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Abstract. Wireless communication is used in many different situations such as
mobile telephony, radio and TV broadcasting, satellite communication, and military
operations. In each of these situations a frequency assignment problem arises with
application specific characteristics. Researchers have developed different modeling
ideas for each of the features of the problem, such as the handling of interference
among radio signals, the availability of frequencies, and the optimization criterion.

This survey gives an overview of the models and methods that the literature
provides on the topic. We present a broad description of the practical settings
in which frequency assignment is applied. We also present a classification of the
different models and formulations described in the literature, such that the common
features of the models are emphasized. The solution methods are divided in two
parts. Optimization and lower bounding techniques on the one hand, and heuristic
search techniques on the other hand. The literature is classified according to the
used methods. Again, we emphasize the common features, used in the different
papers. The quality of the solution methods is compared, whenever possible, on
publicly available benchmark instances.
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1 Introduction

The literature on frequency assignment problems, also called channel assignment
problems, has grown quickly over the past years. This is mainly due to the fast
implementation of wireless telephone networks (e.g., GSM networks) and satellite
communication projects. The renewed interest in other applications like TV broad-
casting and military communication problems also inspired new research. All these
applications lead to many different models, and within the models to many different
types of instances. Nevertheless, all of them share two common features:

1. A set of wireless communication connections (or a set of antennae) must be
assigned frequencies such that data transmission between the two endpoints
of each connection (the transceivers) is possible. The frequencies should be
selected from a given set that may differ among connections.

2. The frequencies assigned to two connections may incur interference to one
another, resulting in quality loss of the signal. Two conditions must be fulfilled
in order to have interference of two signals:
(a) The two frequencies must be close on the Electromagnetic band. Harmonics

may also interfere due to the Doppler effect, but the parts of the Electro-
magnetic band that are generally selected prevent this type of interference.

(b) Connections must be geographically close to each other, so that interfering
signals are powerful enough to disturb the quality of a signal.

Frequency assignment problems (FAPs) first appeared in the 1960s (Metzger
1970). The development of new wireless services such as the first cellular phone
networks led to scarcity of usable frequencies in the radio spectrum. Frequencies
were licensed by the government who charged operators for the usage of each
single frequency separately. This introduced the need for operators to develop fre-
quency plans that not only avoided high interference levels, but also minimized the
licensing costs. It turned out that it was far from obvious to find such a plan. At
this point, operations research techniques and graph theory were introduced. Met-
zger (1970) usually receives the credits for pointing out the opportunities of using
mathematical optimization, especially graph coloring techniques, for this purpose.
Until the early 1980s, most contributions on frequency assignment used heuristics
based on the related graph coloring problem. First lower bounds were derived by
Gamst and Rave (1982) for the most common problem of that time (cf., Sect. 4).
The development of the digital cellular phone standard GSM (General System for
Mobile Communication) in the late 1980s and 1990s led to a rapidly increasing
interest for frequency assignment (see Eisenblätter 2001 for a discussion of the
typical frequency planning problems in GSM networks). But also projects on other
applications such as military wireless communication and radio-TV broadcasting
contributed to the literature on frequency assignment in recent years.

This paper is not the first survey on the frequency assignment problem. Hale
(1980) presented an overview of the frequency planning problems of that time, with
a special focus on modeling the problems. Hale also discussed the relation of the
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FAP with graph (vertex) coloring. In particular, the relation of FAPs with the T -
coloring problem were introduced by Hale. This led to many new (graph-theoretic)
results, in the early 1990s surveyed in Roberts (1991). The survey of Murphey et
al. (1999) also concentrates on the results for coloring generalizations that were
motivated by frequency assignment. In Jaumard et al. (1999), a brief description of
several exact methods is presented. The survey in Koster (1999, Chapt. 2) served as
a starting point of this overview. Finally, Eisenblätter et al. (2002) give an overview
of the evolution of frequency planning from graph coloring and its generalizations
to the models used nowadays, with an emphasis on the GSM practice. The book
by Leese and Hurley (2002) discusses several aspects of spectrum management,
and in particular approaches for frequency planning. In this survey, we also restrict
ourselves to models that are directly motivated from practice, and their solution
methods.

We only discuss Fixed ChannelAssignment (FCA), i.e., static models where the
set of connections remains stable over time. Opposite to FCA, Dynamic Channel
Assignment (DCA) deals with the problem, where the demand for frequencies at
an antenna varies over time. Hybrid Channel Assignment (HCA) combines FCA
and DCA: a number of frequencies have to be assigned beforehand, but space in the
spectrum has to be reserved for the online assignment of frequencies upon request.
We refer to Katzela and Naghshineh (1996) for a recent survey on DCA and HCA.

The focus of this manuscript is mainly on the practical relevance of mathemat-
ical optimization techniques for frequency assignment. In the next section we will
discuss the practical settings of the problem in such a way that the common features
are emphasized. In Sect. 3, we will categorize the models in four standard classes.
These categories mainly differ in the objective to be optimized. For each of the
models, the subsequent sections will discuss:

1. structural properties of the models, including bounding techniques based on
(combinatorial) relaxations (Sect. 4),

2. exact optimization methods, such as branch-and-cut, branch-and-price, and
combinatorial enumeration (Sect. 4 as well), and

3. heuristic methods, such as local search (including simulated annealing and tabu
search), genetic algorithms, neural networks, constraint programming, and ant
colony algorithms. (Sect. 5).

Although we invested much effort in collecting as many papers on the topic as
possible, it is impossible to guarantee completeness. Moreover, new publications
will reduce the actuality of this survey. Therefore, this survey is accompanied by
the web site FAPweb (2000–2003) (http://fap.zib.de) that contains an overview of
the results for the available benchmark instances. Moreover, all discussed papers
are summarized in a schematic way at this web site. This overview of results and
the digest on frequency assignment literature will be regularly updated. This site
also serves as a platform for announcing new papers on frequency assignment.
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2 Practical applications

This section starts with a description of the most important aspects of frequency
assignment, namely the availability of frequencies and the ways of handling inter-
ference. Then an overview of situations in which frequency assignment problems
occur is provided, including application specific characteristics.

2.1 Availability and interference of frequencies

The availability of frequencies from the radio spectrum is regulated by the na-
tional governments, and world-wide by the International Telecommunication Union
(ITU). Operators of wireless services are licensed to use one or more frequency
bands in specific parts of a country. The frequency band [fmin, fmax] available to
some provider of wireless communication is usually partitioned into a set of chan-
nels, all with the same bandwidth � of frequencies. For this reason the channels
(actually the channels are often called frequencies) are usually numbered from 1 to
a given maximum N , where N = (fmax −fmin)/�. The available channels are de-
noted by F = {1, . . . , N}. If more than one frequency band is available each band
has its own set of consecutively numbered channels. For a particular connection or
antenna not all channels from F might be available. For instance, if a connection is
close to the border of a country, division rules between the countries involved may
lead to a substantial reduction in channel availability.

Therefore, the channels available for a connection or antenna v form a subset
F(v) of F .

Interference of signals is measured by the signal-to-noise ratio, or interference
ratio, at the receiving end of a connection. There, the signal of the transmitting end
should be clearly understandable. The noise comes from other signals broadcasted
at interfering frequencies. In general, the level of interference rapidly decreases
with the distance between the frequencies. The actual signal-to-noise ratio at a
receiver depends not only on the choice of frequency, but also on the strength of
the signal, the direction it is transmitted to, the shape of the environment, and even
weather conditions. It is therefore hard to obtain an accurate prediction of the signal-
to-noise ratio at receivers. A first simplification is to ignore the environment and
assume an omni-directional antenna. Now, consider two signals, one original and
some other signal transmitted at the same frequency channel. Then the interference
of the second signal at the receiver of the first signal is computed with the following
formula: P

dγ where P is the power of the interfering transmitter and d its distance
to the disturbed receiver. γ is a fading factor with values between 2 and 4. Its
value depends on the frequency used. For instance the 1800 MHz band frequencies
fade faster than the 900 MHz band frequencies both used in GSM networks. If
the second signal is transmitted on a frequency at a distance of n ≥ 1 units from
the original signal, then an additional filtering factor of −15(1 + log2 n) dB is
taken into account (see Dunkin and Allen 1997). There may be more than one
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source that transmits on the same or a close frequency and thus contributes to the
total noise experienced at the receiver. The fact that multiple signals may disturb
communication quality is ignored in most models where only interference between
pairs of connections or antennae is measured. Notable exceptions are Fischetti et
al. (2000), in which constraints are developed to determine the total interference
from neighboring connections, and Dunkin et al. (1998), where combinations of
frequencies for more than two transmitters are forbidden. We will generally ignore
multiple interference. So it becomes a binary relation: only two connections or
antennae are involved.

In mobile telephony and radio-TV broadcasting, the receivers are spread within
a certain area. The standard approach of determining signal strength at all locations
in the area is the following.

1. A grid of squares of predetermined (small) size, the test points or pixels, is
designed to overlap the area.

2. For each test point, the levels of the received signals generated by the serving
transmitter, typically the one with the strongest received signal (best server),
and by the interfering transmitters are predicted with a wave propagation model.
Test points with same best server can be clustered to service areas, resulting in
pictures like the one in Fig. 1.

3. For a single transmitter A, and a given interfering transmitter B, the noise
generated by B in each pixel of the service area of A is aggregated to a single
value, which represents the interference of B over A.

The way noise is predicted and aggregated strongly depends on the application
considered. For precise descriptions of wave propagation models used for this task,
see Correia (2001).

In the past, more simplified prediction models were used: a standard approach
was to use a grid of hexagons overlapping the area of interest and to consider the
transmitters to be located at the center of each hexagon. The well-known Philadel-
phia instances (cf., Sect. 2.2) have this structure (see Fig. 4, p. 269). In the basic
model for the hexagonal grids, interference of cells is characterized by a co-channel
reuse distance d. No interference occurs if and only if the centers of two cells have
mutual distance ≥ d . In case the mutual distance is less than d (normalized by
the radius of the cells), it is not allowed to assign the same frequency to both
cells. This pure co-channel case is generalized by replacing the reuse distance d

by a series of non-increasing values d0, . . . , dk and corresponding forbidden sets
T 0 ⊆ . . . ⊆ T k . The following relation holds:

Tvw = T j−1 whenever dj ≤ dvw < dj−1, j ∈ {1, . . . , k}
where dvw is the distance between the cell centers and Tvw denotes the set of for-
bidden differences for frequencies assigned to v and w, i.e., |fv − fw| �∈ Tvw.
For the variations of the original Philadelphia instance, the sets T j are taken as
T j = {0, . . . , j}. For example, the values d0, . . . , d5 are 2

√
3,

√
3, 1, 1, 1, 0. So,
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Fig. 1. Best-server areas in a GSM network. Provided by E-Plus Mobilfunk GmbH
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Fig. 2. Example of reuse distances in hexagonal cell networks. The values denote the minimum separation
distance in relation to the central cell

frequencies assigned to the same site should be separated by at least 4 other frequen-
cies, whereas frequencies assigned to adjacent sites should be at a distance of at least
2, and frequencies assigned to a second and third ‘ring’ of cells should still differ,
see Fig. 2. In case Tvw = {0, . . . , j}, alternatively the notation |fv −fw| ≥ δ(v, w)

is used where δ(v, w) = j + 1, the minimum required difference.
A final aspect to be taken into consideration is two-way traffic. Except for radio

and TV broadcasting all traffic is bidirectional, and one needs two channels, one
for each direction. In the models considered in the literature the second channel
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Fig. 3. Example of asymmetric interference for bidirectional wireless communication

is almost always ignored, with a notable exception in military applications, see
Sect. 2.2. The reasons for ignoring this aspect of the FAP depend on the application.
In most applications two bands of N channels are available: one with the channels
{1, . . . , N}, and one with the channels {s +1, . . . , s +N}, where s � N . Thus, the
backward connection uses a channel which is shifted s channels up. The choice of s

prevents any interference of backward channels with forward channels. Moreover,
the symmetry of the solution for the backward channels, with the forward channels
(plus s channels) leads to (almost) the same interference pattern for the backward
channels. If these conditions are not fulfilled, two-way traffic can not be ignored,
since interference need not be symmetric. The next example shows that the above
conditions are not sufficient for symmetric interference. Consider the geographic
positioning of transmitters in Fig. 3. Suppose transceiver pair (a, b) transmits on
frequencies f from a to b and f + s from b to a, and another transceiver pair
(c, d) transmits on frequencies g from c to d and g + s from d to c where f and
g interfere, and f + s and g + s interfere. Now signal strength of g at a is much
higher than signal strength of g + s at b, since the receivers have different distances
to c and d. Since in most models the assignment of frequencies to the backward
direction is ignored, this aspect is not taken into account.

In mobile telephone networks, the backward interference is not employed for
a supplementary reason: the location of the transmitters (the mobile users) is not
static but varies over time, which makes it almost impossible to give an accurate
prediction of the interference at the receiving end (base station).

Also in mobile telephone networks, in particular in GSM networks, the tech-
nique of frequency hopping has been introduced to reduce the influence of inter-
ference. Frequency hopping permits a transmitter to change the frequency of the
signal according to a sequence of assignment frequencies. By rapidly changing
the frequency for transmission, the overall interference level can be reduced. In
general, still a generalized frequency assignment problem has to be solved. For
more information about frequency hopping, we refer to Gamst (1991); Yuan et al.
(2002); Nielsen and Wigard (2000). In Yuan et al. (2002), a model is introduced
that is conceptually equivalent to the ones used here.
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2.2 Applications

There are various models and problem instances. The practical setting can vary
enormously. This leads not only to different variants of the above model, but also
to different instance types, see Hale (1980). Some of the settings are given below.

Mobile telephony. In this application one of the endpoints of the connection is
a fixed antenna, and the other endpoint is a mobile phone. Each antenna covers
a certain area, where it can pick up signals from mobile phones. Each antenna
covers a specific region (cell) and can serve several mobile units simultaneously. In
particular, in TDMA (Time Division Multiple Access) each available frequency can
be used to serve several different mobile units; in addition, multiple frequencies can
be assigned to the same antenna (by the use of multiple transmitter/receiver units,
TRXs), so that the number of different mobile units that are served can be very
large. More antennae are then mounted on a same physical support (site) to cover a
number of adjacent regions. In GSM networks, typically 8 units (channels) can be
served simultaneously using TDMA, by one TRX. Up to 12 TRXs can be installed
on an antenna. Note that TRXs using the same antenna have high interference
restrictions. For more details, we refer to Eisenblätter (2001).

The frequencies assigned to each antenna must satisfy a number of require-
ments that depend on (i) availability, especially at country borders; (ii) interference
levels; (iii) technological requirements; and (iv) size of the area with unacceptable
interference. Four types of constraints can be specified.

Co-cell separation constraint. The frequencies assigned to the same antenna v

must differ by at least δ(v, v) units (typically δ(v, v) = 3).

Co-site separation constraint. If u and v are co-site antennae, then typically
δ(u, v) = 2.

Interference constraint. Due to interference, additional separations can be required
between pairs of antennae not at the same site. Typically, such pairs u and v should
have different frequencies, i.e., δ(u, v) = 1, or frequencies at distance at least 2.

Constraints that forbid two cells to use the same frequency are often called
co-channel constraints. Constraints that forbid frequencies with distance 1, usually
including distance 0, are called adjacent channel constraints.

Hand-over separation constraint. As the mobile unit moves from a cell u to an
adjacent one v, control must be switched from u to v (hand-over or hand-off ),
which in turn requires that the broadcasting frequencies used by u and v to serve
the mobile, differ by at least one unit. Note that the actual situation, in for instance
GSM networks, is more complicated, since the control channels (BCCH) need more
protection. This is in some countries translated into a desired distance of 2.

There are several sets of instances available from the literature. The most used
sets are the following.
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Fig. 4a,b. Hexagonal grid used in the Philadelphia instances. a network structure, b frequency demand
of instance P1

Philadelphia. The Philadelphia instances were among the first discussed in the liter-
atureAnderson (1973). The Philadelphia instances are characterized by 21 hexagons
denoting the cells of a cellular phone network around Philadelphia, see Fig. 4. Until
recently, it was common practice to model wireless phone networks as hexagonal
cell systems. Each cell needs a high number of frequencies, the “multiplicity” of
the cell. An overview of the results can be found at FAPweb (2000–2003).

COST 259. In the context of the COST (COoperation européenne dans le domaine
de la recherche Scientifique et Technique) 259 project (financially supported by
the European Union), 32 instances for GSM network planning have been made
available. The number of antennae that have to be assigned frequencies ranges
from 900 up to almost 4000. Up to 75 frequencies are available at each vertex. The
instances are available at FAPweb (2000–2003) together with an overview of the
results. More information on the project can be found in the final report Correia
(2001).

CSELT. The CSELT instances have been used by Fischetti et al. (2000) and by
Mannino and Sassano (2003). These instances have co-channel constraints and
adjacent channel constraints. Besides these constraints, multiple interference of
antennae is bounded from above by a threshold value L.

CNET. Instances from the French National Research Center for Telecommunica-
tions (CNET) have been used in papers by Doren and Hao (1995, 1996, 1998); Hao
and Dorne (1996); Hao et al. (1998). The number of cells is at most 300. To each
vertex, one or two frequencies have to be assigned.
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CNET 2. Another instance that was also made available by Caminadea (2000) deals
with GSM frequency planning. The instance contains raw data about locations of
antennae and propagation of the signals.

Bell Mobility. Instances provided by Bell Mobility for two Canadian urban areas are
made available at (BellMobility website, 1998). The problems differ in size from
almost 700 to more than 5000 transmitters. The instances are used by Jaumard et
al. (1998, 1999, 2002).

Besides these “realistic” instances, Castelino et al. (1996) discussed 6 computer
generated instances that have constraints with comparatively high frequency dis-
tances among neighboring antennae, and are fairly large with respect to the number
of antennae. For every antenna, 50 frequencies are available.

Most of the above mentioned sets of instances consider frequency domains that
do not depend on the vertices. The domains are usually represented by one or two
sets of consecutive integers. Depending on the objective, the size of this set may
vary.

Radio and television. These applications essentially resemble the mobile phone
instances. The major difference lies in the used frequency distances. Instances
provided by a major Italian radio broadcasting company were made available at
(RADIO website, 1998). Results for these instances are presented by Mannino and
Sassano (2003).

There is one set of instances available for UHF TV broadcasting in which the
constraints forbid certain differences in frequencies which are not consecutive. For
instances, frequency distances 1, 2, 5, and 14 are forbidden. The practical cause is
the frequency band itself, which includes higher harmonics of the frequencies.

Military applications. The usage of field phones (or air phones) in the military
leads to dynamic (in time and place) frequency assignment problems. These prob-
lems have the property that each connection consists of two movable phones. To
each connection we must therefore assign two frequencies at a fixed distance of
each other, one for each direction of communication. Thus, all frequencies are given
in pairs with this fixed distance between them.

In the context of the EUCLID CALMA (Combinatorial ALgorithms for Mil-
itary Applications) project (see CALMA website, 1995), eleven static real-life
instances were provided by CELAR (Centre d’ELectronique de l’ARmement,
France), whereas a second set of 14 artificial instances was made available by
a group at Delft University of Technology. These GRAPH (Generating Radio Link
FrequencyAssignment Problems Heuristically) instances were randomly generated
by van Benthem (1995), and have the same characteristics as the CELAR instances.
There are instances in the CALMA project available that vary over the complete
range of models as discussed later. A description of the results achieved in the
CALMA project can be found in Aardal et al. (2002) or Cabon et al. (1999). The
results are summarized at FAPweb (2000–2003).
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The instances of the ROADEF Challenge 2001 (see ROADEF website, 2000)
are also made available by CELAR and can be viewed as a follow-up of the CALMA
project. The frequency assignment problem is extended with polarization con-
straints. For every connection, a polarization direction (horizontal or vertical) is
to be chosen. The interference depends not only on the assigned frequencies but
also on the choices for polarization.

Satellite communication. In Thuve (1981), a frequency planning problem in
satellite communication is discussed. In this application, both the transmitters and
receivers are ground terminals. They communicate with each other with the help of
one or more satellites. Each signal is first transmitted via an uplink to the satellite
and next transmitted by the satellite via a downlink to the receiving terminal. The
uplink and downlink frequency are separated by a fixed distance, much larger than
the bandwidth, which implies that we only have to assign frequencies to the uplink.
A set of consecutive frequencies has to be assigned to every transmitter. To avoid
interference, every frequency may be used only once. Due to the nature of these
constraints the problem does not really fit in the classification presented in the next
section.

3 Formulations and classification

The basic frequency assignment problem consists of assignment constraints, inter-
ference constraints (usually packing constraints), and an objective. In this section,
we first formulate the basic constraints. In the successive subsections we classify
the problem variants, mainly by way of distinct objectives.

The frequency assignment models of Sect. 2 generally have a predefined set of
frequencies, denoted by F . For every antenna or connection v, a subset F(v) ⊆ F of
available frequencies is specified, from which a subset of m(v) frequencies must be
assigned to v. Generally, the multiplicity m(v) is equal to one. Higher multiplicities
arise in mobile telephony applications, where an antenna represents a cell that may
contain multiple transmission units.

A convenient representation of interference is by means of a graph G = (V , E),
the interference graph or constraint graph. Each antenna is represented by a vertex
v ∈ V . Two vertices v and w for which the corresponding signals may interfere
for at least one pair of transmitting frequencies, are connected by an edge vw ∈
E. Multiple frequencies to be assigned to single antennas can be represented by
splitting the antenna vertices into a number of copies equal to the desired multiple.
Clearly, this may blow up the size of the interference graph, and therefore in some
methods we prefer to work with multiplicities on the antenna nodes directly. This
extended graph is referred to as the split interference graph. Note that loop edges
in this graph represent the distance requirements of frequencies assigned to the
same vertex. In Fig. 5, an example of an interference graph from the CALMA
project (CALMA website 1995) is given.
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Fig. 5. Interference graph of CALMA instance CELAR06

For each pair of frequencies f ∈ F(v) and g ∈ F(w) we penalize the combined
choice by a measure depending on the interference level. This penalty is denoted
by pvw(f, g) or pvwfg . In most models this penalty has a very specific structure: it
depends only onv andw and the distance between the frequencies |f −g|. FAPs with
this structure are called distance FAPs henceforth. Two variants occur frequently in
the literature. In the first variant a distance dvw is introduced such that the penalty
pvw is incurred if the choices of f and g are such that |f − g| < dvw. Note that
by selecting very high penalties pvw the distance requirements can turn into hard
constraints. In the second variant only a co-channel penalty p0 (if |f −g| = 0) and
an adjacent channel penalty p1 (if |f − g| = 1) are incurred, where p0 > p1 ≥ 0.

In many studies the penalty matrices are not used in all detail, but a certain
threshold value pmax of interference is allowed. The threshold value corresponds
to an acceptable signal-to-noise ratio. This reduces the interference constraints to
forbidding certain combinations of frequencies. Moreover, the problem reduces to
a binary Constraint Satisfaction Problem (CSP). In case pvw(f, g) only depends
on the distance |f − g|, this leads, combined with a threshold value, to a set of
forbidden distances Tvw. This problem is equivalent to the T -coloring problem,
see Roberts (1991), where colors are numbers and certain differences between
numbers are forbidden for adjacent vertices. Generally, but not necessarily, the
forbidden distances form a set of consecutive integer numbers {0, 1, . . . , dvw − 1}.
In case they do, we will refer to the problem as distance FAP.
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The mathematical programming formulation of the FAP consists of a set of
variables, constraints, and an objective function. A straightforward choice for the
variables is to use binary variables representing the choice of a frequency for a
certain vertex. For every vertex v and available frequency f ∈ F(v) we define:

xvf =
{

1 if frequency f ∈ F(v) is assigned to vertex v ∈ V

0 otherwise

These variables have been used by the majority of the researchers. They lead to
Integer Linear Programming (ILP) formulations with a large number of variables,
that can be solved by Branch-and-Cut methods, for instance. More compact for-
mulations are obtained by using variables fv for the choice of frequency for vertex
v ∈ V . They lead, however, to nonlinear programs which are hard to solve. More-
over, they have the disadvantage that only one frequency can be assigned to a
vertex. Therefore, we will not consider these formulations. Other formulations and
techniques, such as column generation are discussed at the end of this section.

The requirement that m(v) frequencies have to be assigned to a vertex v is
modelled by the following constraints, the multiplicity constraints:

∑
f ∈F(v)

xvf = m(v) ∀v ∈ V (1)

The penalty matrices pvw are often used in combination with a threshold value
pmax. Pairs of frequencies with a penalty exceeding this threshold are forbidden.
This is modelled by the following packing constraints:

xvf + xwg ≤ 1 ∀vw ∈ E, f ∈ F(v), g ∈ F(w) :
pvw(f, g) > pmax

(2)

When there is no further objective to be optimized, we obtain the so-called feasibility
frequency assignment problem (F-FAP). Here, we only intend to find a feasible
solution to the FAP, i.e., a solution satisfying the constraints (1) and (2).

In the sequel we consider a variety of objectives for this model. If no feasible
solution exists to F-FAP, the next best thing is to assign as many frequencies as
possible. A way to do this cleverly is minimize the probability that a call will be
blocked in any of the vertices. Other objectives aim at optimizing operating costs
by minimizing the number of frequencies used (until the 1970s), or minimizing the
bandwidth used (highest minus lowest frequency).All these models use, besides the
multiplicity constraints, packing constraints. In case the penalty matrices are used
directly, we generally wish to minimize the total penalty incurred. In this model, the
packing constraints are replaced by a version that incorporates penalty for certain
choices of combinations of frequencies.
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3.1 The maximum service
and minimum blocking frequency assignment problems

If feasible solutions to the F-FAP are not available or difficult to find, we can
decide to find a partial solution that assigns as many frequencies as possible to the
vertices. This problem is known as the Maximum Service FAP, or shortly Max-
FAP. Basically, this problem is an F-FAP extended with the objective to assign as
many frequencies as possible. To model the problem we introduce the numbers
n(v) (v ∈ V ), which denote the number of frequencies assigned to vertex v ∈ V .

max
∑
v∈V

n(v) (3)

s.t.
∑

f ∈F(v)

xvf = n(v) ∀v ∈ V (4)

n(v) ≤ m(v) ∀v ∈ V (5)

xvf + xwg ≤ 1 ∀vw ∈ E, f ∈ F(v), g ∈ F(w) :
pvw(f, g) > pmax

(6)

xvf ∈ {0, 1} ∀v ∈ V, f ∈ F(v) (7)

n(v) ∈ Z+ ∀v ∈ V (8)

In contrast to the formulation of F-FAP, the multiplicity constraints (1) need not be
satisfied with equality anymore. The objective (3) ensures that as many frequencies
as possible are assigned. Jaumard et al. (1998, 2002) observed that optimal solutions
to the Max-FAP tend to assign very few frequencies to some “difficult” vertices,
whereas most other vertices obtain all demanded frequencies. Such solutions are not
desirable, since this incurs extremely low service in some areas. To cope with this
problem, Jaumard et al. introduce a lower bound l(v)on the number of frequencies to
be assigned to each of the vertices v to obtain a minimum service guarantee: l(v) ≤
n(v) ∀v ∈ V . A more realistic way to cope with this problem is to compute the
actual blocking probabilities in the vertices as a function of the number of assigned
frequencies n(v). This approach has been modeled independently by Mathar and
Mattfeldt (1993), and Chang and Kim (1997), who use a weighted combination
of blocking probabilities in the objective function. This problem is known as the
Minimum Blocking Frequency Assignment Problem (MB-FAP). Here, we follow
the approach taken by Chang and Kim (1997). Let λv denote the traffic demand
in Erlang for cell v, and n(v) the number of assigned channels. Then the blocking
probability of cell v is given by the Erlang B formula as

B(λv, n(v)) =



n(v)∑
k=0

(λv)
k

k!




−1
(λv)

n(v)

n(v)!

This function describes the blocking probability for voice traffic with negative
exponential distribution of the call inter-arrival time. Note thatB(λv, n(v)) is strictly
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decreasing and convex in n(v). Now, the objective function is a weighted average
of the blocking probabilities of all vertices v, given by

∑
v∈V

wvB(λv, n(v)) (9)

with wv = λv/
∑

u∈V λu being the traffic weighting factor. In contrast to (3), the
objective function (9) is to be minimized. Note that the objective of Max-FAP can
be viewed as a simplification of this objective: wv = 1, and B(λv, n(v)) is replaced
by m(v) − n(v), a linear decreasing function.

Moreover, note that the upper bounds (5) on the number of assigned frequencies
are fairly superficial in this model. Their only relevance may come from practical
considerations such as a maximum amount of space to install the transmitters. If
space is not an issue, by removing the multiplicity constraints one may obtain even
better solutions with respect to the objective (9).

3.2 The minimum order FAP

If feasible solutions to the F-FAP exist, then we may look for a “cheapest” of the one.
The earliest attempt to do so (see Hale 1980), penalizes the usage of frequencies.
Thus, the number of different frequencies used should be minimized. This objective
dates back to the introduction of mobile telephones in the early seventies, when
frequencies were sold per unit and were very expensive. The model is called the
minimum order FAP, or shortly MO-FAP.

To formulate the objective, we need extra variables to denote whether a fre-
quency is used or not.

yf =
{

1 if frequency f ∈ F is used
0 otherwise

Then, MO-FAP is formulated as follows

min
∑
f ∈F

yf (10)

s.t. xvf ≤ yf ∀v ∈ V, f ∈ F(v) (11)∑
f ∈F(v)

xvf = m(v) ∀v ∈ V (12)

xvf + xwg ≤ 1 ∀vw ∈ E, f ∈ F(v), g ∈ F(w) :
pvw(f, g) > pmax

(13)

xvf ∈ {0, 1} ∀v ∈ V, f ∈ F(v) (14)

yf ∈ {0, 1} ∀f ∈ F (15)

We introduce (11) to force a y-variable to one in case the corresponding frequency
is used. The objective (10) determines the number of used frequencies. Note that
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constraints (11) are node packing constraints: using the complement of the y-
variables gives xvf + ȳf ≤ 1. Note that the distance MO-FAP reduces to the
standard vertex coloring problem if all distances are equal to 1, and all vertex
domains are the same set of consecutive integers (see Cozzens and Roberts 1982).

3.3 The Minimum Span Frequency Assignment Problem

In the Minimum Span Frequency Assignment Problem (MS-FAP), one is supposed
to pay for the full set of frequencies between the highest and lowest ones used.
Thus, the difference between the maximum and minimum used frequency, the
span, determines the cost and is therefore to be minimized. To model this problem
we introduce two new integer variables, compared to MO-FAP, which denote the
largest frequency used zmax, and the smallest frequency used zmin. The MS-FAP
then reads

min zmax − zmin (16)

s.t.
∑

f ∈F(v)

xvf = m(v) ∀v ∈ V (17)

xvf + xwg ≤ 1 ∀vw ∈ E, f ∈ F(v), g ∈ F(w) :
pvw(f, g) > pmax

(18)

zmax ≥ fyf ∀f ∈ F (19)

zmin ≤ fyf + fmax(1 − yf )∀f ∈ F (20)

xvf ≤ yf ∀v ∈ V, f ∈ F(v) (21)

xvf ∈ {0, 1} ∀v ∈ V, f ∈ F(v) (22)

yf ∈ {0, 1} ∀f ∈ F (23)

zmin, zmax ∈ Z+ (24)

where fmax = maxf ∈D f is the maximum available frequency. The constraints (19)
and (20) guarantee that these variables are set to the right values. Note that the second
term in the right hand side of (20) is necessary to allow for unused frequencies in
F below zmin.

An alternative formulation has been presented by Giortzis and Turner (1997).
They introduce binary variables instead of zmax and zmin. Besides the standard
constraints (1) and (2) the new variables introduce additional constraints to set
them to the right values.

uf =
{

1 if frequency f ∈ F is the highest one used
0 otherwise

lf =
{

1 if frequency f ∈ F is the lowest one used
0 otherwise
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With these variables, MS-FAP alternatively reads

min
∑
f ∈F

f uf −
∑
f ∈F

f lf (25)

s.t.
∑

f ∈F(v)

xvf = m(v) ∀v ∈ V (26)

xvf + xwg ≤ 1 ∀vw ∈ E, f ∈ F(v), g ∈ F(w) :
pvw(f, g) > pmax

(27)

∑
f ∈F

uf = 1 (28)

∑
f ∈F

lf = 1 (29)

xvf + ug ≤ 1 ∀v ∈ V, f ∈ F(v), g ∈ F : f > g (30)

xvf + lg ≤ 1 ∀v ∈ V, f ∈ F(v), g ∈ F : f < g (31)

xvf ∈ {0, 1} ∀v ∈ V, f ∈ F(v) (32)

uf ∈ {0, 1} ∀f ∈ F (33)

lf ∈ {0, 1} ∀f ∈ F (34)

Constraints (28) and (29) ensure that there is a unique largest and a unique smallest
frequency. Constraints (30) forbid to assign frequencies higher than the maximum,
whereas (31) forbid to assign frequencies smaller than the minimum.

In Minimum Span FAPs often a set of frequencies {1, . . . , fmax} is available
for all vertices, i.e., F(v) = {1, . . . , fmax} ∀v ∈ V . This allows us to set the lower
bound to 1, i.e., zmin = 1 or lf = 1, in the above MS-FAP model. Thus, minimizing
the span is equivalent to minimizing the maximum frequency assigned. In other
words, fmax is determined as the minimum frequency for which the MS-FAP has
feasible solutions. Doing so with binary search or related techniques F-FAPs or
Max-FAPs occur as subproblems.

For the case F(v) = {1, . . . , fmax} yet another formulation is possible. This
formulation bases on the formulation of the MO-FAP. Besides the constraints (11)–
(15), we introduce the constraints

yf +1 ≤ yf ∀f, f + 1 ∈ F (35)

Then minimizing the span is equivalent to

min
∑
f ∈F

yf (36)

This formulation was proposed by Baybars (1982) and was probably the first integer
linear programming formulation for MS-FAP. It is based on the formulation for
graph coloring introduced by Christofides (1975).

In case of the distance MS-FAP (MS-FAP with hard distance constraints only),
a linear ordering of the vertices can be associated with every frequency assignment.
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In particular, let σ be a linear ordering on the vertices of G. Then the canoni-
cal assignment of σ = {v1, . . . , vn} is a feasible frequency assignment with the
property that the frequency assigned to vj is the smallest feasible frequency after
v1, . . . , vj−1 have been assigned. In particular, denoting by d(v, w) the minimum
distance required between a frequency assigned to v and a frequency assigned to
w, then the canonical assignment f1, . . . , fn corresponding to the linear ordering
σ = {v1, . . . , vn} can be obtained by means of the following recursive equations:

f1 = 1 (37)

fk = min{f ≥ 1 : |f − fr | ≥ δ(vr , vk), r = 1, . . . , k − 1}, k = 2, . . . , n.

(38)
Note that among all linear orderings, there is one for which the canonical assignment
provides the optimal solution to the MS-FAP, since each assignment gives rise to
an ordering of the vertices analogous to the ordering of the assigned frequencies.

The relation between MO-FAP and MS-FAP is fairly intimate as follows directly
from their formulations. Essentially, the two models only differ by their objective
function. In fact, the models coincide under the right circumstances. If we restrict
our instances to having co-channel interference constraints only, both problems be-
come standard (list-)coloring problems (Erdös et al. 1979; Vizing 1965). However,
in general a minimum span optimal solution for a problem does not necessarily use
a minimum number of frequencies, and vice versa, see Hale (1980) or Eisenblätter
et al. (2002) for examples.

3.4 The minimum interference frequency assignment problem

So far, all models simplified the interference data from the penalty matrices, by
using them to forbid certain choices of pairs of frequencies. A way to use the
penalty data completely is to introduce an objective that minimizes the sum of the
penalties incurred by the frequency choices. This is done in the so-called Minimum
Interference Frequency Assignment Problem, MI-FAP.

min
∑

vw∈E

∑
f ∈F(v),g∈F(w)

pvwfgxvf xwg (39)

In some instances from the CALMA project, (cf., CALMA website, 1995), this
objective is extended by penalties for the choices of certain frequencies f for v,
denoted by qvf . This leads to an extra term in the objective

∑
v∈V,f ∈F(v) qvf xvf ,

which will be ignored in this section.
Note that the objective contains the quadratic terms xvf xwg , resulting in a

standard (non-convex) quadratic formulation, cf. Padberg (1989), and Warners et
al. (1997). To linearize these terms, we define the variables zvwfg = xvf xwg , i.e.,

zvwfg =
{

1 if xvf = xwg = 1
0 otherwise
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To ensure that zvwfg obtains the right value we add the following constraints to the
formulation.

xvf + xwg ≤ 1 + zvwfg ∀vw ∈ E, f ∈ F(v), g ∈ F(w) (40)

and if necessary

zvwfg ≤ xvf , xwg ∀vw ∈ E, f ∈ F(v), g ∈ F(w) (41)

The constraints (41) are usually enforced by (40) and the objective function: if
pvwfg > 0, then zvwfg is minimized to max(0, xvf + xwg − 1). The problem
with this linearization is that its LP-relaxation is weak. For fractional x-variables,
the corresponding z-variable can be small. Fortunately, by using the multiplicity
constraints we can replace (and strengthen) the inequalities (40) and (41) with

∑
g∈F(w)

zvwfg = m(w)xvf ∀{v, w} ∈ E ∀f ∈ F(v) (42)

These constraints are valid by the definition of zvwfg and the multiplicity con-
straints (1):

∑
g∈F(w)

zvwfg =
∑

g∈F(w)

xwgxvf =

 ∑

g∈F(w)

xwg


 xvf = m(w)xv,f

On the other hand they imply the definition of the z-variables, i.e., zvwfg = xwgxvf .
If xvf = 0 or xwg = 0, then the corresponding variable zvwfg is also equal to 0.
Now suppose xvf = 1. For w, there exist m(w) frequencies g with xwg = 1.
Therefore, to satisfy (42) all corresponding zvwfg should be 1.

3.5 Additional features

There are many more features that can be added to the models presented here, but
perhaps the most valuable issue from a practical point of view is the handling of
interference caused by multiple sources. The version that we treat here originates
from Fischetti et al. (2000) and is also used by Mannino and Sassano (2003).

The idea is to introduce a local threshold for the interference induced on a
vertex v by its neighbors, for each frequency f ∈ F(v). If the noise produced by
all neighboring vertices N(v) = {w : vw ∈ E} on a frequency f for v is to be
taken into account, we can do so by introducing the following constraints where
Lvf is an upper bound on the penalty for v if frequency f is chosen:

∑
w∈N(v)

∑
g∈F(w)

pvwfgxwgxvf ≤ Lvf xvf ∀v ∈ V, ∀f ∈ F(v) (43)
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We can linearize this constraint by use of an upper bound on the possible interference
for any vertex and any frequency, say M .

∑
w∈N(v)

∑
g∈F(w)

pvwfgxwg ≤ Lvf + M(1 − xvf ) ∀v ∈ V, ∀f ∈ F(v) (44)

Within the CSELT instances of Fischetti et al. (2000) and Mannino and Sassano
(2003) only co-channel and adjacent channel interference is penalized. Co-channel
interference is penalized with Ivf , and adjacent channel interference is penalized

with
Ivf

NFD
, where NFD is a reduction factor called the Net Filter Discriminator.

The upper bound on allowable interference, L, is fixed for each vertex frequency
pair (v, f ).

∑
w∈N(v)

Ivf xwf + Ivf

NFD
(xw,f −1 + xw,f +1) ≤ L + M(1 − xvf ) ∀v ∈ V,

∀f ∈ F(v)

(45)

If f − 1 or f + 1 do not exist, e.g., in case f is on the border of the spectrum, then
the corresponding x-variables should be removed. The constraints (45) are difficult
to handle in most optimization methods. Therefore, some authors use other ways to
take multiple interference into account. For instance, Dunkin et al. (1998) introduce
besides forbidden combinations for pairs, forbidden combinations of frequencies
for triples of vertices.

3.6 Formulation variants

Alternative mathematical programming formulations have been proposed in the
literature. These formulations are first and for all used to specify the problem at
hand. Typically, heuristics inspired by the formulation are explored to solve the
problem. In this section, we discuss two such formulations: a column generation
one, and the orientation formulation.

3.6.1 Column generation

Jaumard et al. (2002) develop two column generation formulations for the Max-
FAP. They consider co-cell distance constraints, and co-channel and adjacent chan-
nel constraints.All vertices have the same frequency domains.As mentioned earlier,
besides upper bounds, additional lower bounds on the frequency demand (multi-
plicity) of cells are added to the formulation.

The first formulation is based on a column generation formulation for col-
oring, such as given in Mehrotra and Trick (1996). The variables correspond to
independent sets in the interference graph, i.e., to vertices that may obtain the same
frequency simultaneously. For each frequency f these independent sets are denoted
by Tf . Note that these sets may differ per frequency, since the frequency domains
for the vertices may differ. Let zt be a binary variable denoting whether or not
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t ∈ Tf is chosen. To model the constraints and the objective of the Max-FAP with
these variables, we use the relation xvf = ∑

t∈Tf :v∈t zt . To ensure that frequency
f is chosen at most once we add

∑
t∈Tf

zt ≤ 1. Note that this formulation can
also be used for the MO- and MS-FAP: for MO-FAP the latter constraints become∑

t∈Tf
zt = yf . Jaumard et al. (2002) solve the LP-relaxation of this formulation

with column generation techniques (the pricing problems are weighted indepen-
dent set problems), and they describe branching strategies as well as cut generation
schemes. The authors use their method as a heuristic.

The second formulation is based on admissible sets of frequencies for separate
cells. The variables correspond to sets of frequencies that can be assigned to a certain
cell. For each cell v, subsets of F denoted by Tv that satisfy the co-cell constraints
and lower and upper bounds on the multiplicity are given. Another binary variable
zt specifies whether or not Tv is chosen. The authors show that the LP-relaxation
of the formulation based on these variables is, at best, equal to the value of the
LP-relaxation of the previous formulation. On the other hand, the pricing problems
to be solved in a column generation approach are simple constrained shortest path
problems.

3.6.2 Orientation formulation

Borndörfer et al. (1998b) consider MI-FAPs with co-channel and adjacent channel
interference. They model the interference with penalties on combinations of fre-
quencies. Moreover, they forbid combinations of frequencies with penalties above
a certain threshold. Among the feasible assignments they seek one with minimum
penalty. For each vertex in the interference graph they introduce a variable yv that
corresponds to the frequency number assigned to v. For each pair (v, w) denote the
co-channel penalty by pvw and the adjacent-channel penalty by qvw. Now, three
more binary variables are introduced:

zvw =
{

1 if |yv − yw| = 0
0 otherwise

zvw =
{

1 if |yv − yw| = 1
0 otherwise

�vw =
{

1 if yv ≥ yw

0 otherwise

The variables �vw determine a partial ordering of the frequencies assigned to
the vertices. With these variables one can model all constraints and the objective
linearly. The model defined in this way contains much fewer variables, than the for-
mulations given in the previous section. The price for this is a weaker formulation.
If the �vw are given, the authors show that the problem is solvable in polynomial
time, since the constraint matrix is totally unimodular. This result is used in a two-
stage heuristic, where the variables �vw are adjusted iteratively and then a solution
is determined for the new values.
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4 Methods for optimization and lower bounding

Since all models for FAP share an important part of their structure (assignment
of frequencies and handling of interference), many optimization ideas translate
easily from one model to another. This is specifically true for the most extensively
used method: tree search. We, therefore, treat this method in a general fashion.
We explain the handling of the components of tree search, like branching and
subproblem processing, using the F-FAP as the descriptive generic problem type,
or Max-FAP if an objective function is needed.We do this for the two versions of tree
search, one based on the linear programming relaxation of F-FAP, and one based
on combinatorial ideas. Note that these versions latter are used for determining
lower bounds on the objective function. The objective function, however, is exactly
what the models differ in. Therefore, we treat the (combinatorial) lower bounding
techniques separately for each of the models.

The exception to the above is the MI-FAP. Here interference is modeled by using
penalties. This makes the MI-FAP much harder to solve than the other variants.
This is probably the reason behind a relatively rich set of solution methods for the
problem. These methods are therefore treated in a separate subsection.

4.1 F-FAP

In tree search algorithms we distinguish two parts:

1. Construction of the tree. The variable (or function) choice for branching. The
selection of a subproblem from a list L of active subproblems: such as depth-first
search, best-first search.

2. The processing of a node (or a subproblem) from the tree. This includes in-
stance reduction techniques, and node pruning techniques such as cutting plane
algorithms, and combinatorial lower bounding techniques.

The first part of the process structures the tree corresponding to the search algorithm.
This part if fairly problem independent. Thus, the ideas used in any of the variants
of the FAP can generally be applied directly to other variants. The second part is
concerned with actually solving (sub)problems. This part partially depends on the
problem at hand, the type of instances, and also on the used technique. The generic
ideas with respect to instance reduction, cutting planes, and lower bounds are treated
here. The problem specific ideas are treated separately in later subsections.

The F-FAP that we consider in the sequel is, purely for explanatory reasons,
restricted to satisfy the following conditions. The frequency domains are equal
for all vertices, and consist of a consecutive set of integers {1, 2, . . . , fmax},
where fmax is a given parameter (F-FAP, Max-FAP, MB-FAP, MO-FAP), or a
variable to be minimized (MS-FAP). The interference constraints are of the type
|f (v)−f (w)| ≥ δ(v, w), where f (v) and f (w) are frequencies assigned to v and
w respectively. These restrictions are the ones that are most frequently encountered
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in the literature. So, most techniques are developed for problems with these charac-
teristics. Moreover, the ideas described in the sequel often allow for straightforward
generalization to other characteristics.

4.1.1 Branching rules

The standard branching rule used in combinatorial optimization is to divide the
domain of a variable into two (or more) disjoint subsets. For binary variables this
rule reduces to setting the variable to either zero or one. In frequency assignment,
this implies that a vertex and a frequency have to be chosen. Most branching rules are
only occupied with selecting a vertex. The majority of them is based on the relation
between FAP and graph coloring (δ(v, w) = 1 for all {v, w} ∈ E) and on Constraint
Logic Programming (CLP).Vertex selection is done either statically or dynamically.
A selection mechanism is a static ordering if the ordering is independent of the
actual tree search. Such an ordering can be computed at the start. A popular one
is the highest degree first ordering, which orders the vertices according to their
degree (including multiplicities) in the constraint graph. A related ordering that is
applied frequently is to iteratively select the highest degree vertex, simultaneously
removing it from G. This ordering can also be applied backward, selecting and
removing the smallest degree vertices, i.e., smallest degree latest ordering.

The CLP approach of Kolen et al. (1994) and the branch-and-cut approach of
Aardal et al. (1996) solve the MO-FAPs from the CALMA project. Both consider
the smallest degree latest ordering as the most successful one. Kolen et al. (1994)
also specify the choice of a new frequency as the one with the highest distance to the
already chosen frequencies. Though static, the above orderings all aim at isolating
the possibly present hard part of an instance. Mannino and Sassano (2003) carry
the idea of selecting the difficult part of the interference graph a little further by
identifying a hard subgraph (called the core in Mannino and Sassano (2003) for the
Max-FAP instances of CSELT. After solving the partial problem restricted to the
core they hope that the remainder can be solved without influencing the objective
function.

Dynamic orderings depend on the subproblem at hand.A simple example of dy-
namic ordering is saturation degree vertex selection. It is attributed to Brélaz (1979)
who described the idea for graph coloring problems. During the tree search process
the number of available frequencies for the vertices decreases due to previously
made choices. Assignment of frequencies to a vertex v generally becomes harder
if this number is smaller. Brelaz’ rule therefore selects the vertex with a minimum
number of frequencies available. Clearly, the multiplicity of v, and the multiplicity
of its neighbors, also influences the level of difficulty of assigning frequencies to
v. Moreover, the distances play a role. The higher the distances the more combi-
nations are forbidden. Giortzis and Turner (1997), who consider the Max-FAP and
the MS-FAP, devised a branching rule that uses the latter two observations. They
dynamically select vertices v for which m(v) ·∑w∈N(v) m(w)δ(v, w) is maximum.
Many variants of these ideas are, of course, possible. An overview of many ordering
ideas can be found in Hurley et al. (1997).
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The choice of variable on which to branch in LP-based methods is fairly stan-
dard. One can take variables that have values closest to 0.5 or closest to 0 or 1. In
Fischetti et al. (2000) branching is done with three such rules used randomly: 1:
variables with value in the interval [0.4, 0.6], where the actual choice is determined
by the largest degree (number of interfering cells) of the corresponding vertex; 2:
variables with value smaller than 0.05, where again the actual choice is determined
by the largest number of interfering cells; 3: variables with value closest to 0.5 are
chosen. Thus, the standard branching rules for binary variables are mixed randomly.
In Aardal et al. (1996) standard LP-based branching is combined with a partial or-
dering of the variables: the frequency variables yf are considered first. Strangely
enough, none of the studies on LP-based methods for FAP uses constraints for
branching, although SOS constraints make up a significant part of the formulation.

4.1.2 Subproblem choices

The standard strategies for subproblem selection are depth-first search (DFS) and
best-first search (BFS). In applying DFS one attempts to find good solutions quickly.
DFS involves little implementation overhead, since the stored part of the search tree
resembles a path.Among others, Giortzis and Turner (1997), and Kolen et al. (1994)
use DFS. If a lower bounding method is available, one may select a subproblem
with a small lower bound to be processed first, anticipating better solutions to be
available, and quicker increase of the overall lower bound. Implementations of BFS
are found in Aardal et al. (1996) and Fischetti et al. (2000). Mannino and Sassano
(2003) incorporate a backtracking idea from CLP in their tree search, called back-
jumping, which attempts moving back multiple levels at once in the search tree,
once an inconsistency is found that that can be traced back.

4.1.3 Reduction techniques

Instance reduction techniques attempt to remove frequencies from the domains
of vertices or even complete vertices. The ideas to do so are based on similar
ideas in CLP (arc-consistency) and coloring. Consider, for instance a vertex v with
neighbors N(v). In the process of assigning frequencies to the neighbors of v, a
certain number of frequencies from v will be blocked. If the maximum number
of blocked frequencies still leaves enough space (free frequencies) to assign all
necessary frequencies to v, then we can remove v from the constraint graph. For
example, in the standard instances we consider here, for each vertex w ∈ N(v) a
frequency chosen for w can only block 2δ(v, w) − 1 frequencies. Thus, in total
at most

∑
w∈N(v) m(w)(2δ(v, w) − 1) frequencies can become unavailable for

usage by v. If the number of remaining available frequencies for v is at least
m(v) · (δ(v, v)−1)+1, we can always select enough frequencies for v. This idea is
applied dynamically to the MO-FAP in Aardal et al. (1996) and Kolen et al. (1994),
and to the MS-FAP in Mannino and Sassano (2003).
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One way that remains to remove frequencies from domains is by consistency
checking. In its simplest form we check whether, for a particular frequency f ∈
F(v), there is a feasible choice of frequencies for the neighbors of v. If not, we can
remove f from F(v). This idea is used in Kolen et al. (1994) and Mannino and
Sassano (2003).

4.1.4 Cutting planes

Techniques using the LP-relaxation of the formulation from F-FAP generally
strengthen the relaxation by using additional constraints, so-called valid inequali-
ties. The inequalities that are used are typically derived from the relaxation of FAP
obtained by considering the packing constraints (2). These constraints can be illus-
trated by a graph H = (W, F ) of the binary variables xvf known as the conflict
graph. For each variable we introduce a node (v, f ). Two nodes (v, f ) and (w, g)

are connected by an edge if at most one of the variables may obtain value 1. Now,
consider a clique (a complete subgraph) in H with vertex set S. Then clearly, no
two of the variables of S may have value 1, and therefore

∑
(v,f )∈S xvf ≤ 1 is

valid. In general, the most powerful such constraints come from maximal cliques,
e.g., cliques that cannot be extended with other vertices. Finding such cliques in H

is usually a tremendous task due to the size of H , and therefore most researchers
resort to finding certain cliques in H , that are easier to find. Such cliques can, for
instance, be found by considering cliques in the interference graph. Consider a
clique V̄ ⊂ V in the interference graph G and let δ = minv,w∈V̄ δ(v, w). Then the
following valid inequality can be formulated:

∑
v∈S

∑
f ∈{k+1,...,k+δ}

xvf ≤ 1 (46)

where k = 0, . . . , fmax − δ. Rouskas et al. (1995) consider the MB-FAP with co-
channel constraints. Their formulation includes all clique constraints (46) from the
start. Fischetti et al. (2000) consider a subclass of the clique constraints (46), with
δ = 1, 2, 3, for the Max-FAP. They add them to the formulation with a separation
algorithm, in a Branch-and-cut framework.
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Fig. 6. Example 3-clique with δ = 2
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Aardal et al. (1996) consider cliques from the conflict graph that can be viewed
as lifted versions of (46). Consider, for example, the clique in Fig. 6. This clique
induces the following valid inequality (u, v, w are nodes and f, g, h are frequen-
cies).

xuf + xug + xuh + xuf + xvg + xvh + xwf + xwg ≤ 1

Finally, in Kazantzakis et al. (1995) the linear programming relaxation of the Max-
FAP is tightened by using cuts derived from rounding the objective function during
the (complete) tree search.

4.2 Max-FAP and MB-FAP

4.2.1 Cutting planes

The Max-FAP of Fischetti et al. (2000) includes multiple interference con-
straints (45). These constraints allow for generation of cutting planes based on
knapsack covers (see Nemhauser and Wolsey 1988), which are used in their branch-
and-cut scheme as well.

4.3 MO-FAP

4.3.1 Instance reduction

The CALMA instances contain nonadjacent pairs of vertices v, w, such that for
any neighbor u of v we have δ(uv) ≤ δ(uw). Moreover F(v) ⊆ F(w). Then the
choice made for w is also available for v. Thus, vertices such as v can be removed.
Though rare in general, this situation does occur in the CALMA instances.

4.3.2 Valid inequalities

For any clique V̄ in the constraint graph G, the following inequality is valid with
respect to MO-FAP. ∑

v∈S

xvf ≤ yf

These are used in Aardal et al. (1996).

4.3.3 Lower bounds

Clearly, the clique and coloring number of the constraint graph are lower bounds
of the MO-FAP. If the domains (available frequencies) differ among the vertices,
sometimes a list coloring bound may improve upon such bounds. This occurs in
some of the CALMA instances. For an overview of these bounds see Aardal et al.
(2002).
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4.4 MS-FAP

4.4.1 Valid inequalities

The variables introduced in the model of Giortzis and Turner (1997) for MS-FAP
give rise to special cliques:

∑
f ∈F(v):f ≤g

xvf +
∑

f ∈F(v):f >g

lf ≤ 1 ∀v ∈ V, g ∈ F(v)

∑
f ∈F(v):f ≥g

xvf +
∑

f ∈F(v):f <g

uf ≤ 1 ∀v ∈ V, g ∈ F(v)

The use of such cliques has not been reported on, so far.

4.4.2 Lower bounds

The fairly direct relation between MS-FAP and MO-FAP allows some lower bound-
ing techniques to be used for both models. This applies for instance to the simplest
lower bound: the clique bound. Each subgraph of G induced by W ⊂ V that forms
a clique determines a lower bound |W | for MO-FAP and |W | − 1 for MS-FAP.
This bound, though applicable to MS-FAP, is especially suitable for MO-FAPs.
There are, however, more general and more powerful lower bounds available for
MS-FAP. The standard clique bound can be generalized as was first observed by
Gamst (1986). Let all multiplicities of the vertices be equal to one. If a clique of size
k in the interference graph contains edges with minimum distance d only, then the
range of frequencies must be at least (k−1)d +1. Over the years, lower bounds for
more and more complex structures have been derived (cf., Murphey et al. (1999)
for an overview). Recently, Janssen and Wentzell (2000) showed that many of these
bounds can be derived within a general theoretical framework called tile covers.

The clique bound has been further generalized by Raychaudhuri (1994). They
consider a subgraph of the (splitted) interference graph. For an assignment, the
vertices can be ordered such that the assigned frequencies form a non-decreasing
sequence. If we extend the subgraph to a complete graph by the introduction of
edges with distance zero, this order forms a path with length less than or equal to
the span of the assignment. Hence, the minimum Hamiltonian path in an arbitrary
subgraph (completed by zero-value edges) provides a lower bound on the minimum
span for the MS-FAP defined on that subgraph, and thus, on the minimum span for
the MS-FAP defined on the whole graph. Note that this bound indeed generalizes
the clique bound of Gamst (1986): in a clique of size k with minimum distance d

the shortest Hamiltonian path has length (k − 1)d . Note that the Hamiltonian path
bound can also be shown to be a lower bound by use of the canonical assignment,
generated by an optimal solution. The Hamiltonian path bound is obtained by using
the recursion (38), where we relax the minimization by taking the distance to the
last vertex in the ordering.

Janssen and Kilakos (1999) compute a lower bound of the Hamiltonian path
bound, by considering a limited, but carefully chosen set of subgraphs. For each
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subgraph they use the following procedure. First, they reformulate the problem into
a minimum Hamiltonian cycle problem (TSP). Then, they solve the LP-relaxation
of the TSP. Their procedure is powerful enough to prove optimality of some of the
Philadelphia problems. Tcha et al. (1997) solve the 2-matching relaxation of the
TSP to obtain lower bounds.

The above procedure has one serious drawback, namely, that it is difficult to
select the right subgraphs. Note that considering the whole constraint graph may
give a very short Hamiltonian path due to the existence of many short edges.

For example, if edges {u, v}, and {v, w} have distance 1, and {u, w} has distance
3, the path (u, v, w) leads to a bound of 2 (its length), whereas the span is equal 3.
We will refer to such paths as bad paths. The edge {u, w} is not used in the bound.

Allen et al. (1999) add excess variables evw to the edges, and force these variables
to positive values when appropriate, by adding the constraints

[δ(uw) − (δ(uv) + δ(v, w))](xuv + xvw − 1) ≤ euv + evw (47)

for all paths (u, v, w) of length 2.
The excess variables euv and evw cause the objective function to increase. The

authors develop inequalities for larger paths that in principle would allow for ex-
act solution of the MS-FAP. However, these have not been used in their approach.
They proceed by solving their problem using Lagrangean relaxation, where con-
straints (47) are relaxed and added , with a multiplier, to the objective function.

The above bounds have only been used in a stand-alone fashion, i.e., to compute
a single lower bound on problem instances. It should be said, though, that the lower
bounds are, in general, very close to the optimal span.

Recent,Avenali et al. (2002) have devised an optimization algorithm using tech-
niques that are comparable to the Allen et al. (1999) method. Here, path variables
are used to forbid certain concatenations of paths. A bad path, like for example
(u, v, w) in the example above, is avoided by forbidding the concatenation of edge
{u, v} with edge {v, w}; when necessary, a new binary variable is introduced to
represent the forbidden path P and its weight is set equal to the span of P . This
idea is the basis of a column generation approach.

The MS-FAP has initiated a lot of research on the T -coloring problem, where
a prespecified set of distances is forbidden between frequencies of neighboring
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vertices. Roberts (1991) develop a theory on lower bounds for special graphs using
T -coloring arguments. An overview of the most important lower bounds is given
in Murphey et al. (1999). These lower bounds, however, are hardly used in practice
since MS-FAP with specific T -coloring type interference constraints are rare.

4.5 The MI-FAP

The MI-FAP model is much more difficult than the previously mentioned variants
of the FAP. This is due to the fact that hard interference constraints are turned into
soft constraints by the use of penalties. This hardness has caused a large diversity
in solution methods. For instance, there are only two papers, to our knowledge, that
use some sort of tree search. Other methods are based on dynamic programming, the
structure of the interference graph, and (in case of lower bounding) combinatorial
relaxations.

The earliest attempt to solve the MI-FAP is from Verfaillie et al. (1996) who
developed a procedure called the Russian doll algorithm. This algorithm is perhaps
best described as a backward tree search in combination with lower bounds. For
a certain static ordering of the vertices of the interference graph, say from 1 to n,
we consider n iterations. In a backward fashion, in each iteration all assignments
of vertices {k + 1, . . . , n} are considered. Lower bounds and upper bounds on the
penalties are computed for all subsets {l, . . . , n} (l > k) of vertices, which are
used in subsequent iterations. Thus, in the iteration of vertex k we do a complete
tree search with the vertices {k, . . . , n}, using the produced lower bounds for the
subsets {l, . . . , n} (l > k). Although the paper says little about the choice of the
ordering of the vertices, it probably uses rules similar to the branching rules of
subsection 4.1.1, such as “smallest degree last”. The Russian-doll procedure has
been used to solve CELAR06 (an instance from CALMA) to optimality.

Koster et al. (1998) combine tree search with the linear programming relaxation
of the MI-FAP. They solve the problem, formulated as a Partial Constraint Satis-
faction Problem (PCSP), with branch-and-cut, using standard branching rules and
variable selection mechanisms, and valid inequalities based on the boolean quadric
polytope (cf., Padberg (1989)). The valid inequalities are derived from structures
in the interference graph, such as cycles and cliques. In a cycle C (or clique), the
set F(v) for v ∈ C is partitioned into two sets Av and Bv . For cycles the following
inequalities are valid.

k−1∑
i=1

(
z(vi, Avi

, vi+1, Avi+1) + z(vi, Bvi
, vi+1, Bvi+1)

)

+z(v0, Av0 , vk, Bvk
) + z(v0, Bv0 , vk, Avk

) ≤ k − 1

(48)

where z(v, Av, w, Aw) = ∑
f ∈Av

∑
g∈Aw

zvwfg .
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Fig. 8. Cycle inequalities

Fig. 9. (γ, k)-clique-cycle inequalities

Figure 8 shows a 3-cycle inequality and a 4-cycle inequality.A line between two
dots indicates that the coefficient corresponding to the indicated subsets is equal to
one.

For cliques, we take a coefficient 1 ≤ γ ≤ k − 1, where k is the size of the
clique, and we get the following (γ, k)-clique inequalities.

γ
∑
v∈C

x(v, Av) +
∑

{v,w}∈E[C]
z(v, Bv, w, Bw) ≥ γ k − 1

2γ (γ + 1) (49)

where x(v, Av) = ∑
f ∈Av

xvf . See Fig. 9 for examples of 3-clique and 4-
inequalities.

The Branch-and-Cut method using these inequalities solves the problem well
for instances with domain sizes up to 6 frequencies, especially with dominance
criteria and reduction methods incorporated. It has been used as a subroutine (with
domain sizes 2) in a genetic algorithm by Kolen (1999). For larger domain sizes
the method returns fairly poor lower bounds.

In Koster et al. (1999) make use of the structure of the interference graph
G = (V , E). They observe that assigning frequencies to a cut-set of G decomposes
the problem into two (or more) independent problems. They generate a sequence
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of small cut-sets by using a tree decomposition (see Bodlaender 1997) of the in-
terference graph. Note that a small cut-set induces a relatively small number of
assignments to the vertices of the cut-set.

A series of reduction methods were developed to limit the number of assign-
ments. These ideas led to the solution of some quite large MI-FAP from the CALMA
project. For some remaining instances Koster et al. (1999) improved the known
lower bounds by introducing a relaxation where the vertex domains are partitioned
in a small number of subsets. Each such subset is then treated as a single frequency.
By considering a sequence of relaxations, better and better lower bounds could
be derived for the CALMA instances. The relaxations are solved with the above
described tree decomposition approach. Alternatively, the cutting plane algorithm
of Koster et al. (1998) can be applied (see Koster et al. 2001).

4.5.1 Lower bounds for MI-FAP

Lower bounding for MI-FAP has started with the work of Tiourine et al. (1995) who
use a quadratic programming relaxation that can be solved by clever enumeration.
Non-trivial bounds are reported on a limited set of CALMA instances, namely those
where next to the interference penalties, also single frequency penalties are used to
favor certain frequencies for vertices.

Another lower bound is derived by Eisenblätter (2001) using semidefinite pro-
gramming. He studies the semidefinite programming relaxation of the minimum
k-partition problem. MI-FAP reduces to a min k-partition problem in case only the
co-channel interference is considered. Like the related max cut problem, the min
k-partition problem can be modeled as a semidefinite program. The relaxation of
this semidefinite program can be solved in polynomial time. For GSM networks of
the COST 259 project (cf., Sect. 2.2), the first lower bounds were computed in this
way.

In Maniezzo and Montemanni (2000), the MI-FAP formulation forms the
starting-point for deriving lower bounds. These bounds are inspired by similar
bounds for the quadratic assignment problem. In addition, reduction and domi-
nance rules are presented. A tree search algorithm is based on these bounds and
rules. The algorithm is tested on the CALMA and Philadelphia instances (taking a
fixed spectrum) as well as on some graph coloring benchmarks.

In Montemanni et al. (2002b), a refinement of the orientation formulation
(cf., Sect. 3.6.2) by Koster (1999) is used. Valid inequalities are derived that bound
the interference in subgraphs from below. A cutting plane algorithm is exploited
on realistic GSM network instances and some Philadelphia instances (by limiting
the spectrum).
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5 Heuristic methods

Due to the difficulty of the diverse FAPs, the majority of research papers have
been on heuristic approaches. In this section, we discuss these approaches in the
form of an annotated bibliography. This section is organized as follows. We start
in Sect. 5.1 with constructive algorithms that build a solution in a greedy manner.
In the subsequent subsections we consider local search methods (cf., Sect. 5.2),
that start with a given solution and, with iteratively doing small changes (moves),
try to find good solutions. Standard local search methods only allow improving
moves (downhill). To increase the chances for improving solutions also worsening
moves uphill may be allowed. Tabu search (cf., Sect. 5.3) allows worsening moves
under certain conditions (neighborhood restriction with tabu list) and simulated
annealing (cf., Sect. 5.4) allows worsening with a probability that typically depends
on the size of the worsening, and generally decreasing in time. Genetic algorithms
(cf., Sect. 5.5) start with a whole set of solutions, called generation, and iteratively
builds new generations by recombination of solutions from the previous generation.
Artificial Neural Networks (cf., Sect. 5.6) generate new solutions by emulating the
behavior of a grid of neurons, where each neuron represents a “piece” of solution
and its state is dynamically determined by the states of its neighboring neurons.
Ant Colony Optimization (cf., Sect. 5.7) is a meta-heuristic that is inspired by the
behavior of ants.

Finally, the section is closed with application specific heuristics. In Sect. 5.8,
heuristics based on mathematical programming formulations are discussed,
whereas heuristics based on graph theory and constraint programming are the topic
of Sect. 5.9. Throughout the section, we assume that the reader is familiar with
the classical meta-heuristic algorithms mentioned above. Still, in the beginning
of each subsection we briefly recall the main components of the described class.
The various implementations of a specific scheme mainly differ in the way these
components are handled.

Recently, an interesting discussion on meta-heuristic algorithms has been pre-
sented in Hurley and Smith (2002); Smith et al. (2002).

5.1 Greedy algorithms

A greedy algorithm constructs a frequency assignment by iteratively selecting a
vertex (an antenna), and then assigning a feasible frequency to it. The selection
and assignment follow some rule based on local characteristics that has the aim
to optimize the global objective function. An important feature of this (greedy)
algorithm is the irrevocable nature of the greedy choice which is performed at
each iteration. Many versions of the greedy algorithm have been proposed in the
literature to solve FAP, often in conjunction with more sophisticated local search
methods. Several greedy heuristics are described and compared in the early work of
Zoellner and Beall (1977). The model is MS-FAP. First, an ordering of the vertices
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of the interference graph is performed: then the frequencies are assigned to the
vertices following this ordering. In particular, three different orders are considered:

1. highest degree first: the vertices are ordered by non-increasing degree;
2. smallest degree last: the vertices are ordered so that the degree of vj in the

graph induced by the set {v1, v2, . . . , vj } is (one of) the smallest;
3. random order.

Two types of assignments are compared: frequency exhaustive, which corresponds
to the canonical assignment, and uniform where the current vertex is assigned the
least used available and feasible frequency.

Sivarajan et al. (1989) propose a slight modification of the above defined high-
est degree first order, taking into account multiple demands and distance require-
ments. In particular, the degree of a vertex v ∈ V is defined as the quantity∑

u=1,...,|V | m(v)δ(u, v) − δ(v, v). Frequencies are again assigned by canonical
assignment. Tests were performed on the Philadelphia instances.

Adjakplé and Jaumard (1997) make use of block assignments (cf., Sect. 3)
in order to solve distance MI-FAP. At each iteration, the greedy weight of a ver-
tex is defined as a function of the unsatisfied demand, of the size of the feasible
blocks, and of the number of forbidden channels (due to several types of interfer-
ence constraints). Once a vertex is selected, it is assigned the feasible block which
maximizes the marginal variation, with respect to the cardinality of the block, of
the interference level.

Generalized saturation degree. This methodology generalizes the well known
DSATUR procedure for graph coloring (see Brélaz 1979) to FAPs. The basic defini-
tion of saturation degree of a vertex v is simply the number of blocked frequencies,
i.e., the number of frequencies in the available band which cannot be assigned
to v (in consequence of the violation of some hard constraints (2)). At each it-
eration, the greedy choice consists of selecting the vertex with largest saturation
degree and assigning to it the smallest non-blocked frequency. This is the scheme
adopted in Costa (1993) (where the model is MO-FAP). A slight modification is
presented by Borndörfer et al. (1998a): here the model is MI-FAP; after a vertex
v has been selected in the standard way, it is assigned the non-blocked frequency
which minimizes cost increase. Carlsson and Grindal (1993) reinforce the basic
scheme by adding several mechanisms borrowed from constraint programming,
such as propagation, lifting, intelligent backtracking, redundancy avoidance and
iterative deepening. The model is MI-FAP and frequencies are assigned in blocks
rather than singularly. Finally, a Generalized Saturation Degree (GSD) is defined
in Valenzuela et al. (1998). If frequency f is blocked for vertex v, then the weight
of f is the largest penalty cost pvw(f, g) for all w ∈ V , g assigned to w. The GSD
of v is the sum of the weights of its blocked frequencies.

In Zhang amd Yum (1991) the model is MB-FAP. The vertices are clustered
according to their geographical distance. In particular, each cluster is compact in
the sense that the average distance between all pairs of vertices in the cluster is
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minimum. There is only a limited number of such clusters. At each iteration of the
algorithm a new frequency is assigned to a cluster where the cluster is chosen so
as to minimize the blocking probability.

Sequential packings

The algorithm presented in Sung and Wong (1997) deals with (distance) MS-FAP.
All frequency domains are equal to Z+. Two heuristic procedures are proposed.
The first considers only δ(v, w) ≤ 1, for all v, w ∈ V . It finds a family of stable
sets S1, . . . , Sq such that each vertex v is contained in exactly m(v) stable sets in
the family. All vertices in stable set Si are assigned frequency i. The stable sets are
built in sequence, i.e., the construction of Si+1 begins after Si is completed. The
first vertex in the current stable set Si is the one with largest unsatisfied demand.
Next, a vertex w which maximizes |N(Si) ∩ N(w)| is selected. Ties are broken
by the weight of the maximum weight clique (where the weights on the vertices
are equal to the residual demands) in the set N(Si) ∩ N(w). The authors are able
to prove that for a 3-stripe cellular system (a particular hexagonal network) the
assignment produced by their procedure is optimal.

The second heuristic tackles the case where δ(v, w) = 2 for some v, w ∈ V .
As in the previous case, it finds a family of stable sets S1, . . . , Sq such that each
vertex v is contained in exactly m(v) stable sets in the family and all vertices in
stable set Si are assigned frequency i. However, now stable sets are built in pairs,
i.e., Si and Si+1 are found simultaneously. The choice of the vertex to add to the
current pair of stable sets is made according to criteria analogous to the previous
case.

5.2 Local Search (LS)

Local Search is certainly the most basic improving heuristic developed for combi-
natorial problems. We refer here to the classical definition as described, for example,
in Papadimitriou and Steiglitz (1982). According to this definition one starts with
a given solution and replaces it with a better one (improving solution) selected
from a restricted subset of the solution set. If no improving solution exists in the
restricted subset, then LS stops. Otherwise, the whole process is iterated with the
old solution replaced by the improving one. The restricted solution subset depends
on the current solution and is defined as the set of solutions (neighborhood) that
can be obtained from the current solution by a predefined set of small changes
(moves). Observe that a crucial issue in LS, as well as in other neighborhood-based
methods, is the ability of efficiently optimizing over the neighborhood space. So,
on the one hand we would like the neighborhood to be large, so as to increase the
chances to find improving solutions, but on the other hand, large neighborhoods
correspond in general to exponentially increasing search times. In FAP efficiency
is reached by enumerating over small cardinality neighborhoods. Observe that a
frequency assignment is a partition of the vertex set, where each class corresponds
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to a frequency in the available spectrum (additional empty classes take into account
still unassigned frequencies). The 1-exchange neighborhood is the set of solutions
which may be obtained from the current one by selecting a vertex and moving it into
a different class. Such an operation is called 1-exchange move. If n is the number
of vertices and fmax is the number of frequencies, then the number of different
solutions in the 1-exchange neighborhood is simply n(fmax − 1). The 2-exchange
neighborhood is the set of solutions which may be obtained from the current one
by selecting two vertices and swapping their frequencies.

Even though very few algorithms can be classified as “pure local search”, still
LS is often used as a building block, such as in the paper of Castelino et al. (1996)
devoted to the solution of distance MI-FAP with unit penalties. An initial solution
is generated at random. Then a sequence of moves is performed (passes). Each
pass consists of |V | iterations. At the i-th iteration, the i-th vertex is selected and
an improving solution is searched in the 1-exchange neighborhood restricted to vi .
This process is interrupted if a 0-cost solution is generated or a fixed number of
passes has been performed.

Another good example of an application of pure LS is the algorithm by Park
and Lee (1996) for MI-FAP. Here, both the 1-exchange and the 2-exchange neigh-
borhoods are used and applied to a set of randomly generated instances.

Guided Local Search

Guided Local Search is a meta-heuristic technique proposed by Tsang and
Voudouris (1998) that helps Local Search to escape local optima. First of all a
number of features of a solution has to be defined. Each feature is a mapping I (s)

from the solution set S to the set {0, 1}. With the j -th feature Ij we associate a cost
cj and a penalty pj . Penalties are updated during the search. Finally, the fitness
function (to be minimized) is given by the sum of two terms, g(s)+λ

∑
j pj Ij (s).

The first term g(s) is typically the original objective function, while the second term
is proportional to the sum of the penalties associated with the features exhibited by
solution s. At each step we choose the neighbor minimizing the fitness function.
When we are trapped in a local minimum s∗, some of the penalties are increased.
In particular we increase by one unit those penalties whose associated feature is
exhibited by s∗ (in practice only a subset of such penalties are upgraded, based on
the cost of the associated feature and on the current penalty value).

In Tsang and Voudouris (1998) this technique is applied to MI-FAP, MO-FAP
and MS-FAP. The neighborhood is defined by a move that consists of changing
frequencies to a pair of coupled vertices in all possible ways. Note that in some
problems the frequencies assigned to particular pairs of coupled vertices must differ
(exactly) by a specified quantity. The underlying local search algorithm is the so-
called Fast Local Search (FLS), which is simply a restricted neighborhood search.
Basically, once a move is performed, the pair of vertices involved in the move is
declared tabu. The tabu status of a vertex can be reset when specific conditions are
verified (all involving the fact that an adjacent pair has been processed in the last
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move). For the Guided Local Search, three sets of features are considered. Each
feature in the first set is associated with a constraint of type (2): the cost of each
feature is the corresponding (interference) cost in the objective function of MI-FAP.
A second set is associated with mobility costs. When solving MO-FAP, a third set of
features is associated with constraints (15). Benchmark instances are the CALMA
instances.

Canonical assignments

Here we describe local search algorithms based on neighborhood structures related
to orderings of the vertices. The corresponding frequency plan is determined by
the corresponding canonical assignment (i.e., according to the ordering, assign the
smallest available frequency, cf., Sect. 3.3).

The basis of the heuristic method presented in Wang and Rushforth (1996) to
solve MS-FAP is the canonical assignment associated with the linear orderings of
the split graph introduced in Sect. 3.3. The neighborhood of a solution is the set of
all solutions obtained by swapping the positions of two distinct vertices. A neigh-
borhood restriction is obtained by fixing the first vertex in the pair: such a vertex is
randomly selected among the set of vertices with largest assigned frequency. The
second vertex is randomly selected. In a first phase, a new solution is accepted if
and only if the associated span is strictly smaller than the previous one. In a second
phase, executed when a fixed maximum number of non-decreasing tentative moves
has been examined, the acceptance criterion is relaxed by accepting non-increasing
solutions. Finally, the initial solution is obtained by ordering the vertices by non-
increasing weighted degrees. When tackling large instances, the authors propose the
following decomposition scheme: find a vertex coloring of G, identify all vertices
belonging to the same color class to obtain a new graph G′, solve the frequency
assignment problem for G′ and then extend the solution to G.

In Rushforth and Wang (1997) the above algorithm is enhanced by partition-
ing the network into the minimum network and the difference network. Initially,
the original network is partitioned into a number of k-cell-clusters. Each cluster
contains k vertices, labeled from 1 to k. All vertices in different clusters labeled
by the same integer can be assigned the same frequency. Now, for each cluster, we
can define a cluster frequency demand as the minimum demand of all vertices in
the cluster. The minimum network is the original network with modified frequency
demands: in particular, the demand of vertex i is the demand of the cluster contain-
ing i. The difference network is the original network where the demand of vertex
i is the difference between the demand of vertex i in the original network and
the demand of vertex i in the minimum network. First an assignment is found for
the minimum network. Then, by considering a sufficiently large “guard” interval
between the largest frequency assigned to the minimum network and the smallest
frequency available for the difference network, a feasible assignment is also found
for the difference network.
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The paper by Box (1978) makes use of the same strategy: solutions are found by
associating the canonical assignment to orderings of the vertices of the graph. The
aim is to find a feasible assignment using a fixed number of consecutive frequen-
cies. The initial ordering is randomly selected. If this ordering is associated with
a feasible canonical assignment, we are done. Otherwise, some of the vertices of
the graph cannot be assigned. These vertices receive random weights (increments
in the subsequent iterations) belonging to the interval [0.15,0.45], and a new or-
der is found according to these weights. The procedure is repeated until a feasible
solution is found (or a stopping criterion is fulfilled). In the final part of the pa-
per, the method is extended to handle additional constraints such as distinct vertex
frequency domains, pre-assignments, inter-modulation, etc.

5.3 Tabu Search (TS)

Tabu Search is a local search method that, in contrast with standard LS, allows for
non-improving moves. At each iteration the best solution in the neighborhood is
selected as the new current solution. Notice that this solution can be worse than
the current solution. In order to try to avoid cycling, the solutions selected in the
last k iterations are declared tabu solutions and cannot be selected again. In fact,
checking the tabu status of a solution may require excessive computing time. So,
rather than prohibiting solutions, it is in general preferred to avoid inverting any
of the last k moves. That is, if vertex v has been moved from class f1 to class f2
within the last k iterations, then v cannot be moved back from class f2 to class f1.
Parameter k is called the tabu list length. The algorithm typically stops after a fixed
number of non-improving moves has occurred.

In order to classify the different tabu search approaches, we will consider the
following basic ingredients:

1. The way the initial solution is generated.
2. Fitness function, i.e., the function to be minimized (maximized), which also de-

termines the best solution in the neighborhood. In general the original objective
function of the problem plays this role, but sometimes the objective function is
adapted.

3. Neighborhood definition. Most of the algorithms presented in the literature
adopted the 1-exchange neighborhood. Unless otherwise specified, this is the
default neighborhood.

4. Neighborhood restriction. Additional mechanisms introduced to reduce the size
of the neighborhood.

Other parameters, such as tabu list length or number of iterations to termination
will not be discussed here, since they do not really lead to different algorithms.

MS-FAP. Costa (1993) deals with (distance) MS-FAP. However, MS-FAP is
solved by solving a sequence of (distance) F-FAPs, where at each iteration the
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size of available band is reduced. The fitness function is the interference cost of the
current solution (expressed as the sum of distance violations). The initial solution
is found by generalized DSATUR (see Sect. 5.1). The neighborhood is restricted
by fixing the maximum number of tentative moves. The vertices with largest local
violation, the sum of the terms in the objective function involving v, are chosen
first. Finally, the test instances are randomly generated.

In Hao and Perrier (1999), the model is MS-FAP, which is solved (as in Costa
1993) by solving a sequence of (distance) F-FAPs. The initial solution is generated
by applying standard local search to a random assignment. The fitness function is
the standard objective of MI-FAP. The 1-exchange neighborhood is restricted by
randomly selecting a small subset. Finally, the tabu status of a move depends on
how recent and how often it is preformed. Test instances are 45 randomly generated
mobile telephony instances provided by French CNET. In Hao et al. (1998) the
authors enhance the quality of the algorithm presented in Hao and Perrier (1999) by
implementing the following improvements: 1) an efficient data structure to quickly
compute best moves; 2) the neighborhood is restricted by only considering moves
involving vertices with positive local violation; 3) co-cell constraints are treated
separately from other type of interference constraints, i.e., only solutions which are
feasible with respect to co-cell constraints are considered; 4) the algorithm solves
a sequence of problems in order to minimize the span. At each iteration the best
solution of the previous iteration is used to initialize the tabu-search rather than
producing a new random solution.

MI-FAP. In Bouju et al. (1995a) the model is distance MI-FAP with two alternative
definitions of penalties: either unit penalties or penalties proportional to the dis-
tance requirement. The initial solution is randomly generated, the fitness function
is the number of violated constraints, the neighborhood restriction is performed by
selecting the k vertices with largest local violation, where parameter k is increased
during the search. Before the tabu search is started, an arc consistency preprocess-
ing is performed to reduce the size of the instances, see Sect. 4. A subset of the
CALMA data set is adopted to test the algorithm.

In Castelino et al. (1996) the model is distance MI-FAP with unit penalties.
The fitness function is the objective of MI-FAP. No restriction is applied to the
neighborhood. The tabu state of a move is determined both by how recent a move
has been performed and by the number of times a move has been performed. Test
problems are six artificial instances.

Block assignment is proposed inAdjakplé and Jaumard (1997) to solve distance
MI-FAP, where penalty costs are integers ranging from 0 to a maximum of 10.
The initial solution is found by a greedy block assignment, see Sect. 5.1. The
fitness function is the standard objective of MI-FAP. The neighborhood of a block
assignment is defined by means of two different moves. The first move consists
of changing exactly one block assigned to a vertex, replacing it with one or more
available blocks (observe that blocks are not equally sized). The neighborhood is
restricted by fixing the maximum number of tentative moves; blocks with largest
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local violation are chosen first, where the local violation of a block B with respect
to a given solution is the sum of the terms involving B in the fitness function. In
order to diversify the search, a second type of move is periodically performed.
That is, a vertex with largest local violation is selected and all of its frequencies
are reassigned from scratch by a greedy block assignment heuristic. Test instances
are real-life instances provided by the Canadian Bell Mobility (see BellMobility
website 1998).

A more sophisticated definition of move is proposed in the work by Borgne
(1994). Frequencies are assigned in blocks and besides the standard move consisting
of changing exactly one block assigned to a vertex, Borgne proposes an adaption of
the so called Kempe Chains Interchange. In terms of graph coloring, a Kempe Chain
is simply a connected component of the subgraph induced by two color classes,
say C1 and C2 corresponding to colors c1 and c2. A Kempe interchange consists
of interchanging the colors of the vertices in the two color classes, i.e., assigning
color c2 to the vertices in C1 and color c1 to the vertices in C2. The extension to
frequency assignment with only co-channel constraints is straightforward. The idea
is to first select two adjacent vertices u and v that are assigned a same frequency,
say f1, and that have strong co-channel interference. Select another frequency f2
and suppose that no vertex assigned to f2 is adjacent to u. Then we can assign
f1 to all vertices which are assigned to f2 and assign f2 to all vertices which are
assigned to f1 but u. In this new assignment, u and v have different frequencies
and no other edge violation is created. This leads to a reduction of the overall
interference cost. This definition of move can be generalized by taking into account
other types of interference constraints such as adjacent channel constraints, and
by allowing the interchange of three or more frequencies. Experiments on two
real-life cellular network problems provided by Ericsson show the effectiveness of
generalized Kempe chain interchanges.

Capone and Trubian (1999) solve MI-FAP by minimizing the interference level
directly evaluated on the grid of test points introduced in Subsection 2.1 (rather than
on the interference graph). They use the standard neighborhood, i.e., the exchange
of a frequency to a single vertex. However, exploring and evaluating all the solutions
in the standard neighborhood can be too expensive due to the large number of test
points in an average sized instance. So, once a vertexv is chosen, the neighborhood is
restricted by first evaluating a simplified objective function which makes it possible
to remove some of the frequencies available for v. Ad hoc generated test instances
have been used to test the algorithm.

Finally, Tabu Search has also been applied to the solution of natural extensions
of FAP, as for example in Smith et al. (2001) where far site constraints, spurious
emission and response constraints, intermodulation product constraints and exclu-
sivity constraints are considered.
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5.4 Simulated Annealing (SA)

Analogous to TS, also Simulated Annealing allows for non-improving moves.
However, the anti-cycling strategy consists of a randomized selection mechanism.
Specifically, the best solution in the neighborhood is accepted as a new current
solution either if it is better then the old one, or with a probability which depends
on its value. This probability increases as the difference between the current value
and the new value decreases. In addition, the acceptance probability is controlled
by another parameter, the temperature. This parameter decreases as the number of
iterations increases (cooling). Ceteris paribus, lower temperatures correspond to
lower acceptance probabilities. When the temperature is very low, non-improving
solutions will not be accepted anymore and the algorithm terminates (freezes).

The main ingredients of SA are:

1. initial solution,
2. neighborhood structure,
3. fitness function, and
4. cooling strategy.

The last parameter is determined by the initial temperature and the cooling rate.
In most algorithms, the neighborhood is defined by 1-exchange moves. Typi-

cally a single vertex is chosen at random, and moved into the least costly alternative
frequency class. In some cases, the new frequency is randomly assigned.

The initial temperature is chosen so as to ensure that a given percentage of tenta-
tive moves is accepted (recall that the acceptance rate grows with the temperature).

Finally, the temperature decreases only after a specified number of iterations has
been performed at constant temperature. In the following we denote by an L-loop
the inner loop of SA, i.e., a block of iterations performed at constant temperature.

MS-FAP. In Costa (1993) the model is (distance) MS-FAP. The initial solution
is found by generalized DSATUR (see subsection 5.1). The fitness function is the
sum of the distance violations. The vertex is chosen among those involved in some
positive local violations. The number of iterations of the L-loop is increased at
each temperature update. The cooling rate is linear. Test instances are randomly
generated.

MI-FAP. In Duque-Antón et al. (1993) the model is distance MI-FAP. A dummy
frequency is introduced to represent (partially) unsatisfied demand. Substituting
a dummy frequency with an available one or vice versa (single flip) corresponds
to increasing or decreasing the violation of traffic demand. Both the vertex as
well its new frequency are randomly chosen. In order to increase the performance
of the algorithm the new frequency is chosen now and then as the most frequently
assigned to close (with respect to their actual geographical location) non-interfering
vertices.Another technique used to extend the neighborhood consists of performing
a sequence of moves before the acceptance test. The cooling rate is chosen so that



Frequency assignment problems 301

the difference between the average solution cost of two consecutive L-loops at
temperature t1 and t2 is no more than the standard deviation of the solution costs
at temperature t1. The system is frozen when the current solution does not change
during the last L-loop. Ad hoc test instances are proposed.

In Knälmann and Quellmalz (1994); Quellmalz et al. (1995) the model is dis-
tance MI-FAP. The move is performed by randomly selecting one vertex and by
randomly changing its frequency. No hard constraints are considered. Experiments
are performed on a 10 transmitter FM network from the German broadcaster Süd-
westfunk.

In Beckmann and Killat (1999a) neighborhood restriction is obtained by se-
lecting one vertex v at random and replacing the frequency assigned to v causing
the largest amount of interference by a frequency in the domain of v causing the
smallest amount of interference. An initial solution satisfying all hard constraints
is obtained by applying the genetic algorithm presented by the same authors in
Beckmann and Killat (1999b) (described in Sect. 5.5). The algorithm was applied
to large real-life instances of the COST 259 test-bed.

An interesting variant of SA is presented in Zerovnik (1997). The algorithm is
inspired by the graph coloring algorithm of Petford and Welsh (1989). The model is
distance MI-FAP with all penalties being unit penalties. To handle multiple demands
the split interference graph is used.An initial solution is found by a uniform random
assignment. The main difference with a standard SA approach is that the initial
temperature T is never changed. At each iteration a vertex v involved in a large
number of violated constraints is selected. Then a new frequency f is assigned with
probability e−Sf /T , where Sf amounts to the number of constraints that will be
violated by assigning f to v. Benchmark instances are 7-cluster hexagonal torus
(Duque-Antón et al. 1993) and triangular lattice graphs with random demand.

A second variant of SA, called threshold accepting is applied by Hellebrandt
and Heller (2000). The minimal differences between this technique and SA are not
discussed here. The initial solution is found so as to fulfill all of the hard constraints.
The initial temperature is chosen such that the acceptance rate is between 0.8 and
0.9. The move is the standard one, i.e., exchange of a frequency for a single vertex,
but the neighborhood is restricted by only considering moves that do not violate
hard constraints. An important feature of the algorithm is one-cell optimization,
which is performed at the end of every L-loop. The authors show that, by a simple
dynamic program, it is possible to efficiently optimize over the neighborhood of
the current solution obtained by letting all of the frequencies assigned to a vertex
be changed simultaneously. In fact, it is possible to show that this corresponds to
looking for a minimum cost k-cardinality stable set in interval graphs, where k is the
demand of the vertex. Benchmark instances are taken from the COST 259 test-bed.
The authors propose to extend this idea to clusters of vertices, but they are not able
to describe efficient search algorithms - here they propose to use a greedy search.
Finally, Mannino et al. (2000) describe a generalization to cliques of vertices of
the dynamic programming approach presented in Hellebrandt and Heller (2000).
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In particular, they show that finding an optimum assignment for a clique of vertices
with multiple demands can be reduced to finding fixed cardinality stable sets in
a generalization of interval graphs, and this task can be performed in polynomial
time.

Finally we only mention here that SA has been successfully applied in Yuan et
al. (2002) to solve a modified version of MI-FAP which tackles frequency hopping
optimization.

MB-FAP. In Mathar and Mattfeldt (1993) the model is (distance) MB-FAP with
only hard co-channel constraints. The authors propose a non standard definition
of a neighborhood in order to guarantee convergency of the method. A solution
is represented by m distinct orderings of the vertices, where m is the number of
available frequencies. A frequency assignment is then generated as follows. If π =
π1, . . . , πm is a solution (where πi is the ordering of the vertices associated with
the i-th frequency) then the corresponding assignment is obtained by assigning
frequency i to vertex v if and only if none of the vertices adjacent to v precedes v in
πi . The move is defined by suitable permutations of the current solution. Namely,
it consists of randomly selecting an available frequency r , and a permutation �

from a set 	 of pre-defined feasible permutations. 	 must be a generator of the set
of all permutations of the set {1, . . . , |V |}. The move simply consists in applying
permutation � to πr . Three different choices for 	 are discussed and compared
with the standard definition of move.

A hybrid model (MI-FAP + MB-FAP) is addressed in Al-Khaled (1998). The
main novelty with respect to standard SA consists of an adaptive cooling rate.
In particular the cooling rate depends on the difference between the average of
the accepted solution values of two consecutive L-loops. Ad hoc hexagonal test
instances are considered.

5.5 Genetic Algorithm (GA)

Genetic Algorithms are inspired by the natural process of reproduction. Metaphors
as chromosomes and population stand for solutions and solution set, respectively.
Analogously, a single variable is often indicated as a gene. Mechanisms as re-
combination and mutation give rise to new offspring by manipulating the current
population of solutions. Specifically, mutation applies to a single solution (chromo-
some) while crossover creates new solutions from a pair of solutions selected in the
current population. Following a standard Darwinistic approach, selection extracts
the most promising individuals in the current population.

The main features of a genetic algorithm are the following:

1. Chromosomal representation. The correspondence between chromosomes and
solutions.

2. Initial population. An initial set of solutions (chromosomes).
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3. Fitness function. The function used to evaluate the quality of candidate chro-
mosomes.

4. Selection. A mechanism to select promising chromosomes (in conjunction with
fitness function).

5. Crossover and mutation. Mechanisms to generate new solutions from the cur-
rently selected chromosomes.

The most common way to represent a solution is as follows: each chromosome
is a vector s ∈ Z

|V |, where sj is simply the frequency assigned to vj . The split
graph model is adopted when multiple demands are considered. We denote this
representation by (R1). In a second rather common representation (R2) each chro-
mosome is a partition of the vertices in a family of fmax (eventually empty) subsets
S1, S2, . . . , Sfmax , called the genes, where Sf is the set of vertices that are as-
signed frequency f for f = 1, . . . , fmax , and fmax is the maximum available
frequency. Simple adaptations are required when not all frequencies in the interval
[1, ff max] are available. Often such a chromosome is represented by a binary string
of fmax × |V | elements. The set of vertices that is assigned frequency f (called
the f -th gene) is stored in the bits in the interval [(f − 1) × |V | + 1, f × |V |]:
specifically, a 1 in position (f − 1)×fmax + k means that frequency f is assigned
to vertex k. In a third representation (R3) each chromosome is a permutation σ of
the |V | vertices, and represents the canonical assignment associated with σ (see
subsection 3.3). Again, the split graph model is considered when multiple demands
are considered.

Several types of crossover operators have been applied in the literature. As an
example, consider the one point crossover, applied to (R1). Let (f1, . . . , fn) be
the first parent chromosome, and let (g1, . . . , gn) be the second parent chromo-
some. Now, an index k is chosen and two new children are generated: the first is
(f1, . . . , fk, gk+1, . . . , gn), while the second is (g1, . . . , gk, fk+1, . . . , fn). More
sophisticated cross-over operators are the two-point crossover, where each parent
is split into three parts, and the uniform cross-over, where the each gene is copied
either from the first parent or from the second parent according to a pre-defined
scheme.

MS-FAP. In Valenzuela et al. (1998) the representation is (R3). The initial popu-
lation is randomly generated. The generalized Saturation Degree greedy algorithm
is applied to each element of the initial population to obtain good quality initial so-
lutions. The mutation operator consists of exchanging the position of two vertices.
The fitness function is the span of the permutation. Selection is made by round-
robin for the first parent, i.e., all chromosomes are selected in turn according to a
circular ordering, while the second parent is chosen with probability proportional
to its fitness value. Testing is performed on Philadelphia instances.

MO-FAP. In Kapsalis et al. (1995) the model is a variant of MO-FAP. The fitness
function is a weighted sum of (i) the number of distinct frequencies, (ii) the weighted
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sum of violated constraints (different types of constraints different weights), (iii)
mobility costs. Two chromosomal representations are adopted: the first is a simple
variant of (R1), the second is (R2). Besides standard operators, a number of spe-
cialized crossover operators were tested. The first one, applied to (R1), consists of
a repeated application of the following steps:

1. Select a constraint (and the corresponding pair of vertices u and v) and check
whether this constraint is satisfied by any of the two currently selected parents.

2. If it is satisfied, then interchange the frequencies assigned to u and v in the first
parent with those assigned in the second parent.

The second one is a single-point operator applied to (R2): similar to Crompton
et al. (1994) (described above), the genes are interchanged taking care of the hard
constraints. A first mutation operator is applied to (R1) and consists of choosing a
pair of vertices and interchanging the frequencies assigned to them. Also the sec-
ond mutation operator applies to (R1) and consists of choosing a pair of vertices
whose assignment violates a hard constraint, then randomly changing the assigned
frequencies with a new pair of available frequencies which do not violate such con-
straint. The last mutation applies to (R2). A set of vertices with the same frequency
are reassigned a commonly available new frequency. Finally, several strategies to
static and dynamic modification of the fitness function are proposed. Experiments
are performed using the CALMA data set.

In Dorne and Hao (1995) the model is (distance) MO-FAP and the authors
adopt the standard representation (R1). The fitness function is the number of un-
satisfied constraints. Mutation in a given chromosome is performed by selecting
an infeasible assignment, i.e., a vertex v and a frequency assigned to v violating
one or more constraints, and then replacing this frequency with the best alternative.
The selection mechanism extracts one chromosome from the current population by
favoring elements not yet trapped in local optima. The child obtained by applying
the mutation operator is accepted only if (i) its fitness function is not worse than
the fitness of the parent or (ii) randomly with a given probability. No crossover is
applied. Test instances are a set of 18 real-life problems from CNET. The algorithm
favorably compares with Constraint Programming and Simulated Annealing.

Dorne and Hao (1996) extend the algorithm presented in Dorne and Hao (1995)
to the multi-demand case. Co-cell constraints are used to limit the size of the search
space by a suitable adaptation of the mutation operator. Again, crossover is not
implemented. The GA algorithm is repeated several times after the generation of a
new population. Testing is performed on 10 instances.

Finally, Hao and Dorne (1996) extend the algorithm presented in Dorne and
Hao (1996) (described above) by applying three different crossovers: single-point,
uniform, and conflict based. The last consists of changing only those genes repre-
senting frequencies violating one or more constraints.

MI-FAP. In Cuppini (1994) the encoding scheme is (R2), while the fitness function
is the weighted sum of two terms: the first takes into account the global interfer-
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ence level, while the second is a measure of the span. Only asexual crossover is
used to produce new generations: it consists of choosing two genes G1, G2 in a
chromosome and two crossover points (the same for each gene). Then, two new
genes are obtained by breaking the old genes in the crossover point and then by
completing the first part of G1 with the second part of G2 and the first part of G2
by the second part of G1. A chromosome is chosen with probability proportional
to its fitness value. Computational experiments are performed on a number of ad
hoc instances.

In Lai and Coghill (1996) the chromosomal representation is (R1). Three-point
crossover is applied with some specialization required to avoid conflicts in recon-
structing the new offspring. Random mutation is applied to each gene of a new
chromosome with probability equal to 0.01.

Ngo and Li (1998) use the representation (R2). Crossover and mutation are de-
signed to maintain the number of one’s in the chromosome unchanged (Genetic-Fix
Algorithm) so that the number of frequencies assigned to each vertex is unchanged.
In particular, two-point crossover is applied by selecting an initial gene g1 and a
final gene g2 and by swapping only a subset of the genes between g1 and g2. The
solution is mutated by randomly substituting a frequency assigned to a given vertex
with a different one. A compressed encoding scheme which takes co-cell distance
constrains implicitly into account is also proposed in order to reduce the search
space. To diversify the search, a local search procedure is sporadically applied to
the current best solution in order to increase the quality of the solution. Basically,
a suitable subset of the most interfered frequencies currently assigned to some
vertices is selected and randomly replaced by new frequencies.

In Crisan and Mühlenbein (1998) the encoding scheme is (R1). The mutation
operator consists of replacing a frequency assigned to one vertex by a randomly
chosen frequency from a candidate set. The new frequency must respect co-cell
constraints. Crossover is obtained by selecting a good vertex v in the first parent,
i.e., a vertex with no local violation, and then constructing a new assignment in
the following way: (i) for v and for all vertices belonging to the neighborhood of
v, the new assignment is equal to the assignment in the first parent; (ii) for all
other vertices the assignment is as in the second parent. The rationale behind this
choice is that, if we partition the network into two subnetworks G1 and G2, two
distinct assignments may have opposite performances in terms of fitness function
in G1 and G2. In this way an attempt is made to get the best out of the two parents.
Of course, after crossover, local adjustments are required to minimize the fitness
function. Tests were performed on real-life instances.

Beckmann and Killat (1999b) adopted (R3) as representation. The model is
MS-FAP and the span is optimized by iteratively reducing the number of available
frequencies. The fitness function takes into account the number of “blocked calls”
(vertices that cannot be assigned an available frequency without violating hard
constraints) plus an additional tie-breaking term that takes the number of vertices
receiving large frequencies into account. In the selection mechanism, a chromosome
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is chosen with probability proportional to its fitness value. Two different mutation
operators are considered: (i) one of the blocked calls is selected and randomly
displaced, or (ii) a group of 4 contiguous calls is randomly rearranged - in fact, at
each application of this mutation operator, 3 different groups are randomly selected.
Uniform crossover produces two children from a pair of parents. First, the vertices
are randomly partitioned into two subsets. In one child, the vertices in the first subset
obtain the positions they occupy in the first parent, while the other vertices obtain
the residual positions according to the ordering induced by the second parent. For
the other child, the role of the parents is interchanged. The test bed is a subset of
the Philadelphia instances.

In Jaimes-Romero et al. (1996), MI-FAP is solved by a standard genetic al-
gorithm blended with a local search heuristic which is used to generate the new
population. In particular, after a solution with 0 blocking probability is found by
a standard genetic algorithm, a new phase is started where the algorithm tries to
minimize the overall interference level (number of violated constraints). Once a
chromosome C is selected, a mutation is generated by looking to the best neighbor,
where the neighborhood is the 1-exchange restricted to vertices which are end-
points of an edge violated by C. The chromosomal representation is (R2). Testing
is performed over ad hoc instances.

An innovative approach to mutation and crossover is presented by Kolen (1999)
to solve MI-FAP. The fitness function is the cost of the solution. The initial popula-
tion is generated at random. The mutation operator consists of a 1-opt local search
that transforms the input solution into a 1-optimal solution. This operator is ap-
plied to every new entry and to every chromosome in the initial population. So, at
any stage, every solution in the current population is 1-optimal. The most relevant
difference with former genetic approaches is that crossover is an optimal operator,
i.e., once the two parents are selected, the best possible combination of their genes
is calculated to generate a single child. More precisely, the selection operator is a
random operator which selects a parent with a probability inverse proportional to
its fitness value. Every vertex in the child solution will then obtain its frequency
either from one parent or from the other - so that there are only two possible choices
for each vertex. The best solution is then computed by applying a branch-and-cut
procedure based on the partial constrained formulation of MI-FAP, see Sect. 3.4.

In Crompton et al. (1994) the two different representations (R1) and (R2) along
with corresponding crossover and mutation operations are compared and applied
to a hybrid model. The single point crossover operation, applied to (R2), produces
children C1, C2 from parents P 1, P 2 by first selecting a so-called cross frequency
x. Then C1

f = P 1
f and C2

f = P 2
f for 1 ≤ f ≤ x. The remaining classes are

interchanged with some care, since simply letting C2
f = P 1

f and C1
f = P 2

f for
f > x would result in infeasible solutions (a feasible chromosome is a partition
of the vertices). Two point and uniform crossover are simple extensions. Mutation
consists of randomly selecting a vertex and reassigning it to a different class. The
fitness function is a weighted sum of four terms, representing the number of violated
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constraints, the span, the order and the larger violation. This scheme is incorporated
into a parallel algorithm, where each node of a parallel computer runs a sequential
algorithm with its own population of chromosomes. Occasionally exchanges of
chromosomes can take place among various populations. The authors illustrate the
superior effectiveness of the (R2) scheme over (R1) on two different instances.

5.6 Artificial Neural Networks (ANN)

Again, the natural learning process is a useful paradigm to define heuristic algo-
rithms for combinatorial problems. In the ANN context, solutions are generated by
a network of neurons, whose states represent the values of the variables involved in
the model. In order to minimize an energy function, which represents the objective
of the problem, the neurons change their states dynamically as a function of the
states of the neighboring neurons.

Basic ingredients in an ANN algorithm are the following:

1. Neuron definition. The mapping between neuron states and solutions.
2. Energy function. The objective to be minimized.
3. Synapses (coupling weights). Weighted connections between two neurons.
4. Local updating rule. Function of the neighbor states and the coupling weights

used to update the state of a neuron.

A standard way to define the neural network for FAP is the following: associate
a neuron Vif with each pair (i, f ) where i ∈ V and f ∈ Fv . Two neurons are
coupled if the corresponding vertices are adjacent in the interference graph. The
energy function is the weighted sum of several terms, representing different types
of interference constraints (co-cell, co-site, etc.), demand constraints (number of
required frequencies) and sometimes instance specific requirements.

In Kunz (1991) the model is distance MI-FAP. The coupling weight between two
distinct neuronsVif andVjr depends on the type of interference relation (co-cell, co-
site, etc.) between the corresponding two assignments. Computational experiments
were performed on random hexagonal networks and a real-life network from the
city of Helsinki.

In Funabiki and Takefuji (1992) the model is distance MI-FAP. The local updat-
ing rule consists of two terms. The first term is proportional to the demand deficiency
while the second is proportional to the distance violations. Several heuristics are
proposed to increase the ability of escaping from local minima.

The dynamic MI-FAP is considered in Del Re et al. (1996). At each iteration
the current assignment is updated to take into account new requests of connec-
tion. To speed up the process, only those vertices involved in new connections are
re-optimized. The energy function is the weighted sum of several terms to handle in-
terference level, unsatisfied demand, (Hamming) distance from former assignment,
(Hamming) distance from predefined reuse schemes, number of distinct frequency
assigned. Computational experiments are performed on hexagonal networks with
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non-uniform traffic distribution. A special type of dynamic channel allocation is the
borrowing channel assignment (BCA) where one vertex is allowed to borrow fre-
quencies from its neighbors.A standardANN algorithm to solve (BCA) is presented
in Sandalidis et al. (1999).

In Kim et al. (1996) the neurons can only assume binary values. The energy
function takes into account several types of interference constraints and the level
of unsatisfied demand. In particular, the latter term is translated into an additional
input to each neuron, which forces the assignment of new frequencies to vertices
with unsatisfied demand. Several initialization and updating methods are proposed.
Benchmark instances are ad hoc hexagonal networks.

Model MI-FAP is addressed in the connectionist algorithm presented in Bouju
et al. (1995b). The algorithm is compared on the CALMA test-bed.

Finally, Smith and Palaniswami (1997) modified the Hopfield network to incor-
porate some hill climbing mechanism for escaping from local minima. Experiments
with a self-organizing neural network are also performed (however, the Hopfield
network with hill climbing appears to be the best method). Benchmark instances
are the Philadelphia instances and the Helsinki instances proposed in Kunz (1991).

5.7 Ant Colony and Multi-agent Optimization

Ant Colony Optimization (ACO) is a class of constructive meta-heuristic algorithms
inspired by real ants behavior. We have a fixed number of ants, where each ant can be
interpreted as a sequential greedy algorithm which iteratively generates a solution
by upgrading partial solution moves. A move is controlled by two parameters: the
attractiveness which is based on the structure of the problem (costs and constraints);
the pheromone trail level which takes into account how many times a given move
has been successful. Pheromone trails are updated when all ants have completed
the construction of their solution, increasing (decreasing) the level for those moves
which led to good (bad) solutions. A lower bound is required to fix the initial level
of pheromones. Finally, the solution generated by each ant is possibly improved by
local search.

Maniezzo and Carbonaro (2000) solve MI-FAP by means of ACO. A partial
solution consists of an assignment of frequencies to a subset of the vertices. In
order to complete a given partial solution, every ant selects a new vertex and a
new frequency to be assigned to this vertex at each iteration. This assignment is
defined as a move. The initial lower bound is computed by solving the relaxation of
the (orientation) formulation proposed in Borndörfer et al. (1998b). The solution
produced by each ant is locally upgraded by local search. The authors use this
solution to define a partial order on the vertex set (as in the orientation model).
The proposed local search algorithm looks for solutions with the same underlying
order. Benchmark test problems are the CALMA instances and the Philadelphia
instances. A different and simplified version of ant optimization applied to distance
MI-FAP is given by Abril et al. (2000). Here, each ant is assigned to a vertex of
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the interference graph (penalties are all equal to 1). At each iteration an ant moves
from a vertex v to an adjacent one u with largest local violation (or at random).
Once there, the ant changes one of the frequencies assigned to u to the best possible
(or to a random one). Tests were performed on a set of real-life (Spanish) GSM
instances.

We mention here that ACO has been applied in Montemanni et al. (2002a) to
solve an extension of FAP which incorporates multiple interference.

5.8 Formulation based relaxations

A standard way to solve an optimization problem consists of describing it by means
of a mathematical formulation which in turn may be solved by some standard
techniques. However, for most practical instances such formulations are too large
to be solved to optimality and we must content ourselves with heuristic solutions.
A classical heuristic approach consists of removing some “difficult” constraints so
that the residual problem can be handled. Removed constraints can be accounted
for in several ways or simply ignored.

5.8.1 Lagrangian relaxation

In Chang and Kim (1997) the adopted model is MB-FAP, with co-channel and
adjacent channel constraints. A family of stable sets (patterns) of the interference
graph is generated. To simplify the model, frequencies are assigned to patterns,
rather than to single vertices. The objective function is linearized by exploiting the
fact that the Erlang B formula is piecewise linear. The problem is formulated as
a mixed-integer linear program, by means of two types of variables: assignment
variables (to select patterns and assign a frequency to each selected pattern), and
variables associated with the linearization of the Erlang B formula. The Lagrangian
relaxation is obtained by relaxing all the constraints coupling the two types of
variables. The residual problem is a maximum weighted stable set problem which is
solved by branch-and-bound. The Lagrangian multipliers are updated by a standard
subgradient approach. Test problems are randomly generated.

5.8.2 Orientation formulation

For MI-FAP, the orientation formulation (cf., Sect. 3.6.2) is exploited in the method
proposed by Borndörfer et al. (1998b). The authors show that, under mild assump-
tions, the relaxation of the orientation formulation has integral solutions once all
variables of type �uv are fixed either to 0 or 1, i.e., an orientation of the edges
has been fixed. This observation leads to a two-stage heuristic. In the first stage an
orientation � is chosen. In a second stage, a minimum cost assignment is found by
solving the associated linear program. A new partial orientation is then generated
by exploiting information associated to the solution of the relaxation.
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5.8.3 Potential reduction

An approximation algorithm both for MI-FAP and for MO-FAP based on Kar-
markar’s potential reduction approach to combinatorial optimization is proposed
by Warners et al. (1997). First the problem is formulated as a quadratic non-convex
optimization problem (see Sect. 3.4). It is then shown that any feasible (optimal)
fractional solution to this formulation can be converted to multiple feasible (op-
timal) integer solutions of MI(MO)-FAP. Now, solving quadratic non-convex op-
timization is a difficult task which can be approximately performed by applying
potential reduction. To do this, the constraints of the formulation that ensure that
each vertex receives exactly one frequency are relaxed and the objective function
is modified by adding a weighted logarithmic barrier potential function. Namely,
for each constraint i if we denote by si its slack variable and by wi an associated
positive weight, the new term has the form

∑
i wi log si . This new non-convex opti-

mization problem is solved by an adaption of the method developed by Karmarkar
et al. (1991). Several implementation details of this approach, such as starting point,
alternative rounding schemes, techniques to escape local minima are discussed in
deep. Also, several preprocessing techniques are used to reduce the size of the
instances. Experiments are performed on the CALMA instances.

5.9 Ad hoc

5.9.1 Solve and extend

The solve and extend strategy consists of two phases. In the first phase, a suitably
hard subproblem of the original one is selected and solved. The subproblem should
be small enough to be handled easily. In the second phase the solution found in this
way is extended to a solution to the original problem. The two phases are iterated
until a “satisfactory” solution to the whole problem is found or until a stopping
criterion is met. The term “satisfactory” gives rise to different interpretations in
different papers. In Smith et al. (1998) (MS-FAP) the initial subproblem is found
by selecting a p-level clique, i.e., a subset C of the vertices of G with the property
that δ(u, v) ≥ p for all u, v ∈ C. Such a clique is selected in order to maximize
the associated lower bound for MS-FAP, see Sect. 4.4.2. A solution to G[C] is
found heuristically. This solution is then (heuristically) extended to a solution of
G. If such a solution is “satisfactory”, we are done. Otherwise new vertices are
added to C and the method is iterated. The new vertices are chosen according to
decreasing saturation degrees, i.e., the number of different frequencies assigned in
the neighborhood.

A similar approach is presented in Mannino and Sassano (2003) to solve MS-
FAP; the solution to the subproblems and the extension are found by an exact
implicit enumeration algorithm. A “satisfactory” solution is a solution whose span
does not exceed a pre-defined quantity. New vertices are selected and added to the



Frequency assignment problems 311

subproblem by using connectivity criteria. Namely, if S is the set of vertices in the
subproblem, then the new vertex v maximizes the quantity

∑
u∈S δ(u, v).

5.9.2 Constraint programming

The models considered by Walser (1996) are MS-FAP and MO-FAP. The original
interference graph is heuristically shrunk by constructing a suitable covering of the
vertices with stable sets. All the vertices in a stable set are identified into a single
vertex, which corresponds to assigning the same frequency to all of the original
vertices. To compute a feasible assignment of the shrunk graph, the author uses
canonical assignments, see Sect. 3.3. To obtain the solution constraint programming
techniques are used.A restricted backtracking technique, called limited discrepancy
search is exploited, which consists of visiting only those leaves of the branching
tree which are not “too far” from the first solution achieved by depth first search.

6 Concluding remarks

In this survey, we have given an overview of the frequency assignment literature of
the last 10–15 years. To conclude the paper, we like to make the following remarks.

The classification given in Sect. 3 shows that the frequency assignment problem
does not exist. In this survey, we classified the FAPs according to their objective
function, given two constraint types: assignment and interference. However, there
are more relevant technical and practical issues not accounted for, such as multiple
interference and dynamic channel allocation. This makes it very difficult to seek
out the relevant literature. The fact that the problem is at the crossroad of multiple
disciplines (graph theory, management science and telecommunication technol-
ogy), does not make it easier either to keep track of new developments. The digest
at FAPweb (2000–2003) (http://fap.zib.de) uses this classification to sort the pub-
lications, to support the search for relevant literature. This digest will be regularly
updated with the newest publications in the field. In this way, it hopefully serves as
the first source for all those who are interested, now and in the future.

Another drawback that holds for most optimization problems motivated by prac-
tice, and therefore also for FAPs, is the limited availability of benchmark instances.
Most of the proposed algorithms are tested on specific, solitary instances, often
unavailable to the public, or even on randomly generated instances. Exceptions
are the CALMA and COST 259 projects, the papers devoted to the solution of the
Philadelphia instances, and the effort made by Caminadea (2000) to make available
a real GSM network instance, with all its technical side constraints. It would be
a tremendous improvement when authors test their algorithms not only on their
solitary instances, but also on at least one of these sets of benchmarks instances.
Alternatively, new/existing data sets can be made available so that other groups
can test their algorithms on these instances as well. Also in this context, FAPweb



312 K.I. Aardal et al.

(2000–2003) likes to serve as an intermediary, and as the place for comparing the
results.

Concerning the methodologies applied to frequency assignment, many of them,
especially the proposed heuristics are small variations on standard themes. For the
sake of completeness, a brief description of most of these technical papers have
been reported in the survey. On the other hand, a limited number of original or
seminal papers have appeared, and they have been discussed in more detail. We
hope that our categorization of these methods gives insight into their contribution,
and helps in positioning future research as well.

All above mentioned reasons for confusing the study of the frequency assign-
ment literature, applied to the authors of this survey as well. Over and over again,
we discovered relevant (new or old) papers on the topic. Therefore, we do not claim
that this survey gives a complete overview of the literature. We, however, have con-
fidence that all important developments in the field have been covered. Although
we plan to keep track of future trends in frequency assignment, this intention can
only be realized with the help of all working in the field. Also at this point, FAP-
web (2000–2003) plays an important role. By providing information about new
papers and results to FAPweb (2000–2003), the FAP community can be informed
extremely fast, and newcomers are always provided with the latest information in
the field.

Looking to the future of frequency assignment, three technological develop-
ments are of importance. On the one hand, the major accelerator for the development
of frequency assignment algorithms, the constitution of GSM and other second gen-
eration (2G) networks will come to its end in the near future. The new generation
of 3G networks, like the UMTS technology, exploits mainly code division mul-
tiplexing (CMDA) instead of frequency division multiplexing. As a consequence,
optimization models for CDMA networks have an emphasis other than frequency
assignment. By this frequency assignment will lack some of its importance. On the
other hand however, several other new technologies like wireless LANs and ad-
hoc networks are rapidly developing and in this context new frequency assignment
problems pop up. Especially, the dynamic nature and the decentralized structure of
these networks will (again) effect the view on the frequency assignment problem
in the coming years. A third important developing application is in digital terres-
trial broadcasting networks. The transition from the current analog technology to
the digital one, forthcoming all over Europe, provides new challenging frequency
assignment problems.

Finally, from the mathematical perspective, there is still enough room for im-
provement of the solution and lower bounding techniques for all variants of fre-
quency assignment problems. The still practical relevance of, in particular, the
minimum interference and minimum blocking FAPs can be an additional motiva-
tion to do so. This survey offers the possibility to detect the areas where advances
can be successful. Altogether, we conclude that this survey can not be seen as a
final report on frequency assignment, but as an evaluation of the field.
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