2,039 research outputs found

    Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

    Get PDF
    We give a fixed-parameter tractable algorithm that, given a parameter kk and two graphs G1,G2G_1,G_2, either concludes that one of these graphs has treewidth at least kk, or determines whether G1G_1 and G2G_2 are isomorphic. The running time of the algorithm on an nn-vertex graph is 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5 time that, for a given graph GG on nn vertices, either concludes that the treewidth of GG is at least kk, or: * finds in an isomorphic-invariant way a graph c(G)\mathfrak{c}(G) that is isomorphic to GG; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes GG together with a tree decomposition of GG of width O(k4)O(k^4). Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for G1G_1 and G2G_2 are equal.Comment: Full version of a paper presented at FOCS 201

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    Mixture Selection, Mechanism Design, and Signaling

    Full text link
    We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function gg from the nn-dimensional hypercube to the bounded interval [1,1][-1,1], and an n×mn \times m matrix AA with bounded entries, maximize g(Ax)g(Ax) over xx in the mm-dimensional simplex. This problem arises naturally when one seeks to design a lottery over items for sale in an auction, or craft the posterior beliefs for agents in a Bayesian game through the provision of information (a.k.a. signaling). We present an approximation algorithm for this problem when gg simultaneously satisfies two smoothness properties: Lipschitz continuity with respect to the LL^\infty norm, and noise stability. The latter notion, which we define and cater to our setting, controls the degree to which low-probability errors in the inputs of gg can impact its output. When gg is both O(1)O(1)-Lipschitz continuous and O(1)O(1)-stable, we obtain an (additive) PTAS for mixture selection. We also show that neither assumption suffices by itself for an additive PTAS, and both assumptions together do not suffice for an additive FPTAS. We apply our algorithm to different game-theoretic applications from mechanism design and optimal signaling. We make progress on a number of open problems suggested in prior work by easily reducing them to mixture selection: we resolve an important special case of the small-menu lottery design problem posed by Dughmi, Han, and Nisan; we resolve the problem of revenue-maximizing signaling in Bayesian second-price auctions posed by Emek et al. and Miltersen and Sheffet; we design a quasipolynomial-time approximation scheme for the optimal signaling problem in normal form games suggested by Dughmi; and we design an approximation algorithm for the optimal signaling problem in the voting model of Alonso and C\^{a}mara

    A Tensor Approach to Learning Mixed Membership Community Models

    Get PDF
    Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced by Airoldi et al. This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model as a special case. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebraic operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. As an important special case, our results match the best known scaling requirements for the (homogeneous) stochastic block model

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    Canonisation and Definability for Graphs of Bounded Rank Width

    Full text link
    We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3k+4)(3k+4) is a complete isomorphism test for the class of all graphs of rank width at most kk. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width kk is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time nf(k)n^{f(k)} for a non-elementary function ff. Our result yields an isomorphism test for graphs of rank width kk running in time nO(k)n^{O(k)}. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.Comment: 32 page
    corecore