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ABSTRACT

Let G be a graph with v vertices. A Hamilton cycle of a graph is a collection of edges which

create a cycle using every vertex. A Hamilton cycle decomposition is cyclic if the set of cycle is

invariant under a full length permutation of the vertex set. We say a decomposition is symmetric

if all the cycles are invariant under an appropriate power of the full length permutation. Such

decompositions are known to exist for complete graphs and families of other graphs. In this work,

we show the existence of cyclic n-symmetric Hamilton cycle decompositions of a family of graphs,

the complete multipartite graph Km×n where the number of parts, m, is odd and the part size, n,

is also odd. We classify the existence where m is prime and prove the existence in additional cases

where m is a composite odd integer.

vii



CHAPTER 1

INTRODUCTION

The study of Hamilton cycle decompositions of a graph can be traced to one of the early

1880’s problem discussed by Eduoard Lucas [10] called the probléme de ronde. Given 2n+ 1

people, can one give n dinners at a round table so that each guest sits next to each other guest

exactly once? Note that the solution of the problem is equivalent to decomposing the complete

graph K2n+1 into Hamilton cycles. We give a solution with seven guests and three meals in

Figure 1 and the corresponding Hamilton cycle decomposition for K7 in Figure 2.

The first known result in Hamilton cycle decompositions is attributed to Walecki [10].

Theorem 1.1. The graph Kn has a Hamilton cycle decomposition if and only if n is odd.

The necessity condition of n being odd comes from the degree of the vertices, number of edges

incident to a vertex, in Kn. The sufficiency comes from a “zig-zag” construction [2] illustrated in

Figure 3. Results on the existence of decompositions of the complete multipartite graphs were

found by Laskar and Auerbach [9].

Theorem 1.2. The complete multipartite graph Km×n has a Hamilton cycle decomposition if and

only if (m− 1)n is even.

Notice that the decomposition in Figure 3 has some rotational structure to it. When a

cycle is rotated, it produces another cycle in the decomposition. So, these such properties led to
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Figure 1. Solution to the Eduoard Lucas’ probléme de ronde

In this example, three dinners are served for seven guests and the table arrangements are such

that the guests each sit next to one another exactly once.
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Figure 2. Hamilton cycle decomposition of K7

The graph K7 along with its decomposition into three Hamilton cycles. Observe that this is the

Hamilton cycle decomposition corresponding to the table arrangement given in Figure 1.
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Figure 3. The Walecki construction of K7

This decomposition is constructed by using a “zig-zag” pattern to construct one cycle, then rotate

it to produce the other cycles. Observe that this decomposition is not isomorphic to that given in

Figure 2, and has a different type of rotational symmetry.
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the study of finding graph decompositions with additional structures to them. In this paper, we

focus on decompositions which are cyclic, that is, the set of cycles is invariant under a full length

(v-cycle) permutation and symmetric, that is, there is a nontrivial permutation of the vertices,

such that each cycle in the decomposition is itself invariant under it.

The first major result involving cyclic Hamilton cycle decompositions of complete graphs

was proven by Buratti and Del Fra [5].

Theorem 1.3. There exists a cyclic Hamiltonian cycle decomposition of the complete graph Kn if

and only if n is an odd integer but n 6= 15 and n 6= pa, with p a prime and a > 1.

Similar results involving cyclic Hamilton cycle decompositions of complete graphs minus a

1-factor, which is a complete graph with a perfect matching removed, were found by Jordon and

Morris [8]. The existence of a cyclic Hamilton cycle decomposition of Km×n was proven by

Merola et al. [11], for the case where the number of parts m is even.

For symmetry, we have that the Walecki construction has a symmetric Hamilton cycle

decomposition. Akiyama et al. [1] showed the existence of a symmetric Hamilton cycle

decomposition of the complete graph which is not isomorphic to the Walecki decomposition, and

Chitra and Muthusamy [7] showed an analogous result for complete multigraphs. In 2011, Brualdi

and Schroeder [4] classified the existence of symmetric Hamilton cycle decompositions for the

complete graph minus a 1-factor and in 2015, Schroeder [12] answered the question for complete

multipartite graphs.

In 2014, Buratti and Merola [6] proved the existence of cyclic and symmetric Hamilton

cycle decompositions of complete graphs. In fact, Merola et al [11] also discuss Hamilton cycle

decompositions of complete multipartite graphs satisfying both properties. In this paper, we

specifically investigate the existence of cyclic and symmetric Hamilton cycle decompositions of

complete multipartite graphs where the number of parts is odd. Note that it follows from the

necessary condition in Theorem 1.2 that the part size has to be odd.

This work is coordinated in the following order: in Chapter 2, we provide background

work and definitions relevant to the work done, justify why we only need to find n-symmetry,

introduce the notion of base paths, and prove necessary and sufficient conditions for the existence

3



of cyclic and symmetric Hamilton cycle decompositions. In Chapter 3, we construct base paths

which give rise to decompositions of Km×n for cases where m is prime and n is odd. In Chapter 4,

we investigate other cases of decompositions of Km×n with m odd and not necessarily prime

building on cyclic decompositions of the complete graph Km. The two main results of this work

are as follows:

Theorem 1.4. Let p be an odd prime and n ≥ 3 be an odd positive integer. Then Kp×n has a

cyclic n-symmetric Hamilton cycle decomposition.

Theorem 1.5. Let m,n be positive odd integers. If m 6= 15 or pa for a prime p > 2, a ≥ 2 and n

is a prime power which is bigger than the smallest prime divisor of m, then Km×n has a cyclic

n-symmetric Hamilton cycle decomposition.

4



CHAPTER 2

PRELIMINARIES

We first introduce the necessary background information from algebra and number theory,

and then we focus on the definition of symmetry and cyclic decompositions. Next, we introduce

the notion of a base path and show a correspondence between base paths and decompositions.

2.1 BACKGROUND

In this section, we introduce some common definitions and terminologies from modern

algebra and graph theory. For more information, see [3]. It is denoted gcd(x, y). Two integers a, b

are relatively prime if their greatest common divisor is 1. The order of a set Γ, denoted |Γ|, is the

number of elements in Γ. Let v be a positive integer. Let Zv denote the ring of elements

{0, 1, 2, . . . , v − 1} inbuilt with addition and multiplication modulo v. The (additive) order of an

element x ∈ Zv is the smallest positive integer k such that kx = 0 in Zv. We say that an element

x ∈ Zv is a generator of Zv if x has order v. In a ring Γ with unity, we say x is a unit of Γ if there

exists an element u ∈ Γ such that xu = 1. In particular, the set of units of Zv, denoted Z×v , are

the elements in Zv relatively prime to v. The set of non-units Zv \ Z×v of Zv are the elements in

Zv which are not units. The Euler φ-function of a positive integer v is the number of positive

integers between 1 and v which are relatively prime to v. Observe that |Z×v | = φ(v).

Example 2.1. Let Z5 = {0, 1, 2, 3, 4} and x = 2. The order of Z5 is 5, since it has only five

elements. The order of the element 2 ∈ Z5 is 5, since 5 is the smallest positive integer such that

5 · 2 = 0 in Z5, therefore x is a generator of Z5. The units of Z5 are Z×5 = {1, 2, 3, 4}, and

therefore φ(5) = 4. The element 0 ∈ Z5 is the only nonunit of Z5.

Now, we introduce the terms from graph theory. A graph G = G(V,E) consists of a set of

vertices V and a set of edges E; an edge is a 2-element subset of V . We also say V (G) is the set of

vertices of G and E(G) is the set of edges of G. In this work, we focus on finite simple graphs;

those are graphs with a finite number of vertices, without multiple edges or loops. For a positive

integer m, the complete graph, denoted Km, is a graph on m vertices containing every possible

edge. See Figure 4(a) for an illustration of K7. For a graph H = H(V ′, E′), we say H is a subgraph

5
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Figure 4. Examples of Graphs

In (a), we give the complete graph K7. In (b) and (c), we have two example subgraphs of K7, the

latter of which is a Hamilton cycle. In (d), we have the complete multipartite graph K3×5.

of G if V ′ ⊆ V and E′ ⊆ E. See Figure 4(b) and 4(c) for a subgraph of K7. The complete

multipartite graph Km×n is a graph with mn vertices partitioned into m parts of size n where the

only edges present are between vertices that are not in the same part. See Figure 4(d) for a graph

of K3×5. In this work, we focus mainly on complete graphs and complete multipartite graphs.

2.2 CYCLIC DECOMPOSITION AND SYMMETRY

Now, we introduce the necessary terminologies to describe the graph decompositions

discussed in this paper. Let X be a finite set. First, we define a partition of X to be a set of k

subsets {X1, X2, . . . , Xk} for some k ≥ 1, such that X1 ∪X2 ∪ · · · ∪Xk = X and Xi ∩Xj = ∅

whenever i, j ∈ {1, . . . , k}, and i 6= j. Now, let G be a graph, and H1, H2, . . . ,Hk be subgraphs

of G for some integer k ≥ 1. We say {H1, H2, . . . ,Hk} is a decomposition of G if

{E(H1), E(H2), . . . , E(Hk)} is a partition of E(G). For an integer k ≥ 3, let (c0, c1, . . . , ck−1)

denote the graph with vertex set {ci : i ∈ Zk} and edge set {{ci, ci+1} : i ∈ Zk}. Call this graph a

k-cycle (or simply a cycle), and if G contains a k-cycle with k = |V (G)|, then we call the cycle a

Hamilton cycle. A Hamilton cycle decomposition (abbreviated HCD) of G is a decomposition of G

into Hamilton cycles. See Figures 2 and 5 for Hamilton cycle decompositions of K7 and K3×5,

respectively.

We now introduce some definitions which were initially given in [4], describing structures

of a decomposition. Let G be a graph with v vertices, H be a subgraph of G, and C be a

decomposition of G. Let σ be a permutation of V (G). We define σ(H) as the graph with vertex

6
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Figure 5. Cyclic 5-symmetric Hamilton cycle decomposition of the graph K3×5

Here, we represent the complete multipartite graph K3×5 from Figure 4 as the Cayley graph

X(15;±{1, 2, 4, 5, 7}), and give a Hamilton cycle decomposition of it. Cycles A and B are each

15-symmetric, which are also 5-symmetric and are generated by the base paths [0]4 and [0]7,

respectively. Cycles C1, C2 and C3 are each 5-symmetric and are generated by the base path

[0, 2, 1]6. Altogether, K3×5 has a cyclic 5-symmetric HCD.

set V (σ(H)) = σ(V (H)) and E(σ(H)) = {{σ(x), σ(y)} : {x, y} ∈ E(H)}. We say that H is

σ-invariant if σ(H) = H, and σ acts on C if for each C ∈ C, σ(C) ∈ C. If σ acts on C and σ is also

a v-cycle, then we say C is a cyclic decomposition of G. If σ is a v-cycle on V (G) and n is a

divisor of v, we say H is n-symmetric if H is σ
v
n -invariant, and furthermore we say that C is

n-symmetric if each subgraph in C is itself n-symmetric. In practice, for most examples, unless

specified otherwise, we let G have its vertex set be labeled by Zv, and σ be the permutation on Zv

such that for all x ∈ Zv, σ(x) = x+ 1.

Example 2.2. Observe that the Hamilton cycle decomposition of K7 given in Figure 2 is

7-symmetric. In addition the Hamilton cycles A and B of K3×5 in Figure 5 are 15-symmetric,

while the cycles C1, C2 and C3 are 5-symmetric. Observe that σ(A) = A and σ(B) = B and for

7



any C ∈ {C1, C2, C3}, σ3(C) = C. The best way to look at symmetry is to count how many

non-trivial powers of σ send a cycle back to itself. For example, applying σ0, σ3, σ6, σ9, σ12 to

cycle C1 send C1 back to itself.

Since A and B are σ-invariant, they are also σ3-invariant. So, every cycle in the

decomposition of K3×5, is σ3-invariant, and thus K3×5 has a 5-symmetric Hamilton cycle

decomposition.

We can now generalize to these established properties of symmetric Hamilton cycle

decompositions.

Lemma 2.3. Suppose a graph G has a decomposition {H1, H2, . . . ,Hk} for some k ≥ 1, and Hi

has an ni-symmetric Hamilton cycle decomposition for each i ∈ {1, 2, . . . , k}. Then G has an

n-symmetric Hamilton cycle decomposition, where n = gcd(n1, n2, . . . , nk).

We only seek n-symmetry in the Hamilton cycle decompositions of the graph Km×n. The

justification is given as follows:

Lemma 2.4. An n-symmetric Hamilton cycle decomposition of a graph G is also a t-symmetric

Hamilton cycle decomposition for any divisor t of n.

Proof. Suppose G has v vertices. Let C be an n-symmetric Hamilton cycle decomposition of G.

Let t be a divisor of n and let n = td for some d. Suppose C ∈ C, then by symmetry of C, we have

that σ
v
n (C) = C. Then σ

v
t (C) = σ

vd
td (C) = σ

vd
n (C) = (σ

v
n )d(C) = C. So, C is t-symmetric, and

thus C is t-symmetric.

The following lemma highlight how symmetry restricts the edges that can be present in a

graph with a symmetric Hamilton cycle decomposition. We use that the complement of a

multipartite graph is the union of disjoint complete graphs, that is Km×n = mKn.

Lemma 2.5. Suppose a graph G has v vertices, where n | v, and suppose G has an n-symmetric

Hamilton cycle decomposition. Then G ≤ K v
n
×n; that is, G is a subgraph of the complete

multipartite graph K v
n
×n.

8



Proof. Let C be an n-symmetric Hamilton cycle decomposition of G. Then, for C ∈ C, we have

that σ
v
n (C) = C. Let V (G) = Zv. Observe that edges

E = {{i, i+ kv/n} : i ∈ Zv and k ∈ {0, 1, . . . , n− 1}}

form the edges of the graph v
nKn which is v

n disjoint copies of Kn. So, if v
nKn ≤ G, then,

G ≤ v
nKn = K v

n
×n. Thus, to show that G ≤ K v

n
×n, it sufficient to show that for all i ∈ Zv and

k ∈ {0, 1, . . . , n− 1}, the edge {i, i+ k vn} /∈ E(G).

Suppose to the contrary that e = {i, i+ k vn} ∈ E(G), for some i ∈ Zv and

k ∈ {0, 1, . . . , n− 1}. Then e ∈ E(C) for some C ∈ C. Then σj
v
n (e) ∈ E(C) for all j ≥ 0 since C is

n-symmetric, and in particular, we have that σjk
v
n (e) ∈ E(C). Let g be the order of k in Zn. So,

the g-cycle (i, i+ k vn , i+ 2k vn , . . . , i+ (g − 1)k vn) is a subgraph of C, which recall is a Hamilton

cycle of length v. This is a contradiction since g < v.

Finally, we prove why it suffices to only find n-symmetry for the graph Km×n. In

particular, if Km×n has an n-symmetric Hamilton cycle decomposition, this classifies all types of

symmetry.

Lemma 2.6. If Km×n has a t-symmetric Hamilton cycle decomposition, then t is a divisor of n.

Proof. Let C be a t-symmetric Hamilton cycle decomposition of Km×n. By Lemma 2.5,

Km×n ≤ Km′×t where m′t = mn. Observe that Km×n = mKn, and Km′×t = m′Kt. The only way

m′ disjoint copies of Kt can be a subgraph of m copies of Kn is if t divides n.

2.3 BASE PATHS

In this section we introduce the concept of base paths [5] and how we use them to find

cyclic and symmetric Hamilton cycle decompositions. Let v be a positive integer and A ⊆ Zv\{0}

such that A = −A; that is, if x ∈ A, then −x ∈ A. We say that the subset A is good when it has

this property. We define ∂(G) = {i− j ∈ Zv : {i, j} ∈ E(G)} for a graph G with vertex set Zv.

Note that ∂(G) is a good set. For a set of graphs, G := {G1, G2, . . . , Gk} each with vertex set Zv.

Then ∂(G) = ∂(G1) ∪ ∂(G2) ∪ · · · ∪ ∂(Gk). We define the Cayley graph G = X(v;A) as a graph

with vertex set V (G) = Zv and {x, y} ∈ E(G) if and only if y − x ∈ A. Observe that the complete

9



graphs, Km and Km×n are Cayley graphs, in particular, Km = X(m;Zm\{0}) and

Km×n = X(mn;Zmn\mZmn). See Figure 2 for a Cayley graph of K7 = X(7;Z7\{0}) and

Figure 5 for a Cayley graph of K3×5 = X(15;Z15\{0, 3, 6, 9, 12}).

Let d and t be positive integers such that v = dt. Let a1, . . . , ad be distinct nonzero

elements of Zv. Let P = [a0 = 0, a1, a2, . . . , ad−1]ad denote the path with edges {ai, ai+1} for each

0 ≤ i ≤ d− 1. Also, for each i, let ∆ai = ai+1 − ai. We say that a path P is a base path if and

only if it satisfies the following conditions:

� {a1, . . . , ad−1} = {1, . . . , d− 1} (mod d) and d divides ad,

� ∆ai 6= ±∆aj for distinct i, j ∈ {0, 1, . . . , d− 1}, and

� ad generates the set dZv; in other words, |ad| = t in Zv.

The length of a base path P is denoted len(P ).

Let C(P ) = P ∪ σad(P ) ∪ σ2ad(P ) ∪ · · · ∪ σ(t−1)ad(P ). It follows from the above criteria

that C(P ) is a t-symmetric Hamilton cycle. Furthermore, let Ci(P ) = σi(C(P )). Then

C(P ) = {C(P ), C1(P ), . . . , Cd−1(P )} is a t-symmetric cyclic Hamilton cycle decomposition

of X(v; ∂(P )).

Example 2.7. Consider the Cayley graph X(15,±{1, 2, 5}). Let P = [0, 2, 1]6. Then

C(P ) = (0, 2, 1, 6, 8, 7, 12, 14, 13, 3, 5, 4, 9, 11, 10, 0). Observe that C(P ) is the cycle C1 given in

Figure 5. Subsequently, C1(P ) and C2(P ) are the cycles C2 and C3 in Figure 5 respectively.

So, C = {C(P ), C1(P ), C2(P )} is a 5-symmetric cyclic Hamilton cycle decomposition

of X(15;±{1, 2, 5}).

Let G = X(v;A) for some good subset A of Zv. Suppose there exist

� integers d1, d2, . . . , dk, t1, t2, . . . , tk, and

� base paths P1, P2, . . . , Pk for which {∂(P1), . . . , ∂(Pk)} is a partition of A,

such that v = di · ti for each i, t = gcd(t1, t2, . . . , tk), and each Pi has length di. Then

C(P1) ∪ C(P2) ∪ · · · ∪ C(Pk) is a cyclic Hamilton cycle decomposition of G which is t-symmetric.
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Example 2.8. Observe that K3×5 = X(15;±{1, 2, 4, 5, 7}). Let P1 = [0]4, P2 = [0]7, and

P3 = [0, 2, 1]6. Observe that P1 and P2 are base paths of length 1, and P3 is a base path of

length 3 with ∂(P1) = ±{4}, ∂(P2) = ±{7} and ∂(P3) = ±{1, 2, 5}. We have that

C(P1) = (0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 0),

C(P2) = (0, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0),

C(P3) = (0, 2, 1, 6, 8, 7, 12, 14, 13, 3, 5, 4, 9, 11, 10, 0),

C1(P3) = (1, 3, 2, 7, 9, 8, 13, 0, 14, 4, 6, 5, 10, 12, 11, 1), and

C2(P3) = (2, 4, 3, 8, 10, 9, 14, 1, 0, 5, 7, 6, 11, 13, 12, 2).

Observe that C(P1) = {C(P1)} is a decomposition of X(15;±{4}), C(P2) = {C(P2)} is a

decomposition of X(15;±{7}) and C(P3) = {C(P3), C
1(P3), C

2(P3)} is a decomposition

of X(15;±{1, 2, 5}). Equivalently, {∂(P1), ∂(P2), ∂(P3)} is a partition of Z15\3Z15. Therefore

C(P1)∪C(P2)∪C(P3) is a cyclic 5-symmetric Hamilton cycle decomposition of K3×5. See Figure 5.

It follows from the above argument that to find a cyclic t-symmetric Hamilton cycle

decomposition of a Cayley graph X(v;A), it is sufficient to find base paths P1, P2, . . . , Pk such that

� each Pi has a length which is a divisor of v
t , and

� {∂(P1), . . . , ∂(Pk)} is a partition of A.

Therefore, our strategy for finding a cyclic t-symmetric Hamilton cycle decomposition of X(v;A)

is to find such a set of base paths. We call such a set a valid set of base paths.

Example 2.9. The following example is attributed to Buratti [5]. Observe that

K21 = X(21;Z21\{0}). Let P1 = [0, 2, 1]15 and P2 = [0, 6, 15, 12, 16, 11, 3]14. Then

∂(P1) = ±{2, 1, 7}, ∂(P2) = ±{6, 9, 3, 4, 5, 8, 10} and {∂(P1), ∂(P2)} is a partition of Z21\{0}.

Observe that {P1, P2} is a valid set of base paths of K21. Note that C(P1) is a 3-symmetric cyclic

Hamilton cycle decomposition of X(21; ∂(P1)) and C(P2) is a 7-symmetric Hamilton cycle

decomposition of X(21; ∂(P2)). So C(P1) ∪ C(P2) is a cyclic 1-symmetric Hamilton cycle

decomposition of K21. See Figure 6.
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Figure 6. A cyclic decomposition of K21

The first 3 cycles are generated by the base path P1 = [0, 2, 1]15, while the latter 7 are generated

by the base path P2 = [0, 6, 15, 12, 16, 11, 3]14.

Not only is it sufficient to find a valid set of base paths to produce a Hamilton cycle

decomposition, it is in fact necessary that such a valid set of base paths exists.

Theorem 2.10. Let C be a cyclic Hamilton cycle decomposition of the Cayley graph X(v;A) for

a good subset A ⊆ Zv\{0}. Then there exists a valid set of base paths which produces C.

Proof. If A is empty, then C is the empty set and is trivially generated from base paths,

otherwise, we proceed by induction on |A|. Select C ∈ C and let a1, a2, . . . , av−1 be defined so that

C = (a0 = 0, a1, a2, . . . , av−1). Note that this is simply an ordering of Zv. Since C is cyclic, then

σi(C) ∈ C, for each integer i. Since C is finite, there exist 0 ≤ i < j such that σi(C) = σj(C).

Applying σ−i to both sides, we have C = σ0(C) = σj−i(C). Note that j − i is positive. So, there

exists a smallest positive integer d such that σd(C) = C. We claim that

P = [a0 = 0, a1, . . . , ad−1]ad is a base path that generates the cycle C.

Observe that there exist integers a, b such that gcd(d, v) = ad+ bv. Recall that

σv(C) = C. Then σgcd(d,v)(C) = σad+bv(C) = (σd)a[(σv)b(C)] = C. So, d ≤ gcd(d, v), by

minimality of d. But, gcd(d, v) ≤ d, so, d = gcd(d, v). Thus d divides v. Then v = dt for some

integer t. Since d ≤ v−1
2 , then d ≤ v

3 and t ≥ 3.
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Since σd(C) = C, σd is a dihedral action (a permutation which acts on a polygon) on C.

So, σd can either act as a rotation or a reflection. If σd is a reflection, then |σd| = 2, but

|σd| = t ≥ 3, so σd is a rotation. Then there exists k ∈ Zv such that for each i ∈ Zv,

σd(ai) = ai+k. Then, by definition of σ, a0 + d = ak. Recall that σv = ε, the identity function. So,

a0 = σv(a0) = (σd)t(a0) = atk. So, tk ≡ 0 (mod v), and thus k ≡ 0 (mod d) which implies d | k.

Let |k| = ` in Zv, then `k ≡ 0 (mod v). Observe that, in Zv, ` is a divisor of t. So, for each i ∈ Zv,

(σd)`(ai) = ai+`k = ai and thus (σd)` = ε. Since, |σ| = v, we have that v = dt divides d`, which

implies t divides `. So, t = ` and |k| = t in Zv. Then t = |k| = v/ gcd(k, v) = (dt)/ gcd(k, v). So,

gcd(k, v) = d. Hence, 〈d〉 = 〈k〉, and so they generate the same cyclic subgroup. Then

{a0, ak, a2k, . . . , a(t−1)k} = {a0, σd(a0), σ2d(a0), . . . , σ(t−1)(a0)}, since σd(a0) = a0+k = ak,

{a0, ak, a2k, . . . , a(t−1)k} = {0, d, 2d, . . . , (t− 1)d}, since σd(a0) = a0 + d = d, and

{a0, ak, a2k, . . . , a(t−1)k} = {a0, ad, a2d, . . . , a(t−1)d}, since 〈d〉 = 〈k〉 in Zv.

So, ad is a multiple of d. This gives us part of Condition 1 for proving P is a base path.

Since, 〈d〉 = 〈k〉, there exists u, ` ∈ {0, 1, . . . , t− 1} such that d = ku (mod v) and k = d`

(mod v). So, d = ku = d`u (mod v). So, `u = 1 (mod t). So, ` and u are units in Zt and so `

and u are relatively prime to t. So, gcd(u, t) = 1, and hence gcd(du, dt) = d. Observe that

ad = aku = σdu(a0) = σdu(0) = du, so gcd(ad, v) = d. This implies that v/ gcd(ad, v) = t. So,

|ad| = t. Thus, P satisfies Condition 3 for being a base path.

Suppose ai ≡ aj (mod d) for some 0 ≤ i, j ≤ d− 1. Then aj = ai + sd, for some integer s.

So, aj = (σd)s(ai) = ai+sk. Then j = i+ sk (mod v). So, j = i+ sk + vr, for some integer r.

Thus, j − i = sk + vr = s(d`) + (dt)r = d(s`+ tr). So, d | j − i, and hence, i = j. Thus P satisfies

the remaining part of Condition 1.

We have that {σi(C) : i ∈ Z} = {C, σ(C), . . . , σd−1(C)} which then partitions a Cayley

graph X(v; ∂(P )). Note that if C has y edges of length ±x, then σ(C) also has y edges of

length ±x. So, σi(C) for any arbitrary i, has y edges of length ±x. Since X(v; ∂(P )) necessarily

contains exactly v edges of length ±x, we have that dy = v, and thus y = t. So, every edge length

in C appears t times in C. So, there are exactly d distinct edge lengths in C. Further note that, if

13



edge {ai, ai+1} has length ±x, then, the rotation σd({ai, ai+1}) = {ai+k, ai+k+1} also has

length ±x. So, {ai, ai+1}, {ai+k, ai+k+1}, {ai+2k, ai+2k+1}, . . . , {ai+(t−1)k, ai+(t−1)k+1} are all

distinct edges in C of length ±x, (there are all t of them). Observe that these edges are

equivalently {ai, ai+1}, {ai+d, ai+d+1}, {ai+2d, ai+2d+1}, . . . , {ai+(t−1)d, ai+(t−1)d+1}. Then, edges of

the same length occur at least d edges apart in C. Therefore, any path with d edges in C consists

of distinct edge lengths. This shows that P satisfies Condition 2 of being a base path. Hence, P is

a base path which generates the cycle C and so, {C, σ(C), . . . , σd−1(C)} is a cyclic Hamilton cycle

decomposition of X(v; ∂(P )).

Consider C′ = C\{C, σ(C), . . . , σd−1(C)}. Then, C′ is a cyclic decomposition of the Cayley

graph X(v;A\∂(P )). So, by induction, it follows C′ is generated by a valid set of base paths

{P1, . . . , Pk} for some k and hence {∂(P1), . . . , ∂(Pk)} partitions A\∂(P ). Therefore

{P, P1, . . . , Pk} is a set of base paths for which ∂(P ), ∂(P1), . . . , ∂(Pk) is a partition of A. Hence

{P, P1, . . . , Pk} is a valid set of base paths of X(v;A) which generates the decomposition C.

At times it will be convenient to rewrite our vertices in terms of direct products when it

comes to constructing our base paths. Now, we restate the conditions that must be satisfied for

the paths to be considered base paths in direct products. First, we define direct products and give

a relevant number theory result which shows isomorphisms between the vertex sets.

Let H and K be arbitrary rings. The direct product of H and K (denoted H ×K) is

defined by H ×K = {(h, k) : h ∈ H, k ∈ K} with operations done component wise. Again, let G

be a graph with vertices indexed by Zv and σ(x) = x+ 1. First we state the Chinese Remainder

Theorem as it allows us to go back and forth between representations of the same ring.

Lemma 2.11. Let m and n be relatively prime, positive integers and m,n ≥ 2. Then, there exists

a ring isomorphism , σ : Zmn → Zm × Zn given by σ(x) = (x (mod m), x (mod n)).

Now, we highlight three different methods for labelling vertices indexed by Zv.

Let d,m and n be positive integers such that v = mn, gcd(m,n) = 1 and d be a divisor

of m. Then Zv ∼= Zm × Zn. Let (x1, y1), (x2, y2), . . . , (xd, yd) ∈ Zm × Zn. Let

P = [(x0, y0) = (0, 0), (x1, y1), (x2, y2), . . . , (xd−1, yd−1)](xd,yd) denote the path with edges

{(xi, yi), (xi+1, yi+1)} for each 0 ≤ i ≤ d− 1. Also for each i, ∆(xi, yi) = (xi+1, yi+1)− (xi, yi).
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Then ∂(P ) = {±∆(xi, yi) : 0 ≤ i ≤ d− 1}. The conditions which must be satisfied for P to be a

base path are:

� {x1, . . . , xd−1} = {1, . . . , d− 1} (mod d) and d | xd,

� ∆(xi, yi) 6= ±∆(xj , yj) for distinct i, j ∈ {0, 1, . . . , d− 1}, and

� (xd, yd) has order mn
d in Zm × Zn.

Now, let v = pn, n = n′pt, gcd(p, n′) = 1 and t ≥ 1. Then Zv ∼= Zpt+1 × Zn′ . Let

P = [(x0, y0) = (0, 0), (x1, y1), (x2, y2), . . . , (xp−1, yp−1)](xp,yp). Again for each i,

∆(xi, yi) = (xi+1, yi+1)− (xi, yi), and ∂(P ) = {±∆(xi, yi) : 0 ≤ i ≤ p− 1}. Then the conditions

which must be satisfied for P to be a base path are:

� {x1, . . . , xp−1} = {1, . . . , p− 1} (mod p) and p | xp,

� ∆(xi, yi) 6= ±∆(xj , yj) for distinct i, j ∈ {0, 1, . . . , p− 1}, and

� (xp, yp) has order n; equivalently p | xp, p2 - xp, and yp is a unit of Zn′ .

Finally, let v = mnq, so that m,n, q are pairwise relatively prime. Let d be a divisor of m.

Then Zv ∼= Zm × Zn × Zq. Let (x1, y1, z1), (x2, y2, z2), . . . , (xd, yd, zd) ∈ Zm × Zn × Zq. Let

P = [(x0, y0, z0) = (0, 0, 0), (x1, y1, z1), (x2, y2, z2), . . . , (xd−1, yd−1, zd−1)](xd,yd,zd) denote the path

with edges {(xi, yi, zi), (xi+1, yi+1, zi+1)} for each 0 ≤ i ≤ d− 1. Let

∆(xi, yi, zi) = (xi+1, yi+1, zi+1)− (xi, yi, zi). Then ∂(P ) = {±∆(xi, yi, zi) : 0 ≤ i ≤ d− 1}. Then,

the conditions which must be satisfied for P to be a base path are:

� {x1, . . . , xd−1} = {1, . . . , d− 1} (mod d) and d | xd,

� ∆(xi, yi, zi) 6= ±∆(xj , yj , zj) for distinct i, j ∈ {0, 1, . . . , d− 1}, and

� (xd, yd, zd) has order mnq
d . That is, xd has order m

d and both yd and zd are units in Zn and

Zq respectively.

To obtain an n-symmetry, we need to find a valid set of base paths, all of whose lengths

are divisors of m. In particular, its enough to find a valid set of base paths for a subgraph of

Km×n which is a Cayley graph that contains all the non-unit edge lengths, since we can use all

the unit edge lengths to form base paths of length 1.
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CHAPTER 3

DECOMPOSITIONS OF Kp×n FOR p PRIME

In this chapter, we prove that Kp×n, where p is prime and n is an odd integer, has a cyclic

n-symmetric Hamilton cycle decomposition. We focus on doing this with three considerations.

First, we analyze the circumstances where all prime powers in the factorization of n are less

than p, then expand to include all n which does not have p as a divisor, and finally we consider all

odd n. We address those situations separately and, at the end, bring it all together to get the

final result.

Throughout this section, we identify V (Kp×n) by Zp × Zn and

Kp×n = X(pn; (Zp × Zn)\p(Zp × Zn)), or in other words, X(pn; (Zp\{0} × Zn)).

3.1 CASES WHERE ALL PRIME POWERS DIVISORS OF n ARE SMALL

First, in this section, we go over some useful lemmas involving the existence of balanced

functions and some properties of the Euler-totient function. We use that to prove the

circumstances under which certain decompositions exist, and we demonstrate that if n has all of

its prime powers in its factorization less than p, then those conditions are met.

A function α : X → Y is balanced if the cardinalities of the inverse images of each pair of

elements in Y differ by 1.

Example 3.1. Let X = Z5 and Y = Z2. Define α(x) = x (mod 2). Then |α−1(0)| = 3 and

|α−1(1)| = 2. Thus, α is balanced.

Lemma 3.2. Let X and Y be finite sets, then there exists a balanced function from X to Y .

Proof. Without loss of generality, let X = Zn and Y = Zm, for some positive integers m and n.

By the division algorithm, there exist integers q and r such that n = mq + r and 0 ≤ r < m.

Define α : X → Y so that α(x) = x (mod m).

Observe that |α−1{0, . . . , r − 1}| = q + 1 and |α−1{r, . . . ,m− 1}| = q. So, α is balanced

since the cardinality of the pullbacks of each pair of elements in X differ by at most 1.
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Lemma 3.3. Let n be a positive integer with prime factorization pa11 · · · pakk , where k ≥ 1,

3 ≤ p1 < p2 < · · · < pk, and ai ≥ 1. Then φ(n) ≥ 2n/pk.

Proof. Since φ is multiplicative, we have that

φ(n)

n
=
φ(pa11 )

pa11
· φ(pa22 )

pa22
· · · φ(pakk )

pakk

=
pa11 − pa1−11

pa11
· p

a2
2 − pa2−12

pa22
· · · p

ak
k − p

ak−1
k

pakk

=

(
1− 1

p1

)
·
(

1− 1

p2

)
· · ·
(

1− 1

pk

)
≥
(

1− 1

3

)
·
(

1− 1

4

)
· · ·
(

1− 1

pk

)
=

2

3
· 3

4
· · · pk−1

pk

=
2

pk
.

Thus, φ(n) ≥ 2n/pk.

Using the above result, we give a method of constructing base paths that give rise to

decompositions of Kp×n where n has all of its prime powers in its factorization less than p.

Lemma 3.4. Let n ≥ 3 be an odd integer. Let p be an odd prime such that p - n and

pφ(n) ≥ n+ 2p− 3. Then Kp×n has a cyclic n-symmetric Hamilton cycle decomposition.

Proof. Let p = 2`+ 1. First, we construct a base path which uses the non-unit edge lengths of the

form {(i, 0) : i ∈ Z×p }. If p = 4k + 1 for an integer k, let P0 be the path

[(0, 0),(1, 0), (p− 1, 0), (2, 0), (p− 2, 0), . . . , (k, 0), (p− k, 0),

(k + 1, 1), (p− k − 1, 0), . . . , (2k, 1), (p− 2k, 0)](0,1).

Then ∂(P0) = {(i, 0) : i ∈ Z×p } ∪ {±(1,−1),±(2,−1), . . . ,±(`+ 1,−1)} and |(0, 2)| = n. If
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p = 4k + 3 for an integer k, let P0 be the path

[(0, 0),(1, 0), (−1, 0), . . . , (k, 0), (−k, 0), (k + 1, 0), (−k − 1,−1),

(k + 2, 0), (−k − 2, 1), . . . , (2k, 0), (−2k, 1)](0,2).

Then ∂(P0) = {(i, 0) : i ∈ Z×p } ∪ {±(x, 1) : 1 ≤ x ≤ `+ 2, x 6= `− 1} and |(0, 2)| = n. In

both cases, P0 is a base path which use all non-unit edge lengths in Kp×n with residue 0 mod n.

Let Dn = {x ∈ Zn : 0 < x < n
2 and x is a nonunit}. Let α : Dn → Z×p be a balanced

function. Let Z = {x ∈ Z×n : 1 < x < n
2 }. Suppose there exists a function ψ : Dn → Z so that if

d1 6= d2 and α(d1) = α(d2), then ψ(d1) 6= ψ(d2). Then, for each d ∈ Dn, define

Pd = [(0, 0), (α(d), d), (−α(d), 0), (2α(d), d), (−2α(d), 0), . . . , (`α(d), d), (−`α(d), 0)](0,ψ(d)).

Then,

∂(Pd) = {±(α(d), d),±(2α(d), d),±(3α(d), d), . . . ,±(2`α(d), d), (`α(d), ψ(d))}

= {±(1, d),±(2, d), . . . ,±(2`, d),±(`α(d), ψ(d))}.

Observe that (i, d), (i,−d) ∈ ∂(Pd) for each i ∈ Z×p . So, ∂(P0) ∪
(⋃

d∈Dn
∂(Pd)

)
contains all

nonunit edge lengths in ∂(Kp×n). Furthermore, |∂(Pd)| = 2p for each d ∈ Dn, and for each

d1, d2,∈ Dn, ±(`α(d1), ψ(d1)) 6= ±(`α(d2), ψ(d2)). So, for distinct d1, d2 ∈ Dn, ∂(Pd1) and ∂(Pd2)

are disjoint.

Therefore {P0} ∪ {Pd : d ∈ Dn} is a set of base paths which are valid and uses all non-unit

edge lengths in Kp×n. So provided that such a function ψ exists, we have a cyclic n-symmetric

decomposition of Kp×n.

Assume that no such function ψ exists. That means there exists x ∈ Z×p such that

|α−1(x)| > |Z|. Since α is balanced we have that |α−1(x)| ≤ d|Dn|/|Z×p |e. Note that

|Dn| = (n− φ(n)− 1)/2, |Z×p | = p− 1, and |Z| = φ(n)/2− 1. So,

⌈
n− φ(n)− 1

2(p− 1)

⌉
>
φ(n)

2
− 1.
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Since φ(n)
2 − 1 ∈ Z, n−φ(n)−1

2(p−1) > φ(n)
2 − 1, and thus n > pφ(n)− 2p+ 3. This contradicts our

hypothesis. Therefore, such a function ψ exists, and thus we have a cyclic, n-symmetric Hamilton

cycle decomposition of Kp×n.

Example 3.5. Following the construction outlined in Lemma 3.4, we build base paths for a

cyclic 33-symmetric Hamilton cycle decomposition of K13×33. Observe that with p = 13 and

n = 33, we have that pφ(n) ≥ n+ 2p− 3. So, such a decomposition exists and we first have that

P0 = [(0, 0), (1, 0), (12, 0), (2, 0), (11, 0), (3, 0), (10, 0), (4, 1), (9, 0), (5, 1), (8, 0), (6, 1), (7, 0)](0,1).

The set D33 = {x ∈ Z33 : 0 < x < 33
2 and x is a nonunit} = {3, 6, 9, 11, 12, 15}. So, we

construct the balanced function α and ψ such that for any d1, d2 ∈ D33, if d1 6= d2 and

α(d1) = α(d2), then ψ(d1) 6= ψ(d2). Using this setup, we produce the base paths Pd and identify

their edge lengths as given in Table 1.

Observe that the non-units edge lengths of K13×33 are contained in

∂(P0) ∪ ∂(P3) ∪ · · · ∪ ∂(P15). So, we have that every non-unit edge length is used by one of the

base paths in Table 1. Hence, K13×33 has a cyclic 33-symmetric Hamilton cycle decomposition.

Lemma 3.6. Let p be an odd prime and n has prime factorization pa11 · · · pakk , where k ≥ 1 and

for each i ∈ {1, . . . , k}, paii < p and ai ≥ 1. Then Kp×n has a cyclic n-symmetric Hamilton cycle

decomposition.

Proof. It is sufficient to show that pφ(n) ≥ n+ 2p− 3, then the result follows from Lemma 3.4.

Suppose n is prime. Then p > n ≥ 3. So, (p− 1)(n− 3) ≥ 0, and thus

p(n− 1) ≥ n+ 2p− 3. Hence, pφ(n) ≥ n+ 2p− 3, since φ(n) = n− 1.

Now, suppose n is not prime; then n > 2pk and recall that p > pk. By Lemma 3.3, we

have that pφ(n) ≥ p(2n)/pk. So,

pφ(n) ≥ p(2n)

pk
= n

(
p

pk

)
+ 2p

(
n

2pk

)
≥ n+ 2p ≥ n+ 2p− 3.

So pφ(n) ≥ n+ 2p− 3.

Therefore, in all cases, by Lemma 3.4, Kp×n has a cyclic n-symmetric Hamilton cycle

decomposition.

19



d 3 6 9 11 12 15

α(d) 1 2 3 4 5 6

ψ(d) 2 2 2 2 4 4

i Pi

3 [(0, 0), (1, 3), (12, 0), (2, 3), (11, 0), (3, 3), (10, 0), (4, 3), (9, 0), (5, 3), (8, 0), (6, 3), (7, 0)](0,2)

6 [(0, 0), (2, 6), (11, 0), (4, 6), (9, 0), (6, 6), (7, 0), (8, 6), (5, 0), (10, 6), (3, 0), (12, 6), (1, 0)](0,2)

9 [(0, 0), (3, 9), (10, 0), (6, 9), (7, 0), (9, 9), (4, 0), (12, 9), (1, 0), (2, 9), (11, 0), (5, 9), (8, 0)](0,2)

11 [(0, 0), (4, 11), (9, 0), (8, 11), (5, 0), (12, 11), (1, 0), (3, 11), (10, 0), (7, 11), (6, 0), (11, 11), (2, 0)](0,2)

12 [(0, 0), (5, 12), (8, 0), (10, 12), (3, 0), (2, 12), (11, 0), (7, 12), (6, 0), (12, 12), (1, 0), (4, 12), (9, 0)](0,4)

15 [(0, 0), (6, 15), (7, 0), (12, 15), (1, 0), (5, 15), (8, 0), (11, 15), (2, 0), (4, 15), (9, 0), (10, 15), (3, 0)](0,4)

i ∂(Pi)

3 ±{(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (7, 3), (8, 3), (9, 3), (10, 3), (11, 3), (12, 3), (6, 2)}

6 ±{(2, 6), (4, 6), (6, 6), (8, 6), (10, 6), (12, 6), (1, 6), (3, 6), (5, 6), (7, 6), (9, 6), (11, 6), (12, 2)}

9 ±{(3, 9), (6, 9), (9, 9), (12, 9), (2, 9), (5, 9), (8, 9), (11, 9), (1, 9), (4, 9), (7, 9), (10, 9), (5, 2)}

11 ±{(4, 11), (8, 11), (12, 11), (3, 11), (7, 11), (11, 11), (2, 11), (6, 11), (10, 11), (1, 11), (5, 11), (9, 11), (11, 2)}

12 ±{(5, 12), (10, 12), (2, 12), (7, 12), (12, 12), (4, 12), (9, 12), (1, 12), (6, 12), (11, 12), (3, 12), (8, 12), (4, 4)}

15 ±{(6, 15), (12, 15), (5, 15), (11, 15), (4, 15), (10, 15), (3, 15), (9, 15), (2, 15), (8, 15), (1, 15), (7, 15), (10, 4)}

Table 1. Base paths for a decomposition of K13×33

The first table gives functions α and ψ which are used in setting up the base paths for a cyclic

33-symmetric Hamilton cycle decomposition of K13×33. The base paths are provided in the

second table. The edge lengths used by the base paths are given in the last table.
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Part {0, 1, 2, 3, 4} {5} {6}
Sum 3 5 6

Part P0 P1 P2 P3 P4 P5 P6 {x}, x ∈ U
Sum 10 45 31 17 3 38 24 x

(a) (b)

Table 2. Partition of rings of integers

In (a), we give a partition of Z7 into parts of size 1 and 5, each part of which has that the sum of

their elements is a unit of Z7. Similarly, in (b), we give a partition of Z49 into parts of size 1

and 5, again each part of which has that the sum of their elements is a unit of Z49.

3.2 ANALYZING PRIME POWERS OF n WHICH ARE LARGE

In the previous section, we focus on odd integers, n whose prime power divisors in the

prime factorization were all less than p. Now, we develop results that allow us to incorporate

integers whose prime powers are larger than p. We begin by presenting some elementary number

theory results, then discuss the existence of a particular type of partition of a ring of integers

modulo q, which will be useful in our constructions and finally we iteratively construct

decompositions of Kp×n, where n is any positive odd integer relatively prime to p.

First, we consider the following example highlighting a partition of rings of integers into

parts which add up to units.

Example 3.7. Let p = 5 be prime and Z7, Z49 be rings of integers modulo 7 and 49, respectively.

See Table 2(a) for a partition of Z7 into parts of sizes 1 or 5 where each part of size 1 contains a

unit and each part of size 5 contains elements of Z7 which add up to units.

Define, for each 0 ≤ i ≤ 6, Pi = {7i+ j : j ∈ Z5}. Let U = Z49\{P0 ∪ · · · ∪ P6}. Then,

{Pi : 0 ≤ i ≤ 6} ∪ {{α} : α ∈ U} is a partition of Z49 into parts of sizes 1 or 5 which adds up to

units of Z49. See Table 2(b).

In what follows, we demonstrate that we can always find such partitions. We first provide

two technical lemmas.

Lemma 3.8. Let r and p both be odd and at least 3. Let a be a positive integer for which
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ra ≥ p+ 2. Let Q and R be integers defined so that

ra−1 − 1

2
= Q

(p− 1)

2
+R,where 0 ≤ R ≤ p− 1

2
− 1.

Then (ra − ra−1)/2− 2 ≥ (p− 2R− 3)/2.

Proof. It is equivalent to show that ra − ra−1 ≥ p− 2R+ 1.

If Q = 0, then ra−1 = 2R+ 1. In this case,

ra − ra−1 ≥ p+ 2− ra−1 = p+ 2− (2R+ 1) = p− 2R+ 1.

Suppose Q > 0. Then (ra−1 − 1)/2 ≥ (p− 1)/2, which is equivalent to ra−1 ≥ p. So,

ra − ra−1 = ra−1(r − 1) ≥ p(r − 1) ≥ 2p ≥ p+ 1 ≥ p+ 1− 2R.

Lemma 3.9. Let p and r both be odd and at least 3. Let a be a positive integer. Let Q and R be

integers such that

ra−1 − 1

2
= Q

(p− 1)

2
+R,where 0 ≤ R ≤ p− 1

2
− 1

and suppose Q ≥ 1. Then ra − ra−1 ≥ Q+ (p− 2R− 1).

Proof. Note that ra−1 = Q(p− 1) + 2R+ 1. First, we show that ra ≥ p(Q+ 1). We have that,

since ra = r(ra−1),

ra = r[Q(p− 1) + 2R+ 1]

≥ 3[Q(p− 1) + 2R+ 1]

= pQ+Q(2p− 3) + 6R+ 3

≥ pQ+ 2p− 3 + 6R+ 3

≥ pQ+ p.

So ra − ra−1 = ra − [Q(p− 1) + 2R+ 1] ≥ p(Q+ 1)− [Q(p− 1) + 2R+ 1] = Q+ p− 2R− 1.

Using these number theory results, we are now able to prove the existence of a particular

type of a partition of a ring of integers which we use in our construction later.
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Theorem 3.10. For all primes p and prime powers q, if q > p, then there exists a partition of Zq

such that each part has size 1 or p, and each part adds to a unit of Zq.

Proof. It is necessary to partition Zq such that the non-units belong to a part of size p. Let

q = ra, where r is prime. Observe that the number of non-units in Zq is q/r = ra−1. So, the

number of units is φ(q) = ra − ra−1. There exist integers Q and R such that

ra−1 − 1

2
= Q

(p− 1)

2
+R,where 0 ≤ R ≤ p− 1

2
− 1.

Represent the nonunits of Zq as

{0,± a11,±a12, · · · ± a1(p−1)/2,

± a21,±a22, · · · ± a2(p−1)/2,
...

± aQ1,±aQ2, . . . ,±aQ(p−1)/2,

± b1,±b2, . . . ,±bR}.

Let x = 2 if r 6= 3; otherwise let x = 4. Notice that if r = 3, then 5 is relatively prime to q and

hence, 1 + x = 5 ∈ Z×q . If r 6= 3, 3 is relatively prime to q hence, 1 + x = 3 ∈ Z×q . So, in all cases,

1 + x is a unit of Zq.

Let u1, u2, . . . , uk be distinct units of Zq such that ui 6= −uj for distinct i and j, and

ui 6= ±1 or ±x for each i, with k = (p− 2R− 3)/2. Such a selection is possible provided that

(ra − ra−1)/2− 2 ≥ (p− 2R− 3)/2, which follws from Lemma 3.8. We define P ′ as

{0,±b1,±b2, . . . ,±bR,±u1, · · · ± u(p−2R−3)/2, 1, x}. Observe that

∑
`∈P ′

` = 1 + x ∈ Z×q .

If Q = 0, then {P ′} ∪ {{a} : a ∈ Zq\P ′} is a desired partition of Zq. Now, suppose Q ≥ 1. Let

v1, v2, . . . , vQ be distinct units of Zq such that vi 6= ±uj for each i and j, and vi 6= 1 or x for

each i. Such a selection is possible provided that ra− ra−1 ≥ Q+ (p− 2R− 1), which follows from
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Lemma 3.9. For each i ∈ {1, 2, . . . , Q}, define Pi = {±ai1,±ai2, · · · ± ai(p−1), vi}. Observe that for

each i ∈ {1, 2, . . . , Q}, ∑
x∈Pi

x = vi ∈ Z×q .

Then {P1, P2, . . . , PQ, P
′} ∪ {{α} : α /∈ P1 ∪ P2 ∪ · · · ∪ PQ ∪ P ′} is a desired partition of Zq.

Note that the partitions of Z7 and Z49 given in Example 3.7 follow this construction. Note also,

that the previous theorem does not require that p and q be relatively prime, however, in all

applications that follow, we only apply it when p and q are relatively prime.

Using subsets of a ring of integers, we can build base paths from pre-existing base paths;

the next four lemmas show the constructions.

Lemma 3.11. Let p be an odd prime, q a prime power such that q > p, p - q, and n an odd

integer relatively prime to p and q. Let u ∈ Z×q . Let A be a base path of length p in Kp×n, with

V (Kp×n) = Zp × Zn, where

A = [(x0 = 0, y0 = 0), (x1, y1), . . . , (xp−1, yp−1)](xp=0,yp).

Define A(u) as

A(u) = [(0, 0, 0), (x1, y1, u), . . . , (xp−1, yp−1, (p− 1)u)](0,yp,pu).

Then A(u) is a base path of Kp×nq.

Proof. Let ∆xi = xi+1 − xi and ∆yi = yi+1 − yi for each i ∈ {0, . . . , p− 1}. Then,

∂(A) = {±(∆x0,∆y0), . . . ,±(∆xp−1,∆yp−1)}. Since A is a base path, we have that

{x1, . . . , xp−1} = {1, . . . , p− 1}, (∆xi,∆yi) 6= ±(∆xj ,∆yj) whenever i, j ∈ {0, . . . , p− 1} and

i 6= j, and |(0, yp)| = n.

Note that ∂(A(u)) = {±(∆xi,∆yi, u) : i ∈ {0, 1, . . . , p− 1}}. Suppose for some

i, j ∈ {1, . . . , p} and i 6= j that (∆xi,∆yi, u) = ±(∆xj ,∆yj , u). Then (∆xi,∆yi) = ±(∆xj ,∆yj),

which is a contradiction. So (∆xi,∆yi, u) 6= ±(∆xj ,∆yj , u) whenever i, j ∈ {0, . . . , p− 1} and

i 6= j. Since p and q are relatively prime, p ∈ Z×q . By closure of (Z×q , ·), pu ∈ Z×q . Since yp ∈ Z×n ,

24



then |(0, yp, pu)| = qn. Therefore A(u) is a base path of Kp×nq.

Example 3.12. Let A = [(0, 0), (1, 0), (2, 1)](0,4) be a base path of length 3 in K3×5. Then

∂(A) = ±{(1, 0), (1, 1), (1, 3)}. Observe that u = 6 ∈ Z×7 , so by Lemma 3.11,

A(6) = [(0, 0, 0), (1, 0, 6), (2, 1, 5)](0,4,4)

is a base path of K3×35 with edge lengths ∂(A(6)) = ±{(1, 0, 6), (1, 1, 6), (1, 3, 6)}.

Lemma 3.13. Let p be an odd prime, q a prime power such that q > p , q and p are relatively

prime, and n an odd integer relatively prime to p and q. Let u ∈ Z×q . Let B = [(0, 0)](x,y) be a

base path of length 1 in Kp×n. Hence (x, y) is a unit in Zp × Zn. Then B(u) = [(0, 0, 0)](x,y,u) is a

base path in Kp×nq.

Proof. Observe that ∂(B) = {±(x, y)} and ∂(B(u)) = {±(x, y, u)}. Since u ∈ Z×q , and p, n, q are

pairwise relatively prime, we have that (x, y, u) is a unit of Zp × Zn × Zq. Therefore, B(u) is a

base path in Kp×nq.

Example 3.14. Let B1 = [(0, 0)](1,2) be a base path of length 1 in K3×5, then ∂(B1) = ±{(1, 2)}.

Again observe that u = 6 ∈ Z×7 , so by Lemma 3.13,

B1(6) = [(0, 0, 0)](1,2,6)

is a base path of K3×35 with edge lengths ∂(B1(6)) = ±{(1, 2, 6)}.

Lemma 3.15. Let p be an odd prime, q a prime power such that q > p, q, p relatively prime

and n an odd integer relatively prime to p and q. Let P = {z0, z1, . . . , zp−1} be a subset of Zq

which sums up to a unit of Zq. For each i ∈ Zp, define Zi = z0 + z1 + · · ·+ zi. Let B = [(0, 0)](x,y)

be a base path of length 1 in Kp×n, again meaning (x, y) is a unit in Zp × Zn. Define B(P ) as

B(P ) = [(0, 0, 0), (x, y, Z0), (2x, 2y, Z1), . . . , ((p− 1)x, (p− 1)y, Zp−2)](0,py,Zp−1).

Then B(P ) is a base path in Kp×nq.
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Proof. Observe that ∂(B) = {±(x, y)} and ∂(B(P )) = {±(x, y, zi) : i ∈ Zp}. Suppose there exists

i, j ∈ Zp and i 6= j such that (x, y, zi) = ±(x, y, zj). Then (x, y, zi) = (x, y, zj), and hence zi = zj ,

which is a contradiction. So (x, y, zi) 6= ±(x, y, zj) whenever i, j ∈ Zp and i 6= j. Since p and n are

relatively prime, p ∈ Z×n . By closure of (Z×n , ·), py ∈ Z×n . Since P is a subset of Zq which adds to a

unit of Zq, Zp−1 ∈ Z×q . So, |(x, py, Zp−1)| = qn. Therefore B(P ) is a base path in Kp×nq.

Example 3.16. Let B1 = [(0, 0)](1,2) be a base path of length 1 in K3×5 , then

∂(B1) = ±{(1, 2)}. Let P = {0, 1, 2} be a subset of Z7 of size 3, which adds up to a unit of Z7;

mainly 3. Then, by Lemma 3.15,

B1(P ) = [(0, 0, 0), (1, 2, 0), (2, 4, 1)](0,1,3)

is a base path of K3×35 with edge length ∂(B1(P )) = ±{(1, 2, 0), (1, 2, 1), (1, 2, 2)}.

Lemma 3.17. Let p be an odd prime, q an odd prime power such that q > p, q and p are

relatively prime, and n and odd integer relatively prime to p and q. Let P = {z0, z1, . . . , zp−1} be a

subset of Zq which sums to a unit of Zq and k ∈ Zp. For each i ∈ Zp, define

Zki = zk + zk+1 + · · ·+ zk+i. Let A be a base path in Kp×n, with vertex set Zp × Zn, given by

A = [(x0 = 0, y0 = 0), (x1, y1), . . . , (xp−1, yp−1)](xp=0,yp),

Then A(P )k, given by

A(P )k = [(0, 0, 0), (x1, y1, Z
k
0 ), (x2, y2, Z

k
1 ), . . . , (xp−1, yp−1, Z

k
p−2](0,yp,Zk

p−1)
,

is a base path of Kp×nq.

Furthermore, for distinct k, ` ∈ Zp, A(P )k and A(P )` are disjoint.

Proof. Let ∆xi = xi+1 − xi and ∆yi = yi+1 − yi for each i ∈ {0, . . . , p− 1}. Then

∂(A) = {±(∆x0,∆y0), . . . ,±(∆xp−1,∆yp−1)}. Since A is a base path, we have that

{x1, . . . , xp−1} = {1, . . . , p− 1}, (∆xi,∆yi) 6= ±(∆xj ,∆yj) whenever i, j ∈ {0, . . . , p− 1} and

i 6= j, and |(0, yp)| = n.
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We have that ∂(A(P )k) = {±(∆xi,∆yi, zk+i) : i ∈ Zp}. Suppose for some i, j ∈ Zp that

(∆xi,∆yi, zk+i) = ±(∆xj ,∆yj , zk+j) and i 6= j. It follows that (∆xi,∆yi) = ±(∆xj ,∆yj), which

is a contradiction. Observe that Zkp−1 is the sum of all elements in P , so Zkp−1 ∈ Z×q . Since

yp ∈ Z×n , |(0, yp, Zkp−1)| = qn. Therefore A(P )k is a base path of Kp×nq.

Suppose A(P )k = A(P )` for some k, ` ∈ Zp, then ∂(A(P )k) = ∂(A(P )`). So,

{±(∆xi,∆yi, zk+i) : i ∈ Zp} = {±(∆xi,∆yi, z`+i) : i ∈ Zp}. Thus zk+i = z`+i and so k = `.

Example 3.18. Let A = [(0, 0), (1, 0), (2, 1)](0,4) be a base path of length 3 in K3×5, then

∂(A) = ±{(1, 0), (1, 1), (1, 3)}. Let P = {0, 1, 2} be a subset of Z7 of size 3, note the elements of P

add up to 3, which is a unit of Z7. So, by Lemma 3.17,

A(P )0 = [(0, 0, 0), (1, 0, 0), (2, 1, 1)](0,4,3),

A(P )1 = [(0, 0, 0), (1, 0, 1), (2, 1, 3)](0,4,3), and

A(P )2 = [(0, 0, 0), (1, 0, 2), (2, 1, 2)](0,4,3)

are base paths of K3×35 with edge lengths

∂(A(P )0) = ±{(1, 0, 0), (1, 1, 1), (1, 3, 2)},

∂(A(P )1) = ±{(1, 0, 1), (1, 1, 2), (1, 3, 0)}, and

∂(A(P )2) = ±{(1, 0, 2), (1, 1, 0), (1, 3, 1)}.

Here, we now provide a result giving us an iterative method for constructing a cyclic n -

symmetric Hamilton cycle decomposition of Kp×n with n an odd positive integer such that p - n

and n does have prime powers in its prime factorization which exceed p.

Theorem 3.19. Suppose Kp×n has a cyclic n-symmetric Hamilton cycle decomposition and q is a

prime power larger than p. Then Kp×nq has a cyclic nq-symmetric Hamilton cycle decomposition.

Proof. If Kp×n has a cyclic n-symmetric Hamilton cycle decomposition, then there exists a valid

set S of base paths which gives rise to such a decomposition. Partition S as S1 ∪ Sp, where S1
contains all base paths of length 1 and Sp contains all base paths of lengths p. Let |S1| = s
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and |Sp| = r. Then rp+ s = (p− 1)n/2. By Theorem 3.10, in Zq, there exists P, T such that

T ⊆ Z×q and P is a partition of Zq\T , |P | = p, and
∑

x∈P x ∈ Z×q for each P ∈ P. Let |P| = ` and

|T | = t, then q = `p+ t. Using the constructions from Lemmas 3.11, 3.13, 3.15, and 3.17, define

K1 = {A(u) : A ∈ Sp, u ∈ T},

K2 = {B(u) : B ∈ S1, u ∈ T},

K3 = {B(P ) : B ∈ S1, P ∈ P} and

K4 = {A(P )k : A ∈ Sp, P ∈ P, k ∈ Zp}.

Let K = K1 ∪K2 ∪K3 ∪K4. We claim that K is a valid set of base paths of Kp×nq.

By Lemmas 3.11, 3.13, 3.15, and 3.17, each element in K is a base path. We now need to

show that each edge length in Kp×nq is used by exactly one base path in the set K.

We have that |∂(Kp×nq)| = (p− 1)nq. Also, |∂(K1)| ≤ 2prt, |∂(K2)| ≤ 2st, |∂(K3)| ≤ 2ps` and

|∂(K4)| ≤ 2pr`p. So,

2prt+ 2st+ 2ps`+ 2pr`p = 2t(pr + s) + 2`p(pr + s) = 2(pr + s)(`p+ t) = (p− 1)nq.

Thus, there are at most (p− 1)nq edge lengths used by base paths in K, and hence K is a valid

set of base paths of Kp×nq if and only if each edge length of ∂(Kp×nq) is used by a base path

in K. To that end, let (x, y, z) ∈ ∂(Kp×nq). Note that (x, y) ∈ ∂(Kp×n), so (x, y) ∈ ∂(A) or

(x, y) ∈ ∂(B) for some A ∈ Sp or B ∈ S1. Similarly, z ∈ P , for some P ∈ P or z ∈ T .

If (x, y) ∈ ∂(A) and z ∈ T , then (x, y, z) ∈ ∂(A(z)). If (x, y) ∈ ∂(B) and z ∈ T , then

(x, y, z) ∈ ∂(B(z)). If (x, y) ∈ B and z ∈ P for some P ∈ P, then (x, y, z) ∈ ∂(B(P )). If

(x, y) ∈ ∂(A) and z ∈ P for some P ∈ P, then (x, y, z) ∈ ∂(A(P )v) for some v ∈ Zp. Therefore,

every edge length in ∂(Kp×nq) is used by a base path of K. So K gives rise to a cyclic

nq-symmetric Hamilton cycle decomposition of Kp×nq.

Example 3.20. Following preceding examples, let C be the decomposition of K3×5 given by the

base paths in Table 3, and consider the partition of Z7 into parts of size 3 and 1 which add up to

units in Z7, also given in Table 3. Then, we end up with the following sets K1,K2,K3 and K4,
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Base paths Edge lengths

A = [(0, 0), (1, 0), (2, 1)](0,4) {(1, 0), (1, 1), (1, 3)}
B1 = [(0, 0)](1,2) {(1, 2)}
B2 = [(0, 0)](1,4) {(1, 4)}

Part Sum as Units in Z7

P1 = {0, 1, 2} 3

P2 = {3, 4, 5} 5

P3 = {6} 6

(a) (b)

Table 3. Constructing a valid set of base paths for a decomposition of K3×35

In (a), we give the base paths used by a decomposition of K3×5, and in (b), we give a partition

of Z7 into parts of size 1 and 3 which add up to a unit of Z7. These are used to build the cyclic

35-symmetric Hamilton cycle decomposition of K3×35 given in Table 4.

given in Table 4, which give a valid set of base paths for a cyclic 35-symmetric Hamilton cycle

decomposition of K3×35.

3.3 MAIN RESULT

To prove Kp×n has a cyclic n-symmetric Hamilton cycle decomposition for any prime p

and odd integer n, we need to introduce a way to build a decomposition where our part size is

divisible by p. We present that, and then use all the results from this section to prove our main

result. First we address a way to build a cyclic n-symmetric Hamilton cycle decomposition

of Kp×n, where p is a divisor of n.

Theorem 3.21. Suppose Kp×n has a cyclic n-symmetric Hamilton cycle decomposition, where

p > 3 is an odd prime and p - n, then there exists a cyclic (npt)-symmetric Hamilton cycle

decomposition of Kp×npt for t ≥ 1.

Proof. Edge lengths of Kp×npt are denoted as the ordered pairs (x, y) in
(
Z×
pt+1

)
× Zn. From a

cyclic n-symmetric Hamilton cycle decomposition of Kp×n, let D be the set of base paths of

length p with non-units edge lengths. Let C ∈ D, then C has the form

C = [(x0, y0) = (0, 0), (x1, y1), . . . , (xp−1, yp−1)](0,yp),

where {x1, . . . , xp−1} = {1, . . . , p− 1}, (∆xi,∆yi) 6= ±(∆xj ,∆yj) whenever i, j ∈ {0, . . . , p− 1},

i 6= j, and |(0, yp)| = n. For each s ∈ {0, . . . , pt − 1}, define Cs as a path of length p in Kp×npt
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Set Definition Base paths Edge Lengths

K1 A(P3) [(0, 0, 0), (1, 0, 6), (2, 1, 5)](0,4,4) ±{(1, 0, 6), (1, 1, 6), (1, 3, 6)}

K2
B1(P3) [(0, 0, 0)](1,2,6) ±{(1, 2, 6)}

B2(P3) [(0, 0, 0)](1,4,6) ±{(1, 4, 6)}

K3

B1(P1) [(0, 0, 0), (1, 2, 0), (2, 4, 1)](0,1,3) ±{(1, 2, 0), (1, 2, 1), (1, 2, 2)}

B1(P2) [(0, 0, 0), (1, 2, 3), (2, 4, 0)](0,1,5) ±{(1, 2, 3), (1, 2, 4), (1, 2, 5)}

B2(P1) [(0, 0, 0), (1, 4, 0), (2, 3, 1)](0,2,3) ±{(1, 4, 0), (1, 4, 1), (1, 4, 2)}

B2(P2) [(0, 0, 0), (1, 4, 3), (2, 3, 0)](0,2,5) ±{(1, 4, 3), (1, 4, 4), (1, 4, 5)}

K4

A(P1)0 [(0, 0, 0), (1, 0, 0), (2, 1, 1)](0,4,3) ±{(1, 0, 0), (1, 1, 1), (1, 3, 2)}

A(P1)1 [(0, 0, 0), (1, 0, 1), (2, 1, 3)](0,4,3) ±{(1, 0, 1), (1, 1, 2), (1, 3, 0)}

A(P1)2 [(0, 0, 0), (1, 0, 2), (2, 1, 2)](0,4,3) ±{(1, 0, 2), (1, 1, 0), (1, 3, 1)}

A(P2)0 [(0, 0, 0), (1, 0, 3), (2, 1, 0)](0,4,5) ±{(1, 0, 3), (1, 1, 4), (1, 3, 5)}

A(P2)1 [(0, 0, 0), (1, 0, 4), (2, 1, 2)](0,4,5) ±{(1, 0, 4), (1, 1, 5), (1, 3, 3)}

A(P2)2 [(0, 0, 0), (1, 0, 5), (2, 1, 1)](0,4,5) ±{(1, 0, 5), (1, 1, 3), (1, 3, 4)}

Table 4. A valid set of base paths of K3×35

The set K = K1 ∪K2 ∪K3 ∪K4 is a valid set of base paths of K3×35 constructed using base paths

of K3×5 and the partition of Z7 given in Table 3.
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given by

Cs = [(0, 0), (x1 + sp, y1), (x2 + 2sp, y2), . . . , (xp−1 + (p− 1)sp, yp−1)](p,yp).

Let ∂∗(C) = ∂(C0) ∪ ∂(C1) ∪ · · · ∪ ∂(Cpt−1), and let C be the union of all ∂∗(C) for each C ∈ D.

Observe that for s ∈ {0, . . . , pt − 1},

∂(Cs) = ±{(∆x` + sp,∆y`) : 0 ≤ ` ≤ p− 2} ∪ {(∆xp−1 + p− (p− 1)sp,∆yp−1)}.

We first show that Cs is a base path. We show that all the vertices are distinct, the edge

lengths are all distinct, and also then show that (p, yp) has order npt. Suppose that

(xa + asp, ya) = (xb + bsp, yb) for some a, b ∈ {1, 2, . . . , p− 1}. Then, xa + asp = xb + bsp and so

xa − xb = p(sb− sa). Thus, xa = xb (mod p). This is a contradiction. So,

(xa + asp, ya) 6= (xb + bsp, yb) for some a, b ∈ {1, 2, . . . , p− 1}. Next suppose that

(xa + asp, ya) = (p, yp) for some a, then xa + asp ≡ p (mod p). This implies that xa ≡ 0 (mod p)

and this is a contradiction since {x1, . . . , xp−1} = {1, . . . , p− 1}. (0, 0) 6= (p, yp) since 0 6= p, and

(0, 0) 6= (xi + isp, yp) for 1 ≤ i ≤ p− 1 since xi + isp (mod p) 6= 0.

Now, suppose that some path Cs has a repeated edge length (x, y). Define a map

α : Zpt+1 × Zn → Zp × Zn where α(x, y) = (x (mod p), y). If Cs contains the edge length (x, y)

twice, then C contains α(x, y) as an edge length twice. Since C is a base path, this gives a

contradiction. Since the order of p in Zpt+1 is pt and yp ∈ Z×n , then |(p, yp)| = npt. Thus, Cs is a

base path of Kp×npt .

Now, we show that each non-unit edge length of Kp×npt is being used in our collection of

iterated base paths E = {Cs : C ∈ D, 0 ≤ s ≤ pt − 1}. Let (x, y) be a non-unit edge length

in Kp×npt . Since, ∂(Kp×npt) = Z×
pt+1 × Zn, then, p - x and y is a non-unit of Zn. Consider (x′, y)

where x′ = x (mod p). Observe that (x′, y) is a non-unit of Zp × Zn and since (x′, y) ∈ Zp × Zn,

(x′, y) ∈ ∂(Kp×n). So, (x′, y) must belong to a base path of length p in D, say C. Let the

iterations of C be: C0, C1, . . . , Cpt−1. Note that C contains every edge length of the form

(x′ + sp, y), where s ∈ {0, . . . , pt − 1}; in particular, (x′ + sp, y) is an edge length of Cs. Therefore

(x, y) is an edge length of some Cs. Thus, all non-unit edge lengths of ∂(Kp×npt) belong to C.
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Now we show all base paths in E are edge length distinct. Suppose that ∂(Cs) ∩ ∂(C ′s′) is

not empty and contains (x, y) for some C,C ′ ∈ D and s, s′ ∈ {0, . . . , pt − 1}. We need to show

that C = C ′ and s = s′. Since ∂(Cs) ∩ ∂(C ′s′) contains (x, y), α(x, y) ∈ ∂(C) ∩ ∂(C ′), and so

C = C ′. Then, (x, y) ∈ ∂(Cs) ∩ ∂(Cs′). So, one of the following holds;

1. (x, y) = ±(∆x` + sp,∆y`) = ±(∆x`′ + s′p,∆y`′), or

2. (x, y) = ±(∆xp + p− (p− 1)sp,∆yp) = ±(∆xp + p− (p− 1)s′p,∆yp), or

3. (x, y) = ±(∆x` + sp,∆y`) = ±(∆xp + p− (p− 1)s′p,∆yp).

First, suppose that ±(∆x` + sp,∆y`) = ±(∆x`′ + s′p,∆y`′) for some `, `′. Since, C and C ′

have α(x, y) in common, ±(∆x`,∆y`) = ±(∆x`′ ,∆y`′) and so ` = `′. So,

(∆x` + sp,∆y`) = (∆x` + s′p,∆y`). So, sp = s′p in Zpt+1 , and thus, s = s′ (mod pt).

Secondly, suppose that ±(∆xp + p− (p− 1)sp,∆yp) = ±(∆xp + p− (p− 1)s′p,∆yp). If

∆yp = 0, then (∆xp + p− (p− 1)sp,∆yp) = −(∆xp + p− (p− 1)s′p,∆yp), which implies

∆xp ≡ −∆xp (mod p). So, ∆xp = 0 (mod p), which is a contradiction. Hence ∆yp 6= 0, so,

∆xp + p− (p− 1)sp = ∆xp + p− (p− 1)s′p. So, (p− 1)sp = (p− 1)s′p in Zpt+1 ; thus s = s′,

modulo pt.

Lastly, suppose that (∆x` + sp,∆y`) = ±(∆xp + p− (p− 1)sp,∆yp). Since 0 ≤ ` ≤ p− 2,

applying α to the edge lengths, we have that (∆x`,∆y`) = ±(∆xp,∆yp). Since ` 6= p, this is a

contradiction. Therefore {Cs : 0 ≤ s ≤ pt − 1, C ∈ D} is a collection of base paths with disjoint

edge sets in which each non-unit edge length in Kp×npt is used.

Therefore, E is a valid set of base paths of a cyclic (npt)-symmetric Hamilton cycle

decomposition of Kp×npt .

Example 3.22. Let C be the cyclic 5-symmetric Hamilton cycle decomposition of K3×5 given in

Example 3.20. Note A = [(0, 0), (1, 0), (2, 1)](0,4) with edge length ±{(1, 0), (1, 1), (1, 3)} is the

base path of length 3 corresponding to C.

Following the construction in Theorem 3.21, the following are base paths of a decomposition

of K3×45, with vertex set Z27 × Z5, that is t = 2, so pt = 9.

For s ∈ Z9, the base paths of the decomposition of K3×45 of length 3 are given in Table 5.
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i Ai ∂(Ai)

0 [(0, 0), (1, 0), (2, 1)](3,4) ±{(1, 0), (1, 1), (1, 3)}

1 [(0, 0), (4, 0), (8, 1)](3,4) ±{(4, 0), (4, 1), (22, 3)}

2 [(0, 0), (7, 0), (14, 1)](3,4) ±{(7, 0), (7, 1), (16, 3)}

3 [(0, 0), (10, 0), (20, 1)](3,4) ±{(10, 0), (10, 1), (10, 3)}

4 [(0, 0), (13, 0), (26, 1)](3,4) ±{(13, 0), (13, 1), (4, 3)}

5 [(0, 0), (16, 0), (5, 1)](3,4) ±{(16, 0), (16, 1), (25, 3)}

6 [(0, 0), (19, 0), (11, 1)](3,4) ±{(19, 0), (19, 1), (19, 3)}

7 [(0, 0), (22, 0), (17, 1)](3,4) ±{(22, 0), (22, 1), (13, 3)}

8 [(0, 0), (25, 0), (23, 1)](3,4) ±{(25, 0), (25, 1), (7, 3)}

Table 5. Base paths leading to a decomposition of K3×45

These base paths are constructed from A = [(0, 0), (1, 0), (2, 1)](0,4) in K3×5, using the method

outlined in Theorem 3.21. They have pairwise disjoint edge lengths and contain all non-unit edge

lengths of K3×45. This extends to a valid set of base paths of K3×45, by including base paths of

length 1 corresponding to unused unit edge lengths.
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Now, we bring it all together with the main result of this chapter.

Theorem 3.23. Let p be an odd prime and n be an odd positive integer at least 3. Then Kp×n

has a cyclic n-symmetric Hamilton cycle decomposition.

Proof. Let n = papa11 · · · pakk qb11 · · · q
b`
` , where p, p1, . . . , pk, q1, . . . , q` are distinct primes, k, `, a ≥ 0,

k + `+ a ≥ 1 and for each i ∈ {1, . . . , k} and j ∈ {1, . . . , `}, ai ≥ 1, bj ≥ 1, paii < p, q
bj
j > p. Let

P = pa11 · · · pakk and Q = qb11 · · · qb`` . From Lemma 3.6, Kp×P has a cyclic P -symmetric Hamilton

cycle decomposition. By Theorem 3.19, K
p×Pqb11

has a cyclic Pqb11 -symmetric Hamilton cycle

decomposition and consequently, Kp×PQ has a cyclic PQ-symmetric Hamilton cycle

decomposition. By Theorem 3.21, Kp×paPQ has a cyclic paPQ-symmetric Hamilton cycle

decomposition and hence, Kp×n has a cyclic n-symmetric Hamilton cycle decomposition.
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CHAPTER 4

DECOMPOSITIONS OF Km×n FOR GENERAL m

In this chapter, we highlight all other cyclic n-symmetric Hamilton cycle decomposition

that we found with an odd number of parts not necessarily prime. We now leverage the result in

Theorem 3.23 to get some other decomposition of complete multipartite graphs and prove similar

results to those in Section 3.2. We begin by building base paths from pre-existing base paths of a

cyclic decomposition of Km.

Lemma 4.1. Let m be an odd integer with smallest prime divisor p and divisor d of m

where p | d. Let n be an integer relatively prime to m, with n > p. Suppose A is a base path of

length d in Km, with vertex set Zm, where A = [x0 = 0, x1, x2, . . . , xd−1]xd. Let

P = {z0, z1, . . . , zp−1} be a subset of Zn which sums up to a unit of Zn. Let k ∈ Zp, for each

i ∈ Zp, define Zki = zk + zk+1 + · · ·+ zk+i. Then,

A(P )k = [(0, 0), (x1, Z
k
0 ), (x2, Z

k
1 ), . . . , (xd−1, Z

k
p−2)](xd,Zk

p−1)

is a base path of Km×n.

Proof. Let ∆xi = xi+1 − xi for each i ∈ {0, . . . , d− 1}. Then ∂(A) = {±∆x0, . . . ,±∆xd−1}. Since

A is a base path, we have that {x1, . . . , xd−1} = {1, . . . , d− 1}, d | xd, ∆xi 6= ±∆xj whenever

i, j ∈ {0, . . . , d− 1} and i 6= j, and |xd| = m/d.

We have that ∂(A(P )k) = {±(∆xi, zk+i) : i ∈ Zp}. Suppose for some i, j ∈ Zp that

(∆xi, zk+i) = ±(∆xj , zk+j) and i 6= j. It follows that ∆xi = ±∆xj , which is a contradiction.

Since Zkp−1 is the sum of all elements in P , so Zkp−1 ∈ Z×n . So, |(xd, Zkp−1)| = (m/d)n. Therefore

A(P )k is a base path of Km×n.

Example 4.2. Observe that 3 is the smallest prime divisor of 21. Let A = [0, 2, 1]15 be a base

path of length 3 in K21, then ∂(A) = ±{2, 20, 14}. Let P = {0, 1, 2} be a subset of Z17 of size 3;
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note the elements of P add up to a unit of Z17. Then, by Lemma 4.1,

A(P )0 = [(0, 0), (2, 0), (1, 1)](15,3),

A(P )1 = [(0, 0), (2, 1), (1, 3)](15,3), and

A(P )2 = [(0, 0), (2, 2), (1, 2)](15,3)

are base paths of K21×17 with edge lengths

∂(A(P )0) = ±{(2, 0), (20, 1), (14, 2)},

∂(A(P )1) = ±{(2, 1), (20, 2), (14, 0)}, and

∂(A(P )2) = ±{(2, 2), (20, 0), (14, 1)}.

Lemma 4.3. Let m be an odd integer with the smallest prime divisor p, divisor d of m

where p - d. Let n be relatively prime to m, with n > p. Suppose A is a base path of length d

in Km, where A = [x0 = 0, x1, x2, . . . , xd−1]xd. Let P = {z0, z1, . . . , zp−1} be a subset of Zn which

sums up to a unit of Zn. For each i ∈ Zp, define Zi = z0 + z1 + · · ·+ zi. If p - d, let k ∈ Zpd.

Define qk, q
′
k, rk, r

′
k so that k = qkd+ rk, 1 ≤ rk ≤ d and k = q′kp+ r′k, 1 ≤ r′k ≤ p. Let A(P ) be

given by

A(P ) = [(0, 0), (w1, y1), (w2, y2), . . . , (wpd−1, ypd−1)](wpd,ypd),

where wk = xrk + qkxd and yk = Zr′k + q′kZp−1. Then, A(P ) is a base path in Km×n.

Proof. Let ∆xi = xi+1 − xi for each i ∈ {0, . . . , d− 1}. Then ∂(A) = {±∆x0, . . . ,±∆xd−1}. Since

A is a base path, we have that xi 6= xj (mod d) for each i, j ∈ {1, . . . , d− 1}, i 6= j, d | xd,

∆xi 6= ±∆xj whenever i, j ∈ {0, . . . , d− 1} and i 6= j, and |xd| = m/d.

Now we show that {w1, w2, . . . , wpd−1} = {1, 2, . . . , pd− 1} (mod pd) and pd | wpd.

Suppose wk = ws for some k, s ∈ {0, . . . , pd− 1}, k 6= s. Then, xrk + qkxd = xrs + qsxd. So,

xrk − xrs = xd(qs − qk). But, d | xd, so d | xrk − xrs . We have that xrk = xrs (mod d), but the xis

are all different modulo d. So rk = rs and thus xrk − xrs = 0. Hence, xd(qs − qk) = 0 (mod pd)

and (xd/d)(qs − qk) = 0 (mod p). But since p - xd/d, qs = qk (mod p) where 0 ≤ qi ≤ p− 1. This
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implies qk = qs.

We have that ∆wk = ∆xrk and ∆yk = zr′k for each k. So,

∂(A(P )) = {±(∆xrk , zr′k) : k ∈ {0, 1, . . . , pd− 1}}. Suppose for some k, s ∈ {0, . . . , pd− 1} that

(∆xrk , zr′k) = ±(∆xrs , zr′s). It follows that ∆xrk = ±∆xrs , rk = rs and so k = s (mod d).

Similarly, zr′k = zr′s , so r′k = r′s and hence k = s (mod p). Thus, k = s (mod pd). So, all edge

lengths in ∂(A(P )) are distinct.

Since wpd = pxd, we have that |wpd| = m/pd. Similarly, ypd = dzp, so, |ypd| = n. So,

|(wpd, ypd)| =lcm(m/(pd), n) = mn/(pd). Therefore, A(P ) is a base path of Km×n.

Example 4.4. Again observe that 3 is the smallest prime divisor of 21, and

B = [0, 6, 15, 12, 16, 11, 3]14 be a base path of length 7 in K21. Then

∂(B) = ±{6, 9, 18, 4, 16, 13, 11}. Let P = {0, 1, 2} be a subset of Z17 of size 3, which adds up to a

unit of Z17, namely 3. Since 3 - 7, we have by Lemma 4.3 that,

B(P ) = [(0, 0), (6, 0), (15, 1), (12, 3), (16, 3), (11, 4), (3, 6),

(14, 6), (20, 7), (8, 9), (5, 9), (9, 10), (4, 12), (17, 12),

(7, 13), (13, 15), (1, 15), (19, 16), (2, 1), (18, 1), (10, 2)](0,4)

is a base path of K21×17 with edge lengths

∂(B(P )) = ±{(6, 0), (9, 1), (18, 2), (4, 0), (16, 1), (13, 2), (11, 0),

(6, 1), (9, 2), (18, 0), (4, 1), (16, 2), (13, 0), (11, 1), (6, 2),

(9, 0), (18, 1), (4, 2), (16, 0), (13, 1), (11, 2)}.

Lemma 4.5. Let m be an odd integer with smallest prime divisor p. Let n be relatively prime

to m, with m > p. Suppose A is a base path of length d in Km, with vertex set Zm and let

A = [0, x1, x2, . . . , xd−1]xd. Let u ∈ Z×n . Define A(u) as

A(u) = [(0, 0), (x1, u), . . . , (xd−1, (d− 1)u)](xd,du).
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Then A(u) is a base path in Km×n.

Proof. Let ∆xi = xi+1 − xi for each i ∈ {0, . . . , d− 1}. Then ∂(A) = {±∆x1, . . . ,±∆xd}. Since A

is a base path, we have that xi 6= xj(mod d) for each i, j ∈ {1, . . . , d− 1}, d | xd, ∆xi 6= ±∆xj

whenever i, j ∈ {0, . . . , d− 1} and i 6= j, and |xd| = m/d.

Note that ∂(A(u)) = {±(∆xi, u) : i ∈ {0, 1, . . . , d− 1}}. Suppose for some

i, j ∈ {0, . . . , d− 1} and i 6= j that (∆xi, u) = ±(∆xj , u). Then ∆xi = ∆xj , which is a

contradiction. So (∆xi, u) 6= ±(∆xj , u) whenever i, j ∈ {0, . . . , d− 1} and i 6= j. Since m and n

are relatively prime, and d | m, d ∈ Z×n . By closure of (Z×n , ·), du ∈ Z×n and |(xd, du)| =

lcm(m/d, n) = mn/d. Therefore A(u) is a base path in Km×n.

Example 4.6. Again note that 3 is the smallest prime divisor of 21. Let A = [0, 2, 1]15 be a base

path of length 3 in K21, then ∂(A) = ±{2, 20, 14}. Note that 4 is a unit of Z17, so by Lemma 4.5,

A(4) = [(0, 0), (2, 4), (1, 8)](15,12) is a base path of K21×17 with edge length

∂(A(u)) = ±{(2, 4), (20, 4), (14, 4)}.

With Lemmas 4.1, 4.3 and 4.5, we now get a similar result to Theorem 3.19 at the end of

Section 3.2.

Theorem 4.7. Let m and n be positive odd integers, and let p be a prime divisor of m. If n is a

prime power bigger than p, and Km has a cyclic Hamilton cycle decomposition, then Km×n has a

cyclic n-symmetric Hamilton cycle decomposition.

Proof. Let C be a valid set of base paths which give rise to such a cyclic Hamilton cycle

decomposition of Km. Let D be the set of all positive divisors of m. For each divisor d ∈ D, let rd

denote the number of base paths of length d in C. Then, by counting the total number of edge

lengths in Km, we have that
∑

d∈D d · rd = (m− 1)/2. Furthermore, let D1 = {d ∈ D : p | d} and

D2 = {d ∈ D : p - d}. Let C1, C2 be subset of C whose lengths belong to D1 and D2, respectively.

By Theorem 3.10, there exist P, T such that T ⊆ Z×n , P is a partition of Zn \ T and for

each P ∈ P, both |P | = p and
∑

x∈P x ∈ Z×n . Let |P| = ` and |T | = t, then n = `p+ t. Using the
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constructions defined in Lemmas 4.1, 4.3 and 4.5, define

K1 = {A(P )k : A ∈ C1, P ∈ P, k ∈ Zp},

K2 = {A(P ) : A ∈ C2, P ∈ P}, and

K3 = {A(u) : A ∈ C, u ∈ T}.

Let K = K1 ∪K2 ∪K3. We claim that K is a valid set of base paths of Km×n.

By Lemmas 4.1, 4.3, and 4.5, each element in K is a base path. We now need to show

that each edge length in Km×n is used by exactly one base path in the set K. We have that

|∂(Km×n)| = n(m− 1). So,

|∂(K1)| ≤
∑
A∈C1

∑
P∈P

p−1∑
k=0

|∂(A(P )k)| =
∑
A∈C1

∑
P∈P

p−1∑
k=0

2 · (len(A)) =
∑
A∈C1

∑
P∈P

2p · (len(A))

=
∑
A∈C1

2p` · (len(A)) =
∑
d∈D1

2p`d · rd = 2`p
∑
d∈D1

d · rd,

|∂(K2)| ≤
∑
A∈C2

∑
P∈P
|∂(A(P ))| =

∑
A∈C2

∑
P∈P

2 · len(A) =
∑
A∈C2

2` · (len(A)) =
∑
d∈D2

2`pd · rd

= 2`
∑
d∈D2

pd · rd, and

|∂(K3)| ≤
∑
A∈C

∑
u∈T
|∂(A(u))| =

∑
A∈C

∑
u∈T

2 · (len(A)) =
∑
A∈C

2t · len(A)) =
∑
d∈D

2td · rd

= 2t
∑
d∈D

d · rd.

Furthermore,

|∂(K1)|+ |∂(K2)|+ |∂(K3)| ≤

2`p
∑
d∈D1

d · rd

+

2`
∑
d∈D2

pd · rd

+

(
2t
∑
d∈D

d · rd
)

= 2

`p
∑
d∈D1

d · rd +
∑
d∈D2

d · rd

+ t
∑
d∈D

d · rd


= 2

`p ∑
d∈D1∪D2

d · rd + t
∑
d∈D

d · rd

 .
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Base paths Edge lengths

A = [0, 2, 1]15 {2, 20, 14}

B = [0, 6, 15, 12, 16, 11, 3]14 {6, 9, 18, 4, 16, 13, 11}

Table 6. Valid set of base paths for a cyclic decomposition of K21

There are 10 distinct edge lengths in K21 which are accounted for in the base paths of length 3

and 7 given here. This particular example is attributed to Buratti [5].

Continuing with our manipulation, we have that

|∂(K1)|+ |∂(K2)|+ |∂(K3)| ≤ 2

[
`p
∑
d∈D

d · rd + t
∑
d∈D

d · rd
]

= 2

[
(`p+ t)

∑
d∈D

d · rd
]

= 2n
∑
d∈D

d · rd

= 2n

(
m− 1

2

)
= n(m− 1).

Thus, there are at most n(m− 1) distinct edge lengths used by base paths in K. Note that K has

exactly n(m− 1) distinct edge lengths, and is therefore a valid set of base paths of Km×n if and

only if each edge length of ∂(Km×n) appears in K.

Now, we show that every edge length in ∂(Km×n) is used by some base path in K. Let

(x, y) ∈ ∂(Km×n). Then, x ∈ ∂(Km), and so, x ∈ ∂(A) for some A ∈ C, and y ∈ T or y ∈ P for

some P ∈ P. Observe that C = C1 ∪ C2 and C1 ∩ C2 = ∅.

If A ∈ C1 and y ∈ P for some P ∈ P, then (x, y) ∈ ∂(A(P )v) for some v ∈ Zp. If A ∈ C2
and y ∈ P for some P ∈ P, then (x, y) ∈ ∂(A(P )). If y ∈ T , then (x, y) ∈ ∂(A(y)). Thus, all edge

lengths in ∂(Km×n) are used by a base path of K. So K is a valid set of bath paths of Kp×n.

Example 4.8. As demonstrated in preceding examples, we have a cyclic decomposition of K21

with the base paths in Table 6. Observe that len(A) = 3 and len(B) = 7. Let P = {0, 1, 2} and
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consider the partition {P ∪ {{u} : u ∈ Z17\P}} of Z17. Note that the elements of P add to a unit

of Z17, namely 3. Then, we end up with the following sets K1,K2 and K3, given in Table 7, which

give a valid set of base paths for a cyclic 17-symmetric Hamilton cycle decomposition of K21×17.

With the result from the previous theorem, we can now leverage the following theorem by

Buratti [5] in order to reach our main conclusion.

Theorem 4.9. There exists a cyclic decomposition of Km if and only if m is an odd integer and

m 6= 15 or pa for a prime p > 2, a ≥ 2.

The following corollary immediately follows from Theorem 4.9 and Theorem 4.7.

Corollary 4.10. Let m,n be positive odd integers. If m 6= 15 or pa for a prime p > 2, a ≥ 2

and n is a prime power bigger than the smallest prime divisor of m, then Km×n has a cyclic

n-symmetric Hamilton cycle decomposition.
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CHAPTER 5

FUTURE DIRECTIONS

In the course of this work, we were able to find cyclic n-symmetric Hamilton cycle

decompositions of the graph Km×n in cases where m is odd, the part size n is odd and

� m is an odd prime,

� m 6= 15,

� m is not a nontrivial prime power, and

� the smallest prime divisor of m is less than n.

This leaves a lot of cases unresolved. What is left to be investigated are cases when m is not

prime (composite) and in particular when m and n have a factor in common. In an attempt to

build a decomposition of Kpq×n, we derive the following lemma, taking a decomposition of Kp×n,

but could not completely get a valid decomposition of the graph Kpq×n. The proof for the

following lemma is similar to the proof shown in Lemma where the ordinates are switched.

Lemma 5.1. Let p be an odd prime, q a prime power such that q > p, q, p relatively prime and n

an odd integer relatively prime to p and q.

Suppose A is a base path of length p in Kp×n, where

A = [(x0, z0) = (0, 0), (x1, z1), (x2, z2), . . . , (xp−1, zp−1)](0,zp). Define

Aq = [w0, w1, w2, . . . , wpq−1]wpq , where wi = (xri , qi(ri + 1), zri + qizp) for i = qip+ ri, 0 ≤ ri < p.

Then Aq is a base path of length pq in a decomposition of Kpq×n. Observe that

∂(Aq) = ±{(x, y, z) : y ∈ Zq, (x, z) ∈ ∂(A)}.

Despite our best attempts, we could not leverage this to get any substantial results. But

we are hopeful for the future.
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