0
,4
,5
,9
}

(u
0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

6
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
8
;v

8
,v

1
2
,v

1
3
)

(u
1
0
;v

1
0
,v

1
4
,v

1
5
)

(u
1
2
;v

3
,v

1
6
,v

1
7
)

{0
,4
,6
,9
}

(u
0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
2
;v

2
,v

8
,v

1
1
)

(u
7
;v

7
,v

1
3
,v

1
6
)

(u
8
;v

1
2
,v

1
4
,v

1
7
)

(u
1
5
;v

3
,v

6
,v

1
5
)

{0
,4
,7
,9
}

(u
0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

8
)

(u
2
;v

2
,v

9
,v

1
1
)

(u
6
;v

6
,v

1
3
,v

1
5
)

(u
1
0
;v

1
0
,v

1
4
,v

1
7
)

(u
1
2
;v

3
,v

1
2
,v

1
6
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

122

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,4
,8
,9
}

(u
0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
3
;v

3
,v

7
,v

1
1
)

(u
6
;v

6
,v

1
4
,v

1
5
)

(u
9
;v

9
,v

1
3
,v

1
7
)

(u
1
2
;v

2
,v

1
2
,v

1
6
)

{0
,5
,6
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

8
)

(u
6
;v

1
1
,v

1
2
,v

1
5
)

(u
8
;v

1
3
,v

1
4
,v

1
7
)

(u
1
6
;v

3
,v

4
,v

1
6
)

{0
,5
,7
,9
}

(u
0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

8
,v

1
0
)

(u
4
;v

4
,v

1
1
,v

1
3
)

(u
7
;v

7
,v

1
4
,v

1
6
)

(u
1
2
;v

3
,v

1
2
,v

1
7
)

(u
1
5
;v

2
,v

6
,v

1
5
)

{0
,5
,8
,9
}

(u
0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

6
,v

1
0
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
7
;v

1
2
,v

1
5
,v

1
6
)

(u
9
;v

9
,v

1
4
,v

1
7
)

(u
1
3
;v

3
,v

4
,v

1
3
)

{0
,6
,7
,9
}

(u
0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

8
,v

1
0
)

(u
5
;v

5
,v

1
2
,v

1
4
)

(u
7
;v

7
,v

1
3
,v

1
6
)

(u
1
1
;v

2
,v

1
1
,v

1
7
)

(u
1
5
;v

3
,v

4
,v

1
5
)

{0
,6
,8
,9
}

(u
0
;v

0
,v

6
,v

8
)

(u
1
;v

1
,v

7
,v

9
)

(u
2
;v

2
,v

1
0
,v

1
1
)

(u
4
;v

4
,v

1
2
,v

1
3
)

(u
8
;v

1
4
,v

1
6
,v

1
7
)

(u
1
5
;v

3
,v

5
,v

1
5
)

{0
,7
,8
,9
}

(u
0
;v

0
,v

7
,v

9
)

(u
2
;v

2
,v

1
0
,v

1
1
)

(u
5
;v

5
,v

1
3
,v

1
4
)

(u
8
;v

8
,v

1
6
,v

1
7
)

(u
1
2
;v

1
,v

3
,v

1
2
)

(u
1
5
;v

4
,v

6
,v

1
5
)

{0
,1
,2
,1

0}
(u

0
;v

0
,v

1
,v

1
0
)

(u
1
;v

2
,v

3
,v

1
1
)

(u
4
;v

4
,v

5
,v

6
)

(u
7
;v

7
,v

8
,v

9
)

(u
1
2
;v

1
2
,v

1
3
,v

1
4
)

(u
1
5
;v

1
5
,v

1
6
,v

1
7
)

{0
,1
,3
,1

0}
(u

0
;v

0
,v

1
,v

3
)

(u
1
;v

2
,v

4
,v

1
1
)

(u
4
;v

5
,v

7
,v

1
4
)

(u
6
;v

6
,v

9
,v

1
6
)

(u
7
;v

8
,v

1
0
,v

1
7
)

(u
1
2
;v

1
2
,v

1
3
,v

1
5
)

{0
,1
,4
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

5
,v

1
1
)

(u
2
;v

2
,v

3
,v

6
)

(u
8
;v

8
,v

9
,v

1
2
)

(u
1
3
;v

1
3
,v

1
4
,v

1
7
)

(u
1
5
;v

7
,v

1
5
,v

1
6
)

{0
,1
,5
,1

0}
(u

0
;v

0
,v

1
,v

1
0
)

(u
1
;v

2
,v

6
,v

1
1
)

(u
3
;v

3
,v

4
,v

1
3
)

(u
4
;v

5
,v

9
,v

1
4
)

(u
7
;v

8
,v

1
2
,v

1
7
)

(u
1
5
;v

7
,v

1
5
,v

1
6
)

{0
,1
,6
,1

0}
(u

0
;v

0
,v

1
,v

6
)

(u
1
;v

2
,v

7
,v

1
1
)

(u
2
;v

3
,v

8
,v

1
2
)

(u
9
;v

9
,v

1
0
,v

1
5
)

(u
1
3
;v

5
,v

1
3
,v

1
4
)

(u
1
6
;v

4
,v

1
6
,v

1
7
)

{0
,1
,7
,1

0}
(u

0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

1
1
)

(u
2
;v

3
,v

9
,v

1
2
)

(u
3
;v

4
,v

1
0
,v

1
3
)

(u
1
4
;v

6
,v

1
4
,v

1
5
)

(u
1
6
;v

5
,v

1
6
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

123

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,1
,8
,1

0}
(u

0
;v

0
,v

1
,v

1
0
)

(u
1
;v

2
,v

9
,v

1
1
)

(u
3
;v

3
,v

4
,v

1
3
)

(u
4
;v

5
,v

1
2
,v

1
4
)

(u
6
;v

6
,v

7
,v

1
6
)

(u
7
;v

8
,v

1
5
,v

1
7
)

{0
,1
,9
,1

0}
(u

0
;v

0
,v

1
,v

9
)

(u
1
;v

2
,v

1
0
,v

1
1
)

(u
3
;v

3
,v

4
,v

1
2
)

(u
4
;v

5
,v

1
3
,v

1
4
)

(u
6
;v

6
,v

7
,v

1
5
)

(u
7
;v

8
,v

1
6
,v

1
7
)

{0
,2
,3
,1

0}
(u

0
;v

0
,v

2
,v

1
0
)

(u
1
;v

1
,v

3
,v

4
)

(u
3
;v

5
,v

6
,v

1
3
)

(u
5
;v

7
,v

8
,v

1
5
)

(u
9
;v

9
,v

1
1
,v

1
2
)

(u
1
4
;v

1
4
,v

1
6
,v

1
7
)

{0
,2
,4
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,1
,2
,5
}

{0
,2
,5
,1

0}
(u

0
;v

0
,v

2
,v

1
0
)

(u
1
;v

1
,v

3
,v

1
1
)

(u
4
;v

4
,v

9
,v

1
4
)

(u
6
;v

6
,v

8
,v

1
6
)

(u
7
;v

7
,v

1
2
,v

1
7
)

(u
1
3
;v

5
,v

1
3
,v

1
5
)

{0
,2
,6
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,1
,3
,5
}

{0
,2
,7
,1

0}
(u

0
;v

0
,v

2
,v

1
0
)

(u
1
;v

1
,v

8
,v

1
1
)

(u
2
;v

4
,v

9
,v

1
2
)

(u
3
;v

3
,v

5
,v

1
3
)

(u
1
4
;v

6
,v

1
4
,v

1
6
)

(u
1
5
;v

7
,v

1
5
,v

1
7
)

{0
,2
,8
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,1
,4
,5
}

{0
,2
,9
,1

0}
(u

0
;v

0
,v

2
,v

1
0
)

(u
1
;v

1
,v

3
,v

1
1
)

(u
3
;v

5
,v

1
2
,v

1
3
)

(u
4
;v

4
,v

6
,v

1
4
)

(u
6
;v

8
,v

1
5
,v

1
6
)

(u
7
;v

7
,v

9
,v

1
7
)

{0
,3
,4
,1

0}
(u

0
;v

0
,v

3
,v

1
0
)

(u
1
;v

1
,v

4
,v

1
1
)

(u
2
;v

2
,v

6
,v

1
2
)

(u
4
;v

7
,v

8
,v

1
4
)

(u
5
;v

5
,v

9
,v

1
5
)

(u
1
3
;v

1
3
,v

1
6
,v

1
7
)

{0
,3
,5
,1

0}
(u

0
;v

0
,v

5
,v

1
0
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
4
;v

4
,v

9
,v

1
4
)

(u
7
;v

7
,v

1
2
,v

1
7
)

(u
1
0
;v

2
,v

1
3
,v

1
5
)

(u
1
6
;v

3
,v

8
,v

1
6
)

{0
,3
,6
,1

0}
(u

0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

8
)

(u
9
;v

9
,v

1
2
,v

1
5
)

(u
1
0
;v

1
0
,v

1
3
,v

1
6
)

(u
1
1
;v

1
1
,v

1
4
,v

1
7
)

{0
,3
,7
,1

0}
(u

0
;v

0
,v

3
,v

7
)

(u
1
;v

1
,v

4
,v

1
1
)

(u
2
;v

2
,v

5
,v

9
)

(u
5
;v

8
,v

1
2
,v

1
5
)

(u
6
;v

6
,v

1
3
,v

1
6
)

(u
7
;v

1
0
,v

1
4
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

124

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,3
,8
,1

0}
(u

0
;v

0
,v

8
,v

1
0
)

(u
1
;v

1
,v

4
,v

1
1
)

(u
2
;v

2
,v

5
,v

1
2
)

(u
3
;v

3
,v

6
,v

1
3
)

(u
6
;v

9
,v

1
4
,v

1
6
)

(u
7
;v

7
,v

1
5
,v

1
7
)

{0
,3
,9
,1

0}
(u

0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

4
,v

1
0
)

(u
2
;v

2
,v

5
,v

1
1
)

(u
3
;v

6
,v

1
2
,v

1
3
)

(u
5
;v

8
,v

1
4
,v

1
5
)

(u
7
;v

7
,v

1
6
,v

1
7
)

{0
,4
,5
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
2
;v

2
,v

7
,v

1
2
)

(u
4
;v

8
,v

9
,v

1
4
)

(u
1
1
;v

3
,v

1
5
,v

1
6
)

(u
1
3
;v

5
,v

1
3
,v

1
7
)

{0
,4
,6
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,2
,3
,5
}

{0
,4
,7
,1

0}
(u

0
;v

0
,v

4
,v

1
0
)

(u
1
;v

1
,v

5
,v

8
)

(u
2
;v

2
,v

9
,v

1
2
)

(u
6
;v

6
,v

1
3
,v

1
6
)

(u
7
;v

7
,v

1
4
,v

1
7
)

(u
1
1
;v

3
,v

1
1
,v

1
5
)

{0
,4
,8
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,2
,4
,5
}

{0
,4
,9
,1

0}
(u

0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
2
;v

2
,v

6
,v

1
2
)

(u
4
;v

8
,v

1
3
,v

1
4
)

(u
7
;v

7
,v

1
6
,v

1
7
)

(u
1
1
;v

3
,v

1
1
,v

1
5
)

{0
,5
,6
,1

0}
(u

0
;v

0
,v

5
,v

1
0
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
2
;v

2
,v

7
,v

8
)

(u
7
;v

1
2
,v

1
3
,v

1
7
)

(u
9
;v

9
,v

1
4
,v

1
5
)

(u
1
6
;v

3
,v

4
,v

1
6
)

{0
,5
,7
,1

0}
(u

0
;v

0
,v

5
,v

1
0
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
3
)

(u
7
;v

7
,v

1
2
,v

1
7
)

(u
9
;v

9
,v

1
4
,v

1
6
)

(u
1
5
;v

2
,v

4
,v

1
5
)

{0
,5
,8
,1

0}
(u

0
;v

0
,v

5
,v

1
0
)

(u
1
;v

1
,v

6
,v

9
)

(u
3
;v

3
,v

8
,v

1
3
)

(u
6
;v

1
1
,v

1
4
,v

1
6
)

(u
7
;v

7
,v

1
2
,v

1
5
)

(u
1
2
;v

2
,v

4
,v

1
7
)

{0
,5
,9
,1

0}
(u

0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
2
)

(u
4
;v

4
,v

1
3
,v

1
4
)

(u
7
;v

7
,v

1
6
,v

1
7
)

(u
1
0
;v

2
,v

1
0
,v

1
5
)

{0
,6
,7
,1

0}
(u

0
;v

0
,v

6
,v

1
0
)

(u
1
;v

1
,v

7
,v

1
1
)

(u
2
;v

2
,v

9
,v

1
2
)

(u
7
;v

1
3
,v

1
4
,v

1
7
)

(u
1
5
;v

3
,v

4
,v

1
5
)

(u
1
6
;v

5
,v

8
,v

1
6
)

{0
,6
,8
,1

0}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,3
,4
,5
}

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

125

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,6
,9
,1

0}
(u

0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

1
0
)

(u
2
;v

2
,v

8
,v

1
1
)

(u
5
;v

5
,v

1
4
,v

1
5
)

(u
7
;v

1
3
,v

1
6
,v

1
7
)

(u
1
2
;v

3
,v

4
,v

1
2
)

{0
,7
,8
,1

0}
(u

0
;v

0
,v

7
,v

8
)

(u
1
;v

1
,v

9
,v

1
1
)

(u
3
;v

3
,v

1
0
,v

1
3
)

(u
7
;v

1
4
,v

1
5
,v

1
7
)

(u
1
2
;v

2
,v

4
,v

1
2
)

(u
1
6
;v

5
,v

6
,v

1
6
)

{0
,7
,9
,1

0}
(u

0
;v

0
,v

7
,v

9
)

(u
1
;v

1
,v

8
,v

1
1
)

(u
3
;v

3
,v

1
0
,v

1
2
)

(u
6
;v

6
,v

1
3
,v

1
5
)

(u
7
;v

1
4
,v

1
6
,v

1
7
)

(u
1
3
;v

2
,v

4
,v

5
)

{0
,8
,9
,1

0}
(u

0
;v

0
,v

8
,v

9
)

(u
1
;v

1
,v

1
0
,v

1
1
)

(u
4
;v

4
,v

1
3
,v

1
4
)

(u
7
;v

7
,v

1
6
,v

1
7
)

(u
1
2
;v

2
,v

3
,v

1
2
)

(u
1
5
;v

5
,v

6
,v

1
5
)

{0
,1
,4
,1

1}
(u

0
;v

0
,v

1
,v

1
1
)

(u
1
;v

2
,v

5
,v

1
2
)

(u
3
;v

3
,v

4
,v

1
4
)

(u
6
;v

6
,v

7
,v

1
7
)

(u
9
;v

9
,v

1
0
,v

1
3
)

(u
1
5
;v

8
,v

1
5
,v

1
6
)

{0
,1
,5
,1

1}
(u

0
;v

0
,v

1
,v

5
)

(u
1
;v

2
,v

6
,v

1
2
)

(u
2
;v

3
,v

7
,v

1
3
)

(u
3
;v

4
,v

8
,v

1
4
)

(u
1
0
;v

1
0
,v

1
1
,v

1
5
)

(u
1
6
;v

9
,v

1
6
,v

1
7
)

{0
,1
,6
,1

1}
(u

0
;v

0
,v

6
,v

1
1
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
2
;v

2
,v

8
,v

1
3
)

(u
3
;v

3
,v

4
,v

1
4
)

(u
4
;v

5
,v

1
0
,v

1
5
)

(u
1
6
;v

9
,v

1
6
,v

1
7
)

{0
,1
,7
,1

1}
(u

0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

1
2
)

(u
3
;v

3
,v

4
,v

1
4
)

(u
4
;v

5
,v

1
1
,v

1
5
)

(u
6
;v

6
,v

1
3
,v

1
7
)

(u
9
;v

9
,v

1
0
,v

1
6
)

{0
,1
,8
,1

1}
(u

0
;v

0
,v

1
,v

8
)

(u
1
;v

2
,v

9
,v

1
2
)

(u
2
;v

3
,v

1
0
,v

1
3
)

(u
3
;v

4
,v

1
1
,v

1
4
)

(u
6
;v

6
,v

7
,v

1
7
)

(u
1
5
;v

5
,v

1
5
,v

1
6
)

{0
,2
,4
,1

1}
(u

0
;v

0
,v

2
,v

1
1
)

(u
1
;v

1
,v

3
,v

5
)

(u
2
;v

4
,v

6
,v

1
3
)

(u
5
;v

7
,v

9
,v

1
6
)

(u
1
0
;v

1
0
,v

1
2
,v

1
4
)

(u
1
5
;v

8
,v

1
5
,v

1
7
)

{0
,2
,5
,1

1}
(u

0
;v

0
,v

2
,v

1
1
)

(u
1
;v

1
,v

3
,v

6
)

(u
4
;v

4
,v

9
,v

1
5
)

(u
5
;v

5
,v

7
,v

1
6
)

(u
8
;v

8
,v

1
0
,v

1
3
)

(u
1
2
;v

1
2
,v

1
4
,v

1
7
)

{0
,2
,6
,1

1}
(u

0
;v

0
,v

6
,v

1
1
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
2
;v

2
,v

4
,v

1
3
)

(u
3
;v

5
,v

9
,v

1
4
)

(u
1
0
;v

3
,v

1
0
,v

1
6
)

(u
1
5
;v

8
,v

1
5
,v

1
7
)

{0
,2
,7
,1

1}
(u

0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

3
,v

1
2
)

(u
3
;v

5
,v

1
0
,v

1
4
)

(u
4
;v

4
,v

6
,v

1
5
)

(u
6
;v

8
,v

1
3
,v

1
7
)

(u
9
;v

9
,v

1
1
,v

1
6
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

126

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,2
,8
,1

1}
(u

0
;v

0
,v

2
,v

1
1
)

(u
1
;v

1
,v

3
,v

9
)

(u
2
;v

4
,v

1
0
,v

1
3
)

(u
4
;v

6
,v

1
2
,v

1
5
)

(u
5
;v

5
,v

7
,v

1
6
)

(u
6
;v

8
,v

1
4
,v

1
7
)

{0
,2
,9
,1

1}
(u

0
;v

0
,v

2
,v

1
1
)

(u
1
;v

1
,v

3
,v

1
0
)

(u
3
;v

5
,v

1
2
,v

1
4
)

(u
4
;v

4
,v

6
,v

1
3
)

(u
6
;v

8
,v

1
5
,v

1
7
)

(u
7
;v

7
,v

9
,v

1
6
)

{0
,3
,4
,1

1}
(u

0
;v

0
,v

4
,v

1
1
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
4
;v

7
,v

8
,v

1
5
)

(u
6
;v

6
,v

1
0
,v

1
7
)

(u
1
0
;v

3
,v

1
3
,v

1
4
)

(u
1
6
;v

2
,v

9
,v

1
6
)

{0
,3
,5
,1

1}
(u

0
;v

0
,v

3
,v

1
1
)

(u
1
;v

1
,v

6
,v

1
2
)

(u
2
;v

2
,v

5
,v

1
3
)

(u
4
;v

4
,v

9
,v

1
5
)

(u
5
;v

8
,v

1
0
,v

1
6
)

(u
1
4
;v

7
,v

1
4
,v

1
7
)

{0
,3
,6
,1

1}
(u

0
;v

0
,v

3
,v

6
)

(u
1
;v

1
,v

4
,v

7
)

(u
2
;v

2
,v

5
,v

8
)

(u
9
;v

9
,v

1
2
,v

1
5
)

(u
1
0
;v

1
0
,v

1
3
,v

1
6
)

(u
1
1
;v

1
1
,v

1
4
,v

1
7
)

{0
,3
,7
,1

1}
(u

0
;v

0
,v

7
,v

1
1
)

(u
1
;v

1
,v

4
,v

8
)

(u
3
;v

3
,v

1
0
,v

1
4
)

(u
6
;v

6
,v

1
3
,v

1
7
)

(u
9
;v

2
,v

9
,v

1
6
)

(u
1
2
;v

5
,v

1
2
,v

1
5
)

{0
,3
,8
,1

1}
(u

0
;v

0
,v

3
,v

1
1
)

(u
1
;v

1
,v

4
,v

9
)

(u
2
;v

2
,v

5
,v

1
0
)

(u
4
;v

7
,v

1
2
,v

1
5
)

(u
5
;v

8
,v

1
3
,v

1
6
)

(u
6
;v

6
,v

1
4
,v

1
7
)

{0
,3
,9
,1

1}
(u

0
;v

0
,v

3
,v

9
)

(u
1
;v

1
,v

1
0
,v

1
2
)

(u
2
;v

2
,v

5
,v

1
1
)

(u
4
;v

4
,v

7
,v

1
3
)

(u
5
;v

8
,v

1
4
,v

1
6
)

(u
6
;v

6
,v

1
5
,v

1
7
)

{0
,3
,1

0,
11
}

(u
0
;v

0
,v

3
,v

1
0
)

(u
1
;v

1
,v

4
,v

1
1
)

(u
2
;v

2
,v

5
,v

1
2
)

(u
3
;v

6
,v

1
3
,v

1
4
)

(u
6
;v

9
,v

1
6
,v

1
7
)

(u
1
5
;v

7
,v

8
,v

1
5
)

{0
,4
,5
,1

1}
(u

0
;v

0
,v

4
,v

1
1
)

(u
1
;v

1
,v

5
,v

6
)

(u
2
;v

2
,v

7
,v

1
3
)

(u
4
;v

8
,v

9
,v

1
5
)

(u
1
0
;v

3
,v

1
0
,v

1
4
)

(u
1
2
;v

1
2
,v

1
6
,v

1
7
)

{0
,4
,6
,1

1}
(u

0
;v

0
,v

4
,v

6
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
2
;v

2
,v

8
,v

1
3
)

(u
3
;v

3
,v

7
,v

9
)

(u
1
0
;v

1
0
,v

1
4
,v

1
6
)

(u
1
1
;v

1
1
,v

1
5
,v

1
7
)

{0
,4
,7
,1

1}
(u

0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
3
;v

3
,v

1
0
,v

1
4
)

(u
4
;v

8
,v

1
1
,v

1
5
)

(u
6
;v

6
,v

1
3
,v

1
7
)

(u
9
;v

2
,v

9
,v

1
6
)

{0
,4
,8
,1

1}
(u

0
;v

0
,v

4
,v

8
)

(u
1
;v

1
,v

5
,v

9
)

(u
6
;v

6
,v

1
0
,v

1
4
)

(u
7
;v

7
,v

1
1
,v

1
5
)

(u
1
2
;v

2
,v

1
2
,v

1
6
)

(u
1
3
;v

3
,v

1
3
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

127

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,4
,9
,1

1}
(u

0
;v

0
,v

4
,v

1
1
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
4
)

(u
4
;v

8
,v

1
3
,v

1
5
)

(u
6
;v

6
,v

1
0
,v

1
7
)

(u
1
6
;v

2
,v

9
,v

1
6
)

{0
,4
,1

0,
11
}

(u
0
;v

0
,v

1
0
,v

1
1
)

(u
1
;v

1
,v

5
,v

1
2
)

(u
3
;v

3
,v

7
,v

1
4
)

(u
4
;v

4
,v

8
,v

1
5
)

(u
6
;v

6
,v

1
6
,v

1
7
)

(u
9
;v

2
,v

9
,v

1
3
)

{0
,5
,6
,1

1}
(u

0
;v

0
,v

5
,v

6
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
2
;v

2
,v

8
,v

1
3
)

(u
3
;v

3
,v

9
,v

1
4
)

(u
4
;v

4
,v

1
0
,v

1
5
)

(u
1
1
;v

1
1
,v

1
6
,v

1
7
)

{0
,5
,7
,1

1}
(u

0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

6
,v

1
2
)

(u
2
;v

2
,v

9
,v

1
3
)

(u
3
;v

3
,v

8
,v

1
4
)

(u
1
0
;v

1
0
,v

1
5
,v

1
7
)

(u
1
1
;v

4
,v

1
1
,v

1
6
)

{0
,5
,8
,1

1}
(u

0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

9
,v

1
2
)

(u
2
;v

2
,v

7
,v

1
3
)

(u
6
;v

6
,v

1
4
,v

1
7
)

(u
1
0
;v

3
,v

1
0
,v

1
5
)

(u
1
1
;v

4
,v

1
1
,v

1
6
)

{0
,5
,9
,1

1}
(u

0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

1
0
,v

1
2
)

(u
2
;v

2
,v

7
,v

1
3
)

(u
3
;v

3
,v

8
,v

1
4
)

(u
6
;v

6
,v

1
5
,v

1
7
)

(u
1
1
;v

4
,v

1
1
,v

1
6
)

{0
,5
,1

0,
11
}

(u
0
;v

0
,v

5
,v

1
0
)

(u
1
;v

1
,v

6
,v

1
2
)

(u
2
;v

2
,v

7
,v

1
3
)

(u
4
;v

4
,v

1
4
,v

1
5
)

(u
6
;v

1
1
,v

1
6
,v

1
7
)

(u
1
6
;v

3
,v

8
,v

9
)

{0
,6
,7
,1

1}
(u

0
;v

0
,v

6
,v

1
1
)

(u
1
;v

1
,v

7
,v

8
)

(u
3
;v

3
,v

1
0
,v

1
4
)

(u
6
;v

1
2
,v

1
3
,v

1
7
)

(u
9
;v

2
,v

9
,v

1
5
)

(u
1
6
;v

4
,v

5
,v

1
6
)

{0
,6
,8
,1

1}
(u

0
;v

0
,v

8
,v

1
1
)

(u
1
;v

1
,v

7
,v

9
)

(u
2
;v

2
,v

1
0
,v

1
3
)

(u
6
;v

1
2
,v

1
4
,v

1
7
)

(u
1
5
;v

3
,v

5
,v

1
5
)

(u
1
6
;v

4
,v

6
,v

1
6
)

{0
,6
,9
,1

1}
(u

0
;v

0
,v

6
,v

9
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
4
;v

4
,v

1
0
,v

1
3
)

(u
5
;v

5
,v

1
4
,v

1
6
)

(u
1
1
;v

2
,v

1
1
,v

1
7
)

(u
1
5
;v

3
,v

8
,v

1
5
)

{0
,6
,1

0,
11
}

(u
0
;v

0
,v

6
,v

1
0
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
2
;v

2
,v

8
,v

1
3
)

(u
3
;v

3
,v

9
,v

1
4
)

(u
5
;v

5
,v

1
5
,v

1
6
)

(u
1
1
;v

4
,v

1
1
,v

1
7
)

{0
,7
,8
,1

1}
(u

0
;v

0
,v

7
,v

8
)

(u
1
;v

1
,v

9
,v

1
2
)

(u
3
;v

3
,v

1
0
,v

1
1
)

(u
6
;v

6
,v

1
3
,v

1
4
)

(u
9
;v

2
,v

1
6
,v

1
7
)

(u
1
5
;v

4
,v

5
,v

1
5
)

{0
,7
,9
,1

1}
(u

0
;v

0
,v

7
,v

9
)

(u
1
;v

1
,v

8
,v

1
2
)

(u
2
;v

2
,v

1
1
,v

1
3
)

(u
5
;v

5
,v

1
4
,v

1
6
)

(u
1
0
;v

3
,v

1
0
,v

1
7
)

(u
1
5
;v

4
,v

6
,v

1
5
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

128

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,7
,1

0,
11
}

(u
0
;v

0
,v

7
,v

1
1
)

(u
1
;v

1
,v

8
,v

1
2
)

(u
4
;v

4
,v

1
4
,v

1
5
)

(u
6
;v

6
,v

1
3
,v

1
7
)

(u
1
0
;v

2
,v

3
,v

1
0
)

(u
1
6
;v

5
,v

9
,v

1
6
)

{0
,1
,6
,1

2}
(u

0
;v

0
,v

1
,v

1
2
)

(u
1
;v

2
,v

7
,v

1
3
)

(u
2
;v

3
,v

8
,v

1
4
)

(u
3
;v

4
,v

9
,v

1
5
)

(u
4
;v

5
,v

1
0
,v

1
6
)

(u
5
;v

6
,v

1
1
,v

1
7
)

{0
,1
,7
,1

2}
(u

0
;v

0
,v

1
,v

7
)

(u
1
;v

2
,v

8
,v

1
3
)

(u
2
;v

3
,v

9
,v

1
4
)

(u
3
;v

4
,v

1
0
,v

1
5
)

(u
4
;v

5
,v

1
1
,v

1
6
)

(u
5
;v

6
,v

1
2
,v

1
7
)

{0
,2
,6
,1

2}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,1
,3
,6
}

{0
,2
,7
,1

2}
(u

0
;v

0
,v

2
,v

7
)

(u
1
;v

1
,v

8
,v

1
3
)

(u
2
;v

4
,v

9
,v

1
4
)

(u
3
;v

3
,v

1
0
,v

1
5
)

(u
4
;v

6
,v

1
1
,v

1
6
)

(u
5
;v

5
,v

1
2
,v

1
7
)

{0
,2
,8
,1

2}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,1
,4
,6
}

{0
,3
,6
,1

2}
T

h
re

e-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
6

an
d
D

=
{0
,1
,2
,4
}

{0
,3
,7
,1

2}
(u

0
;v

0
,v

3
,v

1
2
)

(u
1
;v

1
,v

4
,v

1
3
)

(u
2
;v

2
,v

9
,v

1
4
)

(u
3
;v

6
,v

1
0
,v

1
5
)

(u
4
;v

7
,v

1
1
,v

1
6
)

(u
5
;v

5
,v

8
,v

1
7
)

{0
,3
,8
,1

2}
(u

0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

4
,v

9
)

(u
2
;v

2
,v

1
0
,v

1
4
)

(u
3
;v

6
,v

1
1
,v

1
5
)

(u
4
;v

7
,v

1
2
,v

1
6
)

(u
5
;v

5
,v

1
3
,v

1
7
)

{0
,3
,9
,1

2}
T

h
re

e-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
6

an
d
D

=
{0
,1
,3
,4
}

{0
,4
,6
,1

2}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,2
,3
,6
}

{0
,4
,7
,1

2}
(u

0
;v

0
,v

4
,v

7
)

(u
1
;v

1
,v

5
,v

1
3
)

(u
2
;v

2
,v

6
,v

1
4
)

(u
3
;v

3
,v

1
0
,v

1
5
)

(u
4
;v

8
,v

1
1
,v

1
6
)

(u
5
;v

9
,v

1
2
,v

1
7
)

{0
,4
,8
,1

2}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,2
,4
,6
}

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

129

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,4
,9
,1

2}
(u

0
;v

0
,v

4
,v

1
2
)

(u
1
;v

1
,v

5
,v

1
0
)

(u
2
;v

2
,v

6
,v

1
1
)

(u
3
;v

3
,v

7
,v

1
5
)

(u
4
;v

8
,v

1
3
,v

1
6
)

(u
5
;v

9
,v

1
4
,v

1
7
)

{0
,4
,1

0,
12
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,2
,5
,6
}

{0
,5
,6
,1

2}
(u

0
;v

0
,v

5
,v

1
2
)

(u
1
;v

1
,v

6
,v

1
3
)

(u
2
;v

2
,v

7
,v

1
4
)

(u
3
;v

3
,v

8
,v

1
5
)

(u
4
;v

4
,v

9
,v

1
6
)

(u
5
;v

1
0
,v

1
1
,v

1
7
)

{0
,5
,7
,1

2}
(u

0
;v

0
,v

5
,v

7
)

(u
1
;v

1
,v

6
,v

1
3
)

(u
2
;v

2
,v

9
,v

1
4
)

(u
3
;v

3
,v

8
,v

1
5
)

(u
4
;v

4
,v

1
1
,v

1
6
)

(u
5
;v

1
0
,v

1
2
,v

1
7
)

{0
,5
,8
,1

2}
(u

0
;v

0
,v

5
,v

8
)

(u
1
;v

1
,v

6
,v

9
)

(u
2
;v

2
,v

7
,v

1
4
)

(u
3
;v

3
,v

1
1
,v

1
5
)

(u
4
;v

4
,v

1
2
,v

1
6
)

(u
5
;v

1
0
,v

1
3
,v

1
7
)

{0
,5
,9
,1

2}
(u

0
;v

0
,v

5
,v

1
2
)

(u
1
;v

1
,v

6
,v

1
3
)

(u
2
;v

2
,v

7
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
5
)

(u
4
;v

4
,v

9
,v

1
6
)

(u
5
;v

1
0
,v

1
4
,v

1
7
)

{0
,5
,1

0,
12
}

(u
0
;v

0
,v

5
,v

1
0
)

(u
1
;v

6
,v

1
1
,v

1
3
)

(u
2
;v

2
,v

7
,v

1
4
)

(u
3
;v

3
,v

8
,v

1
5
)

(u
4
;v

4
,v

9
,v

1
6
)

(u
7
;v

1
,v

1
2
,v

1
7
)

{0
,5
,1

1,
12
}

(u
0
;v

0
,v

5
,v

1
1
)

(u
1
;v

1
,v

6
,v

1
2
)

(u
2
;v

2
,v

7
,v

1
3
)

(u
3
;v

3
,v

8
,v

1
4
)

(u
4
;v

4
,v

9
,v

1
5
)

(u
5
;v

1
0
,v

1
6
,v

1
7
)

{0
,6
,7
,1

2}
(u

0
;v

0
,v

6
,v

7
)

(u
1
;v

1
,v

8
,v

1
3
)

(u
2
;v

2
,v

9
,v

1
4
)

(u
3
;v

3
,v

1
0
,v

1
5
)

(u
4
;v

4
,v

1
1
,v

1
6
)

(u
5
;v

5
,v

1
2
,v

1
7
)

{0
,6
,8
,1

2}
T

w
o-

co
m

p
on

en
t

gr
ap

h
se

e
n

=
9

an
d
D

=
{0
,3
,4
,6
}

{0
,6
,9
,1

2}
T

h
re

e-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
6

an
d
D

=
{0
,2
,3
,4
}

{0
,6
,1

0,
12
}

T
w

o-
co

m
p

on
en

t
gr

ap
h

se
e
n

=
9

an
d
D

=
{0
,3
,5
,6
}

{0
,6
,1

1,
12
}

(u
0
;v

0
,v

6
,v

1
1
)

(u
1
;v

1
,v

7
,v

1
2
)

(u
2
;v

2
,v

8
,v

1
3
)

(u
3
;v

3
,v

9
,v

1
4
)

(u
4
;v

4
,v

1
0
,v

1
5
)

(u
5
;v

5
,v

1
6
,v

1
7
)

T
ab

le
6.

5
–

C
on

ti
n

u
ed

on
n

ex
t

pa
ge

130

T
ab

le
6.

5
–

C
on

ti
n

u
ed

fr
om

pr
ev

io
u

s
pa

ge

G
en

er
at

or

S
et

S
ta

r
1

S
ta

r
2

S
ta

r
3

S
ta

r
4

S
ta

r
5

S
ta

r
6

{0
,3
,8
,1

3}
(u

0
;v

0
,v

3
,v

8
)

(u
1
;v

1
,v

9
,v

1
4
)

(u
3
;v

6
,v

1
1
,v

1
6
)

(u
4
;v

4
,v

1
2
,v

1
7
)

(u
7
;v

2
,v

7
,v

1
5
)

(u
1
0
;v

5
,v

1
0
,v

1
3
)

{0
,4
,8
,1

3}
(u

0
;v

0
,v

4
,v

1
3
)

(u
1
;v

5
,v

9
,v

1
4
)

(u
2
;v

2
,v

6
,v

1
0
)

(u
3
;v

3
,v

7
,v

1
6
)

(u
4
;v

8
,v

1
2
,v

1
7
)

(u
1
1
;v

1
,v

1
1
,v

1
5
)

{0
,4
,9
,1

3}
(u

0
;v

0
,v

4
,v

9
)

(u
1
;v

1
,v

5
,v

1
4
)

(u
3
;v

3
,v

7
,v

1
2
)

(u
4
;v

8
,v

1
3
,v

1
7
)

(u
6
;v

6
,v

1
0
,v

1
5
)

(u
7
;v

2
,v

1
1
,v

1
6
)

{0
,5
,8
,1

3}
(u

0
;v

0
,v

8
,v

1
3
)

(u
1
;v

1
,v

6
,v

1
4
)

(u
3
;v

3
,v

1
1
,v

1
6
)

(u
4
;v

4
,v

9
,v

1
7
)

(u
7
;v

2
,v

7
,v

1
2
)

(u
1
0
;v

5
,v

1
0
,v

1
5
)

{0
,5
,9
,1

3}
(u

0
;v

0
,v

5
,v

9
)

(u
1
;v

1
,v

1
0
,v

1
4
)

(u
2
;v

2
,v

7
,v

1
5
)

(u
3
;v

3
,v

8
,v

1
2
)

(u
4
;v

4
,v

1
3
,v

1
7
)

(u
1
1
;v

6
,v

1
1
,v

1
6
)

{0
,5
,1

0,
13
}

(u
0
;v

0
,v

5
,v

1
3
)

(u
1
;v

1
,v

6
,v

1
1
)

(u
3
;v

3
,v

8
,v

1
6
)

(u
4
;v

4
,v

9
,v

1
4
)

(u
7
;v

7
,v

1
2
,v

1
7
)

(u
1
0
;v

2
,v

1
0
,v

1
5
)

T
ab

le
6.

5:
S
3
-c

ov
er

of
P

ar
ti

te
S
et
V

fo
r
n

=
18

References

[1] N. Alon. A note on the decomposition of graphs into isomorphic match-

ings. Acta Mathematica Hungarica, 42(3-4):221–223, 1983.

[2] N. Alon and J. Spencer. Probabilistic Method. John Wiley & Sons, 1991.

[3] L. W. Beineke and R. J. Wilson. Topics in Algebraic Graph Theory.

Cambridge University Press, 2004.

[4] A. Bockmayr and K. Reinert. Discrete math for bioinformatics. Re-

trieved from: http://www.mi.fu-berlin.de/en/inf/groups/abi/

teaching/lectures_past/WS1112/V____Discrete_Mathematics_for_

Bioinformatics__P1/index.html, November 2010.

[5] J. Bondy and U. Murty. Graph Theory with Application. Elsevier Science

Ltd/North-Holland, Nowhere, 1974.

[6] M. A. Boutiche. Control of some graph invariants in dynamic rout-

ing. Modelling, Computation and Optimization in Information Systems

and Management Sciences Communications in Computer and Informa-

tion Science, 14:52–58, 2008.

[7] N. Bray. Graph lexicographic product. http://mathworld.wolfram.

com/GraphLexicographicProduct.html.

[8] P. Cain. Decomposition of complete graphs into star. Bulletin of the

Australian Mathematical Society, 10:23–30, 1974.

[9] N. Cavenagh. Decomposition of complete tripartite graphs into k-cycles.

Australasian Journal of Combinatorics, 18:193–200, 1998.

132

[10] C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-nothing multi-

commodity flow problem. SIAM Journal on Computing, 42:1467–1493,

2013.

[11] S. Cichacz, D. Froncek, and P. Kovar. Decomposition of complete bipar-

tite graphs into generalized prisms. Decomposition of complete bipartite

graphs into Generalized prisms, 34(1):104–110, 2012.

[12] E. Cohen and M. Tarsi. NP completeness of graph decomposition prob-

lems. Journal of Complexity, 7(2):200–212, June 1991.

[13] C. Colbourn and J. Dinitz. Handbook of Combinatorial Designs, Second

Edition. Discrete Mathematics and Its Applications. CRC Press, 2010.

[14] I. Csiszar and J. Korner. Graph decomposition: A new key to coding the-

orems. Information Theory, IEEE Transactions on, 27(1):5–12, January

1981.

[15] J. Deuerlein, A. Wolters, L. Meyer-Harries, and A. R. Simpson. Graph

Decomposition in Risk Analysis and Sensor Placement for Water Distri-

bution Network Security, chapter 37, pages 394–411. American Society of

Civil Engineers, 2010.

[16] D. Dor and M. Tarsi. Graph decomposition is NP-complete, a complete

proof of Holyer’s conjecture. In Proc. 20th ACM STOC, ACM Press, pages

252–263. Press, 1995.

[17] D. Dor and M. Tarsi. Graph decomposition is NP-complete: A complete

proof of Holyer’s conjecture. SIAM Journal on Computing, 26(4):1166–

1187, 1997.

[18] P. Erdös. Graph theory and probability. Canadian Journal of Mathemat-

ics, 11:34–38, 1959.

[19] P. Erdös, A. Goodman, and L. Posa. The representation of a graph by

set intersection. Canadian Journal of Mathematics, 18:106–112, 1966.

133

[20] O. Favaron, Z. Lonc, and M. Truszczynski. Decompositions of graphs into

graphs with three edges. Ars Combinatoria, 20:125–146, 1984.

[21] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx, March 2014.

[22] I. S. Hamid and M. Joseph. A variation of decomposition under a length

constraint. International J. Math. Combin. Vol, 4:35–45, 2011.

[23] D. G. Hoffman. The real truth about star designs. Discrete Mathematics,

284(1-3), July 2004.

[24] I. Holyer. The Computational Complexity of Graph Theory Problems.

Doctoral dissertation, University of Cambridge, 1981.

[25] W. Imrich, S. Klavzar, and D. F. Rall. Graphs and their Cartesian Prod-

uct. A.K. Peters, 2008.

[26] M. S. Jacobson, M. Truszczyński, and Z. Tuza. Decompositions of regular

bipartite graphs. Discrete mathematics, 89(1):17–27, 1991.

[27] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.

[28] H.-C. Lee and J.-J. Lin. Decomposition of the complete bipartite graph

with a 1-factor removed into cycles and stars. Discrete Mathematics,

313(20):2354–2358, 2013.

[29] Z. Lonc. Towards a solution of the holyer’s problem. In J. van Leeuwen,

editor, Graph-Theoretic Concepts in Computer Science, volume 790 of

Lecture Notes in Computer Science, pages 144–152. Springer Berlin Hei-

delberg, 1994.

[30] I. Mandoiu and A. Zelikovsky. Bioinformatics Algorithms: Techniques

and Applications. John Wiley & Sons, 2010.

[31] M. Priesler and M. Tarsi. On the decomposition of graphs into copies

P3tK2. Ars Combinatoria, 35:325–333, 1993.

134

[32] S. Severini and E. W. Weisstein. Crown graph. http://mathworld.

wolfram.com/CrownGraph.html.

[33] T. W. Shyu. The Decomposition of Complete Graphs, Complete Bipartite

Graphs and Crowns. Doctoral dissertation, National Central University,

Taiwan, 1996.

[34] S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph

Theory with Mathematica. Addison-Wesley, 1990. pp. 128 and 135-139.

[35] D. Sotteau. Decompositions of Km,n (Km,n∗) into cycles (circuits) of

length 2k. Journal of Combinatorial Theory, Series B, 30(1):75–81, Febru-

ary 1981.

[36] T. Sousa. The H-decomposition problem for graphs. Applied Mathemat-

ics, 3(11):1719, 2012.

[37] K. Ushio, S. Tazawa, and S. Yamamoto. On claw-decomposition of a

complete multipartite graph. Hiroshima Math. Journal, 8(1):207–2–1,

1978.

[38] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio, and N. Hamada. On

claw-decomposition of complete graphs and complete bigraphs. Hiroshima

Mathematical Journal, 5(1):33–42, 1975.

[39] R. Yuster. Tree decomposition of graphs. Random Structures and Algo-

rithms, 12(3):237–251, 1998.

