410 research outputs found

    An Evaluation of Inter-Organizational Workflow Modelling Formalisms

    Get PDF
    This paper evaluates the dynamic aspects of the UML in the context of inter-organizational workflows. Two evaluation methodologies are used. The first one is ontological and is based on the BWW (Bunge-Wand-Weber) models. The second validation is based on prototyping and consists in the development of a workflow management system in the aerospace industry. Both convergent and divergent results are found from the two validations. Possible enhancements to the UML formalism are suggested from the convergent results. On the other hand, the divergent results suggest the need for a contextual specification in the BWW models. Ce travail consiste en une évaluation des aspects dynamiques du language UML dans un contexte de workflow inter-organisationnel. Le choix du language par rapport à d'autres est motivé par sa richesse grammaticale lui offrant une très bonne adaptation à ce contexte. L'évaluation se fait par une validation ontologique basée sur les modèles BWW (Bunge-Wand-Weber) et par la réalisation d'un prototype de système de gestion de workflows inter-organisationnels. À partir des résultats convergents obtenus des deux différentes analyses, des améliorations au formalisme UML sont suggérées. D'un autre coté, les analyses divergentes suggèrent une possibilité de spécifier les modèles BWW à des contextes plus particuliers tels que ceux des workflows et permettent également de suggérer d'autres améliorations possibles au langage.Ontology, Conceptual study, Prototype Validation, UML, IS development methods and tools., Ontologie, étude conceptuelle, validation du prototype, UML, méthodes et outils de développement IS

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    Study on Genetic Algorithm Improvement and Application

    Get PDF
    Genetic Algorithms (GAs) are powerful tools to solve large scale design optimization problems. The research interests in GAs lie in both its theory and application. On one hand, various modifications have been made on early GAs to allow them to solve problems faster, more accurately and more reliably. On the other hand, GA is used to solve complicated design optimization problems in different applications. The study in this thesis is both theoretical and applied in nature. On the theoretical side, an improved GA�Evolution Direction Guided GA (EDG-GA) is proposed based on the analysis of Schema Theory and Building Block Hypothesis. In addition, a method is developed to study the structure of GA solution space by characterizing interactions between genes. This method is further used to determine crossover points for selective crossover. On the application side, GA is applied to generate optimal tolerance assignment plans for a series of manufacturing processes. It is shown that the optimal tolerance assignment plan achieved by GA is better than that achieved by other optimization methods such as sensitivity analysis, given comparable computation time

    Efficient parallel architecture for highly coupled real-time linear system applications

    Get PDF
    A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics

    Knowledge restructing and the development of expertise in computer programming

    Get PDF
    This thesis reports a number of empirical studies exploring the development of expertise in computer programming. Experiments 1 and 2 are concerned with the way in which the possession of design experience can influence the perception and use of cues to various program structures. Experiment 3 examines how violations to standard conventions for constructing programs can affect the comprehension of expert, intermediate and novice subjects. Experiment 4 looks at the differences in strategy that are exhibited by subjects of varying skill level when constructing programs in different languages. Experiment 5 takes these ideas further to examine the temporal distribution of different forms of strategy during a program generation task. Experiment 6 provides evidence for salient cognitive structures derived from reaction time and error data in the context of a recognition task. Experiments 7 and 8 are concerned with the role of working memory in program generation and suggest that one aspect of expertise in the programming domain involves the acquisition of strategies for utilising display-based information. The final chapter attempts to bring these experimental findings together in terms of a model of knowledge organisation that stresses the importance of knowledge restructuring processes in the development of expertise. This is contrasted with existing models which have tended to place emphasis upon schemata acquisition and generalisation as the fundamental modes of learning associated with skill development. The work reported here suggests that a fine-grained restructuring of individual schemata takes places during the later stages of skill development. It is argued that those mechanisms currently thought to be associated with the development of expertise may not fully account for the strategic changes and the types of error typically found in the transition between novice, intermediate and expert problem solvers. This work has a number of implications for existing theories of skill acquisition. In particular, it questions the ability of such theories to account for subtle changes in the various manifestations of skilled performance that are associated with increasing expertise. Secondly, the work reported in this thesis attempts to show how specific forms of training might give rise to the knowledge restructuring process that is proposed. Finally, the thesis stresses the important role of display-based problem solving in complex tasks such as programming and highlights the role of programming language notation as a mediating factor in the development and acquisition of problem solving strategies

    Recolha e conceptualização de experiências de atividades robóticas baseadas em planos para melhoria de competências no longo prazo

    Get PDF
    Robot learning is a prominent research direction in intelligent robotics. Robotics involves dealing with the issue of integration of multiple technologies, such as sensing, planning, acting, and learning. In robot learning, the long term goal is to develop robots that learn to perform tasks and continuously improve their knowledge and skills through observation and exploration of the environment and interaction with users. While significant research has been performed in the area of learning motor behavior primitives, the topic of learning high-level representations of activities and classes of activities that, decompose into sequences of actions, has not been sufficiently addressed. Learning at the task level is key to increase the robots’ autonomy and flexibility. High-level task knowledge is essential for intelligent robotics since it makes robot programs less dependent on the platform and eases knowledge exchange between robots with different kinematics. The goal of this thesis is to contribute to the development of cognitive robotic capabilities, including supervised experience acquisition through human-robot interaction, high-level task learning from the acquired experiences, and task planning using the acquired task knowledge. A framework containing the required cognitive functions for learning and reproduction of high-level aspects of experiences is proposed. In particular, we propose and formalize the notion of Experience-Based Planning Domains (EBPDs) for long-term learning and planning. A human-robot interaction interface is used to provide a robot with step-by-step instructions on how to perform tasks. Approaches to recording plan-based robot activity experiences including relevant perceptions of the environment and actions taken by the robot are presented. A conceptualization methodology is presented for acquiring task knowledge in the form of activity schemata from experiences. The conceptualization approach is a combination of different techniques including deductive generalization, different forms of abstraction and feature extraction. Conceptualization includes loop detection, scope inference and goal inference. Problem solving in EBPDs is achieved using a two-layer problem solver comprising an abstract planner, to derive an abstract solution for a given task problem by applying a learned activity schema, and a concrete planner, to refine the abstract solution towards a concrete solution. The architecture and the learning and planning methods are applied and evaluated in several real and simulated world scenarios. Finally, the developed learning methods are compared, and conditions where each of them has better applicability are discussed.Aprendizagem de robôs é uma direção de pesquisa proeminente em robótica inteligente. Em robótica, é necessário lidar com a questão da integração de várias tecnologias, como percepção, planeamento, atuação e aprendizagem. Na aprendizagem de robôs, o objetivo a longo prazo é desenvolver robôs que aprendem a executar tarefas e melhoram continuamente os seus conhecimentos e habilidades através da observação e exploração do ambiente e interação com os utilizadores. A investigação tem-se centrado na aprendizagem de comportamentos básicos, ao passo que a aprendizagem de representações de atividades de alto nível, que se decompõem em sequências de ações, e de classes de actividades, não tem sido suficientemente abordada. A aprendizagem ao nível da tarefa é fundamental para aumentar a autonomia e a flexibilidade dos robôs. O conhecimento de alto nível permite tornar o software dos robôs menos dependente da plataforma e facilita a troca de conhecimento entre robôs diferentes. O objetivo desta tese é contribuir para o desenvolvimento de capacidades cognitivas para robôs, incluindo aquisição supervisionada de experiência através da interação humano-robô, aprendizagem de tarefas de alto nível com base nas experiências acumuladas e planeamento de tarefas usando o conhecimento adquirido. Propõe-se uma abordagem que integra diversas funcionalidades cognitivas para aprendizagem e reprodução de aspetos de alto nível detetados nas experiências acumuladas. Em particular, nós propomos e formalizamos a noção de Domínio de Planeamento Baseado na Experiência (Experience-Based Planning Domain, or EBPD) para aprendizagem e planeamento num âmbito temporal alargado. Uma interface para interação humano-robô é usada para fornecer ao robô instruções passo-a-passo sobre como realizar tarefas. Propõe-se uma abordagem para extrair experiências de atividades baseadas em planos, incluindo as percepções relevantes e as ações executadas pelo robô. Uma metodologia de conceitualização é apresentada para a aquisição de conhecimento de tarefa na forma de schemata a partir de experiências. São utilizadas diferentes técnicas, incluindo generalização dedutiva, diferentes formas de abstracção e extração de características. A metodologia inclui detecção de ciclos, inferência de âmbito de aplicação e inferência de objetivos. A resolução de problemas em EBPDs é alcançada usando um sistema de planeamento com duas camadas, uma para planeamento abstrato, aplicando um schema aprendido, e outra para planeamento detalhado. A arquitetura e os métodos de aprendizagem e planeamento são aplicados e avaliados em vários cenários reais e simulados. Finalmente, os métodos de aprendizagem desenvolvidos são comparados e as condições onde cada um deles tem melhor aplicabilidade são discutidos.Programa Doutoral em Informátic

    Cognitive Mechanisms and Computational Models: Explanation in Cognitive Neuroscience

    Get PDF
    Cognitive Neuroscience seeks to integrate cognitive psychology and neuroscience. I critique existing analyses of this integration project, and offer my own account of how it ought to be understood given the practices of researchers in these fields. A recent proposal suggests that integration between cognitive psychology and neuroscience can be achieved `seamlessly' via mechanistic explanation. Cognitive models are elliptical mechanism sketches, according to this proposal. This proposal glosses over several difficulties concerning the practice of cognitive psychology and the nature of cognitive models, however. Although psychology's information-processing models superficially resemble mechanism sketches, they in fact systematically include and exclude different kinds of information. I distinguish two kinds of information-processing model, neither of which specifies the entities and activities characteristic of mechanistic models, even sketchily. Furthermore, theory development in psychology does not involve the filling in of these missing details, but rather refinement of the sorts of models they start out as. I contrast the development of psychology's attention filter models with the development of neurobiology's models of sodium channel filtering. I argue that extending the account of mechanisms to include what I define as generic mechanisms provides a more promising route towards integration. Generic mechanisms are the in-the-world counterparts to abstract types. They thus have causal-explanatory powers which are shared by all the tokens that instantiate that type. This not only provides a way for generalizations to factor into mechanistic explanations, which allows for the `upward-looking' explanations needed for integrating cognitive models, but also solves some internal problems in the mechanism literature concerning schemas and explanatory relevance. I illustrate how generic mechanisms are discovered and used with examples from computational cognitive neuroscience. I argue that connectionist models can be understood as approximations to generic brain mechanisms, which resolves a longstanding philosophical puzzle as to their role. Furthermore, I argue that understanding scientific models in general in terms of generic mechanisms allows for a unified account of the types of inferences made in modeling and in experiment
    corecore