
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2018

Universidade do Porto Faculdade de Ciências,
2018

Universidade do Minho Departamento de Informática,
2018

VAHID

MOKHTARI

RECOLHA E CONCEITUALIZAÇÃO DE EXPERIÊNCIAS DE

ATIVIDADES ROBÓTICAS BASEADAS EM PLANOS PARA

MELHORIA DE COMPETÊNCIAS NO LONGO PRAZO

GATHERING AND CONCEPTUALIZING PLAN-BASED ROBOT

ACTIVITY EXPERIENCES FOR LONG-TERM COMPETENCE

ENHANCEMENT

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2018

Universidade do Porto Faculdade de Ciências,
2018

Universidade do Minho Departamento de Informática,
2018

VAHID

MOKHTARI

RECOLHA E CONCEITUALIZAÇÃO DE EXPERIÊNCIAS DE

ATIVIDADES ROBÓTICAS BASEADAS EM PLANOS PARA

MELHORIA DE COMPETÊNCIAS NO LONGO PRAZO

GATHERING AND CONCEPTUALIZING PLAN-BASED ROBOT

ACTIVITY EXPERIENCES FOR LONG-TERM COMPETENCE

ENHANCEMENT

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Doutor em Engenharia Informática,
realizada sob a orientação científica dos professores Luís Seabra Lopes e Ar-
mando Pinho, do Departamento de Electrónica, Telecomunicações e Informática
da Universidade de Aveiro

O Júri / The Jury

Presidente /
President

Doutor Joaquim Manuel Vieira

Professor Catedrático, Universidade de Aveiro

Vogais /
Examiners
Committee

Doutor Joachim Hertzberg

Professor Catedrático, Universidade Osnabrück, Alemanha

Doutor Manuel Cabido Lopes

Professor Associado, Instituto Superior Técnico, Universidade de Lisboa

Doutor Paulo Martins de Carvalho

Professor Associado, Universidade do Minho

Doutor Luís Filipe de Seabra Lopes (Orientador/Supervisor)

Professor Associado, Universidade de Aveiro

Doutor José Nuno Panelas Lau

Professor Auxiliar, Universidade de Aveiro

Acknowledgments /

Agradecimentos

This work would not have been possible without the support and guid-
ance of Prof. Luís Seabra Lopes, who encouraged me to explore many
directions of this research during all the years of my PhD. I would like to
express my deepest appreciation for his continual guidance and persis-
tent help, without which this dissertation would have been incomplete.

I am grateful to Prof. Armando José Pinho for his enthusiasm and sup-
port for this direction of work. Armando’s patience, encouragement and
insightful advice were key in taking this entire direction of research from
its inception to the results.

I am thankful to my colleagues from the EU RACE project who acquainted
me with ontology-based robotics and provided the initial context and
demonstration scenarios for this work. I thank the Foundation for Sci-
ence and Technology Portugal – FCT for funding this work under grant
SFRH/BD/94184/2013. I also express my profound gratitude to the Insti-
tuto de Engenharia Electrónica e Telemática de Aveiro – IEETA for hosting
and supporting this work.

I would also like to thank Prof. Roman Manevich, University of Texas at
Austin, who introduced me in the field of 3-valued logic and helped me to
integrate and explore that topic in this work.

I am also thankful to Prof. Daniele Magazzeni, who kindly hosted me at
King’s College London and helped me to extend my work in new directions
of the research within his research group.

My wife, Parinaz, has been a constant source of inspiration for my studies.
Without her perspective and support, this work would not have reached
fruition. I am also grateful to my parents, my brothers and my sisters for
their support and encouragement.

I would also like to thank my friend, Hamidreza Kasaei, whose company
allowed me to continue this work with enthusiasm.

Dedication /

Dedicação

To my parents, brothers and sisters, for their endless love, support and
encouragement.

To my beloved wife Parinaz, without whose encouragement this may
never have started, and to my sweet daughter Niki.

Palavras-chave Domínios de Planeamento Baseados na Experiência; Aprendizagem Au-
tomática Planeamento Automático Representação do Conhecimento e
Raciocínio;

Resumo Aprendizagem de robôs é uma direção de pesquisa proeminente em
robótica inteligente. Em robótica, é necessário lidar com a questão da in-
tegração de várias tecnologias, como percepção, planeamento, atuação
e aprendizagem. Na aprendizagem de robôs, o objetivo a longo prazo é
desenvolver robôs que aprendem a executar tarefas e melhoram contin-
uamente os seus conhecimentos e habilidades através da observação e
exploração do ambiente e interação com os utilizadores. A investigação
tem-se centrado na aprendizagem de comportamentos básicos, ao passo
que a aprendizagem de representações de atividades de alto nível, que
se decompõem em sequências de ações, e de classes de actividades, não
tem sido suficientemente abordada. A aprendizagem ao nível da tarefa
é fundamental para aumentar a autonomia e a flexibilidade dos robôs.
O conhecimento de alto nível permite tornar o software dos robôs menos
dependente da plataforma e facilita a troca de conhecimento entre robôs
diferentes.
O objetivo desta tese é contribuir para o desenvolvimento de capaci-
dades cognitivas para robôs, incluindo aquisição supervisionada de ex-
periência através da interação humano-robô, aprendizagem de tarefas
de alto nível com base nas experiências acumuladas e planeamento de
tarefas usando o conhecimento adquirido. Propõe-se uma abordagem
que integra diversas funcionalidades cognitivas para aprendizagem e re-
produção de aspetos de alto nível detetados nas experiências acumu-
ladas. Em particular, nós propomos e formalizamos a noção de Domínio
de Planeamento Baseado na Experiência (Experience-Based Planning Do-
main, or EBPD) para aprendizagem e planeamento num âmbito tempo-
ral alargado. Uma interface para interação humano-robô é usada para
fornecer ao robô instruções passo-a-passo sobre como realizar tare-
fas. Propõe-se uma abordagem para extrair experiências de atividades
baseadas em planos, incluindo as percepções relevantes e as ações exe-
cutadas pelo robô.
Uma metodologia de conceitualização é apresentada para a aquisição
de conhecimento de tarefa na forma de schemata a partir de experiên-
cias. São utilizadas diferentes técnicas, incluindo generalização dedu-
tiva, diferentes formas de abstracção e extração de características. A
metodologia inclui detecção de ciclos, inferência de âmbito de aplicação
e inferência de objetivos. A resolução de problemas em EBPDs é al-
cançada usando um sistema de planeamento com duas camadas, uma
para planeamento abstrato, aplicando um schema aprendido, e outra
para planeamento detalhado.
A arquitetura e os métodos de aprendizagem e planeamento são apli-
cados e avaliados em vários cenários reais e simulados. Finalmente,
os métodos de aprendizagem desenvolvidos são comparados e as
condições onde cada um deles tem melhor aplicabilidade são discutidos.

Keywords Experience-Based Planning Domains; Machine Learning; Automated Plan-
ning; Knowledge Representation and Reasoning;

Abstract Robot learning is a prominent research direction in intelligent robotics.
Robotics involves dealing with the issue of integration of multiple tech-
nologies, such as sensing, planning, acting, and learning. In robot learn-
ing, the long term goal is to develop robots that learn to perform tasks
and continuously improve their knowledge and skills through observa-
tion and exploration of the environment and interaction with users. While
significant research has been performed in the area of learning motor be-
havior primitives, the topic of learning high-level representations of activ-
ities and classes of activities that, decompose into sequences of actions,
has not been sufficiently addressed. Learning at the task level is key to
increase the robots’ autonomy and flexibility. High-level task knowledge
is essential for intelligent robotics since it makes robot programs less de-
pendent on the platform and eases knowledge exchange between robots
with different kinematics.
The goal of this thesis is to contribute to the development of cognitive
robotic capabilities, including supervised experience acquisition through
human-robot interaction, high-level task learning from the acquired ex-
periences, and task planning using the acquired task knowledge. A
framework containing the required cognitive functions for learning and
reproduction of high-level aspects of experiences is proposed. In partic-
ular, we propose and formalize the notion of Experience-Based Planning
Domains (EBPDs) for long-term learning and planning. A human-robot
interaction interface is used to provide a robot with step-by-step ins-
tructions on how to perform tasks. Approaches to recording plan-based
robot activity experiences including relevant perceptions of the environ-
ment and actions taken by the robot are presented. A conceptualization
methodology is presented for acquiring task knowledge in the form of ac-
tivity schemata from experiences. The conceptualization approach is a
combination of different techniques including deductive generalization,
different forms of abstraction and feature extraction. Conceptualization
includes loop detection, scope inference and goal inference. Problem
solving in EBPDs is achieved using a two-layer problem solver compris-
ing an abstract planner, to derive an abstract solution for a given task
problem by applying a learned activity schema, and a concrete planner,
to refine the abstract solution towards a concrete solution.
The architecture and the learning and planning methods are applied and
evaluated in several real and simulated world scenarios. Finally, the de-
veloped learning methods are compared, and conditions where each of
them has better applicability are discussed.

Contents

Contents i

List of Figures v

List of Tables ix

List of Notations xi

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 4

1.3 Research Context . 5

1.4 Thesis Outline and Contributions . 7

1.5 Publications . 8

2 A Review of Robot Task Learning and Planning 11
2.1 Robot Learning from Demonstration 12

2.1.1 Teacher Demonstrations . 12

2.1.2 Low-Level Skill Learning from Demonstration 14

2.1.3 High-Level Task Learning from Demonstration 15

2.2 Artificial Intelligence Planning . 18

2.2.1 Classical Planning Framework 19

2.2.2 Planning Domain Definition Language 20

2.2.3 Algorithms for Classical Planning 21

2.2.4 Hierarchical Task Network Planning 22

2.3 Machine Learning for Automated Planning 25

2.3.1 Learning Macro Actions . 26

2.3.2 Learning Hierarchical Decomposition Models 28

2.3.3 Generalized Planning . 29

i

CONTENTS

2.3.4 Explanation Based Learning 31

2.3.5 Other Techniques for Acquiring Planning Knowledge 33

2.4 Summary . 34

3 Experience-Based Planning Domains 37
3.1 Running Examples . 38

3.1.1 The RACE Domain . 38

3.1.2 The Stacking Blocks Domain 39

3.2 Architectural Overview . 40

3.3 Planning Domains . 41

3.4 Task Planning Problems and Solutions 43

3.5 Abstraction Hierarchies . 44

3.6 Plan-Based Robot Activity Experiences 48

3.7 Robot Activity Schemata . 50

3.8 Experience-Based Planning Domains 54

3.9 Summary . 54

4 Human-Robot Interaction and the Extraction of Experiences 57
4.1 Running Example: Teaching Tasks in the RACE Domain 58

4.2 Knowledge Representation Aspects 59

4.2.1 Ontology of Experiences . 60

4.2.2 Human-Robot Interaction Ontology 61

4.3 Interactive Teaching . 63

4.4 Robot Activity Experience Extraction 64

4.5 Summary . 67

5 Learning Planning Knowledge 73
5.1 Experience Generalization . 74

5.2 Experience Abstraction . 78

5.3 Feature Extraction . 79

5.4 Loop Detection . 81

5.5 Scope Inference . 87

5.6 Goal Inference . 95

5.7 Summary . 98

ii

CONTENTS

6 Planning Using the Learned Knowledge 99
6.1 Problem Abstraction . 99

6.2 Activity Schema Retrieval . 101

6.3 Abstract Planning . 104

6.4 Concrete Planning . 107

6.5 Summary . 109

7 Implementation, Demonstration and Evaluation 111
7.1 Prototyping and Implementation . 111

7.2 Evaluation Metrics . 112

7.3 The RACE Demonstrations and Results 113

7.4 Robotic Arm Demonstration and Results 117

7.5 Standard Planning Domains . 121

7.6 Summary . 130

8 Conclusions 135
8.1 Summary of the Thesis Contributions 135

8.2 Directions for Future Work . 137

Bibliography 141

A The Stacking-Blocks EBPD 160

iii

CONTENTS

iv

List of Figures

1.1 The RACE Architecture. 6

2.1 An abstract illustration of the Learning from Demonstration pipeline. 12

2.2 Different techniques for directly transferring demonstration data to

a robot learner. (a) A person teaching a pr2 how to hammer a plastic

box using thumb joysticks; (b) A person teaching a robotic arm how

to open a door through kinesthetic teaching; (c) A humanoid robot

is controlled in real time by a human operator wearing a motion-

capture system. 13

2.3 An example of the decomposition tree for the method move-stack. . 23

2.4 Improving the knowledge of a planner using machine learning (Jiménez

et al., 2012). 25

2.5 The Explanation-Based Generalization method. 32

3.1 An overview of the learning and planning framework underlying an

EBPD. 41

4.1 Initial states of the restaurant floor for ‘ServeACoffee’ tasks with

trixi PR2 robot in Scenarios A and B. 59

4.2 Partial representation of the experience ontology in the RACE domain. 60

4.3 Representation of the instructor ontology of the RACE domain. . . . 62

4.4 The robot’s memory content during the ‘ServeACoffee’ task (710 in-

stances and 2281 relations). 70

4.5 Content of the extracted ‘ServeACoffee’ experience after the simpli-

fication approach based on the ego networks (56 instances and 54

relations). 71

5.1 Flowchart representing the activity schema learning process. 74

v

LIST OF FIGURES

5.2 Canonical abstraction of key-properties in the (generalized and ab-

stracted) ‘Stack_N_Blue’ experience (in Listing 5.3). (a) Graphical

representation of the 2-valued structure generated from the key-

properties. (b) Graphical representation of the 3-valued structure

obtained through canonical abstraction. 90

5.3 All paths between the task arguments (?mug ?guest ?table ?coun-

ter) in the (generalized) experience ‘ServeACoffee’. The key-pro-

perties with temporal symbols init, during and end, involved in the

shortest paths (solid edges), are included in the description of the

inferred goal. 97

6.1 Flowchart of the planning system in EBPDs. 100

6.2 Assume that (ab)∗cd is an enriched abstract plan, in which each

letter represents an enriched abstract operator and (ab)∗ represents

a loop. ASBP generates two classes of successors when gets to a

loop in an abstract plan: (i) ASBP generates an iteration of the loop

and appends it to the beginning of the abstract plan and generates

the successors for the obtained abstract plan, i.e., ab(ab)∗cd in the

figure; and (ii) ASBP skips the loop and generates the successors for

the rest of the abstract plan, i.e., cd in the figure. ASBP then picks

a successor with the lowest cost to develop. This procedure either

extends or skips a loop. 106

7.1 The initial states of the restaurant floor for the ‘ServeACoffee’ task

in scenarios A and B with trixi PR2. In both scenarios, trixi is

taught to place mug1 on the right side of guest1 at table1 and table2

respectively. 114

7.2 An example of the execution of a ‘ServeACoffee’ task with a PR2

robot in Gazebo simulated environment according to the instruc-

tions in Listing 4.5 (in Chapter 4). In this scenario, robot moves to

the counter1 (top-left), picks up mug1 from the counter (top-right),

moves to the table1 (bottom-left), and puts the mug on the table in

front of a guest (bottom-right). 115

7.3 The initial state of the restaurant floor for the ‘ClearATable’ task in

scenario A. The trixi PR2 robot is taught to clear table1. 115

vi

LIST OF FIGURES

7.4 The canonical abstraction of the ‘JacoClearATable’ experience (in

Listing 7.3) in the Jaco EBPD, which represents the scope of ap-

plicability of the ‘JacoClearATable’ activity schema. This abstract

structure S represents all ‘JacoClearATable’ problems that have

exactly one table, one tray and at least one object such that objects

are initially on the table and finally in the tray. 120

7.5 From left to right, robot moves to the cup, picks up the cup from the

table, carries the cup, and place it on the tray. 120

7.6 Performance of the SBP and Madagascar (M) in the ‘JacoClear-

ATable’ task. 122

7.7 The scope of applicability for the task 1 in ‘Stack_N_Blue_N_Red’.

This scope represents all ‘Stack_N_Blue_N_Red’ problems that have

exactly one table and at least one pile, one pallet, one blue block

and one red block such that red and blue blocks are initially on a

table and finally red blocks are on top of blue blocks (on a pallet) on

a pile. 126

7.8 The scope of applicability for the task 2 in ‘Stack_N_Blue_N_Red’.

This scope represents all ‘Stack_N_Blue_N_Red’ problems that have

exactly one table and at least one pile, one pallet, one blue block

and one red block such that blue blocks are initially on top of red

blocks and finally red blocks are on top of blue blocks on a pile. . . 126

7.9 The scope of applicability for the task 3 in ‘Stack_N_Blue_N_Red’.

This scope represents all ‘Stack_N_Blue_N_Red’ problems that have

exactly one table and at least one pile, one pallet, one blue block

and one red block such that alternate red and blue blocks are ini-

tially on a pile with a blue block at the bottom (on a pallet) and a

red block on top and finally red blocks are on top of blue blocks. . . 127

7.10 The scope of applicability for the task 4 in ‘Stack_N_Blue_N_Red’.

This scope represents all ‘Stack_N_Blue_N_Red’ problems that have

exactly one table and at least one pile, one pallet, one blue block

and one red block such that alternate red and blue blocks are ini-

tially on a pile with a red block at the bottom (on a pallet) and a blue

block on top and finally red blocks are on top of blue blocks. 127

7.11 Performance of the SBP and Madagascar (M) planners in the ‘Stack_N_Blue-

_N_Red’ task. 128

vii

LIST OF FIGURES

7.12 Performance of the SBP and Madagascar (M) planners in the Satellite

domain. 132

7.13 Distribution of the problems in the obtained problem sets in the

Rover domain . 133

7.14 CPU time used by SBP to find an applicable activity schema (among

9) for solving problems in the Rover domain. 133

viii

List of Tables

3.1 Predicate abstraction hierarchy in the RACE EBPD. 47

3.2 Operator abstraction hierarchy in the RACE EBPD. ∗ 48

3.3 Predicate abstraction hierarchy in the Stacking-Blocks EBPD. . . . 49

3.4 Operator abstraction hierarchy in the Stacking-Blocks EBPD. . . . 49

4.1 Concepts and respective number of instances in the robot’s memory

for a ‘ServeACoffee’ task. 68

4.2 Relations and respective frequency of use in the robot’s memory for

a ‘ServeACoffee’ task. 69

5.1 The enriched abstract plan in Listing 5.4 is represented as the string

’abacacacdf’. 84

5.2 The computed SA, LCP and NLCP arrays for the string ’abacacacdf’. 86

5.3 The computed CNLCP array for the same string ’abacacacdf’. . . . 86

5.4 The truth table (left) and the graphical representation (right) of the

information order (�) for two Kleene’s 3-valued propositions. 92

5.5 The truth table of the join operation (t) for two Kleene’s 3-valued

propositions. 92

7.1 Evaluation metrics in the ‘ServeACoffee’ and ‘ClearATable’ tasks. . . 117

7.2 Predicate abstraction hierarchy in the Jaco EBPD. 118

7.3 Operator abstraction hierarchy in the Jaco EBPD. 118

7.4 Evaluation metrics for SBP in the ‘JacoClearATable’ task in the

Jaco domain. 121

7.5 Performance of the SBP and Madagascar (M) planners in the ‘Jaco-

ClearATable’ task in Jaco domain. 122

7.6 Evaluation metrics for SBP in the ‘Stack_N_Blue_N_Red’ task. 124

ix

LIST OF TABLES

7.7 Performance of the SBP and Madagascar (M) planners in terms of

applicability test (retrieval) time, search time, memory, expanded

nodes and plan length in the different classes of ‘Stack_N_Blue-

_N_Red’ problems in the Stacking-Blocks EBPD. 125

7.8 Abstract and concrete planning operators in the Satellite domain. 129

7.9 Performance of the SBP and Madagascar (M) planners in terms of

applicability test (retrieval) time, search time, memory, expanded

nodes and plan length in the Satellite EBPD. 131

x

List of Notations

Notation Meaning

a, A Action, set of actions

A Set of abstraction hierarchies

abs(x) Return the absolute value of a real number x

args(x) Set of arguments of a predicate or functional expression x

ASBP Abstract Schema-Based Planner

B Effective branching factor

β Canonical abstraction function

C 2-valued logical structure/concrete structure

canon(u) The canonical name of an object u

CNLCP Contiguous Non-overlapping Longest Common Prefix array

D Panning domain

Da, Dc Abstract panning domain, concrete panning domain

∆ Experience-Based Planning Domain

during(p) Functional expression denoting that predicate p holds true during
an experience

E Effect of a planning operator

E+, E− Positive effect, negative effect

E Ego nodes

e, E Experience, set of experiences

ea Abstracted experience

end(p) Functional expression denoting that predicate p holds true in the
final state of an experience

F Set of features

g Goal (set of predicates representing goal)

G Unground goal

xi

List of Notations

γ(s,a) State-transition function (the state produced by applying a to s)

goal(p) Functional expression denoting that the goal of an activity schema
includes predicate p

h Head (a functional expression of the form n(x1, . . . ,xk))

h+ Relaxation heuristic function

head(S) Return the head (front) of a sequence S

ι Interpretation function mapping predicates to their truth-values

init(p) Functional expression denoting that predicate p holds true in the
initial state of an experience

K, Ka Key-properties, abstract key-properties

L First-order language

La, Lc First-order language of the abstract domain, first-order language
of the concrete domain

LCP Longest Common Prefix array

lcp(A,B) Return the longest common prefix of two strings A and B

len(S) Return the length of a given string S

N Neighbors of egos

NLCP Non-overlapping Longest Common Prefix array

nlcp(A,B) Return the non-overlapping longest common prefix of two strings
A and B

m, M Activity schema, set of activity schemata

maybe(p) p represents an indefinite (1/2-valued) key-property in a 3-valued
logical structure (p is a key-property that may exist in a 2-valued
logical structure represented by the 3-valued logical structure)

min(L) Return the minimum number in a given list L

o, O Planning operator, set of planning operators

Oa, Oc Set of planning operators of the abstract domain, set of planning
operators of the concrete domain

Ω, Ω0 Enriched abstract plan, initial enriched abstract plan

ω Enriched abstract operator

P Precondition of a planning operator

P+, P− Positive precondition, negative precondition

P, Pa Task planning problem, abstracted task planning problem

P Penetrance ratio

xii

List of Notations

π, πa Plan, abstract plan

parent(x) Return the parent of a concept x in an abstraction hierarchy

R Average branching factor

S Static precondition of a planning operator

s, S State, set of states

Sa, Sc Set of states of the abstract domain, set of states of the concrete
domain

s0, sg Initial state, goal state

S Scope of an activity schema/3-valued logical structure/abstract
structure

SA Suffix array

SBP Schema-Based Planner

Σ Static world information

Σa, Σc Static world information of the abstract domain, static world in-
formation of the concrete domain

σ Subset of static world information

summary(o) Object o is a summary object in a 3-valued logical structure (an
object that corresponds to two or more objects in a 2-valued logi-
cal structure represented by the 3-valued logical structure)

t Task

τ Temporal symbol of a predicate (during, init and end)

tail(S) Return the tail (remaining) of a sequence S

U Universe (set of objects)

v The embedding function, e.g., Cv S denotes C is embedded in S

� The information order of two Kleene’s 3-valued propositions, e.g.,
p� q denotes p has more definite information than q

t The join (least-upper-bound) operation of two Kleene’s 3-valued
propositions with respect to � (denoted by e.g., ptq)

|A| Return the number of elements in a set A (the cardinality of A)

(a1, . . . ,ak) k-tuple (k is fixed)

〈a1, . . . ,an〉 Sequence of length n (n may vary)

· Concatenation

∅ nil

∅ Empty set/sequence

xiii

List of Notations

xiv

Chapter 1

Introduction

Recent research into robotics shows growing trends towards employing robots in

scenarios different from the conventional industrial applications. Early robots only

worked in controlled environments of laboratories and factories. They had been

preprogrammed to receive accurate information about the environment and per-

form certain tasks. Reprogramming such robots was often a costly process requir-

ing an expert. In order for robots to become part of our everyday life, the ability

to learn new knowledge is essential. Enabling robots to learn from a human user

by demonstrating how to achieve tasks would simplify the robots’ installation and

reprogramming. In a longer time perspective, the vision is that robots will move

out of factories into our homes and offices. Such robots should be able to learn

how to perform real-world tasks such as set a table, or fill the dishwasher. They

may require interaction with humans and ingenious programming approaches to

adapt and operate in dynamic environments. Clearly, classical approaches do not

meet all the new requirements that human-robot interaction and changing envi-

ronments demand. This is the reason why robot learning is one of the key research

areas in robotics. Constructing a robot that is able to learn what is shown is a

challenging problem. While significant research has been performed in the area

of learning motor behavior primitives from a teacher’s demonstration, the topic of

learning high-level task knowledge has not been sufficiently addressed. In learn-

ing of high-level task knowledge, the main challenge for the learner is to extract

all the necessary information pertaining to the task, eliminate all the observations

that are irrelevant and abstract and generalize the correct task representation in

the case when single or few demonstrations are given. In this thesis, we are, in

particular, interested in learning of task models from examples provided by a hu-

man expert. This thesis addresses this problem and proposes new methodologies

that enable the acquisition of task knowledge from a single demonstration of a

1

Chapter 1. Introduction

task, and the exploitation of the acquired knowledge for problem solving. This

work is demonstrated in different scenarios in real robot platforms and simulated

domains.

This chapter elaborates on the motivations of this thesis in Section 1.1. The

thesis objectives are addressed in Section 1.2. Section 1.3 presents the research

context and the used cognitive robotic platform in this thesis. The thesis outline

and its contributions are presented in Section 1.4. Finally, section 1.5 lists the

publications of the thesis’ novelties and results.

1.1 Motivation

A truly functional autonomous robot must have the ability to learn from its own

experiences. It should not rely on a human programmer once it is started up, but

rather, it must be trainable. Experiences provide a rich resource for learning, solv-

ing problems, avoiding difficulties, predicting the effects of activities, and obtain-

ing commonsense insights. Current robots do not, in general, possess this ability,

and this is a decisive reason for the often perceived “lack of intelligence” of cur-

rent robotic systems: they repeat mistakes, do not learn to anticipate happenings

in their environment, and need detailed instructions for each specific task.

Consider an everyday task of a service robot, such as grasping a cup

from a cupboard and bringing it to a guest sitting at a table. This task

may occur in different variations. For example, guests may sit at differ-

ent sides of a table, guests may be served with a restaurant tea service

including a teapot, cups, and plates, etc. It is clearly infeasible to pro-

vide the robot with precise instructions for all contingencies at design

time or to specify tasks with highly detailed instructions for each par-

ticular concrete situation which may arise. Hence without such knowl-

edge, robot behavior is bound to lack robustness if the robot cannot

autonomously adapt to new situations.

Intelligent robotics is concerned with the integration of different approaches to

make robots learn from experiences and human teachers, and reason about how to

deal with new environments. This involves to have robots with cognitive capabil-

ities allowing them to understand, analyze and react according to the interaction

with a human (Seabra Lopes and Connell, 2001). Learning from Demonstration

(LfD) is one approach in which a robot can generalize and learn a specific task

2

Chapter 1. Introduction

from an experience, provided by a human demonstrator (Billard et al., 2008; Ar-

gall et al., 2009). LfD provides a powerful way to speed up learning new skills.

LfD in robotics can be broadly divided into two levels of abstraction (Billard et al.,

2008). A low-level representation of the skill, taking the form of a non-linear map-

ping of sensory-motor information that produces an action to be performed by

actuators, also referred to as trajectories encoding. These mappings can produce

the same trajectories as observed during demonstrations or might be adapted to

the robot’s morphology but still result in the same actions. Many studies have

addressed the problem of low-level learning and reproduction of behaviors (Ek-

vall and Kragic, 2005; Skoglund et al., 2010; Ijspeert et al., 2013). Another aspect

of learning is related to a high-level representation of the skill, where the skill is

decomposed in a sequence of action-perception units, also referred to as conceptu-
alization or symbolic encoding. Various techniques for learning high-level behaviors

have been developed (Kuniyoshi et al., 1994; Friedrich et al., 1996; Nicolescu and

Mataric, 2003; Ekvall and Kragic, 2006). While most works in the field have fo-

cused on the learning of low-level skills and kinematics of motions, little work

concerns learning of high-level task knowledge and representation, i.e., symbolic

learning of planning models and high-level task compositions, and make use of

the acquired knowledge for problem solving. High-level task learning makes robot

programs independent from the platform and eases their exchange between robots

with different kinematics.

The central contribution of this thesis is towards the development of capabil-

ities to acquire high-level task planning models, by conceptualizing past experi-

ences, for solving any particular instances of same tasks. We present a framework

for autonomous competence enhancement by teaching a robot how to perform a

complex task and conceptualizing that information to generate new task knowl-

edge. In this framework, basic manipulation skills or controlling techniques are

not investigated and it is presumed that the robot is equipped with a set of basic

skills, e.g., pickup and putdown. By contrast, we focus on a strategy that would

help the robot to construct a high-level task representation of a complex task (e.g.,

serve a coffee to a guest) built from the existing behavior set. This framework is

an artificial cognitive system that can be embodied in a robot to build a high-level

understanding of robotic tasks by storing and exploiting appropriate memories

of its experiences. The experiences are records of past happenings stored by the

robot, as observed through its sensors, and interpreted according to the robot’s

conceptual framework, in a coherent subset of space-time. Recorded experiences

3

Chapter 1. Introduction

are the potential inputs for conceptualizing past robot activities and forming new

concepts. The framework provides the robot with new learning capabilities that

increase its ability to extend and utilize past solutions for different instances of the

same problem or even for other problems that are to some extent similar. Thus, in

this context, robot competence is obtained by generalizing and abstracting experi-

ences, and broadening robot task knowledge.

1.2 Objectives

The core objective of this thesis is defined by the following longstanding problem

statement:

Given an “experience” of a previously achieved task, generate a “high-

level task planning model” for “efficiently” solving a “class” of similar

tasks.

This thesis heads towards developing novel techniques for experience-based

learning, in order to improve concept formation, and methods of problem solving

using the learned concepts. The developed methods are part of an architecture

that is particularly tailored for learning high-level aspects of task demonstrations.

The architecture employs techniques to sequentially learn and reproduce solu-

tions in order to make a robot capable of achieving the tasks in the same way as

demonstrated. The architecture uses different learning methods to identify the

most important elements of an experience including loops of actions, scope of ap-

plicability and goal.

Considering the current state of research in robot learning from experience,

and the gaps in learning of high-level task models from former solution plans and

experience-based robot task planning, this thesis work aimed to undertake the

following missions:

• Development and formalization of a well-defined notion of experience-based

task learning and planning to support long-term learning and problem solv-

ing in robotics.

• Development of a representation which utilizes the expressiveness of first-

order logic, while allowing a heuristic, directed-search based approach for

task planning.

4

Chapter 1. Introduction

• Development of a cognitive framework for teaching tasks to robots and iden-

tifying and storing relevant occurrences during the execution of tasks, as part

of experiences.

• Development of methods for generating task planning knowledge with loops

by extracting useful information from robots’ experiences.

• Development of a planning system for efficiently generating solution plans,

based on the acquired knowledge, to given task problems.

1.3 Research Context

Our proposed learning and planning system was initially developed in the frame-

work of the European project, RACE: Robustness by Autonomous Competence

Enhancement (Rockel et al., 2013; Hertzberg et al., 2014) 1. The overall aim of

the RACE project was: to develop an artificial cognitive system, embodied by a ser-
vice robot, able to build a high-level understanding of the world it inhabits by storing
and exploiting appropriate memories of its experiences. In this context, robot compe-

tence is obtained by abstracting and generalizing from experiences about objects

(Kasaei et al., 2015), scene layouts (Dubba et al., 2014) and activities (Mokhtari

et al., 2016b), thus extending task planning and execution beyond preconceived

situations. Activities successfully carried out by the robot for specific objects at

specific locations may be generalized to activity concepts applicable to a larger

variety of objects at variable locations.

In RACE an OWL ontology (Antoniou and Van Harmelen, 2004) provides a

common representation for all knowledge possessed by the robot. However, the

ontology does not explicitly represent all details of the robot’s knowledge base.

Some concepts in the ontology may contain more detailed knowledge, expressed in

other formalisms at lower levels of abstraction. Overall, RACE adopts an ontology-

based, multi-level knowledge-representation framework.

RACE was developed based on an artificial cognitive architecture, as shown

in Figure 1.1. In this architecture, an RDF database is used as Blackboard, which

serves as a working memory for computations and communications of all modules.

Data stored in the blackboard is mostly of semantic nature, for which an ontology

has been developed. It keeps track of the evolution of both the internal state of

the robot and the events observed in the environment. The blackboard can be read
1http://project-race.eu/

5

Chapter 1. Introduction

Blackboard (Memory)

Experiences Extractor &
Conceptualizer

Reasoning &
Interpretation

Perception Plan Execution &
Management

User Interface Planning

Robot Capabilities

Occurrences Occurrences,
Concepts

Experiences,
Concepts

Occurrences

Environment
States

Plan Instructions

Occurrences

Sensor Data Action Action Result

Occurrences,
Schedule

Plan Execution
Result Interaction

Semantic Perceptual

Figure 1.1: The RACE Architecture.

or written by different modules. Every unit of data written to the Blackboard is

called fluent, which describes an instance of some concept in the ontology.

The Reasoning and Interpretation includes high-level interpreter, and temporal

and spatial reasoners. Perception contains several modules for symbolic proprio-

ception and exteroception which generate occurrences. New concepts are added to

the Memory and stored in the OWL ontology format. User Interface sends instruc-

tions that generate a goal which is then relayed to Planning. Planning is carried

out using JSHOP2, a Hierarchical Task Network (HTN) planner (S̆. Konec̆ný et al.,

2014; Stock et al., 2014). The generated plan is dispatched to the Plan Execution
and Management, and the robot actuators are finally demanded to perform actions.

The history of occurrences in the memory is continuously observed by the Expe-
rience Extractor to detect and extract potentially relevant experiences, based on

plan structure, user feedback and similarity with stored experiences. Experiences

are subsequently fed to the Conceptualizer to generate and store new concepts or

update existing concepts, resulting in more robust and flexible future behavior.

We developed our system within this architecture. We focus on high-level

learning of complex behaviors, e.g., serving a coffee to a guest. A complex behav-

ior consists of several sub-behaviors that are executed in sequence. This work in-

volves a study on how to identify relevant occurrences during a robot performance

as part of an experience; how to conceptualize acquired experiences to form new

concepts; and how to make plans in new situations based on the learned concepts.

In this thesis, we address the user interface and experience extractor in Chapter 4,

conceptualization in Chapter 5, and planning in Chapter 6. The robot capabili-

ties, plan execution (S̆. Konec̆ný et al., 2014) and perception (Kasaei et al., 2015;

6

Chapter 1. Introduction

Oliveira et al., 2016) are out of scope of this thesis.

1.4 Thesis Outline and Contributions

The development of this thesis may be split in several phases that are addressed

and organized in the following chapters:

• Chapter 2: A Review of Robot Task Learning and Planning

In this chapter, we study machine learning techniques which have been suc-

cessfully applied in robotics applications. In particular, we study existing

techniques for learning of high-level task planning knowledge in robotics and

which techniques are needed for encoding, representing and reproducing a

complex behavior successfully. We also address Automated Planning, a branch

of Artificial Intelligence that focuses on the computational synthesis of or-

dered sets of actions to perform given tasks. Planning is a key ability for

intelligent robots to increase their autonomy and flexibility. A review of ma-

chine learning techniques for planning, related to our thesis, is conducted in

this chapter.

• Chapter 3: Experience-Based Planning Domains

The basics of this thesis begin by formalizing the notion of Experience-Based
Planning Domains (EBPDs). An EBPD is a planning domain definition lan-

guage, supported by a long-term learning process. EBPDs are intended to

endow intelligent robots with the capability of problem solving by learning

from experience. In this chapter, we present the EBPD representation scheme

which uses notation derived from first-order logic. This formalization cap-

tures many interesting aspects of the experience-based learning and planning,

which can foster the reuse of this research.

• Chapter 4: Human-Robot Interaction and the Extraction of Experiences

This chapter presents our approach and the infrastructure designed for super-
vised experience extraction of plan-based robot activities. For this purpose, on-

tological concept representations and a command-line interface are developed

to support human-robot interaction, allowing an inexpert user to instruct a

robot to perform tasks as well as teach new task concepts. We also present a

graph simplification approach, based on the concept of ego network (Newman,

2003), to extract the most relevant information in a robot performance as part

of an experience.

7

Chapter 1. Introduction

• Chapter 5: Learning Planning Knowledge

In this chapter, we present a conceptualization methodology for abstracting

and generalizing robot experiences to generate task planning concepts, also

called activity schemata. The proposed conceptualization approach is a com-

bination of different techniques including deductive generalization, different

forms of abstraction, feature extraction, loop detection, scope inference and

goal inference. Knowledge generated through conceptualization is then used

for general problem solving and planning.

• Chapter 6: Planning Using the Learned Knowledge

In order to utilize acquired knowledge for problem solving, we propose a two-

layer problem solver which includes an abstract planner and a concrete planner.

The abstract planner first derives an abstract solution to a given task problem

by following a learned activity schema. Then, the concrete planner refines the

abstract solution towards a concrete solution. This chapter presents a plan-

ning system for generating a plan solution to a given task problem using a

learned activity schema.

• Chapter 7: Implementation, Demonstration and Evaluation

This chapter presents the results of our experiments with different classes of

problems in both real and simulated environments. The results involve differ-

ent aspects of the system in the course of its development. We present two real

robotic platforms to demonstrate the utility of our system. The first demon-

stration is performed in the RACE project on a real robot PR2, and the second

demonstration is performed in a robotic arm platform. We also evaluate the

performance of our system in simulated planning domains.

• Chapter 8: Conclusions

This chapter discusses possible routes of research arising from this thesis, and

sums up the contributions of this work and concluding remarks.

1.5 Publications

Most of the work presented in this thesis has already been presented in the follow-

ing publications:

• Journals

8

Chapter 1. Introduction

1. Mokhtari, V., Seabra Lopes, L., Pinho, A.: Learning robot tasks with loops
from experiences to enhance robot adaptability. Pattern Recognition Letters,

99(Supplement C):57–66. (2017c)

2. Mokhtari, V., Seabra Lopes, L., Pinho, A.: Experience-based planning do-
mains: An integrated learning and deliberation approach for intelligent robots.
Journal of Intelligent & Robotic Systems 83(3), pp. 463–483 (2016b)

3. Hertzberg, J., Zhang, J., Zhang, L., Rockel, S., Neumann, B., Lehmann,

J., Dubba, K., Cohn, A., Saffiotti, A., Pecora, F., Mansouri, M., Konec̆ný,

S̆., Günther, M., Stock, S., Seabra Lopes, L., Oliveira, M., Lim, G., Kasaei,

S.H., Mokhtari, V., Hotz, L., Bohlken, W.: The RACE project. KI - Kün-

stliche Intelligenz 28(4), pp. 297–304 (2014)

• Conferences

1. Mokhtari, V., Seabra Lopes, L., Pinho, A.J.: An approach to robot tasks
learning with loops from experiences. In: 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 6033–6038 (2017a)

2. Mokhtari, V., Seabra Lopes, L., Pinho, A.J.: Learning and planning of robot
tasks with loops. In: 2017 IEEE International Conference on Autonomous

Robot Systems and Competitions (ICARSC), pp. 296–301 (2017b)

3. Mokhtari, V., Seabra Lopes, L., Pinho, A.J.: Experience-based robot task
learning and planning with goal inference. In: Proceeding of the 26th In-

ternational Conference on Automated Planning and Scheduling (ICAPS),

pp. 509–517 (2016c)

4. Mokhtari, V., Lim, G.H., Seabra Lopes, L., Pinho, A.J.: Gathering and
conceptualizing plan-based robot activity experiences, In: Intelligent Auto-

nomous Systems 13: Proceedings of the 13th International Conference

IAS-13, chap. pp. 993–1005. Springer (2016a)

5. Mokhtari, V., Seabra Lopes, L., Pinho, A.J., Lim, G.H.: Planning with ac-
tivity schemata: Closing the loop in experience-based planning. In: Auto-

nomous Robot Systems and Competitions (ICARSC), 2015 IEEE Interna-

tional Conference on, pp. 9–14 (2015b)

6. Mokhtari, V., Seabra Lopes, L., Pinho, A.J., Lim, G.H.: Experience-based
planning domains: An approach to robot task learning. In: Autonomous Pro-

ceedings of the 21st Portuguese Conference on Pattern Recognition(RecPad),

Faro, Portugal, October 2015, pp. 30–31 (2015a)

9

Chapter 1. Introduction

7. Lim, G.H., Oliveira, M., Mokhtari, V., Kasaei, S.H., Chauhan, A., Seabra

Lopes, L., Tome, A.: Interactive teaching and experience extraction for learn-
ing about objects and robot activities. In: Robot and Human Interactive

Communication, 2014 RO-MAN: The 23rd IEEE International Sympo-

sium on, pp. 153–160 (2014)

10

Chapter 2

A Review of Robot Task Learning and
Planning

Widespread interest in robot learning goes back to three decades ago (Connell and

Mahadevan, 1993). Robot learning poses a major challenge of building a robot that

learns to perform a task through longterm training and feedback. This involves

dealing with the issue of integration of multiple technologies, such as sensing,

planning, acting, and learning. Although, over the past years, machine learning

techniques have had great success in each of these fields, many difficulties have

restrained the robots to only operate in lab environments. The level of complexity

of real-world tasks is high, not only in terms of perception and manipulation capa-

bilities, but also in the required degree of adaptation to the new environment. In

order to sufficiently involve robots in real-world tasks, robot platforms and infor-

mation processing algorithms must support the ability for the user to customize

the robots’ behaviors. The motivation for tackling this challenge centers on the

belief that it is impossible to preprogram all the necessary knowledge into a robot

operating in a diverse, dynamic and unstructured environment. Instead, end-users

should be allowed to customize the functionality of these robotic systems. To that

end, robots must have the abilities to interact with humans and learn and general-

ize from task demonstrations.

In this chapter, we provide an introduction and overview of the field, and

present the technical challenges associated with designing robots that learn from

human instruction. In the first part of this chapter, we study Learning from

Demonstration (LfD), as a powerful approach to speed up learning new skills in

robotics, and present challenges in this field (Section 2.1). In the second part of

this chapter, we study Artificial Intelligence (AI) planning as a key ability for in-

telligent robots to increase their autonomy and flexibility (Section 2.2). Finally, we

11

Chapter 2. A Review of Robot Task Learning and Planning

Teacher
Demonstrations

Low-level Skill
Learning

High-level Task
Learning

Figure 2.1: An abstract illustration of the Learning from Demonstration pipeline.

present a survey of machine learning techniques for learning planning knowledge

from past solutions (Section 2.3).

2.1 Robot Learning from Demonstration

Learning from Demonstration (LfD) explores techniques for learning a task from

examples provided by a human teacher (Billard et al., 2008; Argall et al., 2009;

Chernova and Thomaz, 2014). The field of LfD has grown into an extensive body

of literature over the past decades, with a wide variety of approaches for encoding

human demonstrations, modeling skills and tasks, and reproducing the acquired

skills in new contexts. Regardless of the algorithms used in existing LfD plat-

forms, all LfD techniques share certain key properties. Figure 2.1 illustrates an

abstraction of the LfD pipeline which frames the design process for building an

LfD system. Here, we discuss the strategies for providing data to a robot learner,

and present the algorithms for low-level skill learning and high-level task repre-

sentation.

2.1.1 Teacher Demonstrations

The assumption in all LfD work is that there is a teacher who demonstrates a de-

sired behavior. Most LfD work has made use of human demonstrators, although

some techniques have also examined the use of robotic teachers, hand-written con-

trol policies and simulated planners. Demonstrations are typically composed of

state-action pairs which are recorded during teacher executions of the desired be-

haviors. How the demonstrations are recorded, and what platform the teacher

uses for the execution, may vary across approaches. Two approaches for provid-

ing demonstration data to the robot learner are commonly addressed in LfD tech-

niques:

12

Chapter 2. A Review of Robot Task Learning and Planning

(a) Teleoperation (b) Kinesthetic teaching (c) Shadowing

Figure 2.2: Different techniques for directly transferring demonstration data to a robot learner. (a)
A person teaching a pr2 how to hammer a plastic box using thumb joysticks; (b) A person teaching
a robotic arm how to open a door through kinesthetic teaching; (c) A humanoid robot is controlled
in real time by a human operator wearing a motion-capture system.

Direct Demonstration

A teacher performs a task by directly controlling the robot. The robot records sen-

sory information during the demonstration and is then able to reproduce the task.

One approach is teleoperation which provides the most direct method for informa-

tion transfer within demonstration learning. During teleoperation, the robot is

operated by the teacher while recording information from its own sensors. Tele-

operation simplifies the learning process significantly as it does not require the

mapping function to translate human capabilities to those of the robot. Some ap-

plication of recording demonstrations through human teleoperation by a joystick

includes: flying a robotic helicopter (Abbeel et al., 2007), soccer kicking motions

(Browning et al., 2004), and robotic arm assembly tasks (Chen and Zelinsky, 2003).

Kinesthetic teaching also offers a variant of direct demonstration. In this me-

thod, the robot is not actively controlled, but rather its passive joints are moved

through the desired motions while the robot records the trajectory (Calinon and

Billard, 2007; Shafii et al., 2016). This technique has been extensively used in

motion trajectory learning. A key benefit of teaching through this method of in-

teraction is that it ensures that the demonstrations are constrained to actions that

are within the robot’s abilities.

Shadowing is another direct demonstration technique, in which the robot records

the execution using its own sensors while attempting to mimic the teacher mo-

tion as the teacher executes the task. In comparison to teleoperation, shadowing

requires an extra algorithmic component which enables the robot to track and

actively shadow the teacher. Body sensors are often used to track the teacher’s

movement with a high degree of accuracy (Koenemann et al., 2014). Figure 2.2

shows some application of the direct demonstration techniques in robotics.

13

Chapter 2. A Review of Robot Task Learning and Planning

Indirect Demonstration

In some situations, the robot learns by observing a human performing the task.

The teacher performs the task demonstration using its own body instead of con-

trolling the robot directly. This method is much more difficult to realize, as it re-

quires the robot to have sensing capabilities (vision), and reasoning about what it

is observing. The trajectory of the demonstration cannot be mapped directly to the

robot because of the different kinematics. The low-level sensory information must

be transformed to high-level situation-action descriptors, and then mapped back

to low-level motor controls dependent on the world state at run-time. Wearable

sensors, and other forms of specialized recording devices, provide a high degree

of accuracy in the observations. Visual markers are also often used to improve

the quality of visual information. A number of approaches in this family have

been proposed (Kuniyoshi et al., 1994; Billard and Matarić, 2001; Bentivegna et al.,

2002; Yang et al., 2015). In recent years, the availability of low-cost depth sensors

(e.g., Microsoft Kinect) and their associated body pose tracking methods make this

a great source of input data for LfD methods that rely on external observations of

the teacher (León et al., 2011; Henry et al., 2012).

The choice between direct or indirect robot interaction modalities may be re-

stricted by environmental conditions or user factors of the target application. In-

teractions between humans and robots was firstly associated with teleoperation

of robotic factory platforms (Sheridan, 1992). This topic has also been extensively

studied within the field of Human-Robot Interaction (HRI) (Goodrich and Schultz,

2007).

2.1.2 Low-Level Skill Learning from Demonstration

Given an experience of a state-action example that has been acquired during the

execution of a demonstration, learning methods can be applied for acquiring a

primitive action. The goal of learning in this context is to build an accurate model

of a demonstrated primitive action (e.g., pickup or putdown), such that it could be

generally applied to a variety of domain specific tasks. We distinguish between

approaches to learning primitive actions from low-level function approximation to

high-level skill representation (Billard et al., 2008). The lowest level of learning a

primitive action can involve simply learning an approximation to the state-action

mapping. In the literature there are also several different names given to this class

14

Chapter 2. A Review of Robot Task Learning and Planning

of low-level action learning, such as learning of a, policy, trajectory, mapping func-
tion, and motor skill. Many learning approaches have been applied in the context of

low-level function approximation such as Dynamic Movement Primitives (DMPs)

(Ijspeert et al., 2002), probabilistic modeling methods such as Hidden Markov

Models (HMMs) (Kulic et al., 2009) and Gaussian Mixture Regression (GMR) (Cali-

non et al., 2007), and Reinforcement Learning (RL) (Peters and Schaal, 2008). In

order for the learned behaviors to be usable by a planning system, it is necessary

to learn and represent the pre- and post-conditions at a symbolic level.

Some research into learning of primitive actions based on human demonstra-

tions focuses on high-level symbolic representation of actions in the form of plan-

ning operators (Agostini et al., 2011). These operators, specifying pre- and post-

conditions, are the basic pieces of knowledge required for the integration of a

symbolic task planner into a robot allowing the robot to generate plans for con-

crete tasks or goals. Ahmadzadeh et al. (2015) present an approach to learn and

reproduce trajectory-based primitive actions from a set of demonstrations through

kinesthetic teaching. Using a set of recorded trajectories during the tutor demon-

strations and applying DMP, a robot learns a set of behaviors by which it can repro-

duce an action starting from a different pose towards a target. Simultaneous with

the tutor demonstrations, a visual perception system (Ahmadzadeh et al., 2013)

captures one pre-action observation and one post-action observation for each op-

eration executed by the tutor. The perception system extracts the position of de-

tected objects in the world, and creates symbolic representations for the objects

which are used to identify preconditions and effects of the executed actions. The

learned primitive actions are finally represented in Planning Domain Definition

Language (PDDL), which can be used by a standard symbolic task planner.

2.1.3 High-Level Task Learning from Demonstration

Another aspect of learning in LfD is how the low-level actions, that were derived

from motion trajectories, can be used to learn higher level tasks. While the line

between high-level and low-level learning is not concrete, the distinction we make

here is that techniques in this section assume the existence of a discrete set of ac-

tion primitives that can be combined to perform a more complex behavior. Action

primitives are often parameterized, e.g., pickup(obj), and can be hand-coded, ex-

ecuted by a planner or learned through one of the techniques in low-level skill

learning, addressed in the previous section. In this context, the algorithms are

15

Chapter 2. A Review of Robot Task Learning and Planning

targeted at learning compositions of primitive actions, and the teacher’s demon-

strations are typically performed at a higher level consisting of action primitives

from a library of actions executable by the robot. Some LfD techniques address

learning a reactive task policy using a function approximation of direct mapping

from input states to output actions (Saunders et al., 2006; Rao et al., 2007; Sullivan

et al., 2010). In this representation, demonstration data typically consists of state-

action pairs, or trajectories of state-action pairs, that are examples of completing

the task. Given these demonstrations, the goal of the algorithm is to reproduce the

underlying teacher policy by generalizing over the set of available training exam-

ples. The result of learning is a task policy model that outputs actions for the given

states.

Other techniques represent a desired robot behavior as a plan—a sequence of

actions that lead from an initial state to a final goal state. In this context, actions

are often defined in terms of pre-conditions—the state that must be established

before the action can be performed, and post-conditions—the state resulting from

the action’s execution. These techniques often rely on additional information in

the form of annotations or intentions from the teacher. Van Lent and Laird (2001)

present a method for learning non-deterministic plans based on demonstration

traces annotated with goal transition data. Garland and Lesh (2003) introduce

an algorithm for learning a domain-specific hierarchical task model from demon-

stration. Within this approach, the teacher is able to annotate the sequence of

demonstrated actions and provide high level instructions, for example, the fact

that some actions can occur in any order. Note that in both of the above exam-

ples, state-action demonstrations are supplemented with additional information

from the teacher to aid in generalization. Some research has also focused on in-

teraction capabilities for teaching high-level task knowledge (Rybski et al., 2007;

Mohseni-Kabir et al., 2015). Here, the teacher uses a convenient communication

mechanism to teach action compositions, i.e., to directly transfer high-level plan-

ning knowledge to the robot. However, the acquired models in these techniques

lack flexibility to be adapted to slightly different variations.

In one of the earliest LfD work (Kuniyoshi et al., 1994), known as Learning by

Watching, the task demonstration is initially segmented into meaningful unit op-

erations. These operations are then classified based on motion types, target objects

and effects on targets. Finally, through dependency analysis and bottom-up plan

inference, a model of the demonstrated task is created. This approach was applied

to a robotic object manipulation. This, and other early work in this area (Ikeuchi,

16

Chapter 2. A Review of Robot Task Learning and Planning

1995), enabled robots to replay actions observed during demonstration. However,

the learned models had little ability to generalize beyond the demonstrated envi-

ronment.

More recent work in this area has focused on generalization, as well as tech-

niques for learning complex plan structures through various interaction modal-

ities. For example, Veeraraghavan and Veloso (2008) present an algorithm for

learning generalized plans that represent sequential tasks with repetitions. In

this framework, simple instructions, like pointing to objects with a laser pointer,

have been used to teach a humanoid robot the repetitive task of collecting colored

balls into a box, based on only two demonstrations. Nicolescu and Mataric (2003)

also contribute techniques for learning from multiple demonstrations, present-

ing a framework for learning behavior networks—a high-level task structure that

models the interaction between abstract and primitive behaviors and their effects.

In this work, a task representation is derived from each demonstration, based on

correspondences between execution data and behavior models. The generalization

from multiple demonstrations is represented into a Directed Acyclic Graph (DAG)

based on identifying the longest common subsequence. The framework enables

the robot to generalize across multiple demonstrations and to refine the learned

model based on speech input from the teacher. Pardowitz et al. (2007) forms task

precedence graphs by computing the similarity of accumulating demonstrations.

Each task precedence graph is a DAG that explains the necessity of specific actions

or sequential relationships between the actions.

In (Ekvall and Kragic, 2008) the robot learns an abstract task goal from mul-

tiple demonstrations and describes it in a first-order logic language. The robot

converts sequential relationships between all two states as temporal constraints.

Whenever a sequence is added, the constraints that contain contradictions with

the constraints of the new sequence were eliminated in order to extract general

state constraints. In new situations the constraints are used by a symbolic plan-

ner to choose the best strategy for generating a plan that reproduces the task goal.

This representation is an alternative to the DAG-like representations proposed by

others.

The above techniques construct plan representations from the discretization of

task demonstrations into compositions of action primitives. A number of tech-

niques have also focused on bridging the gap between low-level trajectory input

and high-level task learning, providing a means for extracting abstract task struc-

tures from motion trajectories (Ehrenmann et al., 2002; Dillmann, 2004). For ex-

17

Chapter 2. A Review of Robot Task Learning and Planning

ample, Niekum et al. (2012, 2013) present algorithms based on Bayesian nonpara-

metric models to discover repeated structure in the demonstration data, identify-

ing subgoals and primitive motions that best explain the demonstrations and can

be recognized across different demonstrations and tasks. This process converts

continuous demonstrations into a coherent discrete representation for finding ad-

ditional structure, such as task-level sequencing information. The demonstrations

are then segmented and used to generate a Finite-State Automaton (FSA). The au-

thors also use interactive corrections, provided by the user, at the time of failure

as additional demonstrations to improve the structure of the FSA.

Overall, the learning techniques used so far in robot task learning from instruc-

tions and/or demonstrations are characterized by poor expressivity of the adopted

representations, as well as by limitations of the generalization techniques. More-

over, the exchange of the learned knowledge between robot platforms with differ-

ent kinematics, as well as the exploitation of the learned knowledge by a standard

planner, has received little attention.

The application of classical AI techniques for knowledge representation, plan-

ning and learning are likely to significantly improve the capabilities of experience-

based planning systems. In the AI community, much of the work has focused on

the high-level planning and conceptual representations of skills and state changes

using propositional or first-order logic. The integration of a task planner into a

robot system increases the robot’s level of intelligence and flexibility by altering

the way the robot is controlled, moving from predefined sequences of detailed

user instructions to a more sophisticated goal oriented approach. In the next sec-

tions, we review the literature on classical automated planning as well as recent

machine learning techniques for automatic definition of planning action models

and planning control knowledge.

2.2 Artificial Intelligence Planning

Automated Planning (AP) has been a core topic of research in artificial intelligence

since the beginning of AI in the late 1950s (Fikes and Nilsson, 1972; Ghallab et al.,

2004). AP is defined as the task of finding a plan, i.e., a solution of a planning

problem consisting of a sequence of actions, which leads from an initial state to a

desired goal state. In other words, given a description of the initial state, goals, and

possible actions, an automated planner finds a plan that reaches the goals from the

initial state. AP is essentially characterize by two elements:

18

Chapter 2. A Review of Robot Task Learning and Planning

• AP domain comprising a set of states of the environment and a set of actions

which carry out transitions between states.

• AP problem comprising the initial state of the environment and a set of facts

or conditions representing the goal to be achieved.

The classical model for planning is a common restriction of the more general

problem of selecting actions to reach a desired objective. The actions are assumed

to be deterministic and the information about the environment, complete. Meth-

ods for classical planning have had great success, and are in continual develop-

ment and subject of research. The good results of classical planning techniques

have cleared the path to approaches that simplify more complicated problems to

classical planning problems, in order to solve them efficiently.

2.2.1 Classical Planning Framework

A classical planning problem can be translated as a directed graph whose nodes

represent states, and whose edges represent actions. The change of a state is repre-

sented as a transition from a source node representing it along an edge and toward

a target node representing the next state. A solution plan is then a path from the

node in the graph representing the initial state to a goal node representing a state

recognized as a goal state of the problem, i.e., a linearly ordered finite sequence

of actions. Following a STRIPS-oriented representation (Fikes and Nilsson, 1972)

a planning domain D = (S,O), on a first-order logic language containing constant

and predicate symbols, is described by a finite set of states S and a set of planning

operators (actions) O. Any state s ∈ S is a set of ground atoms which describes a

situation of the world in the domain.

The transition between states is specified through a set of planning operators.

A planning operator o ∈O is described by a pair (P,E), where P is the precondition

of o, a conjunction of atoms that must be true in a state in order to use the operator

o, and E is the effect of o, a set of atoms that the operator o will make true in the

state. An instantiated operator is called an action which transforms a state into a

new state.

A planning problem P = (s0,g) is described by an initial state s0 ∈ S and a set

of ground atoms describing the goal g. The problem solving task is to find a plan (a

sequence of actions) π = 〈o1, . . . ,on〉 which transforms the initial state into a goal

state where the goal is achieved.

19

Chapter 2. A Review of Robot Task Learning and Planning

The plan existence problem in the classical setting, i.e., the problem of deciding

if there exists a valid plan for an arbitrary problem instance, in the propositional

planning model is decidable and has been shown to be PSPACE–complete (Bylan-

der, 1994).

2.2.2 Planning Domain Definition Language

The classical representation in automated planning stems from STRIPS (Fikes and

Nilsson, 1972), an early automated planning system. STRIPS takes a symbolic

description of the current or initial world state, a desired goal condition, and a

set of action descriptions, which characterize the pre- and post-conditions of each

action. This system allowed to contain arbitrary well-formed formulas in first-

order logic. However, there were a number of problems with this formulation,

such as ineffective reasoning on problems of even moderate complexity and the

difficulty of providing a well-defined semantics for it (Lifschitz, 1987).

The Action Description Language (ADL) representation, introduced by Ped-

nault (1989, 1994), proposes a trade-off between the expressiveness of general log-

ical formalism and the computation complexity of reasoning with that represen-

tation, i.e., computing the transition function γ. Starting from UCPOP (Penberthy

et al., 1992), several planners (Chapman, 1987; Dean and Boddy, 1988; Peot and

Smith, 1992) were generalized to ADL or to representations close to ADL. These

extensions have been integrated in the PDDL planning language used in the Inter-

national Planning Competition (IPC) since 1998 (Mcdermott et al., 1998). PDDL

is based on Boolean state variables representation. Nowadays the PDDL language

is widely used in the planning community and includes many specific features,

such as trajectory constraints for temporal reasoning or soft constraints to express

preferences (Fox and Long, 2002, 2003; Edelkamp and Hoffmann, 2004). Actions

in PDDL are expressed as schemata, as shown in the following example:

(: action pick
:parameters (?obj - object ?tbl - table)
:precondition (and (table ?tbl)(object ?obj)(on ?obj ?tbl))
:effect (and (holding ?obj)(not(on ?obj ?tbl))))

Here the action pick takes two parameters, ?obj and ?tbl, that will be eventu-

ally instantiated with the possible values of the types object and table, declared

in the problem description.

20

Chapter 2. A Review of Robot Task Learning and Planning

2.2.3 Algorithms for Classical Planning

Solving classical planning problems can be seen as path-finding in a directed

graph whose nodes represent states, and whose edges represent state transitions

resulting from the execution of actions. Classical planning problems can then be

solved by graph search algorithms to find a path from the initial state to a goal

state. This graph search approach is not trivial, because the size of the graph

may be exponential in the size of the description of the planning problem in used

predicates form. Thus, blind search algorithms, such as breadth-first/depth-first

search, are practically unfeasible.

An approach that has proved to be effective relies on the use of heuristic search.

Heuristic search uses heuristic functions to evaluate the cost from any given state

to a goal state (Bonet and Geffner, 2001; Ghallab et al., 2004). This estimation

of the distance in the search space is then used by the search algorithm to derive

the state space search, preferring to visit nodes considered more promising based

on their heuristic value. The best well-known algorithms in this family are, A∗

(Hart et al., 1968) and IDA∗ (Korf, 1985). Many planners used heuristic search

(McDermott, 1996; Bonet et al., 1997), which is now the most successful approach

to classical planning.

Other heuristics are also obtained by solving a simpler version of the original

problem relaxing its constraints (Pearl, 1984). Relaxations directly derived from

the problem description are useful and efficient, such as the successful “delete

relaxation”, obtained by dropping the negative effects of the actions (Hoffmann

and Nebel, 2001).

One of the first approaches making use of domain-independent heuristics is

the HSP planner (Bonet and Geffner, 1999). HSP makes use of best-first search

coupled with hadd heuristic, that approximates the distance between two states by

summing the distances between the propositions in the states, ignoring the delete

effects.

The Fast-Forward (FF) planner by Hoffmann and Nebel (2001) is based on the

same delete relaxation as HSP, but uses an explicit solution of the relaxed problem

to estimate its heuristic hFF and the extraction of helpful actions applied first when

searching for a plan. When the incomplete but effective greedy search of FF (called

“enforced hill-climbing”) based on helpful actions fails, the planner launches a

best-first search. The helpful actions are defined in the FF planner as those op-

erators applicable in the current state that add some precondition of an operator

in the plan. This search control technique has proved to be quite successful and

21

Chapter 2. A Review of Robot Task Learning and Planning

effective, being the base of many developments (Hoffmann, 2002; Hoffmann and

Brafman, 2005, 2006).

The LAMA planner (Richter and Westphal, 2010) makes use of a pseudo-heuristic

derived from landmarks, i.e., propositions that must be true in every solution of a

planning task (Hoffmann et al., 2004). LAMA is built on top of the Fast Downward

Planning System (Helmert, 2006), using in particular a multi-heuristic search. The

“landmark counting heuristic” (Richter et al., 2008) estimates the goal distance of

a state by counting the number of landmarks that still remain to be achieved.

Other techniques also apply to the classical planning formulation, such as plan-

ning graphs (Blum and Furst, 1997; Kambhampati et al., 1997) and planning as

satisfiability (Kautz et al., 1992; Rintanen, 2010). They involve the construction of

planning graphs and the translation of the planning problem into propositional

axioms, in order to consequently apply a satisfiability algorithm to find a model

that then corresponds to a solution plan.

2.2.4 Hierarchical Task Network Planning

Although classical planning systems have become much more efficient over the

years, they still suffer from combinatorial complexity. Decomposing complex prob-

lems into simpler sub-problems is a long-lasting approach to organize domain

knowledge and problem solving. Hierarchical Task Network (HTN) planning is an

AI planning technique that breaks with the tradition of classical planning (Ghal-

lab et al., 2004). In HTN planning, the planner is provided with a set of tasks to

be achieved. A plan is then derived through task-decomposition methods (known

as HTN methods), which recursively decompose complex tasks into simpler sub-

tasks to reach the leaves of the task hierarchy. The leaf nodes correspond to actions

which can be performed directly using the planning operators. Figure 2.3 shows

an example of a task-decomposition tree for a method move-stack. From left to

right, the leaves of the tree produce a plan solution to the move-stack task.

The theoretical framework of the HTN planning is composed of a planning lan-

guage, operators, task networks, methods, planning problems and plan solutions.

The definitions of planning language, operators, actions, and plans are the same as

in classical planning framework (see Section 2.2.1). However, the HTN planning

framework also includes tasks, task networks and methods for achieving tasks.

A task is an activity to be performed. Syntactically, a task consists of a task

symbol followed by a list of arguments, i.e., in the form t(x1, . . . ,xk), where t is the

task name and x1, . . . ,xk are the task arguments. A task may be either primitive or

22

Chapter 2. A Review of Robot Task Learning and Planning

move-stack(p1,p2)

move-top-container(p1,p2)

take(crane1,l1a,c1,c2,p1) put(crane1,l1b,c1,pallet,p2)

move-stack(p1,p2)

move-top-container(p1,p2)

take(crane1,l1a,c1,c2,p1) put(crane1,l1b,c1,pallet,p2)

move-stack(p1,p2)

recursive-move

take-and-put recursive-move

take-and-put do-nothing

Figure 2.3: An example of the decomposition tree for the method move-stack.

compound. A primitive task is supposed to be accomplished by a planning opera-

tor: the task symbol is the name of the planning operator to use, and the task’s

arguments are the parameters for the operator. A compound task can be decom-

posed into smaller tasks using a method: any method whose head unifies with the

task may potentially be applicable for decomposing the task.

Each method includes a task network which provides a way of decomposing a

compound task into a partially ordered set of subtasks, each of which can be com-

pound or primitive. A task network w = (T ,C) is described by a finite set of tasks

T and a set of constraints C. The tasks in T can be primitive or (non-primitive)

compound. Constraints in C specify restrictions over T that must be satisfied dur-

ing the planning process and by the solution, e.g., a precedence (partial ordering)

constraint of the form tu ≺ tv means that tu must occur before tv.

A method is a triple m = (t,P,w) where t is the task to be performed by the

method, P is the precondition that the current state must satisfy in order for the

method to be applicable, and w is the task network that need to be accomplished

in order to perform the task m.

For example, Listing 2.1 shows a set of methods for the Dock-Worker Robot

domain (Ghallab et al., 2004) represented in SHOP2 (Nau et al., 2003). The method

move-top-container gives a way to take a container ?c from a pile ?p1 and put it

on top of a pile ?p2. The :ordered keyword specifies that the tasks in the task

network (subtasks) are totally ordered: first take a container ?c from the stack

?p1, and then put the container on top of the stack ?p2. The two methods for the

move-stack task provide a strategy to move containers from a stack ?p to a stack ?q

using the method move-top-container. The first method move-stack recursively

23

Chapter 2. A Review of Robot Task Learning and Planning

(: method
(move -top -container ?p1 ?p2) ; head
(and ; precondition

(top ?c ?p1)
(on ?c ?x1)
(attached ?p1 ?l1)
(belong ?k ?l1)
(attached ?p2 ?l2)
(top ?x2 ?p2))

(: ordered ;task network (subtasks)
(take ?k ?ll ?c ?x1 ?p1)
(put ?k ?l2 ?c ?x2 ?p2)))

(: method ; a recursive method
(move -stack ?p ?q) ; head
(and ; precondition

(top ?c ?p)
(on ?c ?x))

(: ordered ; task network
(move -top -container ?p ?q)
(move -stack ?p ?q)))

(: method ; do-nothing
(move -stack ?p ?q) ; head
(top ?pallet ?p) ; precondition
()) ; task network

Listing 2.1: A set of HTN methods represented in SHOP2. Every method has a name (head), a set
of preconditions, and a task network (a set of subtasks).

calls itself while there is a container on top of the stack ?p. The second method

move-stack terminates the task when there is no container on top of the stack ?p

(i.e., the pallet is on top of the stack).

An HTN planning problem P= (s0,w0,O,M) is described by an initial state s0,

an initial task network w0, a set of HTN planning operators O, and a set of HTN

methodsM. A solution for the HTN planning problem P is a plan π that performs

the desired initial tasks w0, when it is executed in the initial state s0.

Hierarchical task networks are one of the best studied approaches for modeling

planning knowledge about a problem domain (Nejati et al., 2006; Ilghami and

Nau, 2006; Zhuo et al., 2009; Hogg et al., 2009; Georgievski and Aiello, 2015).

According to Ghallab et al. (2004), “HTN planning has been more widely used

for practical applications than any of the other AI planning techniques. This is

partly because HTN methods provide a convenient way to write problem-solving

recipes that correspond to how a human domain expert might think about solving

a planning problem”.

24

Chapter 2. A Review of Robot Task Learning and Planning

Figure 2.4: Improving the knowledge of a planner using machine learning (Jiménez et al., 2012).

2.3 Machine Learning for Automated Planning

Since the beginning of AI planning, many attempts have been made to represent

planning tasks and to introduce efficient algorithms for solving them (Jiménez

et al., 2012). In the last decades, AP systems have been successfully applied to

real-world tasks (McGann et al., 2008; Reddy et al., 2011; Petrick and Foster, 2013),

however, the application of AP to real-world problems is still complicated, because

of mainly two knowledge definition problems:

• Acquiring planning action model. Accurate description of planning opera-

tors is essential for automated planners. This description involves modeling

the actions to be executed in the environment, state of the environment and

the goals to be achieved. Generating exact definitions of the planning tasks in

advance is a challenging issue in most real-world domains.

• Acquiring planning search control knowledge. Finding a plan in AP is a

PSPACE-complete problem. Standard classical planners fail to produce solu-

tions to the AP tasks with large numbers of objects. The search process guided

by heuristics is one of the dominant approaches to deal with this problem in

state-of-the-art planners. Defining search control knowledge is difficult since

it requires expertise in both the planning domain and the planning algorithm.

Machine Learning (ML) has been widely applied to deal with the above knowl-

edge acquisition problems. Figure 2.4 shows the role of these two targets in ML.

25

Chapter 2. A Review of Robot Task Learning and Planning

Comprehensive studies of ML for AP have been conducted (Zimmerman and Kamb-

hampati, 2003; Jiménez et al., 2012). Here, we mainly focus on learning high-level

action compositions. Learning of planning action models is disregarded due to the

scope of this thesis (however, see Section 2.1.2).

The efficiency of planning procedures can be significantly improved by exploit-

ing knowledge about the structure of the AP tasks that is not explicitly encoded

in the domain model. Planners that exploit domain-specific or problem-specific

control knowledge can reason out faster than standard planners. Defining hand-

coded search control knowledge requires expertise in the AP domain and plan-

ner’s search algorithm. This review is organized into different ML approaches,

namely macro actions, hierarchical decomposition methods, generalized planning and

explanation-based learning.

2.3.1 Learning Macro Actions

Macro actions refer to the compound actions generated by assembling individual

actions in sequence that are frequently used. Macro actions reduce the depth of

the planner’s search tree by directing the search more carefully, but they may also

increase the search tree’s branching factor, thus bringing on the utility problem

(Minton, 1990; Holder, 1990). A trade-off between utility and branching factor is

required to keep on working with macro actions. Learning macro actions was the

first attempt to improve planning systems. The STRIPS PLANEX system (Fikes

et al., 1972) first used macro actions as a tool for plan execution and analysis.

In this work, the STRIPS planner has been extended with macros in the form of

generalized plans as solutions to previous problems which are generalized by sub-

stituting constants with variables.

The general idea of creating the different components of a macro action involv-

ing parameters, preconditions and effects by assembling two actions a1 and a2 into

a macro action a12 is as follows:

• The parameters: par(a12) = (par(a1)∪par(a2)).

• The preconditions: pre(a12) = (pre(a1)∪pre(a2)) \add(a1).

• The positive effects: add(a12) = (add(a1)∪add(a2)) \del(a2).

• The negative effects: del(a12) = (del(a1)∪del(a2)) \add(a2).

The learned macro actions are represented in predicate logic and added as new

actions to the planning domain. Listing 2.2 shows an overall example of a learned

26

Chapter 2. A Review of Robot Task Learning and Planning

;;; primitive actions
(: action unstack

:parameters (?x - block ?y - block)
:precondition(and (on ?x ?y)(clear ?x)(handempty))
:effect (and (holding ?x)

(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))))

(: action putdown
:parameters (?x - block)
:precondition(holding ?x)
:effect (and (not (holding ?x))

(clear ?x)
(handempty)
(ontable ?x)))

;;; macro actions
(: action unstack -putdown

:parameters (?x - block ?y - block)
:precondition(and (on ?x ?y)(clear ?x)(handempty))
:effect (and (clear ?y)

(not (on ?x ?y))
(ontable ?x)))

Listing 2.2: Macro action unstack-putdown for the Blocks world domain.

unstack-putdown macro action from actions unstack and putdown for the Blocks

world domain (Gupta and Nau, 1992).

Botea et al. (2005, 2007) introduce Macro-FF, an automated method that learns

control knowledge from experiences and uses it to solve new problem instances.

Authors present a four-step procedure: (1) Analysis, extract structural informa-

tion about the domain; (2) Generation, build macro actions based on the discov-

ered information; (3) Filtering, rank and filter macro actions to select the most

useful; (4) Planning, exploit the macro actions to improve the planning for the

future problems. They proposed the Component Abstraction Enhanced Domain

(CAED) architecture which generates a set of macro actions from the PDDL for-

mulations of a domain and several training problems. Macro actions are added to

the initial domain with the same description language, causing an enhanced do-

main. The CAED architecture suffers from two limitations. First, it can be only

applied to domains with static facts, and second, adding macros is only limited

to STRIPS domains. To overcome the limitations of CAED, the second abstraction

method, Solution Enhanced Planner (SOLEP) is presented. SOLEP extends the

CAED macro representation from STRIPS to ADL by representing macros as se-

quences of operators and mappings of the operators’ variables instead of building

single operators in CAED.

Gerevini et al. (2011) study the learning of two types of knowledge, macro

27

Chapter 2. A Review of Robot Task Learning and Planning

actions and planning horizon, in the planning as satisfiability framework known

as SATPLAN system (Kautz et al., 1992). The planning horizon is the length of

an optimal plan for solving a problem. They propose a new variant of MiniSAT

(Eén and Sörensson, 2003) which uses a given set of macro actions to improve the

performance of SAT planners. To better exploit macro actions, an independent

learning technique is presented to predict the optimal planning horizon of a given

problem. The authors demonstrated that using macro actions can speed up the

SAT planner when the Conjunctive Normal Form (CNF) encoding of the problem

is satisfied.

Other techniques also successfully integrate macros with state-of-the-art heuris-

tic search planners. Newton et al. (2007) present an offline macro action learning

technique that works with arbitrary planners and domains. They employ a ge-

netic algorithm to guide the macro actions generator while searching for macros in

macro space. The macros are generated from randomly generated plans of smaller

problems, and evaluated against other larger problems. Algorithms for n-grams

analysis have also been applied to learning macro actions for the heuristic planner

FF (Muise et al., 2009). Chrpa (2010) computes a matrix of candidates from all

the training plans, and then selects a candidate for creating macro operators by

looking for operators whose instances appear successively.

2.3.2 Learning Hierarchical Decomposition Models

HTN planning is one of the most successful and practical approaches to AI plan-

ning. However, designing an HTN planning domain requires considerable effort

by a domain expert or a knowledge engineer. Here we review some ML techniques

for automatically learning HTN methods.

Zhuo et al. (2014) present a learning algorithm, called HTNLearn, to automat-

ically acquire HTN methods and primitive actions. HTNLearn receives a set of

plan traces with partially annotated intermediate state information, and a set of

annotated tasks that specify the conditions before and after the tasks’ accomplish-

ment. HTNLearn models the problem of learning HTN methods as a maximum

satisfiability problem (MAX-SAT problem). It constructs constraints based on in-

puts, specifically, method constraints to encode the methods’ preconditions and

structures; state constraints to encode action models; decomposition and task con-

straints to improve the learned HTN models; and hard constraints to verify con-

sistency between the learned HTN and the inputs. The corresponding weights to

the constraints are calculated and fed to a weighted MAX-SAT solver. The solution

28

Chapter 2. A Review of Robot Task Learning and Planning

to this MAX-SAT problem is the HTN model including the set of actions and HTN

methods that explain the given inputs.

HTN-MAKER is other work, presented by Hogg et al. (2008), which learns in-

crementally HTN planning knowledge. HTN-MAKER is fed by a set of planning

operators, a set of initial states of classical planning problems and solutions to

these problems, and a set of semantically-annotated tasks to be achieved. An an-

notated task is defined as a triple t = (n,pre,eff) where n is a task name, and

pre and eff are respectively sets of preconditions and effects in the form of atoms.

HTN-MAKER generates a sequence of states by applying the actions in a given

plan, starting from the initial state. Then it traverses the states in which the effects

of an annotated task become true, as well as it looks for the preceding states, from

which these effects are accomplished, and then finds annotated tasks whose effects

might be true in this interval. To identify a sequence of subtasks that fulfills this

task and the preconditions of the subtasks, if there is an annotated task whose

effects and preconditions match correspondingly the states during the above in-

terval, HTN-MAKER regresses the effects of the annotated task through the plan

elements (actions or previously learned methods) that produce those effects. The

learned HTN method is eventually added to the domain and also an instantiation

of the method with its initial and final states is stored as a sub-plan within the

plan for using as a subtask in further learning of new methods.

Ilghami et al. (2002) present a framework for supervised learning of HTN

methods, called CaMel (Candidate Elimination Method Learner). CaMel learns

incrementally conditions for HTN methods under expert supervision. It takes

as input a set of adapted plan traces containing the solutions for HTN planning

problems and information about inferences derived and decisions made during

the plans, as well as an incomplete version of the domain, including instances of

methods that are applicable to the planning problems. The authors adopt the can-

didate elimination machine learning approach (Mitchell, 1977) to yield a sound,

complete and incremental algorithm. The output of the proposed method is a

complete HTN domain induced from a given incomplete domain as input.

2.3.3 Generalized Planning

Generalized planning is the problem of inferring an algorithmic plan which works

over all instances of the same class of problems by mapping states and goals into

actions. This problem has been studied since the earliest work on STRIPS (Fikes

29

Chapter 2. A Review of Robot Task Learning and Planning

and Nilsson, 1972). Generalized planning is also referred in the literature as Gen-

eralized policies (Martín and Geffner, 2004; Srivastava et al., 2008; Hu and De Gia-

como, 2011; Srivastava et al., 2011). A generalized plan is similar to an object with

a method of instantiation, which creates a sequence of actions given an instance

of the target class of problems. These are different approaches to efficiently gener-

ate plans for wide classes of problems. Generalized planning aims to decrease the

cost of instantiation while extending the generality of plans, by including loops of

actions to deal with various problem instances. An accurate generalized plan is

particularly able to solve any problem from a given domain without any search,

by repeatedly applying the preferred actions for each planning context.

Consider the simple problem of picking up blocks in a stack and putting them

down on a table. Suppose a problem instance with three blocks a, b, c standing on

top of each other, where block c is the topmost. The possible solution plan would

be: pickup(c), putdown(c), pickup(b), putdown(b), pickup(a) and putdown(a). Clas-

sical planning has the objective of finding such plans for specific problem in-

stances. By increasing the number of blocks in this problem, the complexity of

solving it grows accordingly, though the solutions are similar to each other. Plan

generalization extracts and utilizes these common solutions and problem struc-

tures. For instance, a fine generalized (algorithmic) plan to solve this kind of

problem could be:

unstack≈while(∃b,(ontop(b)∧ ontable(b))) : pickup(b),putdown(b).

Srivastava et al. (2011) address the problem of finding generalized plans for

the situations in which the number of objects are unknown during planning. The

authors propose a planning system, called Aranda, which takes an empty gener-

alized plan and incrementally increases the applicability of the plan. Using the

canonical abstraction, an abstract representation developed for Three-Valued Logic

Analysis (TVLA) (Sagiv et al., 2002), and back-propagation, Aranda finds an ab-

stract state space from a set of concrete states of problem instances with varying

numbers of objects that guarantees completeness, i.e., the plan works for all inputs

that map onto the abstract state. However, these strong guarantees come at a cost:

(i) restrictions on the language of actions; and (ii) high running times.

Hu and Levesque (2011) propose to use the situation calculus (McCarthy, 1963;

Levesque et al., 1998) for representing a planning problem which results in a new

30

Chapter 2. A Review of Robot Task Learning and Planning

representation with an infinite number of objects. The authors introduce a general-

ized plan representation in the form of a Finite State Automaton (FSA) and the Fsa-

Planner (Hu and Levesque, 2009) to generate FSA plans for dealing with planning

problems represented in the situation calculus. An FSA plan is a directed graph,

whose nodes are plan states labeled with their associated actions, and edges are the

sensing results which identify next plan states. Based on this specification, Hu and

Levesque identify a class of infinite planning problems, called one-dimensional,

and prove that the execution of an FSA plan will terminate in a situation where

the goal condition is satisfied.

LoopDISTILL (Winner and Veloso, 2007; Winner, 2008) can also be consid-

ered as a generalized planning technique. The LoopDISTILL algorithm automat-

ically acquires looping domain-specific planners from example plans. LoopDIS-

TILL identifies the largest matching sub-plan in a given example and converts the

repeating occurrences of the sub-plans into a loop. The result is a domain-specific

planning program (dsPlanner), i.e., a plan with if-statements and while-loops that

can solve similar problems of the same class.

2.3.4 Explanation Based Learning

Explanation-Based Learning (EBL) has been frequently used in AI planning to

generalize a proof or an explanation of a solution and using this explanation to

guide the planning (DeJong and Mooney, 1986). Generalization of objects to vari-

ables in plans using deductive or analytical generalization goes back to the STRIPS

PLANEX system (Fikes et al., 1972). Although, in the early 1980’s, many research

was carried out into knowledge-based learning from a single example, Mitchell

et al. (1986) provided, for the first time, a unifying view of EBL, called Explanation-

Based Generalization (EBG). An EBG method based on a generalization of Mitchell’s

EBG (Mitchell et al., 1986) is described in Figure 2.5.

This unifying framework combines the tradition, initiated by PLANEX, of pro-

ducing generalizations of single examples based on some domain knowledge, with

the emphasis on analysis and explanation, which characterized later work. Con-

cepts are viewed as predicates over instances, and therefore denote sets of in-

stances. The operationality criterion defines what it means for a concept to be

useful. An explanation is a proof (resulting from a logical proof procedure or from

some other reasoning scheme with well defined steps) that an object is an instance

of a given concept, i.e., a record of all problem-solving steps that are required to

prove such assertion. Generalization is the computation of the weakest conditions

31

Chapter 2. A Review of Robot Task Learning and Planning

Given:
1. Target concept definition: a definition describing the concept to be learned. (It

is assumed that this concept definition fails to satisfy the operationality crite-
rion).

2. Training example: an example of the target concept
3. Domain theory: a set of rules and facts to be used in explaining how the training

example is an example of the target concept.
4. Operationality criterion: a predicate over concept definitions, specifying the

form in which the learned concept definition must be expressed.

Determine:
5. A generalization of the training example that is a sufficient concept description

for the target concept and that satisfies the operationality criterion.

Figure 2.5: The Explanation-Based Generalization method.

for which the proof structure still holds. Generalization, therefore, relies on the

ability of the reasoner to explain why the instance is a member of the concept.

EBL techniques have been used in planning both to improve search and to re-

duce domain modeling burden. In the former case, EBL is used to learn “con-

trol knowledge” to speedup the search process (Minton et al., 1989; Kambhampati

et al., 1996), or to improve the quality of the solutions found by the search pro-

cess (Estlin and Mooney, 1997). In the latter case, EBL is used to develop domain

models (e.g., action models). One old example is BAGGER2 (Shavlik, 1990), which

uses example solutions and domain knowledge to learn an algorithm for problem

solving in the form of recursive structures, but relies on hand-coded background

domain knowledge. In a more recent work, Levine and DeJong (2006) used EBL

for learning low-level operators (i.e., for learning domain knowledge rather than

control knowledge) as encapsulated control loops that are specialized to best fit a

particular distribution of observed learning problems. With the benefit of prior

knowledge, an operator design module searches for the simplest causal explana-

tion of the world dynamics and generates a qualitative relationship graph, then

associates a numerical function to it, and finally assesses the capabilities of the

function over planning problems, and produces one or more operator definitions

for use by the planner.

32

Chapter 2. A Review of Robot Task Learning and Planning

2.3.5 Other Techniques for Acquiring Planning Knowledge

Heuristic functions are other alternative to improve the complexity of planning.

They compute an estimate of the path cost from a given node to a goal node. Nu-

merous approaches to AP have exploited admissible heuristic functions to guide

the search of a solution plan through pruning unpromising nodes of the search

space (De la Rosa et al., 2013; Yoon et al., 2008; Lelis et al., 2012; Bonet, 2013). A

typical way to obtain a heuristic function is to find the actual cost of the simplified

form of the problem and use it as the heuristic function of the original problem.

Abstraction has also long been recognized as an important technique for im-

proving problem solving performance (Saitta and Zucker, 2013). A few works have

actually combined abstraction with EBG to learn more generic concepts called

abstract plans or schemata (Knoblock et al., 1991; Seabra Lopes, 1997). The idea

of representation change for the purpose abstraction (rather than simply drop-

ping sentences) was introduced in the PARIS system (Bergmann and Wilke, 1995),

which accumulates generalized and abstracted plans in a case base with indexing

and retrieval mechanisms. In this system, it is necessary to specify an abstraction

theory that defines how representation change takes place.

Similar ideas were independently developed for acquiring failure recovery sch-

emata in a robotics application (robotized assembly) (Seabra Lopes, 1997, 1999,

2007). In this case, schemata are learned from successful failure recovery expe-

riences, and abstraction involves representation change of states and operators.

Moreover, certain properties or features are associated to the generalized and ab-

stracted operators in the learned schemata based on a hand-coded feature extrac-

tion strategy. When applying a schema to a new situation, a planner chooses the

plan closest to the schema based on the ratio of schema features present in the

plan.

Several works have adopted case-based approaches to reduce planning search

(Hammond, 1986; Borrajo et al., 2015). In case-based reasoning systems like Priar

(Kambhampati and Hendler, 1992) or Prodigy/Analogy (Veloso, 1992, 1993) cases

are usually not explicitly generalized in advance. They are kept fully instantiated

in a case library, annotated with the created explanations. During problem solv-

ing, those cases are retrieved which contain explanations applicable to the current

problem (Carbonell and Veloso, 1988; Kambhampati and Hendler, 1992). The de-

tailed decisions recorded in these cases are then replayed or modified to become a

solution to the current problem. All these methods tend to suffer from the utility

problem, in which learning more information can be counterproductive due to the

33

Chapter 2. A Review of Robot Task Learning and Planning

difficulty with storage and management of the information and with determining

which information should be used to solve a particular problem.

2.4 Summary

Autonomous intelligent robots, such as domestic and personal robots, are desir-

able in applications where the environment is open-ended and largely unknown.

These robots cannot be preprogrammed by foreseeing, at the design stage, all pos-

sible courses of actions they may require. They should be rather able to develop

their own cognitive abilities by themselves. For that, they must possess a symbolic

and internal model of their local environment, and the sufficient logical reason-

ing capacity to make decisions and to execute the necessary tasks to reach their

objectives.

Robot learning is an active research field at the intersection of Robotics and Ar-

tificial Intelligence. It studies techniques allowing a robot to acquire novel skills

through learning algorithms and to achieve tasks on its own deliberation. Al-

though several cognitive functions are required to endow intelligent robots to op-

erate in dynamic environments (Ingrand and Ghallab, 2014, 2015), in this thesis,

we address particularly two deliberative functions:

• Learning: allows a robot to acquire, adapt and improve through experience

the models needed to achieve real-world tasks.

• Planning: combines prediction and search to synthesize a trajectory in some

abstract action space based on predictive models of the environment and fea-

sible actions in order to achieve some goals.

In this chapter, we presented Learning from Demonstration (LfD) as a par-

ticular approach to robot learning from examples. We addressed challenges and

learning techniques in this field. Over the past decades, the application of LfD

technique to speed up learning and adaptation upon experiences has proven very

successful. Although LfD is useful in learning primitive action-control policies

(such as for object manipulation), it is unsuitable for learning complex tasks. LfD

usually requires many examples in order to induce the intended control structure

(Allen et al., 2007). Moreover, the representations are task-specific and are not

likely to transfer to structurally similar tasks (Chao et al., 2011).

34

Chapter 2. A Review of Robot Task Learning and Planning

Planning is a key ability for intelligent robots, increasing their autonomy and

flexibility. Numerous methods have been proposed in AI Planning for acquir-

ing and improving action models at the task levels. We described learning tech-

niques in task planning to speed-up planners with control knowledge and macro

actions, generalized planning, specific heuristics and hierarchical task decompo-

sitions. These efforts are usually concerned with planning speed, however, they

have seldom been used in robotics. These approaches use more expressive repre-

sentations and more advanced algorithms than those used so far in robot learning

from demonstration; therefore, we see high application potential.

Considering the gaps in the development of advanced learning techniques and

expressiveness of task representation in LfD, we aim to develop (i) a unified rep-

resentation of experience-based robot task planning which utilizes the expressive-

ness of first-order logic; (ii) machine learning techniques for acquiring task plan-

ning knowledge from robot experiences; and (iii) experience-based problem solv-

ing algorithms for efficiently generating solutions to task problems. In the follow-

ing chapter, we formalize and present the notion of Experience-Based Planning

Domains (EBPDs) to support long-term learning and planning. The EBPDs repre-

sentation scheme uses notation derived from first-order logic. This formalization

captures many interesting aspects of the experience-based learning and planning,

which can foster the reuse of this research.

35

Chapter 2. A Review of Robot Task Learning and Planning

36

Chapter 3

Experience-Based Planning Domains

A necessary input to any planning algorithm is a description of a planning domain

and a problem to be solved. The planning domain representation specifies which

transitions are possible in each state. Fox and Long (2002) state:

The adoption of a common formalism for describing planning domains

fosters far greater reuse of research and allows more direct comparison

of systems and approaches, and therefore supports faster progress in

the field. A common formalism is a compromise between expressive

power (in which development is strongly driven by potential applica-

tions) and the progress of basic research (which encourages develop-

ment from well-understood foundations). The role of a common for-

malism as a communication medium for exchange demands that it is

provided with a clear semantics.

We propose the notion of Experience-Based Planning Domain (EBPD), an ex-

tension of the standard notion of planning domain, which in addition to planning

operators, includes experiences and methods (called activity schemata) for solving

classes of problems. EBPDs are planning domains that are supported by a long-

term learning process. They are intended to endow intelligent robots with the

capability of problem solving by learning from experience. Like standard plan-

ning domains, EBPDs use a representation scheme derived from first-order logic.

Syntactically, the notation used for representing EBPDs is an adaptation and ex-

tension of the Planning Domain Definition Language (PDDL) (Mcdermott et al.,

1998). EBPDs offer several significant extensions, e.g., abstract operators/actions,

experiences, activity schemata, abstraction hierarchies which link concrete predi-

cates/actions with abstract predicates/actions, etc. In this chapter, we first present

37

Chapter 3. Experience-Based Planning Domains

a basic learning and planning framework underlying EBPDs. Then the formal ter-

minology used for describing EBPDs is introduced.

3.1 Running Examples

As running examples throughout this thesis, we develop and use two planning

domains, RACE and Stacking-Blocks, for illustrating different aspects of our ap-

proach. A full representation and implementation of the Stacking-Blocks domain

in EBPDs is given in Appendix A.

3.1.1 The RACE Domain

We developed a domain for a restaurant environment. This domain is based on

the EU RACE (Robustness by Autonomous Competence Enhancement) project,

funded by the EC Seventh Framework Program theme FP7-ICT-2011-7 (Rockel

et al., 2013; Hertzberg et al., 2014). The RACE project aimed to develop an artifi-

cial cognitive system, embodied by a service robot, able to build a high-level under-

standing of the world it inhabits by storing and exploiting appropriate memories

of its experiences.

Assume a restaurant environment and a guest sitting at a table in the restau-

rant. A service robot serves a coffee to the guest at the table by picking up a coffee

cup from a counter and setting it down on the table in front of the guest. The state

of the world in the RACE domain is described by the following predicates:

• table(x),counter(x),robot(x),guest(x),mug(x),leftarm(x),rightarm(x),

torso(x), gripper(x), manipulationareasouth(x), manipulationarea-

north(x), manipulationareaeast(x), manipulationareawest(x), manipula-

tionarea(x),premanipulationareasouth(x),premanipulationareanorth(x),

premanipulationareaeast(x), premanipulationareawest(x), premanipula-

tionarea(x),placingarealeft(x),placingarearight(x),torsoupposture(x),

torsodownposture(x), torsomiddleposture(x), armtuckedposture(x), arm-

carryposture(x), armtosideposture(x), armunnamedposture(x): x is respec-

tively a table, counter, robot, guest, mug, arm, torso, gripper, manipulation

area, premanipulation area, placing area, torso posture, or arm posture.

• hassittingarea(x,y),hasmanipulationarea(x,y),haspremanipulationarea-

(x,y), hasplacingarea(x,y): table x has respectively a sitting area, manipu-

lation area, premanipulation are, or placing area y.

38

Chapter 3. Experience-Based Planning Domains

• at(x,y): guest x is at sitting area y.

• on(x,y), objectobserved(x,y): object x is on or observed at placing area y.

• robotat(x,y): robot x is at area y.

• hastorso(x,y), hasarm(x,y): robot x has torso or arm y.

• hasarmposture(x,y), hasgripper(x,y): arm x has arm posture or gripper y.

• hastorsoposture(x,y): torso x has torso posture y.

The RACE domain has the following actions:

• tuck_arms(l,r,u,v,x,y), move_arms_to_carryposture(l,r,u,v,x,y): move

the postures of arms l and r from u and v to x and y respectively.

• move_arm_to_side(a,x,y): move the postures of arm a from x to y.

• move_torso(t,x,y): move the posture of torso t from x to y.

• move_base(r,x,y), move_base_blind(r,x,y): robot r moves from x to y. The

posture of the robot makes a distinction between these two actions, i.e., in

move-base action, the robot moves when the robot has a certain posture, while

in move-base-blind action, the robot moves blindly with no condition.

• pick_up_object(r,a,o,p,h,p1,t,p2),place_object(r,a,o,p,h,p1,t,p2): ro-

bot r at area a with arm h, arm posture p1, torso t, and torso posture p2, picks

up/puts down object o from/at placing area p.

• observe_object_on_area(r,a,o,p): robot r at area a observes object o at plac-

ing area p.

3.1.2 The Stacking Blocks Domain

We also developed a Stacking-Blocks domain, based on the blocks world domain,

for illustrating the presented concepts and definitions. The environment of the

Stacking-Blocks domain consists of several locations each one equipped with a

hoist, tables and piles. For each pile there is a pallet that sits at the bottom of the

pile. There are a number of red and blue blocks in each location that can be on

the tables or in the piles. The blocks are picked up, put down and moved between

the tables and piles in a location, by a hoist attached to the location. The state of a

problem in the Stacking-Blocks domain is described by the following predicates:

• pile(x), table(x), blue(x), red(x), pallet(x): x is a pile, table, blue block,

red block, or pallet, respectively.

39

Chapter 3. Experience-Based Planning Domains

• attached(p,l): pile p is attached to location l.

• belong(h,l): hoist h belongs to location l.

• at(h,p): hoist h is at place p.

• holding(h,x): hoist h is holding block x.

• empty(a): hoist h is empty.

• on(x,y): block x is on block y.

• ontable(x,t): block x is on table t.

• top(x,p): block x is the top of pile p.

The Stacking-Blocks domain has the following actions:

• move(h,x,y,l): hoist h moves from place x to place y at location l.

• unstack(h,x,y,p,l): hoist h picks block x from block y on pile p at location l.

• stack(h,x,y,p,l): hoist h puts block x on block y on pile p at location l.

• pickup(h,x,t,l): hoist h picks up block x from table t at location l.

• putdown(h,x,t,l): hoist h puts down block x on table t at location l.

3.2 Architectural Overview

The general procedure for obtaining experiences, acquiring task knowledge and

planning in EBPDs is built on the conceptual framework in Figure 3.1. In this

system, a user interface allows a human user to instruct a robot how to carry out

complex tasks by providing the robot with sequences of actions. Alternatively, a

general purpose standard planner is also integrated into this system to generate

solutions for tasks, when a human user is not present or providing a solution is

too complex for the human user. When a task is successfully carried out, an expe-
rience extractor collects and records the world information and the applied actions,

during the execution of the task, as a plan-based robot activity experience into

an experience memory. A conceptualizer retrieves experiences from the experience

memory and generates and stores activity schemata, i.e., generic methods obtained

from single experiences, into a concept memory. Activity schemata are abstract se-

mantic structures that are used later during planning to find solutions for similar

problems. A planning system is used to generate plan solutions to given task prob-

lems using the learned activity schemata. The robot platform executes the plans

40

Chapter 3. Experience-Based Planning Domains

Conceptualizer

Experience Memory Concept Memory

Experience Extractor Planning

Robot Platform + Execution Manager + Working Memory

User Interface

Experience Activity
Schema Learned Concepts

Plan

Experience

Instructions World
Information

World
Information Experience ID World

Information Experience ID

Figure 3.1: An overview of the learning and planning framework underlying an EBPD.

generated by the planner. The experience memory and the concept memory in

this framework can be related to episodic memory and semantic memory in cogni-

tive science (Wood et al., 2012). As a prerequisite of EBPDs, it is assumed that the

robot is equipped with a set of basic skills (i.e., primitive operators) and we focus

on techniques for the robot to acquire generic methods of achieving complex tasks

(e.g., serve a coffee to a guest) based on the repertoire of primitive skills.

In this thesis, we address human-robot interaction and experience extraction

in Chapter 4, the conceptualization approach in Chapter 5, and the planning ap-

proach in Chapter 6. The robot platform, execution manager and perception sys-

tem are out of scope of this thesis (Stock et al., 2014; S̆. Konec̆ný et al., 2014; Kasaei

et al., 2015).

3.3 Planning Domains

EBPDs rely on a first-order language, L, including finitely many predicate, function

and constant symbols to represent various properties of the world. The properties

of the world are represented by two sets of predicates, namely the static world
information and the planning state:

Definition 3.1 (Static World Information). The static world information, Σ, is a

set of ground predicates of L representing the static or invariant properties of the

world, i.e., all properties of the world that are always true. �

Definition 3.2 (Planning State). A planning state (or, for short, a state), s, is a set of

ground predicates of L, such that s∩Σ , ∅, representing all dynamic or transient

properties of the world, i.e., relevant properties of the world that are true in a given

moment but may become false later. The set of all possible states of the world is

represented as S. �

41

Chapter 3. Experience-Based Planning Domains

The truth values of some predicates may not vary from state to state. These

predicates are called static or state-invariant relations (Definition 3.1). However,

some predicates are intended to vary from state to state. These predicates are

called transient or state-variant relations (Definition 3.2). This distinction between

static and transient world information, already explored in (Seabra Lopes, 1999,

2007), allows a planner to only retain or reproduce the transient world information

during planning, and retrieves the static information when it is needed. This idea

improves the efficiency of planning in terms of both time and memory, as well as

the intelligibility of a planning domain representation. A similar idea for static

and transient predicates is also addressed in (Ghallab et al., 2004) with the names

flexible and rigid relations.

Problem solving in general can be viewed as transforming an initial state into

a final state using a sequence of planning operators (Ghallab et al., 2004). Planning

operators are formulas, used by a planner, that specify how the truth values of

predicates change from state to state.

Definition 3.3 (Planning Operator). A planning operator, o, is a tuple,

o= (h,S,P,E),

where h is the planning operator’s head, a functional expression of the form n(x1,

...,xk) in which n is the name of the operator and x1, ...,xk are the variables appear-

ing anywhere in o, e.g., (move ?robot ?from ?to) 1, S is the static precondition of o,

a set of predicates that must be proved in the static world information Σ, P is the

precondition of o, a set of literals that must be proved in a state s ∈ S in order for o

to be applicable in s, and E is the effect of o, a set of literals specifying the changes

on s effected by o.

The set of predicates whose negations are in P is denoted by P− and referred to

as the negative precondition. The set of the remaining predicates in P is denoted

by P+ and referred to as the positive precondition. The negative effect, E−, and the

positive effect, E+, are similarly defined. �

A planning operator in the RACE domain, represented using the EBPD syntax,

is shown in Listing 3.1.

The purpose of the operator’s head is to provide an unambiguous way to refer

to the operator without having to write its preconditions and effects explicitly. If

1The notation in the Planning Domain Definition Language (PDDL) is used to represent EBPDs.
All terms starting with a question mark (?) are variables, and the rest are constants or function
symbols.

42

Chapter 3. Experience-Based Planning Domains

(: action move_base_blind
:parameters (?robot - robot ?from ?to - area)
:static (and (manipulationarea ?from)

(premanipulationarea ?to)
(haspremanipulationarea ?from ?to))

:precondition (robotat ?robot ?from)
:effect (and (robotat ?robot ?to)

(not (robotat ?robot ?from))))

Listing 3.1: The EBPD representation of a planning operator in the RACE domain. With respect to
the standard PDDL, static is a new property.

o is an operator, then its head h = n(x1, ...,xk) refers unambiguously to o. Thus,

when it is clear from the context, we will write n(x1, ...,xk) to refer to the entire

operator o.

Actual actions, executed by the agent, are obtained by instantiating planning

operators in specific states.

Definition 3.4 (Action). Let action a= (n(c1, ...,ck),S,P,E) be the result of instan-

tiating a planning operator n(x1, ...,xk) ∈ O, where each ci is a constant symbol of

L that instantiates a variable xi in the operator description. In any state s ∈ S, if

S⊂ Σ, P+ ⊂ s and P− ∩ s= ∅, then a is applicable to s and the result of applying a

to s is a new state given by the following state-transition function:

γ(s,a) = (s−E−)∪E+.

�

Based on the above definitions, a planning domain for problem solving is de-

fined as follows:

Definition 3.5 (Planning Domain). A planning domain, D, is a tuple,

D= (L,Σ,S,O),

where L is the first-order logic language, Σ is the static world information, S is the

set of all possible states, and O is the set of planning operators. �

3.4 Task Planning Problems and Solutions

The goal of task planning is to determine sequences of actions to achieve specific

tasks or goals. Here we present the definitions of task planning problems and plan

solutions.

43

Chapter 3. Experience-Based Planning Domains

Definition 3.6 (Task Planning Problem). A task planning problem, P, is a tuple of

ground structures,

P= (t,σ,s0,g),

where t is the target task, a functional expression of the form n(c1, ...,ck) with n

being the task name and each ci a constant symbol of L, e.g., (ServeACoffee mug1

counter1 guest1 table1), σ ⊆ Σ is a subset of the static world information, s0 ∈ S

is the initial state, and g is the goal, i.e., a set of propositions to be satisfied (g can

be empty). �

EBPDs are intuitively designed for robot task learning and planning. They

support two different problem formulations: (i) the goal of task planning problems

can be explicitly described as a set of goal propositions in a class of task planning

problems; and (ii) the description of the goal propositions can be empty in a class

of task planning problems. In the latter problem formulation, a set of inferred

goal propositions, included in the methods (activity schemata), is used for solving

a given task planning problem (see Sections 3.7 and 5.6).

Listing 3.2 shows part of a task planning problem in the RACE domain 2. The

problem contains 40 constants and objects, 86 static predicates and 12 transient

predicates. There is no explicit goal description in this problem, however, the

target task is to serve a coffee, initially on a counter, to a guest sitting at a table

in a restaurant environment, specified by the head (ServeACoffee mug1 counter1

guest1 table1).

A solution to a task planning problem is given in the form of a plan:

Definition 3.7 (Plan and Solution). Any sequence of actions π = 〈a1, . . . ,ak〉 for

k> 0, is a plan if there exists a sequence of states 〈s0, . . . ,sk〉 such that si = γ(ai,si−1)

for 1 6 i 6 k. The plan π is a solution for a planning problem P = (t,σ,s0,g) if

g⊆ sk. �

3.5 Abstraction Hierarchies

Problem solving in EBPDs is achieved using a hierarchical problem solver which

includes a concrete planning domain and an abstract planning domain. The concrete

planning domain provides the concrete descriptions of a set of states of the envi-

ronment and a set of actions for making the transitions between the states, and

2 The full specification of this task planning problem can be found in an online repository:
https://github.com/mokhtarivahid/prletter2017/.

44

https://github.com/mokhtarivahid/prletter2017/

Chapter 3. Experience-Based Planning Domains

(define (problem ServeACoffee)
(: domain race)
(: parameters mug1 counter1 guest1 table1)
(: constants leftarm1 rightarm1 - arm counter1 - counter · · ·)
(: objects armposture0 armposture1 - armtuckedposture · · ·)
(: static (counter counter1)

(table table1)
(table table2)
(manipulationarea manipulationareaeastcounter1)
(placingarea placingareaeastrightcounter1)
(premanipulationarea premanipulationareaeastcounter1)
(haspremanipulationarea manipulationareaeastcounter1

premanipulationareaeastcounter1)
(hasmanipulationarea counter1 manipulationareaeastcounter1)
(hasmanipulationarea placingareaeastrightcounter1

manipulationareaeastcounter1)
(hasplacingarea counter1 placingareaeastrightcounter1)
(manipulationarea manipulationareaeasttable2)
(manipulationarea manipulationareawesttable2)
(placingarea placingareasouthrighttable2)
(placingarea placingareasouthlefttable2)
(placingarea placingareanorthrighttable2)
(placingarea placingareanorthlefttable2)
(premanipulationarea premanipulationareaeasttable2)
(premanipulationarea premanipulationareawesttable2)
(sittingarea sittingareanorthtable2)
(sittingarea sittingareasouthtable2)
(haspremanipulationarea table2 premanipulationareaeasttable2)
(haspremanipulationarea table2 premanipulationareawesttable2)
(haspremanipulationarea manipulationareaeasttable2

premanipulationareaeasttable2)
(haspremanipulationarea manipulationareawesttable2

premanipulationareawesttable2)
(hasmanipulationarea table2 manipulationareaeasttable2)
(hasmanipulationarea table2 manipulationareawesttable2)
(hasmanipulationarea placingareasouthrighttable2

manipulationareaeasttable2)
(hasmanipulationarea placingareasouthlefttable2

manipulationareawesttable2)
· · ·

(mug mug1)
(guest guest1)
(torso torso1)
(at guest1 sittingareawesttable1)
(arm leftarm1)
(arm rightarm1)
(gripper leftgripper1)
(gripper rightgripper1)
(hasgripper leftarm1 leftgripper1)
(hasgripper rightarm1 rightgripper1))

(:init (on mug1 placingareaeastrightcounter1)
(robotat trixi1 floorareatamsrestaurant1)
(armtuckedposture armposture0)
(armtuckedposture armposture1)
(hasarmposture leftarm1 armposture0)
(hasarmposture rightarm1 armposture1)
(gripperclosedposture gripperposture0)
(gripperclosedposture gripperposture1)
(hasgripperposture rightgripper1 gripperposture0)
(hasgripperposture leftgripper1 gripperposture1)
(torsodownposture torsoposture0)
(hastorsoposture torso1 torsoposture0)))

Listing 3.2: Part of a task problem for serving a guest in the RACE domain (some information is
omitted due to limited space). With respect to the standard PDDL, a distinction between static
and init makes the task planning problem more intuitive. Moreover, the goal description of the
problem can be empty (in this case the goal is specified by an activity schema relevant for solving
this problem, see Definition 3.16).

45

Chapter 3. Experience-Based Planning Domains

the abstract planning domain is intended for an abstract level of problem solving

using abstract states and abstract actions.

Definition 3.8 (Concrete Planning Domain). A concrete planning domain Dc =

(Lc,Σc,Sc,Oc) is a planning domain that represents the concrete or physical level

of problem solving in an application. �

Definition 3.9 (Abstract Planning Domain). An abstract planning domain Da =

(La,Σa,Sa,Oa) is a planning domain that represents an abstract level of problem

solving in an application, where less relevant features of a concrete planning do-

main are ignored. �

Abstraction is achieved by dropping or transforming predicates and operators

of the concrete planning domain Dc into predicates and operators of the abstract

planning domain Da. In the current state of the research, this transformation

involves two independent abstraction hierarchies: a predicate abstraction hierarchy
and an operator abstraction hierarchy:

Definition 3.10 (Predicate Abstraction Hierarchy). A predicate abstraction hierar-
chy is a set of abstraction relations, each one relating a concrete predicate pc(u1, . . . ,

un) to: an abstract predicate pa(v1, . . . ,vm) such that pc ∈ Lc, pa ∈ La, m 6 n and

{v1, . . . ,vm}⊆ {u1, . . . ,un}; or ∅ (nil). �

Definition 3.11 (Operator Abstraction Hierarchy). An operator abstraction hierar-
chy is a set of abstraction relations, each one relating a concrete operator oc ∈ Oc,

with arguments (u1, . . . ,un) to: an abstract operator oa ∈ Oa, with arguments

(v1, . . . ,vm), such that m6 n and {v1, . . . ,vm}⊆ {u1, . . . ,un}; or ∅ (nil). �

In the predicate abstraction hierarchies, a concrete predicate might: map onto

an abstract predicate, by replacing predicate symbols and excluding some argu-

ments of the concrete predicate, e.g., (holding?hoist?block)→(holding?block);

or map onto ∅ (nil), that is, it won’t be represented at the abstract level, e.g., (at

?hoist ?pile) → ∅. Similarly, in the operator abstraction hierarchy, a concrete

operator maps onto an abstract operator, e.g., (pickup ?hoist ?block ?table ?loc)

→(pickup?block?table); or maps onto ∅ (nil), e.g., (move?hoist?from?to?loc)

→∅. Tables 3.1 and 3.2 present the predicate and operator abstraction hierarchies

in the RACE domain, and Tables 3.3 and 3.4 present the predicate and operator

abstraction hierarchies in the Stacking-Blocks domain.

46

Chapter 3. Experience-Based Planning Domains

Table 3.1: Predicate abstraction hierarchy in the RACE EBPD.

Abstract predicate Concrete predicate
(table ?table) (table ?table)

(counter ?table) (counter ?table)

(haspremanipulationarea ?table ?area) (haspremanipulationarea ?table ?area)

(hasmanipulationarea ?table ?area) (hasmanipulationarea ?table ?area)

(hasplacingarea ?table ?area) (hasplacingarea ?table ?area)

(hassittingarea ?table ?sittingarea) (hassittingarea ?table ?sittingarea)

(manipulationarea ?area) (manipulationarea ?area)

(manipulationareasouth ?area) (manipulationareasouth ?area)

(manipulationareanorth ?area) (manipulationareanorth ?area)

(manipulationareaeast ?area) (manipulationareaeast ?area)

(manipulationareawest ?area) (manipulationareawest ?area)

(premanipulationarea ?area) (premanipulationarea ?area)

(premanipulationareasouth ?area) (premanipulationareasouth ?area)

(premanipulationareanorth ?area) (premanipulationareanorth ?area)

(premanipulationareaeast ?area) (premanipulationareaeast ?area)

(premanipulationareawest ?area) (premanipulationareawest ?area)

(haspremanipulationarea ?area ?area) (haspremanipulationarea ?area ?area)

(hasplacingarea ?sittingarea ?area) (hasplacingarea ?sittingarea ?area)

(placingarealeft ?area) (placingarealeft ?area)

(placingarearight ?area) (placingarearight ?area)

(guest ?guest) (guest ?guest)

(at ?guest ?sittingarea) (at ?guest ?sittingarea)

(mug ?object) (mug ?object)

(on ?object ?area) (on ?object ?area)

(robot ?robot) (robot ?robot)

(robotat ?robot ?area) (robotat ?robot ?area)

∅ (objectobserved ?object ?area)

∅ (leftarm ?arm)

∅ (rightarm ?arm)

∅ (hasarmposture ?arm ?armposture)

∅ (armtuckedposture ?armposture)

∅ (armcarryposture ?armposture)

∅ (armtosideposture ?armposture)

∅ (armunnamedposture ?armposture)

∅ (gripper ?gripper)

∅ (hasgripper ?arm ?gripper)

∅ (hasgripperposture ?gripper ?posture)

∅ (gripperclosedposture ?gripperposture)

∅ (gripperholdingposture ?gripperposture)

∅ (gripperopenedposture ?gripperposture)

∅ (torso ?torso)

∅ (hastorsoposture ?torso ?posture)

∅ (torsodownposture ?torsoposture)

∅ (torsoupposture ?torsoposture)

∅ (torsomiddleposture ?torsoposture)

47

Chapter 3. Experience-Based Planning Domains

Table 3.2: Operator abstraction hierarchy in the RACE EBPD. ∗

Abstract operator Concrete operator
(move/3) (move_base/3)

(move/3) (move_base_blind/3)

(pick_up/4) (pick_up_object/8)

(place/4) (place_object/8)

∅ (observe_object_on_area/4)

∅ (tuck_arms/6)

∅ (move_arms_to_carryposture/6)

∅ (move_arm_to_side/3)

∅ (move_torso/3)

∗ Parameters are omitted due to limited space. The numbers indicate arities.

In the remainder of this thesis, a functional expression parent(x), where x

is a concrete predicate or operator, represents the parent of x in the respective

abstraction hierarchy. Moreover, states and operators from the concrete domain

are denoted by sc and oc, respectively, while states and operators from the abstract

domain are denoted by sa and oa, respectively.

As a prerequisite in this work, we assume that descriptions of the concrete

and abstract planning domains (Dc,Da) with operators and predicates abstrac-

tion hierarchies are given by a domain expert or a knowledge engineer. Research

into knowledge acquisition already describes approaches and tools for learning

action models (Walsh and Littman, 2008; Zhuo et al., 2008) and for generating

abstraction in planning (Knoblock, 1994; Bacchus and Yang, 1994). Nonetheless,

the automatic definition of abstract and concrete planning domains is beyond the

scope of this thesis. In Chapters 5 and 6, we present how the abstraction is used

for learning planning knowledge and for improving the performance of problem

solving.

3.6 Plan-Based Robot Activity Experiences

Experiences are episodic descriptions of plan-based robot activities including en-

vironmental perception, sequences of applied actions and achieved tasks. By “plan-

based robot activity experience” we mean an experience that resulted from the ex-

ecution of a sequence of actions (see Definitions 3.4 and 3.7). In this work, we

seek to generalize and abstract experiences for reuse in new situations. Let L be

48

Chapter 3. Experience-Based Planning Domains

Table 3.3: Predicate abstraction hierarchy in the Stacking-Blocks EBPD.

Abstract predicate Concrete predicate
(table ?table) (table ?table)

(pile ?pile) (pile ?pile)

(block ?block) (block ?block)

(blue ?block) (blue ?block)

(red ?block) (red ?block)

(pallet ?pallet) (pallet ?pallet)

(on ?block1 ?block2) (on ?block1 ?block2)

(ontable ?block ?table) (ontable ?block ?table)

(top ?block ?pile) (top ?block ?pile)

(holding ?block) (holding ?hoist ?block)

∅ (location ?location)

∅ (hoist ?hoist)

∅ (attached ?pile ?location)

∅ (belong ?hoist ?location)

∅ (at ?hoist ?pile)

∅ (empty ?hoist)

Table 3.4: Operator abstraction hierarchy in the Stacking-Blocks EBPD.

Abstract operator Concrete operator
(unstack ?block1 ?block2 ?pile) (unstack ?hoist ?block1 ?block2 ?pile ?loc)

(stack ?block2 ?block1 ?pile) (stack ?hoist ?block2 ?block1 ?pile ?loc)

(pick ?block ?table) (pickup ?hoist ?block ?table ?loc)

(put ?block ?table) (putdown ?hoist ?block ?table ?loc)

∅ (move ?hoist ?from ?to ?loc)

a first-order language that has finitely many predicate and constant symbols, such

that (Lc ∪La)⊆ L:

Definition 3.12 (Key-Property). A key-property, τ(p), is a property of the world

in an experience, where τ is a temporal symbol and p ∈ L is a predicate. Tempo-

ral symbols specify the temporal extent of predicates in experiences. Three types

of temporal symbols are used in key-properties, namely init—true at the initial

state, during—always true during an experience, and end—true at the final state,

e.g., (end(on mug1 placingareawestrighttable1)). �

Definition 3.13 (Plan-Based Robot Activity Experience). A plan-based robot ac-
tivity experience (or, for short, an experience), e, is a triple of ground structures,

e= (t,K,π),

49

Chapter 3. Experience-Based Planning Domains

representing how a task was achieved, where t = n(c1, ...,ck) is a functional ex-

pression representing the achieved task, n is the name of the task, c1, ...,ck are the

arguments of the task, e.g., (ServeACoffeemug1counter1guest1table1), K is a set of

key-properties extracted from the robot’s memory during the task execution, and

π is a solution plan, i.e., a sequence of concrete actions that achieves t. �

Listing 3.3 shows an experience for a ‘ServeACoffee’ task in the RACE domain
3. The head ServeACoffee(mug1,counter1,guest1,table1) specifies the task, per-

formed in this experience. Key-properties specify important properties of the

world captured in this experience. This properties include the initial and final

state of the experience (properties wrapped in init and end timestamps) as well

as the properties that are always true during the experience (properties wrapped

in during timestamps). The plan is a solution to this experience (either provided

by a human user or automatically generated using a planner).

Experiences are collected through human-robot interaction and instruction-

based teaching. In Chapter 4, we present methods and approaches for teaching

a robot how to achieve a task as well as for extracting and recording experiences.

Extracted experiences are the main inputs for acquiring task knowledge.

3.7 Robot Activity Schemata

Activity schemata are generic methods for achieving tasks. They are obtained from

experiences. The learned knowledge is represented as a set of activity schemata

where each activity schema is generated from a specific experience. The knowl-

edge stored in an activity schema is a generic solution to a class of tasks. The

following definitions are provided for the representation of an activity schema:

Definition 3.14 (Feature). Features are properties of abstract operators in learned

planning knowledge. Given a task t and an abstract operator o, a feature of o can

be one of the following:

• A key-property τ(p) such that p contains only arguments of o, i.e., args(p) ⊆
args(o);

• A key-property τ(p) such that p contains at least one argument of o and at

least one argument of t, i.e., args(p)∩ args(o) , ∅ and args(p)∩ args(t) , ∅;
3 The full specification of this experience can be found in the online repository: https:

//github.com/mokhtarivahid/prletter2017/.

50

https://github.com/mokhtarivahid/prletter2017/
https://github.com/mokhtarivahid/prletter2017/

Chapter 3. Experience-Based Planning Domains

(: experience ServeACoffee
:parameters (mug1 counter1 guest1 table1)
:key -properties
((during(table table1))
(during(counter counter1))
(during(manipulationarea manareasouthtable1))
(during(manipulationarea manareaeastcounter1))
(during(premanipulationarea premanareaeastcounter1))
(during(premanipulationarea premanareasouthtable1))
(during(floorarea floorareatamsrestaurant1))
(during(placingarealeft placingareaeastlefttable1))
(during(placingarearight placingareaeastrightcounter1))
(during(placingarearight placingareawestrighttable1))
(during(leftarm leftarm1))
(during(rightarm rightarm1))
(during(gripper rightgripper1))
(during(gripper leftgripper1))
(during(torso torso1))
(during(mug mug1))
(during(guest guest1))
(during(robot trixi1))
(during(sittingarea sittingareawesttable1))
(during(hasmanipulationarea counter1 manareaeastcounter1))
(during(haspremanipulationarea counter1 premanareaeastcounter1))
(during(hasplacingareaeastright counter1 placingareaeastrightcounter1))
(during(hasmanipulationarea placingareaeastrightcounter1 manareaeastcounter1))
(during(haspremanipulationarea manareaeastcounter1 premanareaeastcounter1))
(during(hasmanipulationareasouth table1 manareasouthtable1))
(during(haspremanipulationareasouth table1 premanareasouthtable1))
(during(hasplacingareawestright table1 placingareawestrighttable1))
(during(hassittingareawest table1 sittingareawesttable1))
(during(hasplacingarearight sittingareawesttable1 placingareawestrighttable1))
(during(haspremanipulationarea manareasouthtable1 premanareasouthtable1))
(during(hasmanipulationarea placingareawestrighttable1 manareasouthtable1))
(during(hasplacingareaeastleft table1 placingareaeastlefttable1))
(during(hasmanipulationarea placingareaeastlefttable1 manareasouthtable1))
(during(at guest1 sittingareawesttable1))
(during(hasgripper leftarm1 leftgripper1))
(during(hasgripper rightarm1 rightgripper1))
(init(hastorsoposture torso1 torsoposture0))
(init(hasarmposture leftarm1 armposture1))
(init(hasarmposture rightarm1 armposture0))
(init(robotat trixi1 floorareatamsrestaurant1))
(init(on mug1 placingareaeastrightcounter1))
(init(armunnamedposture armposture0))
(init(armunnamedposture armposture1))
(init(torsodownposture torsoposture0))
(end(hastorsoposture torso1 torsoposture6))
(end(hasarmposture leftarm1 armmovingposture62))
(end(hasarmposture rightarm1 armposture63))
(end(robotat trixi1 manareasouthtable1))
(end(on mug1 placingareawestrighttable1))
(end(armmovingposture armmovingposture62))
(end(armtosideposture armposture63))
(end(torsoupposture torsoposture6)))

:plan
((tuck_arms leftarm1 rightarm1 armposture1 armposture0 armposture7 armposture13)
(move_base trixi1 floorareatamsrestaurant1 premanareaeastcounter1)
(move_torso torso1 torsoposture0 torsoposture2)
(tuck_arms leftarm1 rightarm1 armposture7 armposture13 armposture17 armposture19)
(move_arm_to_side leftarm1 armposture17 armposture21)
(move_arm_to_side rightarm1 armposture19 armposture22)
(move_base_blind trixi1 premanareaeastcounter1 manareaeastcounter1)
(pick_up_object mug1 rightarm1 manareaeastcounter1 placingareaeastrightcounter1

rightgripper1 torsoposture2 armposture22 armposture23)
(move_base_blind trixi1 manareaeastcounter1 premanareaeastcounter1)
(move_arms_to_carryposture leftarm1 rightarm1 armposture33 armposture35 armposture43

armposture45)
(move_torso torso1 torsoposture2 torsoposture4)
(move_base trixi1 premanareaeastcounter1 premanareasouthtable1)
(move_torso torso1 torsoposture4 torsoposture6)
(move_arm_to_side rightarm1 armposture57 armposture61)
(move_base_blind trixi1 premanareasouthtable1 manareasouthtable1)
(place_object mug1 rightarm1 manareasouthtable1 placingareawestrighttable1

rightgripper1 torsoposture6 armposture61 armposture63)))

Listing 3.3: An experience for the task of serving a guest in the RACE domain.

51

Chapter 3. Experience-Based Planning Domains

• A pair of key-properties (τ1(p),τ2(q)) such that p contains at least one argu-

ment of o, q contains at least one argument of t, and p and q have at least one

argument in common, i.e., args(p) ∩ args(o) , ∅, args(q) ∩ args(t) , ∅, and

args(p)∩ args(q) , ∅.

�

Features are intended to improve the performance of problem solving by guid-

ing a planner toward a goal state and reducing the probability of backtracking.

During problem solving, objects that satisfy the features are preferable to instan-

tiate actions. Moreover, when there are different alternatives to achieve a goal,

features are useful to capture preferable alternatives based on different factors,

such as social norms, physical constraints (see more in Section 5.3). Features are

integrated into enriched abstract operators:

Definition 3.15 (Enriched Abstract Plan). An enriched abstract plan, denoted by

Ω, is a sequence of enriched abstract operators. Each enriched abstract operator is a

pair,

ω= (o,F),

where o is the head of an abstract operator, and F is the set of features of o. �

Definition 3.16 (Robot Activity Schema). A robot activity schema (or, for short, an

activity schema), m, is a triple of unground structures,

m= (t,G,Ω),

where t is the target task to be achieved, e.g., (ServeACoffee ?mug ?counter ?guest

?table), G is a set of predicates representing the goal of m, and Ω is an enriched

abstract plan to achieve the task t. �

Listing 3.4 shows part of an activity schema in the RACE domain 4. This activ-

ity schema is automatically obtained from the ‘ServeACoffee’ experience in List-

ing 3.3. During problem solving, this schema is used to solve problem instances

of the ‘ServeACoffee’ task. The target task is specified by the head (ServeACoffee

?mug ?counter ?guest ?table). The ungrounded predicate (on ?mug ?pawrt)

is the goal of the task, and is instantiated and achieved during problem solving

for a given task problem. The (enriched) abstract plan is a generic solution to

4 The full specification of this activity schema can be found in the online repository: https:
//github.com/mokhtarivahid/prletter2017/.

52

https://github.com/mokhtarivahid/prletter2017/
https://github.com/mokhtarivahid/prletter2017/

Chapter 3. Experience-Based Planning Domains

(:activity -schema ServeACoffee
:parameters (?mug ?counter ?guest ?table)
:goal (on ?mug ?pawrt)
:abstract -plan

(((! move ?robot ?fatr ?pmaec)
())

((! move ?robot ?pmaec ?maec)
((during(hasmanipulationarea ?counter ?maec))
((during(hasplacingarea ?counter ?paerc))
(during(hasmanipulationarea ?paerc ?maec)))· · ·))

((! pick_up ?robot ?mug ?maec ?paerc)
((end(on ?mug ?pawrt))
(during(hasmanipulationarea ?counter ?maec))· · ·))

((! move ?robot ?maec ?pmaec)
(((during(haspremanipulationarea ?maec ?pmaec))

(during(hasmanipulationarea ?counter ?maec)))))
((! move ?robot ?pmaec ?pmast)

())
((! move ?robot ?pmast ?mast)

((during(hasmanipulationarea ?pawrt ?mast))
(during(hasmanipulationarea ?table ?mast))· · ·))

((! place ?robot ?mug ?mast ?pawrt)
(((during(hasplacingarearight ?sawt ?pawrt))

(during(at ?guest ?sawt)))· · ·))
((! move ?robot ?mast ?pmast)

((during(haspremanipulationarea ?table ?pmast))
((during(haspremanipulationarea ?table ?pmast))
(during(hasplacingarea ?table ?pawrt)))· · ·))))

Listing 3.4: Part of an activity schema for the ‘ServeACoffee’ task in the RACE domain. (some
information is omitted due to limited space).

serve a coffee task. It includes a sequence of enriched abstract operators (starting

with an exclamation mark !) associated with features. Some abstract operators

may not have features depending on the information included in an experience, as

well as task parameters. The features are used during problem solving for quickly

instantiating the abstract operators, as well as for capturing alternatives to cor-

rectly achieve tasks such as social norms and physical constraints, e.g., the feature

((during(hasplacingarearight ?sawt ?pawrt))(during(at ?guest ?sawt))) of the

abstract operator (!place ?robot ?mug ?mast ?pawrt) captures principles that the

guest should be served on the right side by social convention.

The goal of an activity schema is automatically inferred from an experience. It

may become empty depending on the information included in an experience. In

Section 5.6, we present the method of inferring a set of goal propositions from an

experience. As the main contribution of this thesis, we will present, in Chapter 5,

a conceptualization methodology to derive activity schemata from concrete experi-

ences, and, in Chapter 6, a planning system for solving problems using the learned

activity schemata.

53

Chapter 3. Experience-Based Planning Domains

3.8 Experience-Based Planning Domains

The conceptual framework for planning and learning from experiences involves

planning domains, experiences and learned methods. Therefore, based on the def-

initions provided above, we now define:

Definition 3.17 (Experience-Based Planning Domain). An Experience-Based Plan-
ning Domain (EBPD), ∆, is a tuple,

∆= (L,Da,Dc,A,E,M),

where L is a first-order logic language, Dc is a concrete planning domain, Da is

an abstract planning domain, A is a set of abstraction hierarchies that relates Dc

to Da, E is a set of experiences, and M is a set of activity schemata (methods) for

solving problems. The concrete language, Lc, and the abstract language, La, are

subsets of L. �

The abstract planning domain is intended to support an abstract level of prob-

lem solving in which less relevant features of a problem are ignored and abstract

(skeletal) solutions are derived in a coarse fashion with less effort. The abstract

solutions are then refined to become concrete solutions to problems using the con-

crete planning domain. The experiences are records of previous problem solving

episodes, automatically collected through human-robot interaction and experi-

ence extraction procedures (see Chapter 4). The activity schemata are automat-

ically derived from experiences and serve as methods for solving classes of prob-

lems (see Chapters 5 and 6).

3.9 Summary

In this chapter, we proposed a new planning representation — Experiences-Based

Planning Domains (EBPDs) — which allows for representing plan-based robot ac-

tivity experiences and robot task knowledge (i.e., activity schemata). EBPDs pro-

vide a powerful and expressive representation based on the PDDL notation and

integrate concepts required for learning and planning into a distinct planning lan-

guage.

EBPDs rely on abstract and concrete planning domains for problem solving.

As a prerequisite, we assume that the representations of concrete and abstract do-

mains (state description and operators) are given by a domain expert. An abstract

54

Chapter 3. Experience-Based Planning Domains

language which is given by the user has the advantage that abstraction is expressed

in a language with which the user is familiar. Consequently, understandability

and explainability, which are always important issues in this kind of systems, can

be achieved more easily. Compared to approaches in which abstraction hierar-

chies are generated automatically, more effort is required to specify the abstract

language, but we feel that this is a price we have to pay to make planning more

tractable in certain situations.

55

Chapter 3. Experience-Based Planning Domains

56

Chapter 4

Human-Robot Interaction and the
Extraction of Experiences

Robots are today becoming part of our everyday life and starting to provide close

physical assistance to humans. This evolution implies the ability of robots to learn

semantic task knowledge from humans. Any approach based on preprogramming

all possible courses of actions at the design stage is infeasible for fairly unstruc-

tured settings. Cognitive approaches are essential to endow robots with intelligent

abilities to learn the appropriate behavior from human teachers and experiences,
and to reason about how to deal with complex environments. One promising

approach is interactive task learning which takes inspiration from how we teach

humans new tasks (Merrill, 2002; Laird et al., 2017).

This involves a human-robot interaction between a robot that learns new tasks

and a human instructor available to teach the tasks. The principal objective of

Human-Robot Interaction (HRI) is to develop the algorithms making robots ca-

pable of direct, safe and effective interaction with humans. Many facets of HRI

research relate to and draw from insights and principles from psychology, commu-

nication, anthropology, philosophy, and ethics, making HRI an inherently interdis-

ciplinary endeavor (Goodrich and Schultz, 2007; Feil-Seifer and Matarić, 2009).

The other important asset to intelligent robots is the ability to exploit past ex-

periences. Experiences provide a rich resource for learning and problem solving.

They help avoiding difficulties, predicting the effects of activities, and obtaining

commonsense insights. In order to leverage experiences in a meaningful way, a

robot must be able to reason about several aspects of the domain in which it oper-

ates. These aspects pertain to different types of knowledge including: ontological
knowledge about the entities in the world and the concepts used to describe them;

factual knowledge about the state of the world and the contingent properties of the

57

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

objects in it; and action knowledge about the causes and effects of situations and

actions in order to achieve a goal.

In this chapter, we focus on a specific type of interaction: human-robot collab-

orative task achievement supported by an instruction-based communication inter-

face. In this interaction, a task is described by a human teacher using step-by-step

instructions. We expect the robot to immediately learn from every interaction with

a human instructor, which requires one-shot learning instead of repeated practice

over large datasets (although practice might help tune the learned knowledge). In

Section 4.2, we first present the knowledge representation framework relevant for

interactive experience gathering. In Sections 4.3 and 4.4, we present human-robot

interaction protocols and functionalities for teaching new tasks and recording ex-

periences of robot activities. The conceptual framework and respective implemen-

tation were developed in the EU RACE project where a PR2 robot was employed

for recording experiences, learning and applying the learned concepts (see Sec-

tion 1.3).

In the RACE architecture, experiences are stored at multiple levels of abstrac-

tion, from high-level descriptions in terms of goals, tasks and behaviors, to sen-

sory and actuator skills at the lowest level. Experiences provide a detailed account

of how the robot has achieved past goals or how it has failed, and what sensory

events have accompanied the activities. Robot competence is obtained by abstract-

ing and generalizing from experiences, extending task planning and execution be-

yond preconceived situations. To achieve these, a common conceptual framework

for representing robot experiences, planning and learning was establish.

A central component of the RACE architecture was a semantic memory system

implemented as an RDF database. It was mainly used in RACE to keep track of

the evolution of both the internal state of the robot, the executed actions and the

events observed in the environment. Every unit of data recorded into the memory

is called fluent, which describes an instance of some concept in the ontology with

time points representing the time in which that instance has occurred.

4.1 Running Example: Teaching Tasks in the RACE
Domain

One of the demonstrations in RACE focused on coffee serving. This demonstration

includes two Scenarios A and B sketched in Figure 4.1. In Scenario A, the robot

58

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

(a) Scenario A (b) Scenario B

Figure 4.1: Initial states of the restaurant floor for ‘ServeACoffee’ tasks with trixi PR2 robot in
Scenarios A and B.

– here called trixi – receives detailed instructions on how to serve a coffee to a

guest and learns that this activity constitutes a ‘ServeACoffee’ task:

• Instructions for Scenario A: “Move to counter1, grasp mug1, move to south of

table1, place mug1 at right west placement area of guest1 — this is a ‘ServeA-

Coffee’.”

In Scenario B, it is assumed that the robot has already learned a concept from

the example and will serve a coffee to right placement area at south of guest1.

• Instructions for Scenario B: “Do a ‘ServeACoffee’ to guest1 at table2.”

In both scenarios, we assume that the robot knows the location of the guest and

the placement areas on the table. However, it does not know which placement area

to approach for guest1.

We explore this simple example, in this chapter, for interactive teaching and

experience extraction.

4.2 Knowledge Representation Aspects

Different concepts relevant for planning and execution of robot tasks are covered

in the RACE OWL2 ontology (Pecora et al., 2012; Rockel et al., 2013). In OWL, an

ontology contains class definitions consisting of a class name and relations to other

classes: unary relations for class membership and binary relations for the defini-

tion of properties. Due to the scope of this thesis, we only present the ontological

concepts for representing experiences and user instructions in the RACE project.

59

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Figure 4.2: Partial representation of the experience ontology in the RACE domain.

4.2.1 Ontology of Experiences

Experiences are the main source of information used for learning how to achieve a

more robust robot behavior. They are records of past happenings stored by a robot

and interpreted according to the robot’s conceptual framework. Experiences arise

from robot observations and activities and are typically abstract from low-level

data. In this section, we present the format adopted in RACE for representing ex-

periences, collected through a human-robot interaction. These data play a central

role in RACE as experimental input for the learning processes. A single experi-

ence represents events and physical objects as perceived or inferred by the robot

in a coherent time span and confined to the restaurant environment. In the RACE

domain ontology, a basic distinction was introduced between spatial and dynamic
experiences. Spatial experiences can be related to the evolutionary roots of human

semantic memory (Tulving, 2005). They are relevant for conceptualizing the spa-

tial and relational structure of passive physical objects and scenes, in particular

the shape and appearance of objects and the layout of scenes. Spatial experiences

do not include the time dimension. By contrast, dynamic experiences contain data

that describes activities as sets of occurrences, i.e., temporally extended relations

or properties. Figure 4.2 shows the taxonomical organization of the experience

concepts in the RACE upper ontology. The root concept, Thing, represents every

entity which is needed for the field of application.

Considering the scope of this thesis, the ontological concepts only related to

dynamic experiences are presented here (see Listing 4.1). We use the Manchester

Syntax1 for textual concept representations. The Experience concept represents

an experience record containing data that describes an instance of a category to

be learned along with a name (CategoryLabel) provided by an instructor or an

1https://www.w3.org/TR/owl2-manchester-syntax/

60

https://www.w3.org/TR/owl2-manchester-syntax/

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Class: Experience
SubClassOf: Thing

that hasCategoryLabel some String
and hasExperienceStartTimeLowerBound some time
and hasExperienceStartTimeUpperBound some time
and hasExperienceEndTimeLowerBound some time
and hasExperienceEndTimeUpperBound some time

Class: DynamicExperience
SubClassOf: Experience

that hasSceneObject some SceneObject

Class: RobotActivityExperience
SubClassOf: DynamicExperience

that hasPlanObject some PlanObject

Listing 4.1: Ontology of experiences in OWL2 Manchester Syntax.

unsupervised internal process. DynamicExperience is an experience relevant for

conceptualizing activities in terms of sets of occurrences in a coherent subset of

space-time. It contains data about conceptual objects used to represent behavior

concepts which are either states or occurrences, and physical objects to present

existing entities. RobotActivityExperience is a dynamic experience containing

data about an activity of the robot, extracted from the occurrence history during

the execution of that activity. The experience data includes the underlying goals,

executed plan, a set of occurrences and success information. Robot activity expe-

riences are relevant for conceptualizing a given category of robot activities.

4.2.2 Human-Robot Interaction Ontology

A Human-Robot Interaction (HRI) ontology was developed for supervised expe-

rience gathering. HRI is used in situations where the robot fails to autonomously

deal with exceptional situations as well as for teaching knowledge relevant for new

tasks. Figure 4.3 shows the taxonomical composition of the instructor concept in

the RACE domain.

The human-robot interaction ontology is centered on the instructor activities.

Listing 4.2 shows part of the InstructorActivity ontology considering the scope

of this thesis. The concept InstructorAchieve is a dialog move of imperative na-

ture. It is used to request the robot to achieve some goal or to perform some ac-

tivity. InstructorTell is a dialog move of general-purpose declarative nature. In-

structorTeach is used for providing information in terms of assertions about the

scene. A special case is TeachActivityCategory which is useful for teaching a new

task.

61

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Figu
re

4.3:R
ep

resentation
of

the
instru

ctor
ontology

of
the

R
A

C
E

d
om

ain.

62

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Class: ElementaryInstructorActivity
SubClassOf: InstructorActivity

Class: InstructorDialogMove
SubClassOf: ElementaryInstructorActivity

that hasSentence some string

Class: InstructorAchieve
SubClassOf: InstructorDialogMove

that hasTask exactly 1 Task
and hasPlanConstraint MIN 0 PlanConstraint

Class: InstructorTell
SubClassOf: InstructorDialogMove

that hasConstrainedState exactly 1 ConstrainedState
and hasRelationSubject max 1 (SceneObject or PlanObject)
and hasRelationObject max 1 SceneObject

Class: InstructorTeach
SubClassOf: InstructorTell

that hasRelationObjectName some string

Class: TeachActivityCategory
SubClassOf: InstructorTeach

Listing 4.2: Ontology for instructions related to robot activities in OWL2 Manchester Syntax.

4.3 Interactive Teaching

During the robot’s performance in an environment, different data are added and

recorded into the robot’s memory to represent the evolution of the robot’s percep-

tion of the environment. Robot activity experiences are subsets of this information

in the robot’s memory that are extracted based on cues from the human user. In

RACE, a command line interface was developed and used to support the com-

munication between the robot and the human user (Chauhan et al., 2013). The

interface allows the user to provide instructions for the successive steps in a task,

such as driving to locations and picking or placing objects. The user can also teach

a set of performed activities with a given name. The following types of instruc-

tions are mainly used for teaching a robot a new task and gathering plan-based

robot activity experiences:

• achieve: this instruction corresponds to the InstructorAchieve concept and

takes as input a task to be performed with respective arguments:

Format: achieve <task name> <task arguments>

• teach_task: this instruction corresponds to the TeachActivityCategory con-

cept and takes as input the name of the task that user wishes to teach and the

respective arguments:

Format: teach_task <task name> <task arguments>

63

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

achieve drive_robot_Task preManipulationAreaEastCounter1
achieve grasp_object_w_arm_Task mug1 rightArm1
achieve drive_robot_Task preManipulationAreaSouthTable1
achieve put_object_Task mug1 placingAreaWestRightTable1
teach_task ServeACoffee mug1 guest1 table1 counter1

Listing 4.3: A sequence of textual instructions to teach a robot how to serve a coffee to a guest.

This interface is tightly integrated with the robot’s memory. When the robot

carries out a task or achieves a goal, a teach_task instruction triggers the expe-

rience extraction. We consider temporal segmentation heuristics, i.e., the start time

of the first achieve instruction and the end time of the teach_task instruction, to

extract a subset of data related to the given task. All data active (started and/or

ended) within this interval become part of the experience pertaining to the new

activity taught by an instructor. Listing 4.3 shows an example of a sequence of

instructions for teaching a robot the standard method of serving a coffee to a guest.

In this example, achieve instructions specify instances of the Task concept to be

achieved. The user interface creates a fluent for every achieve instruction which is

dispatched for execution. Note that in the RACE project, the achieve instructions

included compound HTN tasks for which an HTN planner was employed to gen-

erate the respective plans (Stock et al., 2014; S̆. Konec̆ný et al., 2014). Experience

gathering is immediately carried out after teach_task instruction.

Providing a robot with instructions and plan solutions through human-robot

interaction has some advantages over using a standard planner. For instance, when

there are different alternatives to achieve a goal, some alternatives may be prefer-

able to correctly achieve the goal based on different factors that have not been

encoded in the domain specification, such as social norms, physical constraints,

etc. Nevertheless, a standard planner can be alternatively integrated in the robot

system to generate a plan solution for a given task demonstration, when a human

user is not present or providing a suitable sequence of actions to achieve the task

is too complex for the human user.

4.4 Robot Activity Experience Extraction

The robot’s memory contains fluents deriving from perception and proprioception.

It also contains the executed actions, the fluents representing instructions posted

by users through the user interface, and the results of reasoning performed by the

various reasoning services, e.g., plans to achieve the posted instructions. Each flu-

ent is an instance of a concept in the OWL ontology. Fluents can describe different

64

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

!Fluent
Class_Instance: [On, on4]
StartTime: [0, 0]
FinishTime: [17.513 , 17.513]
Properties:

- [hasArea , Area , placingAreaEastRightCounter1]
- [hasPhysicalEntity , PhysicalEntity , mug1]

Listing 4.4: An example of a fluent in the RACE robot’s memory represented in YAML syntax.

kinds of information as part of an experience. Listing 4.4 shows an example of

a fluent in the RACE robot’s memory represented in the YAML syntax (Ben-Kiki

et al., 2005). In this fluent, the field Class_Instance contains the concept in the

ontology and the name of the instance. It is followed by two intervals, indicating

the start and finish times, and a number of properties of the Fluent. Time points

are specified as uncertainty ranges with a minimum and maximum, which may be

empty if unknown. Each property takes one line, starting with a dash and consist-

ing of the triple [<property name>, <filler class>, <filler name>]. Fillers may

introduce new fluents with new names which can be used in other fluents.

An experience is an episodic description of the execution of a plan-based robot

activity including environment perception, sequence of executed actions and ach-

ieved task. The robot’s memory is a semantic network, i.e., a graph where nodes

represent objects or entities and edges represent relations. Hence, experience ex-

traction is the problem of finding a sub-graph in the robot’s memory pertaining

to the achieved task. Relations (i.e., predicates) are defined over the fluents, for

instance in Listing 4.4, one relation is defined as (On mug1 placingAreaEastRight-

Counter1). Since the robot’s memory may contain insignificant and irrelevant data

for task learning, we employ a graph simplification approach based on ego net-
works (Newman, 2003) to determine which piece of information are relevant and

to extract a sub-graph of the robot’s memory for representing the experience. An

ego network is a network centered on a specific focal node which is called ego.

To construct an ego network, the neighbor nodes of the ego are decided based on

the length of the paths to the ego. The result is a sub-graph describing the neigh-

borhoods surrounding the egos, which may reveal something important from the

egos’ perspective.

We present our approach for extracting and representing an experience in the

robot’s memory in Algorithm 1. First, all relations pertaining to the static world

information, initial state and final state are extracted and wrapped with the ap-

propriate temporal symbols during, init and end (lines 4-11). Since experience

65

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Algorithm 1 Experience Extraction

input:
– t . the task achieved in an experience (taught by a user)

– π . sequence of actions to achieve the task t

– F . set of fluents representing the world during an experience

output:
– e= (t,K,π) . a robot activity experience (Def. 3.13)

1 t1← start time of the first action in π
2 t2← finish time of the last action in π
3 R←∅
4 for each fluent f in F do
5 p← Predicate(f) . make a predicate for f

6 if (f.StartTime < t1 ∧ f.FinishTime > t1 ∧ f.FinishTime < t2) then
7 R← R ∪ {init(p)} . fluents pertaining to the initial state

8 else if (f.FinishTime > t2 ∧ f.StartTime < t2 ∧ f.StartTime > t1) then
9 R← R ∪ {end(p)} . fluents pertaining to the final state

10 else if (f.StartTime6 t1 ∧ f.FinishTime> t2) then
11 R← R ∪ {during(p)} . fluents pertaining to the static world

12 E ← args(t) ∪ {x | x ∈ args(a),∀a ∈ π} . set of egos

13 O← {objects involved in R}
14 N← {w ∈O | ∃u,v ∈E ,∃r,s ∈ R, {u,w}⊆ args(r), {w,v}⊆ args(s)}

. set of neighbors of at least two egos

15 K← {r ∈ R | args(r)⊆ (E ∪N)}
16 return (t,K,π)

extraction is based on plan-based robot activities, the arguments of the taught task

(i.e., experience parameters) and the arguments of the plans’ operators constitute

the ego nodes (line 12). Then, we compute the one-step and two-step neighbors of

the ego nodes (line 14). Finally, all relations over these nodes are decided as the set

of key-properties (line 15) and recorded with the taught task name and provided

task’s arguments, by the human user, as well as the plan solution as an experience

(line 16).

Table 4.1 presents a summary of the concepts and instances that can be found

in the robot’s memory at the end of the ‘ServeACoffee’ task. A total of 710 concept

instances were found, the most common ones are poses, bounding boxes, arm pos-

tures and torso postures. Table 4.2 presents all relations (2281 in total) between

instances in the robot’s memory at the end of the mentioned task, along with the

frequency of use of each relation.

In Figures 4.4 and 4.5, we use graph visualization to help the readers compre-

66

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

hend the significance of the proposed experience extraction approach based on ego

networks. Figure 4.4 shows the robot’s memory content for the ‘ServeACoffee’ task

and Figure 4.5 shows the extracted experience content for the same task.

Listing 4.5 shows the EBPD representation (Definition 3.13) of the extracted

experience for the ‘ServeACoffee’ task in Scenario A.

4.5 Summary

In this chapter, we presented the first steps in the direction of building cognitive

functionalities required for teaching robots to perform complex tasks and acquir-

ing experiences. We proposed ontological concepts for internally representing ex-

periences. We used a simple instruction-based interface to support human-robot

interaction and experience gathering. The interface allows the human user to com-

mand the robot to perform primitive behaviors, as well as to teach a compound

task consisting of a sequence of actions taken by the robot. A graph simplification

approach, based on ego networks, was developed to filter out irrelevant informa-

tion in the robot memory and to extract important information relevant for con-

ceptualizing the experience. In this approach, some objects in an experience are

selected as egos, and their neighbors are computed based on length of the path to

the egos. The resulting sub-graph describes the neighborhoods surrounding the

egos, which contain important information from the egos’ perspective.

Recorded experiences are the source of information used for learning. The next

step is to generate useful high-level planning knowledge from the acquired experi-

ences. The following chapter will present a conceptualization approach consisting

of several techniques to construct robot activity schemata from experiences.

67

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Table 4.1: Concepts and respective number of instances in the robot’s memory for a ‘ServeACoffee’
task.

Concept Count Concept Count
Pose 266 ManipulationAreaWest 1
BoundingBox 133 ManipulationConstraintEastCounter 1
ArmMovingPosture 38 ManipulationConstraintEastVerticalTable 1
RobotAt 22 ManipulationConstraintNorthHorizontalTable 1
PrimitiveTask 16 ManipulationConstraintSouthHorizontalTable 1
ArmUnnamedPosture 14 ManipulationConstraintWestVerticalTable 1
ArmToSidePosture 13 NearAreaCounter 1
ArmCarryPosture 10 NearAreaDoor 1
GripperOpenedPosture 8 NearConstraint 1
ArmUntuckedPosture 5 NearConstraintCounter 1
InstructorAchieve 4 PickUpObject 1
On 4 PlaceObject 1
TorsoMiddlePosture 4 PlacingAreaEastLeft 1
ArmTuckedPosture 3 PlacingAreaNorthLeft 1
GripperClosedPosture 3 PlacingAreaNorthRight 1
GripperHoldingPosture 3 PlacingAreaWestLeft 1
MoveArmToSide 3 PlacingAreaWestRight 1
MoveBaseBlind 3 PlacingConstraintEastLeftHorizontalTable 1
TopArea 3 PlacingConstraintEastRightCounter 1
Arm 2 PlacingConstraintEastRightHorizontalTable 1
Gripper 2 PlacingConstraintNorthLeftVerticalTable 1
ManipulationAreaEast 2 PlacingConstraintNorthRightVerticalTable 1
MoveBase 2 PlacingConstraintSouthLeftVerticalTable 1
MoveTorso 2 PlacingConstraintSouthRightVerticalTable 1
NearAreaTable 2 PlacingConstraintWestLeftHorizontalTable 1
NearConstraintTable 2 PlacingConstraintWestRightHorizontalTable 1
PlacingAreaEastRight 2 PlacingAreaSouthLeft 1
PreManipulationAreaEast 2 PlacingAreaSouthRight 1
PreManipulationAreaNorth 2 PR2 1
PreManipulationConstraintEast 2 PreManipulationAreaWest 1
TorsoMovingPosture 2 PreManipulationConstraintNorth 1
TorsoUpPosture 2 PreManipulationConstraintSouth 1
TuckArms 2 PreManipulationConstraintWest 1
At 1 Restaurant 1
Counter 1 SittingAreaEast 1
Door 1 SittingAreaNorth 1
FloorArea 1 SittingAreaSouth 1
Guest 1 SittingAreaWest 1
HorizontalTable 1 SittingConstraintEastHorizontalTable 1
InstructorTeach 1 SittingConstraintNorthVerticalTable 1
Mug 1 SittingConstraintSouthVerticalTable 1
TorsoDownPosture 1 SittingConstraintWestHorizontalTable 1
ManipulationAreaNorth 1 Torso 1
ManipulationAreaSouth 1 VerticalTable 1

68

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

Table 4.2: Relations and respective frequency of use in the robot’s memory for a ‘ServeACoffee’
task.

Relation Count Relation Count
hasPose 266 hasPlacingAreaWestRight 2
hasX 269 hasPlacingConstraintEastLeft 2
hasY 269 hasPlacingConstraintEastRight 2
hasZ 269 hasPreManipulationConstraintEast 2
hasYaw 253 hasFloorArea 1
hasBoundingBox 133 hasManipulationAreaEast 1
hasXSize 134 hasManipulationAreaNorth 1
hasYSize 134 hasManipulationAreaSouth 1
hasZSize 132 hasManipulationAreaWest 1
hasArmPosture 79 hasManipulationConstraintNorth 1
hasTask 42 hasManipulationConstraintSouth 1
hasArea 28 hasManipulationConstraintWest 1
hasRobot 18 hasNearAreaCounter 1
hasResult 16 hasNearConstraintCounter 1
hasManipulationArea 15 hasPlacingConstraintNorthLeft 1
hasPhysicalEntity 14 hasPlacingConstraintNorthRight 1
hasGripperPosture 12 hasPlacingConstraintSouthLeft 1
hasPlacingArea 12 hasPlacingConstraintSouthRight 1
hasPreManipulationArea 11 hasPlacingConstraintWestLeft 1
hasTorsoPosture 7 hasPlacingConstraintWestRight 1
hasNearArea 5 hasPreManipulationAreaEast 1
hasIntent 4 hasPreManipulationAreaNorth 1
hasOn 4 hasPreManipulationAreaSouth 1
hasSittingArea 4 hasPreManipulationAreaWest 1
hasPlacingAreaEastRight 3 hasPreManipulationConstraintNorth 1
hasTopArea 3 hasPreManipulationConstraintSouth 1
hasArm 2 hasPreManipulationConstraintWest 1
hasManipulationConstraintEast 2 hasSittingAreaEast 1
hasNearAreaTable 2 hasSittingAreaNorth 1
hasNearConstraintTable 2 hasSittingAreaSouth 1
hasPlacingAreaEastLeft 2 hasSittingAreaWest 1
hasPlacingAreaNorthLeft 2 hasSittingConstraintEast 1
hasPlacingAreaNorthRight 2 hasSittingConstraintNorth 1
hasPlacingAreaSouthLeft 2 hasSittingConstraintSouth 1
hasPlacingAreaSouthRight 2 hasSittingConstraintWest 1
hasPlacingAreaWestLeft 2

69

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

trixi1

posetrixi173

posetrixi110

boundingboxtrixi168

boundingboxtrixi155

boundingboxtrixi153

boundingboxtrixi163

posetrixi131

boundingboxtrixi160

boundingboxtrixi130

boundingboxtrixi119

adapt_arms_task_0x2

adaptarmsactivity_0x2

boundingboxtrixi112

boundingboxtrixi110

posetrixi176

posetrixi118

boundingboxtrixi117

leftarm1

armcarryposture43

boundingboxtrixi115

move_arm_to_side_task_2x1

movearmtosideactivity_0x1

posetrixi175

rightgripper1

gripperopeningposture2

boundingboxtrixi133

boundingboxtrixi145

move_base_blind_task_0x2

movebaseblindactivity_0x2

rightarm1

armcarryposture53

armtosideposture23

boundingboxtrixi146

armtosideposture63

posetrixi124

placeobjectactivity_0x3

place_object_task_2x3

armunnamedposture29

armmovingposture4

torso1

torsomovingposture3

armmovingposture52

move_arms_to_carryposture_task_1x2

movearmstocarrypostureactivity_0x2
posetrixi172

boundingboxtrixi169

armmovingposture38

premanipulationareaeastcounter1

boundingboxtrixi154

armcarryposture55

posetrixi122

armmovingposture30
armmovingposture58

posetrixi137

placingareawestrighttable1

boundingboxtrixi118

armunnamedposture27

boundingboxtrixi166
armmovingposture50

armmovingposture6

armtosideposture61

gripperopenedposture3

posetrixi174

move_base_blind_task_4x1

movebaseblindactivity_0x1

boundingboxtrixi132

robotat17

posetrixi177

boundingboxtrixi147

posetrixi125

armmovingposture8

boundingboxtrixi16

move_arm_to_side_task_0x3

movearmtosideactivity_0x3

torsomiddleposture4

observe_objects_on_area_task_5x1

observeobjectsonareaactivity_0x1

boundingboxtrixi15

gripperopenedposture5

boundingboxtrixi140

assume_manipulation_pose_task_0x3

armcarryposture57

boundingboxtrixi125

gripperholdingposture6

boundingboxtrixi127

arm_assume_manipulation_pose_task_0x3

boundingboxtrixi164

posetrixi123

tuck_arms_task_1x1

dummyarmuntuckedposture

posetrixi128

boundingboxtrixi120

armmovingposture12

boundingboxtrixi18

boundingboxtrixi122

posetrixi144

move_base_task_3x2

premanipulationareasouthtable1

posetrixi120

boundingboxtrixi148
assume_botharms_manipulation_pose_task_0x1

manipulationareaeastcounter1

boundingboxtrixi142

armunnamedposture25

botharms_assume_manipulation_pose_task_0x1

botharmsassumemanipulationposeactivity_0x1

pick_up_object_task_6x1

mug1

boundingboxtrixi17

armtosideposture37

armmovingposture34

armtosideposture35

boundingboxtrixi150

boundingboxtrixi135

armuntuckedposture5

armmovingposture56

boundingboxtrixi141

boundingboxtrixi181

putobjectactivity_0x3

assumemanipulationposeactivity_0x3boundingboxtrixi162

posetrixi127

posetrixi18

boundingboxtrixi128

posetrixi182

posetrixi171

intent3

toplan3

boundingboxtrixi165

boundingboxtrixi167

move_arm_to_side_method_task_0x3

movearmtosidecompoundactivity_0x3

armmovingposture22

posetrixi163

posetrixi129

move_base_blind_task_1x3

manipulationareasouthtable1

armassumemanipulationposeactivity_0x3

boundingboxtrixi19

posetrixi16

boundingboxtrixi182

armunnamedposture41

armcarryposture51

boundingboxtrixi149

boundingboxtrixi144

arms_assume_driving_pose_task_0x2

armsassumedrivingposeactivity_0x2

posetrixi126

armcarryposture59

posetrixi168

posetrixi121

torso_assume_driving_pose_task_0x2

torsoassumedrivingposeactivity_0x2

posetrixi119

posetrixi160

posetrixi145

move_torso_task_2x2

dummytorsomiddleposture

posetrixi159

intent1

toplan1

movebaseactivity_0x2

adapt_torso_task_0x2

adapttorsoactivity_0x2

boundingboxtrixi184

boundingboxtrixi12

boundingboxtrixi123
grasp_object_w_arm_task_ui20

armmovingposture28

posetrixi183

armmovingposture14

armtosideposture39

boundingboxtrixi129

move_torso_task_0x1

movetorsoactivity_0x1

posetrixi152

posetrixi146

posetrixi179

armuntuckedposture9

posetrixi166

posetrixi17

boundingboxtrixi126

posetrixi184

boundingboxtrixi170

dummytorsoupposture

posetrixi15

boundingboxtrixi183

armmovingposture40

boundingboxtrixi173

posetrixi151

move_arm_to_side_method_task_0x1

armmovingposture32

posetrixi169

tuckarmsactivity_0x1

gripperclosingposture4

torsomovingposture1

boundingboxtrixi186

posetrixi161

boundingboxtrixi13

posetrixi134

posetrixi158

posetrixi115

armmovingposture46

boundingboxtrixi14

posetrixi140

boundingboxtrixi185

placingareaeastrightcounter1

posetrixi157

put_object_task_ui40

boundingboxtrixi159

boundingboxtrixi151

movebaseblindactivity_0x3

adapt_torso_task_0x1

adapttorsoactivity_0x1

armunnamedposture11

movetorsoactivity_0x2

boundingboxtrixi116

armcarryposture49

posetrixi116

armuntuckedposture17

posetrixi186

posetrixi147

boundingboxtrixi137

posetrixi167

boundingboxtrixi178

posetrixi185

posetrixi148

boundingboxtrixi121

posetrixi139

posetrixi164

armtuckedposture13

boundingboxtrixi172

posetrixi150

dummyarmcarryposture

posetrixi19

armmovingposture26

armmovingposture16

armmovingposture48

move_arm_to_side_method_task_1x1

movearmtosidecompoundactivity_1x1

posetrixi13

boundingboxtrixi175

posetrixi114

posetrixi141

boundingboxtrixi152

posebbtrixi186

armcarryposture47

posetrixi113

posetrixi156

posetrixi142

boundingboxtrixi158

posetrixi136

armunnamedposture31

armtosideposture21

posetrixi180

armmovingposture62

armtosideposture33

posetrixi181

boundingboxtrixi143

assumebotharmsmanipulationposeactivity_0x1

pickupobjectactivity_0x1

boundingboxtrixi180

torsoupposture2

boundingboxtrixi136

armtuckedposture7

armmovingposture24

boundingboxtrixi134

posetrixi149

boundingboxtrixi114

boundingboxtrixi177

posetrixi130

posetrixi138

movearmtosidecompoundactivity_0x1

posetrixi165

boundingboxtrixi124

posetrixi12

posetrixi14

armuntuckedposture19

move_base_task_1x0

movebaseactivity_0x0

armmovingposture44

armmovingposture18

boundingboxtrixi174

boundingboxtrixi139

posetrixi133

armcarryposture45

boundingboxtrixi157

posetrixi112

posetrixi162

posetrixi143

posetrixi111

armunnamedposture15

armmovingposture60

boundingboxtrixi111

armunnamedposture3

gripperholdingposture8

armmovingposture10

move_arm_to_side_task_3x1

movearmtosideactivity_1x1

boundingboxtrixi171

armmovingposture20

boundingboxtrixi131

boundingboxtrixi161

intent2

drive_robot_task_ui30

boundingboxtrixi113

posetrixi153

boundingboxtrixi176

posetrixi154

posetrixi155

posetrixi170

armmovingposture54

boundingboxtrixi179

toplan2

boundingboxtrixi138

armmovingposture42

holding_0x1

posetrixi117

armmovingposture36

boundingboxtrixi156

gripperopeningposture7

posetrixi135

posetrixi178

posetrixi132

armsassumedrivingposeactivity_0x0arms_assume_driving_pose_task_0x0
tuckarmsactivity_0x0

armunnamedposture1

driverobotactivity_0x0

robotat0
adaptarmsactivity_0x0

adapt_arms_task_0x0

boundingboxtrixi11

posebbtrixi11

floorareatamsrestaurant1armunnamedposture0

on4

intent0

drive_robot_task_ui10

toplan0

dummyarmtuckedposture
tuck_arms_task_0x0

door1
boundingboxdoor1posedoor1

nearareadoor1
counter1posecounter1

boundingboxcounter1
topareacounter1on1

manipulationconstrainteastcounter1
premanipulationconstrainteastcounter1placingconstrainteastrightcounter1

nearareacounter1

nearconstraintcounter1

table1

posetable1

boundingboxtable1

topareatable1on2

manipulationareanorthtable1

manipulationconstraintnorthtable1
manipulationconstraintsouthtable1

premanipulationareanorthtable1

premanipulationconstraintsouthtable1

premanipulationconstraintnorthtable1
sittingareawesttable1

sittingareaeasttable1

sittingconstraintwesttable1
sittingconstrainteasttable1placingareawestlefttable1

placingareaeastlefttable1
placingareaeastrighttable1placingconstrainteastlefttable1

placingconstraintwestlefttable1
placingconstrainteastrighttable1

placingconstraintwestrighttable1
nearareatable1

nearconstrainttable1
eatingareaeasttable1eatingareawesttable1

eatingconstrainteasttable1
eatingconstraintwesttable1

observationareaeasttable1

observationareawesttable1
observationconstrainteasttable1

observationconstraintwesttable1

table2 posetable2boundingboxtable2
topareatable2

on3

manipulationareawesttable2 manipulationareaeasttable2

manipulationconstraintwesttable2
manipulationconstrainteasttable2premanipulationareawesttable2

premanipulationareaeasttable2
premanipulationconstraintwesttable2

premanipulationconstrainteasttable2
sittingareanorthtable2

sittingareasouthtable2
sittingconstraintnorthtable2

sittingconstraintsouthtable2

placingareanorthlefttable2 placingareanorthrighttable2
placingareasouthlefttable2

placingareasouthrighttable2

placingconstraintnorthlefttable2
placingconstraintsouthlefttable2

placingconstraintnorthrighttable2

placingconstraintsouthrighttable2
nearareatable2nearconstrainttable2 eatingareanorthtable2

eatingareasouthtable2
eatingconstraintnorthtable2

eatingconstraintsouthtable2observationareanorthtable2
observationareasouthtable2

observationconstraintnorthtable2
observationconstraintsouthtable2guest1

boundingboxguest1

poseguest1boundingboxmug1
posemug1

posetrixi11boundingboxtamsrestaurant1
posebbrestaurant1

boundingboxfloor1
posebbfloor1

posebbdoor1
boundingboxneardoor1

posebbneardoor1
posebbcounter1

boundingboxtacounter1
posebbtacounter1

posebbtable1
boundingboxtatable1

posebbtatable1
posebbtable2

boundingboxtatable2
posebbtatable2 boundingboxnearstart1

posebbnearstart1 boundingboxsittingareanorthtable2posebbsittingareanorthtable2
boundingboxobservationareaeasttable1

posebbobservationareaeasttable1
boundingboxnearareacounter1
posebbnearareacounter1

boundingboxpremanipulationareanorthtable1
posebbpremanipulationareanorthtable1

boundingboxpremanipulationareasouthtable1
posebbpremanipulationareasouthtable1

boundingboxmanipulationareaeasttable2
posebbmanipulationareaeasttable2

boundingboxmanipulationareanorthtable1
posebbmanipulationareanorthtable1

boundingboxeatingareanorthtable2
posebbeatingareanorthtable2

boundingboxobservationareanorthtable2
posebbobservationareanorthtable2

boundingboxobservationareawesttable1
posebbobservationareawesttable1boundingboxmanipulationareasouthtable1 posebbmanipulationareasouthtable1

boundingboxplacingareanorthlefttable2 posebbplacingareanorthlefttable2
boundingboxobservationareasouthtable2

posebbobservationareasouthtable2 boundingboxeatingareaeasttable1
posebbeatingareaeasttable1

boundingboxplacingareaeastlefttable1
posebbplacingareaeastlefttable1

boundingboxmanipulationareawesttable2 posebbmanipulationareawesttable2
boundingboxpremanipulationareawesttable2

posebbpremanipulationareawesttable2 boundingboxplacingareaeastrightcounter1
posebbplacingareaeastrightcounter1

boundingboxplacingareaeastrighttable1
posebbplacingareaeastrighttable1

boundingboxsittingareasouthtable2posebbsittingareasouthtable2
boundingboxpremanipulationareaeasttable2 posebbpremanipulationareaeasttable2

boundingboxplacingareanorthrighttable2posebbplacingareanorthrighttable2
boundingboxplacingareawestlefttable1

posebbplacingareawestlefttable1
boundingboxmanipulationareaeastcounter1posebbmanipulationareaeastcounter1

boundingboxsittingareawesttable1posebbsittingareawesttable1
boundingboxnearareatable1posebbnearareatable1

boundingboxnearareatable2posebbnearareatable2boundingboxplacingareawestrighttable1posebbplacingareawestrighttable1

boundingboxeatingareawesttable1posebbeatingareawesttable1
boundingboxplacingareasouthrighttable2

posebbplacingareasouthrighttable2boundingboxeatingareasouthtable2
posebbeatingareasouthtable2

boundingboxpremanipulationareaeastcounter1
posebbpremanipulationareaeastcounter1

boundingboxsittingareaeasttable1
posebbsittingareaeasttable1

boundingboxplacingareasouthlefttable2
posebbplacingareasouthlefttable2

posebbguest1
posebbmug1
posebbtrixi136

posenearareacounter1

posenearareatable1

posenearareatable2

posefloor1

posesittingareawesttable1

poseplacingareaeastrightcounter1

posepremanipulationareaeastcounter1

poseneardoor1

posepremanipulationareasouthtable1

posemanipulationareaeastcounter1

posemanipulationareanorthtable1

posemanipulationareasouthtable1

posemanipulationareaeasttable2

posemanipulationareawesttable2

poseobservationareawesttable1

poseobservationareaeasttable1

poseobservationareasouthtable2

poseobservationareanorthtable2

posetacounter1posetatable1
posetatable2

poseeatingareawesttable1

poseeatingareaeasttable1

poseeatingareasouthtable2

poseeatingareanorthtable2

tamsrestaurant1

posetamsrestaurant1

torsodownposture0armmovingposture2
leftgripper1 gripperclosedposture0

gripperclosedposture1at1
driverobotactivity_0x2

posesittingareaeasttable1

posesittingareanorthtable2

posesittingareasouthtable2

posepremanipulationareanorthtable1

posepremanipulationareaeasttable2

posepremanipulationareawesttable2

nearareastart1

posenearstart1

poseplacingareaeastrighttable1

poseplacingareasouthrighttable2

poseplacingareawestlefttable1

poseplacingareasouthlefttable2

poseplacingareanorthrighttable2

poseplacingareawestrighttable1

poseplacingareanorthlefttable2

poseplacingareaeastlefttable1

robotat11
nearconstraintdoor1

posebbtrixi121 graspobjectwarmactivity_0x1
robotat7

posebbtrixi178robotat14
posebbtrixi176

posebbtrixi134
posebbtrixi179robotat15 posebbtrixi129

robotat9

posebbtrixi135
posebbtrixi180

headobservationpointtable2

headobservationpointtable1headobservationpointcounter1

haspose

haspose

hasboundingbox

hasboundingbox

hasboundingbox

hasboundingbox

haspose

hasboundingbox

hasboundingbox
hasboundingbox

istaskof

hasboundingbox

hasboundingbox

haspose

haspose

hasboundingbox

hasarmposture

hasboundingbox

istaskof

haspose

hasgripperposture

hasboundingbox

hasboundingbox

istaskof

hasarmposture

hasarmposture

hasboundingbox

hasarmposture

haspose

hastask

hasarmposture

hasarmposture

hastorsoposture

hasarmposture

istaskof

haspose

hasboundingbox

hasarmposture

hasfirstargument

hasboundingbox

hasarmposture

haspose

hasarmposturehasarmposture

haspose

hasplacingarea

hasboundingbox

hasarmposturehasboundingbox

hasarm

hasarmposture

hasarmposture

hasarmposture

hasgripperposture

haspose

istaskof

hasboundingbox

hasrobot

haspose

hasboundingbox

haspose

hasarmposture

hasboundingbox

istaskof

hastorsoposture

istaskofhasboundingbox

hasgripperposture

hasboundingbox

hassecondargument

hasarmposture

hasboundingbox

hasgripperposture

hasboundingbox

hasfirstargument

hasboundingbox

haspose

hasfirstargument

haspose

hasboundingbox

hasarmposture

hasboundingbox

hasboundingbox

hasfirstargument

istaskof

haspose

hasfirstargument

haspose

hasboundingbox
hasfirstargument

hasfirstargument

hasboundingbox

hasarmposture

istaskof

hasfirstargument

hasboundingbox

hasarmposture

hasarmposture

hasarmposture

hasboundingbox

hasboundingbox

hasarmposture

hasarmposture

hasboundingbox

hasboundingbox
hasassumemanipulationpose

hasplaceobject

hasboundingbox

haspose
haspose

hasboundingbox

haspose

haspose

hasplan

hasboundingbox

hasboundingbox

istaskof

hasarmposture

haspose

haspose

hasfirstargument

istaskof

hasboundingbox
haspose

hasboundingbox

hasarmposture

hasarmposture

hasboundingbox

hasboundingbox

istaskof

haspose

hasarmposture

haspose

haspose

hasfirstargument

istaskof

haspose

haspose

haspose

hasfirstargument

haspose

hasplan

istaskof
istaskof

hasfirstargument

hasboundingbox
hassecondargument

hasboundingbox

hasboundingbox

hastask

hasarmposture

haspose

hasarmposture
hasarmposture

hasboundingbox

istaskof

haspose

haspose

hasfirstargument

haspose

hasarmposture

haspose

haspose

hasboundingbox

haspose

hasboundingbox

hasfirstargument

haspose

hasboundingbox

hasarmposturehasboundingbox

haspose

hasfirstargument

hasarmposture

hasarmtosideposture

haspose

istaskof

hasgripperposture

hastorsoposture

hasboundingbox

haspose

hasboundingbox

haspose

haspose

haspose

hasarmposturehasboundingbox

haspose

hasboundingbox

hasfirstargument

haspose

hastask

hasboundingbox

hasboundingbox

istaskof

istaskof

hasarmposture

hassecondargument

istaskof

hasboundingbox

hasarmposture

haspose

hasarmposture

haspose

haspose

hasboundingbox

haspose

hasboundingbox

haspose

haspose

hasboundingbox

haspose

haspose

hasarmposture
hasboundingbox

haspose

istaskof

hasfirstargument

haspose

hasarmposture

hasthirdargument

hasarmposturehasfirstargument

hasarmposture

istaskof

haspose

hasboundingbox

haspose

haspose

hasboundingbox

haspose

hasarmposture

haspose

haspose

haspose

hasboundingbox

haspose

hasarmposture

hasarmposture

haspose

hasarmposture

hasarmposture

haspose

hasboundingbox

istaskof

istaskof

hasfirstargument

hasboundingbox

hastorsoposture

hasboundingbox

hasarmposture

hasarmposture

hasboundingbox

haspose

hasboundingbox

hasboundingbox

haspose

haspose

istaskof

haspose

hasboundingbox

hasarea

haspose

haspose

hasarmposture

istaskof

hasarmposture

hasarmposture

hasboundingbox

hasboundingbox

hasfirstargument
haspose

hasarmposture

hasboundingbox
haspose

haspose

haspose

haspose

hasarmposture

hasarmposture

hasfirstargument

hasfirstargument

hasboundingbox
hasarmposture

hasgripperposture

hasarmposture

istaskof

hassecondargument

hasboundingbox

hasarmposture

hasboundingbox

hasboundingbox

haspassiveobject

hastask

hasboundingbox

haspose

hasboundingbox

haspose

haspose

haspose

hasarmposture

hasboundingbox

hasplan

hasboundingbox

hasarmposture

haspassiveobject

haspose

hasarmposture

hasboundingbox

hasgripper

hasfirstargument

hasgripperposture

haspose
haspose

haspose

hastask

hasleftarmposture

hasarmsassumedrivingpose

hasrobot

hastask

haspose

hasarea

hastuckarmshasadaptarms

hasrightarmposture

hasrightarmhasleftarm
hasarea

hastask

hasplan

istaskofhasfirstargument

istaskof
istaskofhasfirstargumenthassecondargument

hasboundingboxhaspose
hasneararea

haspose
hasboundingboxhastopareahason

hasmanipulationareahaspremanipulationarea

hasmanipulationconstrainteasthaspremanipulationconstrainteast

hasplacingareaeastright

hasplacingconstrainteastrighthasnearareacounter

hasnearconstraintcounter

haspose
hasboundingbox

hastopareahason

hasmanipulationareanorth
hasmanipulationareasouthhasmanipulationconstraintnorthhasmanipulationconstraintsouth

haspremanipulationareanorth

haspremanipulationareasouth

haspremanipulationconstraintsouth
haspremanipulationconstraintnorthhassittingareawesthassittingareaeast

hassittingconstraintwesthassittingconstrainteasthasplacingareawestleft
hasplacingareawestrighthasplacingareaeastlefthasplacingareaeastrighthasplacingconstrainteastleft

hasplacingconstraintwestlefthasplacingconstrainteastright

hasplacingconstraintwestrighthasnearareatable
hasnearconstrainttable

haseatingareaeasthaseatingareawesthaseatingconstrainteasthaseatingconstraintwesthasobservationareaeast
hasobservationareawesthasobservationconstrainteast

hasobservationconstraintwest

hasposehasboundingbox
hastopareahason

hasmanipulationareawesthasmanipulationareaeast
hasmanipulationconstraintwesthasmanipulationconstrainteasthaspremanipulationareawesthaspremanipulationareaeasthaspremanipulationconstraintwesthaspremanipulationconstrainteasthassittingareanorthhassittingareasouthhassittingconstraintnorthhassittingconstraintsouth

hasplacingareanorthleft hasplacingareanorthrighthasplacingareasouthleft
hasplacingareasouthright

hasplacingconstraintnorthlefthasplacingconstraintsouthlefthasplacingconstraintnorthright

hasplacingconstraintsouthrighthasnearareatablehasnearconstrainttablehaseatingareanorthhaseatingareasouthhaseatingconstraintnorthhaseatingconstraintsouthhasobservationareanorthhasobservationareasouth

hasobservationconstraintnorthhasobservationconstraintsouth

hasboundingbox
haspose

hasboundingboxhaspose

hasboundingboxhaspose
haspose

haspose

haspose

haspose

haspose

haspose

haspose

haspose

haspose

haspose
haspose haspose
haspose

haspose

haspose
haspose

haspose
haspose

haspose

haspose

hasposehaspose
haspose

haspose
haspose

haspose
haspose

haspose
haspose

haspose
haspose
haspose
haspose

haspose

haspose
haspose
haspose

haspose
haspose

haspose
haspose

haspose

hasposehaspose

haspose

haspose

haspose

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

haspose

hasboundingbox

hasplacingarearight
hasplacingarealeft

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

haspremanipulationarea

hasboundingbox

haspose

haspremanipulationarea

hasboundingbox

haspose

haspremanipulationarea

hasboundingbox

haspose

haspremanipulationarea

hasboundingbox

haspose

haspremanipulationarea

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasfloorarea

hasboundingbox

haspose

hastorsoposture

hasgripper
hasarmposturehasarmposture

hasgripperhasarmposture

hasgripperposture
hasgripperposture

hasarea

hasphysicalentity

hasarea

hasphysicalentity

hasarea
hasphysicalentity

hasarea

hasphysicalentity

hastask

hasmovetorso

hastask

hasadapttorso

hastask

hasadaptarms

hastask

hasmovearmstocarryposture

hasmovebaseblind

hasarmsassumedrivingpose

hastorsoassumedrivingpose

hasmovebase

hasplacingarearighthasplacingarealeft

hasboundingbox

haspose

hasplacingarearighthasplacingarealeft

hasboundingbox

haspose

hasplacingarearight
hasplacingarealeft

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasmanipulationarea

hasboundingbox

haspose

hasrobot

hasarea
hasphysicalentity

hasneararea

hasrightarmcarryposture

hastask

hasleftarmhasrightarm

hastask

hasrobotat

hasarea

hastask

hastorso

hasobservationarea
hasobservationarea

hasobservationarea
hasobservationarea

haseatingarea

haseatingarea
haseatingarea

haseatingarea hasneararea

hasphysicalentity

hasneararea
hasphysicalentity

hasneararea

hasphysicalentity

haspremanipulationarea

haspremanipulationarea

haspremanipulationarea

haspremanipulationarea
haspremanipulationarea

hassittingarea

hassittingarea

hassittingarea

hassittingarea

hasmanipulationarea

hasphysicalentity

hasmanipulationarea

hasphysicalentity

hasmanipulationarea
hasphysicalentity hasmanipulationareahasphysicalentity hasmanipulationarea

hasphysicalentity

hasplacingareahasplacingarea

hasplacingarea

hasplacingarea

hasplacingarea hasplacingarea

hasplacingareahasplacingarea

hasplacingarea

haspose

hasphysicalentity

hastask

hasadapttorso

hasbotharmsassumemanipulationpose

hasmovebaseblind

hastask

hasmovearmtosidecompound

hasmovearmtosidecompound

hasassumebotharmsmanipulationpose

hasobserveobjectsonarea

haspickupobject

hastask

hasmovearmtoside

hasrobot

hasarea

hastask

hason

hasplacingarea

hastorsoupposture

hasarm

haspassiveobject

hastask

hasrobotat

hasarea
hastask

hasrightarm

hasarmtosideposture

hastask

hasplacingarea

haspose

hastask

hasmovearmtosidecompound

hastask

hasmovearmtoside

hastask

hasarmassumemanipulationpose

hasmovebaseblind

hasrobot

hasarea

hastask

hasarea

hastask

hasrightarm

hasarmtosideposturehastask

hastuckarms

hasmovearmtoside

hastask

hasleftarm

hasarmtosideposture

hasmovebase

hastask

hasrobotat

hasarea

haspose

haspose

hastask

hasarea

haspose

hasrobot

hasarea

hastask

hasleftarmhasrightarm

hasleftarmposture

hasrightarmposture

haspose

hasrobot

hasarea

haspose

haspose

hasmovetorso

hastask

hastorsoposture

hastask

hastorso

hastask

hasplacingconstrainteastright

Figure 4.4: The robot’s memory content during the ‘ServeACoffee’ task (710 instances and 2281
relations).

70

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

counter1

manipulationareaeastcounter1

premanipulationareaeastcounter1
placingareaeastrightcounter1

table1

manipulationareasouthtable1

premanipulationareasouthtable1

placingareawestrighttable1

sittingareawesttable1

placingareaeastlefttable1
manipulationareanorthtable1

premanipulationareanorthtable1

sittingareaeasttable1

placingareawestlefttable1

placingareaeastrighttable1

eatingareaeasttable1

eatingareawesttable1

guest1

at1

leftarm1

leftgripper1

rightarm1

rightgripper1

torso1

torsodownposture0

armunnamedposture1

armunnamedposture0

robotat0

trixi1

floorareatamsrestaurant1

on4

mug1 torsoupposture6

armmovingposture62

armtosideposture63

robotat17

on6

armtuckedposture13

armtosideposture21

armtosideposture22

armtosideposture23

robotat14

torsoupposture2

robotat11

armcarryposture57

holding0

armtosideposture61

armtosideposture35
armtosideposture33

armcarryposture43
armcarryposture45

robotat7

robotat9

armtuckedposture7

armuntuckedposture17

torsomiddleposture4

armuntuckedposture19

hasmanipulationarea
haspremanipulationarea

hasplacingareaeastright

hasmanipulationarea
haspremanipulationarea

hasmanipulationareasouth

haspremanipulationareasouth

hasplacingareawestright

hassittingareawesthasplacingarearight

haspremanipulationarea

hasmanipulationarea

hasplacingareaeastleft

hasmanipulationarea

hasmanipulationareanorth

haspremanipulationareanorth
hassittingareaeast

hasplacingareawestleft

hasplacingareaeastright

haseatingareaeast

haseatingareawest

at

hasphysicalentity

hasarea

hasgripper

hasgripper

hastorsoposture

hasarmposture

hasarmposture
hasrobot

hasarea

robotat

hasphysicalentity

hasarea

on

hastorsoposture

hasarmposture

hasarmposture

hasrobot

hasarea

robotat

hasphysicalentity

hasarea

on

Figure 4.5: Content of the extracted ‘ServeACoffee’ experience after the simplification approach
based on the ego networks (56 instances and 54 relations).

71

Chapter 4. Human-Robot Interaction and the Extraction of Experiences

(: experience ServeACoffee
:parameters (mug1 counter1 guest1 table1)
:key -properties
((during(table table1))
(during(counter counter1))
(during(manipulationarea manipulationareasouthtable1))
(during(manipulationarea manipulationareaeastcounter1))
(during(premanipulationarea premanipulationareaeastcounter1))
(during(premanipulationarea premanipulationareasouthtable1))
(during(floorarea floorareatamsrestaurant1))
(during(placingarealeft placingareaeastlefttable1))
(during(placingarearight placingareaeastrightcounter1))
(during(placingarearight placingareawestrighttable1))
(during(leftarm leftarm1))
(during(rightarm rightarm1))
(during(gripper rightgripper1))
(during(gripper leftgripper1))
(during(torso torso1))
(during(mug mug1))
(during(guest guest1))
(during(robot trixi1))
(during(sittingarea sittingareawesttable1))
(during(hasmanipulationarea counter1 manipulationareaeastcounter1))
(during(haspremanipulationarea counter1 premanipulationareaeastcounter1))
(during(hasplacingareaeastright counter1 placingareaeastrightcounter1))
(during(hasmanipulationarea placingareaeastrightcounter1 manipulationareaeastcounter1))
(during(haspremanipulationarea manipulationareaeastcounter1 premanipulationareaeastcounter1))
(during(hasmanipulationareasouth table1 manipulationareasouthtable1))
(during(haspremanipulationareasouth table1 premanipulationareasouthtable1))
(during(hasplacingareawestright table1 placingareawestrighttable1))
(during(hassittingareawest table1 sittingareawesttable1))
(during(hasplacingarearight sittingareawesttable1 placingareawestrighttable1))
(during(haspremanipulationarea manipulationareasouthtable1 premanipulationareasouthtable1))
(during(hasmanipulationarea placingareawestrighttable1 manipulationareasouthtable1))
(during(hasplacingareaeastleft table1 placingareaeastlefttable1))
(during(hasmanipulationarea placingareaeastlefttable1 manipulationareasouthtable1))
(during(at guest1 sittingareawesttable1))
(during(hasphysicalentity at1 guest1))
(during(hasarea at1 sittingareawesttable1))
(during(hasgripper leftarm1 leftgripper1))
(during(hasgripper rightarm1 rightgripper1))
(init(hastorsoposture torso1 torsodownposture0))
(init(hasarmposture leftarm1 armunnamedposture1))
(init(hasarmposture rightarm1 armunnamedposture0))
(init(robotat trixi1 floorareatamsrestaurant1))
(init(on mug1 placingareaeastrightcounter1))
(init(armunnamedposture armunnamedposture0))
(init(armunnamedposture armunnamedposture1))
(init(torsodownposture torsodownposture0))
(end(hastorsoposture torso1 torsoupposture6))
(end(hasarmposture leftarm1 armmovingposture62))
(end(hasarmposture rightarm1 armtosideposture63))
(end(robotat trixi1 manipulationareasouthtable1))
(end(on mug1 placingareawestrighttable1))
(end(armmovingposture armmovingposture62))
(end(armtosideposture armtosideposture63))
(end(torsoupposture torsoupposture6)))

:plan
((tuck_arms leftarm1 rightarm1 armunnamedposture armunnamedposture armunnamedposture1

↪→ armunnamedposture0 armtuckedposture armtuckedposture armtuckedposture7 armtuckedposture13)
(move_base trixi1 floorareatamsrestaurant1 premanipulationareaeastcounter1)
(move_torso torso1 torsodownposture torsodownposture0 torsoupposture torsoupposture2)
(tuck_arms leftarm1 rightarm1 armtuckedposture armtuckedposture armtuckedposture7 armtuckedposture13

↪→ armuntuckedposture armuntuckedposture armuntuckedposture17 armuntuckedposture19)
(move_arm_to_side leftarm1 armuntuckedposture armuntuckedposture17 armtosideposture21)
(move_arm_to_side rightarm1 armuntuckedposture armuntuckedposture19 armtosideposture22)
(move_base_blind trixi1 premanipulationareaeastcounter1 manipulationareaeastcounter1)
(pick_up_object mug1 rightarm1 manipulationareaeastcounter1 placingareaeastrightcounter1

↪→ rightgripper1 torsoupposture2 armtosideposture22 armtosideposture23)
(move_base_blind trixi1 manipulationareaeastcounter1 premanipulationareaeastcounter1)
(move_arms_to_carryposture leftarm1 rightarm1 armtosideposture armtosideposture armtosideposture33

↪→ armtosideposture35 armcarryposture43 armcarryposture45)
(move_torso torso1 torsoupposture torsoupposture2 torsomiddleposture torsomiddleposture4)
(move_base trixi1 premanipulationareaeastcounter1 premanipulationareasouthtable1)
(move_torso torso1 torsomiddleposture torsomiddleposture4 torsoupposture torsoupposture6)
(move_arm_to_side rightarm1 armcarryposture armcarryposture57 armtosideposture61)
(move_base_blind trixi1 premanipulationareasouthtable1 manipulationareasouthtable1)
(place_object mug1 rightarm1 manipulationareasouthtable1 placingareawestrighttable1 rightgripper1

↪→ torsoupposture6 armtosideposture61 armtosideposture63)))

Listing 4.5: An experience for ‘ServeACoffee’ task in Scenario A, in the RACE EBPD.

72

Chapter 5

Learning Planning Knowledge

The goal of learning is to obtain new domain knowledge that can be used in solv-

ing future problems. We propose to use plan-based robot activity experiences,

extracted through human-robot interaction (see Chapter 4), for acquiring task

knowledge in the form of activity schemata. In this chapter, we present a con-
ceptualization methodology for learning activity schemata from experiences. The

proposed conceptualization approach is a combination of different techniques in-

cluding deductive generalization, different forms of abstraction and feature extrac-

tion. Conceptualizing of plan-based experiences involves loop detection, scope in-

ference and goal inference. The overall procedure for learning activity schemata

from experiences in EBPDs is depicted in Figure 5.1. In Section 5.1, we employ a

deductive generalization approach, comparable to Explanation-Based Generaliza-

tion (EBG), to obtain a new concept from an experience which forms the basis of

an activity schema. In Section 5.2, we integrate an abstraction technique to reduce

the level of detail in the concept obtained by generalization. In Section 5.3, a fea-

ture extraction approach is proposed to extract and integrate useful information

into the obtained concept. The features capture essential aspects of an experience

and are used during problem solving to improve the efficiency of search. A loop

detection approach is presented in Section 5.4 to find the possible loops of actions

in an experience and include them in the learned activity schema. The loops are

useful for increasing the flexibility and adaptability of the system, widening the

class of problems that can be solved with varying sets of objects. In Section 5.5,

we present a method, based on canonical abstraction and 3-valued logic, for in-

ferring the scope of applicability of the activity schema, i.e., an abstract structure

used to verify weather an activity schema is applicable to solving a given problem.

Finally in Section 5.6, a method is proposed for inferring and integrating a goal

description into the activity schema.

73

Chapter 5. Learning Planning Knowledge

Experience Memory

Experience Generalization

Experience Abstraction Goal Inference

Scope InferenceFeature Extraction

Loop Detection

Concrete Domain

Abstraction
Hierarchies

Activity Schemata

Experience

Basic activity schema

Activity schema

Generalized experience

Generalized and abstracted experience

Activity schema with detected loops

Scope of
applicability

Goal of
activity schema

Figure 5.1: Flowchart representing the activity schema learning process.

To illustrate how the conceptualization approach generates an activity schema,

we use an experience in a class of task problems, namely ‘Stack_N_Blue’, in the

Stacking-Blocks domain (see Section 3.1.2). The goal of this class of task problems

is to stack a number of blue blocks from a table on a pile. Listing 5.1 shows an ex-

perience for the ‘Stack_N_Blue’ task containing 5 blue blocks. The key-properties

describe the initial, final and static world information of the experience. The plan

solution to this problem contains 20 primitive actions.

5.1 Experience Generalization

The first stage, applied to an experience, in order to extract its basic principles, is

a deductive generalization method comparable to Explanation-Based Generaliza-

tion (EBG) (Mitchell et al., 1986; DeJong and Mooney, 1986) (see Section 2.3.4).

The basic idea of EBG is to simulate the human learning capability. That is, from a

74

Chapter 5. Learning Planning Knowledge

1 (: experience Stack_N_Blue
2 :parameters (table1 pile1)
3 :key -properties ((during(pile pile1))
4 (during(table table1))
5 (during(location location1))
6 (during(hoist hoist1))
7 (during(attached pile1 location1))
8 (during(attached table1 location1))
9 (during(belong hoist1 location1))

10 (during(pallet pallet1))
11 (during(block block1))
12 (during(block block2))
13 (during(block block3))
14 (during(block block4))
15 (during(block block5))
16 (during(blue block1))
17 (during(blue block2))
18 (during(blue block3))
19 (during(blue block4))
20 (during(blue block5))
21 (init(top pallet1 pile1))
22 (init(ontable block1 table1))
23 (init(ontable block2 table1))
24 (init(ontable block3 table1))
25 (init(ontable block4 table1))
26 (init(ontable block5 table1))
27 (init(at hoist1 table1))
28 (init(empty hoist1))
29 (end(on block1 pallet1))
30 (end(on block2 block1))
31 (end(on block3 block2))
32 (end(on block4 block3))
33 (end(on block5 block4))
34 (end(top block5 pile1))
35 (end(at hoist1 pile1))
36 (end(empty hoist1)))
37 :plan ((pickup hoist1 block1 table1 location1)
38 (move hoist1 table1 pile1 location1)
39 (stack hoist1 block1 pallet1 pile1 location1)
40 (move hoist1 pile1 table1 location1)
41 (pickup hoist1 block2 table1 location1)
42 (move hoist1 table1 pile1 location1)
43 (stack hoist1 block2 block1 pile1 location1)
44 (move hoist1 pile1 table1 location1)
45 (pickup hoist1 block3 table1 location1)
46 (move hoist1 table1 pile1 location1)
47 (stack hoist1 block3 block2 pile1 location1)
48 (move hoist1 pile1 table1 location1)
49 (pickup hoist1 block4 table1 location1)
50 (move hoist1 table1 pile1 location1)
51 (stack hoist1 block4 block3 pile1 location1)
52 (move hoist1 pile1 table1 location1)
53 (pickup hoist1 block5 table1 location1)
54 (move hoist1 table1 pile1 location1)
55 (stack hoist1 block5 block4 pile1 location1)
56 (move hoist1 pile1 table1 location1)))

Listing 5.1: An experience for the ‘Stack_N_Blue’ task in the Stacking-Blocks domain.

single example and background knowledge about a domain, people can learn new

concepts.

In our proposed conceptualization approach, the generalization is carried out

over the plan of an experience. In the generalization, the constants in the plan are

75

Chapter 5. Learning Planning Knowledge

replaced with variables, hence the plan becomes free from the specific constants

and could be used in situations involving arbitrary constants. However, this is

not just naively replacing each constant in the plan by a variable. The proposed

generalization approach follows from the tradition of PLANEX (Fikes et al., 1972).

The specific algorithm used in this work and its respective implementation have

been proposed and described in (Seabra Lopes, 1997, 1999, 2007). Given a con-

crete plan-based robot activity experience, the generalization of the experience is

carried out over the plan of the experience and achieved by the following steps:

• Variabilization: build a variabilized version of the plan, i.e., every occurrence

of a constant in the plan is replaced by a new variable.

• Explanation: use the primitive operators in the planning domain to explain

the experienced plan, i.e., generate a sequence of partial descriptions of states

in the experience that support the proof of the preconditions of the applied

actions.

• Generalization: compute the weakest conditions on the variabilized plan such

that the explanation structure, obtained for the concrete plan, still holds for

the variabilized plan, i.e., unify the variables representing the same entities in

the explanation of the concrete plan. Note that the generalization is carried

out in parallel with the explanation of the concrete plan.

• Criticism: criticize over-generalization, i.e., establish additional bindings on

the variables.

The used generalization method consistently variablizes all constants appear-

ing in the actions of the plan in an experience, and when it reaches the last action

in the plan, propagates the variables for constants in the whole experience, i.e., the

constants in the key-properties of the experience are also replaced with the vari-

ables obtained by the generalization of the plan. Listing 5.2 shows the obtained

generalized experience for the input ‘Stack_N_Blue’ experience in Listing 5.1. The

variables (starting with a question mark ?) are obtained by the generalization of

the plan and substituted for the constants in the whole experience. The generated

generalized experience forms the basis of a new activity schema.

Deductive generalization methods are useful for improving problem solving

efficiency. However, they do not warrant the problem solving efficiency because

the learned knowledge has a “hidden” cost of matching the conditions to check

their applicability, i.e., the utility problem (Minton, 1990). To overcome with this

76

Chapter 5. Learning Planning Knowledge

1 (: experience Stack_N_Blue
2 :parameters (?table ?pile)
3 :key -properties ((during(pile ?pile))
4 (during(table ?table))
5 (during(location ?location))
6 (during(hoist ?hoist))
7 (during(attached ?pile ?location))
8 (during(attached ?table ?location))
9 (during(belong ?hoist ?location))

10 (during(pallet ?pallet))
11 (during(block ?block1))
12 (during(block ?block2))
13 (during(block ?block3))
14 (during(block ?block4))
15 (during(block ?block5))
16 (during(blue ?block1))
17 (during(blue ?block2))
18 (during(blue ?block3))
19 (during(blue ?block4))
20 (during(blue ?block5))
21 (init(top ?pallet ?pile))
22 (init(ontable ?block1 ?table))
23 (init(ontable ?block2 ?table))
24 (init(ontable ?block3 ?table))
25 (init(ontable ?block4 ?table))
26 (init(ontable ?block5 ?table))
27 (init(at ?hoist ?table))
28 (init(empty ?hoist))
29 (end(on ?block1 ?pallet))
30 (end(on ?block2 ?block1))
31 (end(on ?block3 ?block2))
32 (end(on ?block4 ?block3))
33 (end(on ?block5 ?block4))
34 (end(top ?block5 ?pile))
35 (end(at ?hoist ?pile))
36 (end(empty ?hoist)))
37 :plan ((pickup ?hoist ?block1 ?table ?location)
38 (move ?hoist ?table ?pile ?location)
39 (stack ?hoist ?block1 ?pallet ?pile ?location)
40 (move ?hoist ?pile ?table ?location)
41 (pickup ?hoist ?block2 ?table ?location)
42 (move ?hoist ?table ?pile ?location)
43 (stack ?hoist ?block2 ?block1 ?pile ?location)
44 (move ?hoist ?pile ?table ?location)
45 (pickup ?hoist ?block3 ?table ?location)
46 (move ?hoist ?table ?pile ?location)
47 (stack ?hoist ?block3 ?block2 ?pile ?location)
48 (move ?hoist ?pile ?table ?location)
49 (pickup ?hoist ?block4 ?table ?location)
50 (move ?hoist ?table ?pile ?location)
51 (stack ?hoist ?block4 ?block3 ?pile ?location)
52 (move ?hoist ?pile ?table ?location)
53 (pickup ?hoist ?block5 ?table ?location)
54 (move ?hoist ?table ?pile ?location)
55 (stack ?hoist ?block5 ?block4 ?pile ?location)
56 (move ?hoist ?pile ?table ?location)))

Listing 5.2: The experience of Listing 5.1 after deductive generalization.

limitation, we present methods to extract and integrate useful information into the

generalized experience.

77

Chapter 5. Learning Planning Knowledge

5.2 Experience Abstraction

Abstraction is one of the most challenging and also promising approaches to im-

prove complex problem solving and it is inspired by the way humans seem to

solve problems (Saitta and Zucker, 2013; Yang, 1997). Abstraction reduces the

level of detail in a representation allowing it to be more easily adapted to new

situations. An abstract representation allows, during problem solving, to more

easily solve the given problems, i.e., with a reduced computational effort. Ab-

straction also makes the learned concepts broader, more widely applicable. We

propose to use an abstraction methodology for transforming the obtained general-

ized experience into an abstracted generalized experience. The problem of experi-

ence abstraction can be described as transforming an experience from the concrete

level into an experience in an abstract level. Based on the given concrete and ab-

stract domains (Dc,Da) and predicate and operator abstraction hierarchies (Defi-

nitions 3.10 and 3.11) in an EBPD, the abstraction of an experience is achieved by

transforming the concrete predicates and operators into abstract predicates and

operators, which results in reducing the level of detail in the generalized experi-

ence, i.e., results in an abstracted and generalized experience (see Algorithm 2). In

this process, while some of the concrete predicates/operators can be skipped, each

abstract predicate/operator must result from a particular concrete predicate/oper-

ator. The predicate/operator abstraction hierarchies specify which of the concrete

predicates/operators are mapped and which are skipped.

Algorithm 2 Experience Abstraction

input:
– ∆= (L,Da,Dc,A,E,M) . an experience-based planning domain (Def. 3.17)

– e= (t,K,π) . a generalized experience (Def. 3.13)

output:
– ea = (t,Ka,πa) . a generalized and abstracted experience

1 Ka←∅ . Ka is the set of generalized and abstracted key-properties

2 πa←∅ . πa is the sequence of generalized and abstracted operators (abstract plan)

3 for all τ(p) in K do
4 if parent(p) , ∅ then
5 Ka← Ka ∪ {τ(parent(p))} . get parent of p (Def. 3.10)

6 for all o in π do
7 if parent(o) , ∅ then
8 πa← πa · parent(o) . get parent of o (Def. 3.11)

9 return (t,Ka,πa)

78

Chapter 5. Learning Planning Knowledge

Listing 5.3 shows the generalized ‘Stack_N_Blue’ experience after abstraction.

Compared to Listing 5.2, some key-properties are excluded from the generalized

experience (predicate abstraction) and actions in the plan are replaced with their

abstract operator parents (operator abstraction). In this example, the abstraction is

based on the predicate and operator abstraction hierarchies presented in Tables 3.3

and 3.4.

1 (: experience Stack_N_Blue
2 :parameters (?table ?pile)
3 :key -properties ((during(pile ?pile))
4 (during(table ?table))
5 (during(pallet ?pallet))
6 (during(block ?block1))
7 (during(block ?block2))
8 (during(block ?block3))
9 (during(block ?block4))

10 (during(block ?block5))
11 (during(blue ?block1))
12 (during(blue ?block2))
13 (during(blue ?block3))
14 (during(blue ?block4))
15 (during(blue ?block5))
16 (init(top ?pallet ?pile))
17 (init(ontable ?block1 ?table))
18 (init(ontable ?block2 ?table))
19 (init(ontable ?block3 ?table))
20 (init(ontable ?block4 ?table))
21 (init(ontable ?block5 ?table))
22 (end(on ?block1 ?pallet))
23 (end(on ?block2 ?block1))
24 (end(on ?block3 ?block2))
25 (end(on ?block4 ?block3))
26 (end(on ?block5 ?block4))
27 (end(top ?block5 ?pile))))
28 :plan ((pick ?block1 ?table)
29 (stack ?block1 ?pallet ?pile)
30 (pick ?block2 ?table)
31 (stack ?block2 ?block1 ?pile)
32 (pick ?block3 ?table)
33 (stack ?block3 ?block2 ?pile)
34 (pick ?block4 ?table)
35 (stack ?block4 ?block3 ?pile)
36 (pick ?block5 ?table)
37 (stack ?block5 ?block4 ?pile)))

Listing 5.3: The experience of Listing 5.1 after generalization and abstraction.

5.3 Feature Extraction

The performance of concept learning algorithms may degrade when supplied with

data attributes that are not directly and independently relevant to the learned

concept (John et al., 1994; Markovitch and Rosenstein, 2002). The discovery of

meaningful features can contribute to the creation of a more concise and accurate

79

Chapter 5. Learning Planning Knowledge

learned concept. The theory of feature generation for concept learning in problem

solving systems has been traditionally studied to measure the degree of achieve-

ment of important goals and subgoals (Fawcett and Utgoff, 1991, 1992). A fea-

ture can be represented as a conjunction or disjunction of first-order terms. These

terms are called the conditions of the feature. A feature is evaluated with respect

to a problem solving state by determining whether the conditions are satisfiable in

the state.

Whilst abstraction reduces the level of detail in an experience, extracting some

other features would help to capture the essence of the experience. The idea for the

features is extended from the previous work (Seabra Lopes, 1999, 2007) where a set

of hand coded domain-specific features were used for describing the learned con-

cepts. In the current work, features (see Definition 3.14) are key-properties of ob-

jects involved in an experience that are automatically extracted and integrated into

an activity schema. For example in Listing 5.3, the key-property (init(ontable

?block1 ?table)), on line 17, is a feature that connects the ?block1, an argument

of the abstract operator pick, on line 28, to the ?table, an argument of the task

‘Stack_N_Blue’, on line 2.

The objective of feature extraction is twofold: first, to improve the perfor-

mance of problem solving by guiding the planner toward a goal state and reduc-

ing the probability of backtracking, that is, during problem solving objects that

satisfy the features are preferable to instantiate actions; and, second, when there

are different alternatives to achieve a goal, some alternatives may be preferable

based on different factors, such as social norms, physical constraints, etc., e.g., al-

though a guest in a café could be served on the left side, a feature can capture

the social norm that the guest should be served on the right (see an example in

Listing 3.4, on page 53, where the feature ((during(hasplacingarearight ?sawt

?pawrt)) (during(at ?guest ?sawt))) of the abstract operator (!place ?robot ?mug

?mast ?pawrt) captures the principle that the guest should be served on the right

side by social convention).

We develop a feature extraction procedure (see Algorithm 3) in which, for each

abstract operator in the abstract plan of a generalized and abstracted experience,

all possible relations between the arguments of the abstract operator and the task

arguments, according to the Definition 3.14, are extracted and associated to the

abstract operator. That is, for each abstract operator o, we extract a set of key-

properties that contain only the arguments of o (0-step features); or at least one

80

Chapter 5. Learning Planning Knowledge

Algorithm 3 Feature Extraction

input:
– e= (t,K,π) . a generalized and abstracted experience (Def. 3.13)

output:
– Ω . an enriched abstract plan (Def. 3.15)

1 Ω←∅
2 T ← args(t)
3 for all o in π do
4 A← args(o)
5 F←∅ . set of features

6 for all τ1(p) in K do
7 U← args(p)
8 if (U⊆A)∨ (U∩A , ∅ ∧ U∩ T , ∅) then . 0-step and 1-step features

9 F← F∪ {τ1(p)}
10 else
11 for all τ2(q) in K, τ2(q) , τ1(p) do
12 V ← args(q)
13 if (U∩A , ∅) ∧ (V ∩ T , ∅) ∧ (U∩V , ∅) then . 2-step features

14 F← F∪ {(τ1(p),τ2(q))}

15 Ω←Ω · (o,F) . associate o with F

16 return Ω

argument of o and one argument of the task (1-step features); or pairs of key-

properties that mutually link the arguments of o with the arguments of the task

(2-step features). The basic activity schema learned for the ‘Stack_N_Blue’ ex-

perience after generalization, abstraction and feature extraction is shown in List-

ing 5.4. The abstract-plan includes a sequences of enriched abstract operators, i.e.,

abstract operators associated with features (see Definition 3.15).

5.4 Loop Detection

Solutions to a class of problems with varying number of objects may differ in the

repetition of some actions or sequences of actions. In a generalized and abstracted

experience there might be some abstract operators with the same features that

are repeated for different variables. Therefore detecting and representing possible

loops of enriched abstract operators in an activity schema would help to improve

the compactness and to increase the applicability of the final concept. A loop is

a sequence of enriched abstract operators that is repeated for several sets of ob-

jects in an experience. Two or more contiguous subsequences of enriched abstract

81

Chapter 5. Learning Planning Knowledge

1 (:activity -schema Stack_N_Blue
2 :parameters (?table ?pile)
3 :abstract -plan
4 (((! pick ?block1 ?table)
5 ((init(ontable ?block1 ?table))(during(block ?block1))
6 (during(blue ?block1))(during(table ?table))))
7 ((! stack ?block1 ?pallet ?pile)
8 ((init(ontable ?block1 ?table))(init(top ?pallet ?pile))
9 (during(block ?block1))(during(blue ?block1))

10 (during(pallet ?pallet))(during(pile ?pile))))
11 ((! pick ?block2 ?table)
12 ((init(ontable ?block2 ?table))(during(block ?block2))
13 (during(blue ?block2))(during(table ?table))))
14 ((! stack ?block2 ?block1 ?pile)
15 ((init(ontable ?block1 ?table))(init(ontable ?block2 ?table))
16 (during(block ?block1))(during(block ?block2))(during(blue ?block1))
17 (during(blue ?block2))(during(pile ?pile))))
18 ((! pick ?block3 ?table)
19 ((init(ontable ?block3 ?table))(during(block ?block3))
20 (during(blue ?block3))(during(table ?table))))
21 ((! stack ?block3 ?block2 ?pile)
22 ((init(ontable ?block2 ?table))(init(ontable ?block3 ?table))
23 (during(block ?block2))(during(block ?block3))(during(blue ?block2))
24 (during(blue ?block3))(during(pile ?pile))))
25 ((! pick ?block4 ?table)
26 ((init(ontable ?block4 ?table))(during(block ?block4))
27 (during(blue ?block4))(during(table ?table))))
28 ((! stack ?block4 ?block3 ?pile)
29 ((init(ontable ?block3 ?table))(init(ontable ?block4 ?table))
30 (during(block ?block3))(during(block ?block4))(during(blue ?block3))
31 (during(blue ?block4))(during(pile ?pile))))
32 ((! pick ?block5 ?table)
33 ((end(top ?block5 ?pile))(init(ontable ?block5 ?table))
34 (during(block ?block5))(during(blue ?block5))
35 (during(table ?table))))
36 ((! stack ?block5 ?block4 ?pile)
37 ((end(top ?block5 ?pile))(init(ontable ?block4 ?table))
38 (init(ontable ?block5 ?table))(during(block ?block4))
39 (during(block ?block5))(during(pile ?pile))(during(blue ?block4))
40 (during(blue ?block5))))))

Listing 5.4: The activity schema learned thus far for the ‘Stack_N_Blue’ task after generalization,
abstraction and feature extraction. Each abstract operator is associated with a set of features. See
the previous steps of the process in Listings 5.1, 5.2 and 5.3.

operators belong to a loop if in each subsequence the following properties hold:

(i) the names and the order of the abstract operators are the same; (ii) the sets of

features describing the abstract operators are the same; and (iii) the variables ap-

pearing in the corresponding abstract operators and in their respective features

play the same role, i.e., they appear at the same positions. For example in List-

ing 5.4, subsequences of abstract operators ((!pick . . .) . . .) ((!stack . . .) . . .), on

lines (11, 14), (18, 21) and (25, 28), with the same features, and the corresponding

variables playing the same roles are repeated for the variables ?block2, ?block3

and ?block4, hence belonging to a loop.

We propose a loop detection approach reminiscent of the standard algorithms

for computing the Suffix Array (SA) of a string and the Longest Common Prefix

82

Chapter 5. Learning Planning Knowledge

(LCP) of two strings. Manber and Myers (1993) introduced the LCP array, for the

first time, alongside the suffix array, in order to improve the running time of the

string search algorithm in the suffix array. The main intuition to employ SA and

LCP is the efficiency of those algorithms for finding a pattern P of length m in a

string S of length n in O(m+ logn) complexity. The problem is also known as

finding the longest repeated substring (Hirschberg, 1977). We first provide the

standard definitions for SA, LCP and LCP array as follows:

Definition 5.1 (Suffix Array). A Suffix Array (SA) of a string is an array of integers

providing the starting positions of all suffixes of the string, sorted in lexicograph-

ical order. �

An LCP array is an array of integers storing the lengths of the longest common

prefixes between all pairs of consecutive suffixes in a suffix array:

Definition 5.2 (Longest Common Prefix). Let A and B be two strings, and A[i : j]

and B[i : j] denote the substrings of A and B ranging from i to j− 1 respectively.

The Longest Common Prefix (LCP) of A and B, denoted by lcp(A,B), is the length,

l, of the longest substring, S, such that A[0 : l] = B[0 : l] = S. �

Definition 5.3 (Longest Common Prefix Array). Let S be a string and SA the suffix

array of S. The Longest Common Prefix array (LCP array) of S is an array of integers

of size n = len(S) such that LCP[0] is undefined and LCP[i] = lcp(S[SA[i − 1] :

n],S[SA[i] : n]), for 1 6 i < n. �

The LCP array cannot be used to detect potential loops in a string, since it

also selects overlapping repeated substrings. For example, in the string ’ababa’,

the longest repeated substring is ’aba’, but selecting that one causes overlapping.

To avoid overlapping, we restrict the size of the longest common prefix of two

strings to the difference in length between the two strings. For example, the non-

overlapping longest common prefix of two strings ’ababa’ and ’aba’ is ’ab’ of

the length abs(len(’ababa’) − len(’aba’)) = 2. We modify the definition of LCP

to build a Non-overlapping Longest Common Prefix (NLCP) array from a string,

which gives a list of potential patterns in the string:

Definition 5.4 (Non-overlapping Longest Common Prefix). Let A and B be two

strings. The Non-overlapping Longest Common Prefix (NLCP) of A and B, denoted

by nlcp(A,B), is the length, l, of the longest substring, S, such that l6 abs(len(A)−

len(B)) and A[0 : l] = B[0 : l] = S. �

83

Chapter 5. Learning Planning Knowledge

Table 5.1: The enriched abstract plan in Listing 5.4 is represented as the string ’abacacacdf’.

enriched abstract operator symbol
((!pick ?block1 ?table) . . .) a
((!stack ?block1 ?pallet ?pile) . . .) b
((!pick ?block2 ?table) . . .) a
((!stack ?block2 ?block1 ?pile) . . .) c
((!pick ?block3 ?table) . . .) a
((!stack ?block3 ?block2 ?pile) . . .) c
((!pick ?block4 ?table) . . .) a
((!stack ?block4 ?block3 ?pile) . . .) c
((!pick ?block5 ?table) . . .) d
((!stack ?block5 ?block4 ?pile) . . .) f

Definition 5.5 (Non-overlapping Longest Common Prefix Array). Let S be a string

and SA the suffix array of S. The Non-overlapping Longest Common Prefix array

(NLCP array) is an array of integers of size n = len(S) such that NLCP[0] is unde-

fined and NLCP[i] = nlcp(S[SA[i− 1] : n],S[SA[i] : n]), for 1 6 i < n. �

In Algorithm 4, based on the above definitions, given an abstract plan Ω (of a

generalized and abstracted experience) we first build a suffix array, SA, for Ω and

then build an NLCP array (lines 1–4). The function nlcp (line 13) computes the

NLCP of two given suffixes according to the Definition 5.4.

Note that in the implementation level, the abstract operators with the same

features are consistently represented by single characters. For example, in List-

ing 5.4 the sequence of enriched abstract operators with their corresponding fea-

tures (abstract-plan) is represented as the string ’abacacacdf’ according to the

Table 5.1. The computed SA, LCP and NLCP arrays for the string ’abacacacdf’ is

shown in Table 5.2.

The NLCP array does not warrant that the obtained non-overlapping longest

common prefixes are consecutive in Ω. Hence we define the Contiguous Non-

overlapping Longest Common Prefix (CNLCP) array which is obtained form the

NLCP array.

Definition 5.6 (Contiguous Non-overlapping Longest Common Prefix Array). A

Contiguous Non-overlapping Longest Common Prefix array (CNLCP array) is an array

of structures, constructed from the SA and NLCP arrays of a string, such that each

CNLCP[i], for i> 0, contains a substring, representing a pattern that consecutively

occurs in the string, and a list of starting positions of the pattern in the string.

84

Chapter 5. Learning Planning Knowledge

Algorithm 4 Contiguous Non-overlapping Longest Common Prefixes (CNLCP)

input:
– Ω . an enriched abstract plan (represented as a string)

output:
– CNLCP . a contiguous non-overlapping longest common prefixes array (Def. 5.6)

1 SA ← sorted(range(len(Ω)),key= lambda i :Ω[i :])
. build a suffix array fromΩ (coding in python) (Def. 5.1)

2 NLCP[0]← 0
3 for i in range(len(SA)− 1) do

. build a non-overlapping longest common prefixes array, NLCP (Def. 5.4)

4 NLCP[i+ 1]← nlcp(Ω[SA[i] :],Ω[SA[i+ 1] :]) . see line 13

5 CNLCP ←∅ . an empty dictionary

6 for maxlen in sorted(NLCP) do . build a CNLCP array (Def. 5.6)

7 for i in range(len(Ω)) do
8 if NLCP[i] ==maxlen then
9 if abs(SA[i]−SA[i− 1]) ==maxlen then

. keep only consecutive occurrences in NLCP

10 k ←Ω[SA[i] :SA[i] +maxlen]
11 CNLCP[k] ← CNLCP[k]∪ {SA[i− 1]} . starting position of pattern k

12 return CNLCP

13 function nlcp(suf1,suf2) . find non-overlapping longest common prefix between two given suffixes

14 maxlen← min(abs(len(suf1)− len(suf2)),len(suf1),len(suf2))
15 for i in range(maxlen) do
16 if suf1[i] , suf2[i] then
17 return len(suf1[0 : i])

18 return len(suf1[0 :maxlen])

A non-overlapping longest common prefix between NLCP[i] and NLCP[i − 1] is

consecutive if NLCP[i] = abs(SA[i]−SA[i− 1]) for 1 6 i < n. �

In Algorithm 4, the main function constructs the CNLCP array (lines 5–11).

Line 9 reflects the proposed condition in the Definition 5.6 to find the contiguous

non-overlapping longest common prefixes in the NLCP array. When a contiguous

CNLCP is detected, its starting position is added to the CNLCP array (line 11).

Table 5.3 shows the computed CNLCP array for the string ’abacacacdf’. CNLCP

gives the pattern (the iteration of a loop) ’ac’ happening at the positions (2, 4, 6)

respectively. The Kleene closure of the input string is ’ab(ac)∗df’.

When the CNLCP array is constructed for the abstract plan of a generalized and

abstracted experience, we start by selecting an iteration (i.e., a substring) with the

85

Chapter 5. Learning Planning Knowledge

Table 5.2: The computed SA, LCP and NLCP arrays for the string ’abacacacdf’.

i suffix SA[i] LCP[i] NLCP[i]∗

0 abacacacdf 0 0 0
1 acacacdf 2 1 1
2 acacdf 4 4 2
3 acdf 6 2 2
4 bacacacdf 1 0 0
5 cacacdf 3 0 0
6 cacdf 5 3 2
7 cdf 7 1 1
8 df 8 0 0
9 f 9 0 0

∗ Eachnumber inith rowspecifies the lengthof thenon-overlappinglongestcommonprefixbetweentwosuffixes inrowsiand
(i− 1) for i> 1. For example, in rows 1 and 2, ’ac’ is the non-overlapping longest common prefix between two consecutive
suffixes ’acacacdf’ and ’acacdf’.

Table 5.3: The computed CNLCP array for the same string ’abacacacdf’.

k∗ CNLCP[k]
ac 2, 4, 6

∗ Each suffix in the CNLCP array is a pattern (an iteration of a loop) with its starting positions in a given string.

largest length in the CNLCP array and construct a loop by merging all iterations of

the loop. More specifically, the loop iterations are merged, an intersection of their

corresponding features is computed, and a new variable represents the different

variables playing the same role in the corresponding abstract operators and in

their corresponding features in each subsequence. We continue this process for all

other iterations in the CNLCP array until no more loops are formed. For example

in Listing 5.4, three subsequences of abstract operators ((!pick . . .) ((!stack . . .)

(lines 11–28) with the variables ?block2, ?block3 and ?block4 are merged into a

loop and the variable ?block2 represents for all objects with the same features in a

given task problem. Note that, in the current loop detecting approach, we do not

address the possibility of nested loops.

For the sake of simplicity, some complex cases are not covered in the Algo-

rithm 4. For example, the CNLCP array may also provide overlapping patterns,

e.g., in the string ’banana’, CNLCP gives the two potential overlapping patterns

’an’ and ’na’ as iterations of loops; or may provide the same patterns of the same

loops, e.g., in the string ’ababxabab’, CNLCP gives the pattern ’ab’ which occurs

at two distinct loops. Implementing a strategy to analyze the CNLCP array for

86

Chapter 5. Learning Planning Knowledge

1 (:activity -schema Stack_N_Blue
2 :parameters (?table ?pile)
3 :abstract -plan
4 (((! pick ?block1 ?table)
5 ((init(ontable ?block1 ?table))(during(block ?block1))
6 (during(blue ?block1))(during(table ?table))))
7 ((! stack ?block1 ?pallet ?pile)
8 ((init(ontable ?block1 ?table))(init(top ?pallet ?pile))
9 (during(block ?block1))(during(blue ?block1))

10 (during(pallet ?pallet))(during(pile ?pile))))
11 (loop
12 ((! pick ?block2 ?table)
13 ((init(ontable ?block2 ?table))(during(block ?block2))
14 (during(blue ?block2))(during(table ?table))))
15 ((! stack ?block2 ?block1 ?pile)
16 ((init(ontable ?block1 ?table))(init(ontable ?block2 ?table))
17 (during(block ?block1))(during(block ?block2))
18 (during(blue ?block1))(during(blue ?block2))(during(pile ?pile))))
19)
20 ((! pick ?block5 ?table)
21 ((end(top ?block5 ?pile))(init(ontable ?block5 ?table))
22 (during(block ?block5))(during(blue ?block5))(during(table ?table))))
23 ((! stack ?block5 ?block4 ?pile)
24 ((end(top ?block5 ?pile))(init(ontable ?block4 ?table))
25 (init(ontable ?block5 ?table))(during(block ?block4))
26 (during(block ?block5))(during(pile ?pile))(during(blue ?block4))
27 (during(blue ?block5))))))

Listing 5.5: The activity schema learned thus far for the ‘Stack_N_Blue’ experience now with a
loop of actions (see Listings 5.1 and 5.4).

building loops in more complex cases is not addressed here.

To represent the obtained loops of actions in an activity schema, we refine the

notion of the enriched abstract plan (Definition 3.15) to include loops as follows:

Definition 5.7 (Enriched Abstract Plan with Loops). An enriched abstract plan
with loops, denoted by Ω, is a sequence of elements each of which is either an

enriched abstract operator or a loop. A loop is represented as an enriched abstract

plan without loops (Definition 3.15), which is repeated continually while there is

an object in a planning state that satisfy the features of the abstract operators in

the loop. �

The activity schema built thus far for the ‘Stack_N_Blue’ experience, now with

a loop of actions, is shown in Listing 5.5. For a given task planning problem in

later problem solving situation, the loop is expanded for all objects that verify the

features of the enriched abstract operators inside the loop.

5.5 Scope Inference

After detecting possible loops in an experience, we propose to infer the scope of
applicability of the learned activity schema. The scope is a logical structure that

87

Chapter 5. Learning Planning Knowledge

allows for testing the applicability of the activity schema to solve a given prob-

lem. The developed approach relies on Canonical Abstraction (Sagiv et al., 2002),

a procedure for creating finite representations of (possibly infinite) sets of logi-

cal structures. Canonical abstraction is based on Kleene’s 3-valued logic (Kleene,

1952), which extends Boolean (2-valued) logic by introducing an indefinite value
1/2, to denote either 0 or 1. We infer the scope of an activity schema from the key-

properties of a generalized and abstracted experience in the form of a 3-valued

logical structure. Since the key-properties of an experience use, not only the init

temporal symbol, but also the during and end temporal symbols, the inferred scope

is more than a simple precondition.

The 3-valued logical structure can be used as an abstraction of a larger 2-valued

logical structure. Standard definitions of 2-valued and 3-valued logical structures

are adapted to accommodate the temporal symbols used in key-properties of ex-

periences. We first represent the key-properties of a generalized and abstracted

experience using a 2-valued logical structure:

Definition 5.8 (2-Valued Logical Structure with Temporal Symbols). A 2-valued
logical structure, also called a concrete structure, over a set of temporal symbols T

and a set of predicate symbols P is a pair,

C= (U, ι),

where U is a set of individuals called the universe of C and ι is an interpretation

for T and P overU. For every temporal symbol τ ∈ T and predicate symbol p(k) ∈ P
of arity k, the interpretation is a function ι(τ,p) :Uk→ {0,1}. �

We convert a set of key-properties K to a 2-valued logical structure, denoted by

Struct(K) = (U, ι), as follows:

P = {p | τ(p(t1, . . . ,tk)) ∈ K} ,
T = {τ | τ(p(t1, . . . ,tk)) ∈ K} ,
U =

⋃
τ(p(t1,...,tk))∈K

{t1, . . . ,tk} ,

ι = λτ ∈ T ,p(k) ∈ P . λ(t1, . . . ,tk) ∈Uk.
{

1, if τ(p(t1, . . . ,tk)) ∈ K
0, otherwise.

That is, the universe of Struct(K) consists of the objects appearing in the argu-

ments of the key-properties in K. The interpretation of a temporal symbol τ ∈ T ,

where T = {during,init,end,none}1, and predicate symbol p(k) ∈ P of arity k, for
1 Note that the types of objects, in typed planning domains descriptions, are also used as unary

predicates in constructing a 2-valued logical structure. Hence, the temporal symbol none is used
for these unary predicates.

88

Chapter 5. Learning Planning Knowledge

a tuple of objects (t1, . . . ,tk) ∈ U is 1, i.e., ι(τ,p)(t1, . . . ,tk) = 1, if a corresponding

key-property τ(p(t1, . . . ,tk)) appears in K.

2-valued logical structures can be represented graphically as directed graphs.

The individuals of the universe are drawn as nodes and true key-properties are

drawn as directed solid edges.

Example 5.1. Figure 5.2(a) shows a 2-valued logical (concrete) structure C repre-

senting the generalized and abstracted ‘Stack_N_Blue’ experience in Listing 5.3.

In this example, the universe and the truth-values (interpretations) of the key-

properties over the universe of C are as follows.

P = {pile,table,pallet,block,blue,top,ontable,on,top} ,
T = {during,init,end},
U = {?pile,?table,?pallet,?block1,?block2,?block3,?block4,?block5} ,
ι = {(during(pile ?pile)),

(during(table ?table)),
(during(pallet ?pallet)),
(during(block ?block1)),
(during(block ?block2)),
(during(block ?block3)),
(during(block ?block4)),
(during(block ?block5)),
(during(blue ?block1)),
(during(blue ?block2)),
(during(blue ?block3)),
(during(blue ?block4)),
(during(blue ?block5)),
(init(top ?pallet ?pile)),
(init(ontable ?block1 ?table)),
(init(ontable ?block2 ?table)),
(init(ontable ?block3 ?table)),
(init(ontable ?block4 ?table)),
(init(ontable ?block5 ?table)),
(end(on ?block1 ?pallet)),
(end(on ?block2 ?block1)),
(end(on ?block3 ?block2)),
(end(on ?block4 ?block3)),
(end(on ?block5 ?block4)),
(end(top ?block5 ?pile))} .

�

The scope of applicability of an activity schema will be represented by a 3-

valued logical structure:

89

Chapter 5. Learning Planning Knowledge

?pile during(pile) ?table during(table)

?pallet

 init(top)

 during(pallet)

?block1

 init(ontable)

 end(on)

 during(block)
during(blue)

?block2

 init(ontable)

 end(on)

 during(block)
during(blue)

?block3

 init(ontable)

 end(on)

 during(block)
during(blue)

?block4

 init(ontable)

 end(on)

 during(block)
during(blue)

?block5

 end(top) init(ontable)

 end(on)

 during(block)
during(blue)

(a) A concrete structure C.

{(during,table)} during(table) {(during,pile)} during(pile)

{(during,pallet)}

 init(top)

 during(pallet)

{(during,block),(during,blue)}

 init(ontable) end(top)

 end(on)

 during(block)
during(blue) end(on)

(b) An abstract structure S= β(C).

Figure 5.2: Canonical abstraction of key-properties in the (generalized and abstracted)
‘Stack_N_Blue’ experience (in Listing 5.3). (a) Graphical representation of the 2-valued structure
generated from the key-properties. (b) Graphical representation of the 3-valued structure obtained
through canonical abstraction.

90

Chapter 5. Learning Planning Knowledge

Definition 5.9 (3-Valued Logical Structure with Temporal Symbols). A 3-valued
logical structure, also called an abstract structure, over a set of temporal symbols T

and a set of predicate symbols P is a pair,

S= (U, ι),

where U is a set of individuals called the universe of S and ι is an interpretation

for T and P overU. For every temporal symbol τ ∈ T and predicate symbol p(k) ∈ P
of arity k, the interpretation is a function ι(τ,p) : Uk→ {0,1,1/2}, where 1/2 means

indefinite. �

The transformation form a 2-valued logical structure into a 3-valued logical

structure is based on canonical names and the join operation (Lev-Ami and Sagiv,

2000) as follows:

Definition 5.10 (Canonical Name). Let (U, ι) be a (2-valued/3-valued) logical struc-

ture over a set of temporal symbols T and a set of predicate symbols P. The

canonical name of an object u ∈ U, also called an abstraction predicate, denoted

by canon(u), is a set of pairs of temporal symbols and unary predicate symbols

that hold for u in the structure:

canon(u) = {(τ,p) | τ ∈ T ,p ∈ P, ι(τ,p)(u) = 1} .

�

Example 5.2. The canonical names of the objects in U in Example 5.1 are the fol-

lowing:

canon(?table) = {(during,table)}
canon(?pile) = {(during,pile)}

canon(?pallet) = {(during,pallet)}
canon(?block1) = {(during,block),(during,blue)}
canon(?block2) = {(during,block),(during,blue)}
canon(?block3) = {(during,block),(during,blue)}
canon(?block4) = {(during,block),(during,blue)}
canon(?block5) = {(during,block),(during,blue)}

�

Definition 5.11 (Join Operation). In Kleene’s 3-valued logic, we say the values 0

and 1 are definite values and 1/2 is an indefinite value. For l1, l2 ∈ {0,1,1/2}, l1 has

more definite information than l2, denoted by l1 � l2, if l1 = l2 or l2 = 1/2 (see also

91

Chapter 5. Learning Planning Knowledge

Table 5.4: The truth table (left) and the graphical representation (right) of the information order
(�) for two Kleene’s 3-valued propositions.

� 0 1 1/2

0 1 0 1
1 0 1 1

1/2 0 0 1

1/2

0

1

�
�

�

�
�

Table 5.5: The truth table of the join operation (t) for two Kleene’s 3-valued propositions.

t 0 1 1/2

0 0 1/2 1/2

1 1/2 1 1/2
1/2 1/2 1/2 1/2

Table 5.4). The join operation of l1 and l2, denoted by l1 t l2, is the least-upper-

bound operation with respect to the information order, �, defined as follows (see

also Table 5.5):

l1 t l2 =
{
l1, if l1 = l2;
1/2, otherwise.

�

Based on the above definitions, we can now infer a 3-valued logical structure

from a 2-valued logical structure using canonical abstraction as follows:

Definition 5.12 (Canonical Abstraction). LetC= (U, ι) be a 2-valued logical struc-

ture. The canonical abstraction ofC, denoted byβ(C), is a 3-valued logical structure

S= (U ′, ι ′) defined as follows:

U ′ = {canon(u) | u ∈U} ,

ι ′(τ,p(k))(t ′1, . . . ,t ′k) =
⊔

t1,...,tk

{ι(τ,p(k))(t1, . . . ,tk) | ∀i= 1..k. t ′i = canon(ti)} .

S may contain summary objects. A summary object in U ′ for a canonical name,

c, denoted by summary(c), represents the set of objects inU that have c as canonical

name: 2

summary(c) = {u ∈U | canon(u) = c} .

�

2 Note that we avoid corresponding a summary object to the objects appearing in the task (pa-
rameters) of an experience.

92

Chapter 5. Learning Planning Knowledge

The join operation is used to determine the truth-values (interpretations) of

key-properties in a 3-valued logical structure. That is, the interpretation of a key-

property in the 3-valued logical structure is 1 (solid arrows in the graphical repre-

sentation) if the key-property holds for all objects of the same canonical name in

the 2-valued logical structure, otherwise the truth-value is 1/2 if the key-property

holds for some objects of the same canonical name (dashed arrows), and 0 if the

key-property does not hold for any object (no arrow drawn). 3

Following the same convention used for 2-valued logical structures, 3-valued

logical structures are also drawn as directed graphs. In addition, summary ob-

jects are drawn as double circles and key-properties with indefinite (1/2) values are

drawn as directed dashed edges.

Example 5.3. Figure 5.2(b) shows the 3-valued structure S of the concrete struc-

tureC in Figure 5.2(a). The double circles stand for summary objects, e.g., summary(

{(during,block),(during,blue)}) is a summary object in S corresponding to the

objects (?block1..?block5) in C with the same canonical name. Solid (dashed)

arrows represent truth-values of 1 (1/2). Intuitively, because of the summary ob-

jects, the abstract structure S represents the concrete structure C and all other

‘Stack_N_Blue’ problems that have exactly one table, one pile, one pallet, and

at least one blue block, such that blue blocks are initially on the table and finally

in the pile. �

The inferred scope is finally integrated into the learned activity schema. There-

fore, we extend the notion of robot activity schema (Definition 3.16) to include the

scope of applicability as follows:

Definition 5.13 (Robot Activity Schema with Scope of Applicability). A robot
activity schema with scope of applicability (or, for short, an activity schema), m, is a

tuple of unground structures,

m= (t,S,G,Ω),

where t is the target task to be performed, S is a 3-valued logical structure with

temporal symbols (Definition 5.9) representing the scope of applicability of m, G

3 In a planning domain description, the set of unary predicates is used to build the set of ab-
straction predicates. The function of canonical abstraction suggests that we should have sufficient
unary predicates to be able to determine if an abstract structure exists for a concrete structure.
In all example domains used in this work, we provided sufficient unary predicates. However, the
types of objects (in typed planning domains descriptions) are also assumed as unary predicates
when unary predicates are not sufficient.

93

Chapter 5. Learning Planning Knowledge

1 (:activity -schema Stack_N_Blue
2 :parameters (?table ?pile)
3 :scope
4 ((summary ((during ,block)(during ,blue)))
5 (during(table (during ,table)))
6 (during(pile (during ,pile)))
7 (during(pallet (during ,pallet)))
8 (during(block ((during ,block)(during ,blue))))
9 (during(blue ((during ,block)(during ,blue))))

10 (init(top (during ,pallet) (during ,pile)))
11 (init(ontable ((during ,block)(during ,blue)) (during ,table)))
12 (maybe(end(on ((during ,block)(during ,blue)) (during ,pallet))))
13 (maybe(end(on ((during ,block)(during ,blue)) ((during ,block)(during ,blue)))))
14 (maybe(end(top ((during ,block)(during ,blue)) (during ,pile)))))
15 :abstract -plan
16 (((! pick ?block1 ?table)
17 ((init(ontable ?block1 ?table))(during(block ?block1))
18 (during(blue ?block1))(during(table ?table))))
19 ((! stack ?block1 ?pallet ?pile)
20 ((init(ontable ?block1 ?table))(init(top ?pallet ?pile))
21 (during(block ?block1))(during(blue ?block1))
22 (during(pallet ?pallet))(during(pile ?pile))))
23 (loop
24 ((! pick ?block2 ?table)
25 ((init(ontable ?block2 ?table))(during(block ?block2))
26 (during(blue ?block2))(during(table ?table))))
27 ((! stack ?block2 ?block1 ?pile)
28 ((init(ontable ?block1 ?table))(init(ontable ?block2 ?table))
29 (during(block ?block1))(during(block ?block2))
30 (during(blue ?block1))(during(blue ?block2))(during(pile ?pile))))
31)
32 ((! pick ?block5 ?table)
33 ((end(top ?block5 ?pile))(init(ontable ?block5 ?table))
34 (during(block ?block5))(during(blue ?block5))(during(table ?table))))
35 ((! stack ?block5 ?block4 ?pile)
36 ((end(top ?block5 ?pile))(init(ontable ?block4 ?table))
37 (init(ontable ?block5 ?table))(during(block ?block4))
38 (during(block ?block5))(during(pile ?pile))(during(blue ?block4))
39 (during(blue ?block5))))))

Listing 5.6: An activity schema learned for the ‘Stack_N_Blue’ task with loops of actions and its
scope of applicability.

is the goal of m, and Ω is an enriched abstract plan with loops (Definition 5.7) to

achieve the task t. �

Listing 5.6 shows the activity schema learned in the Stacking-Blocks domain

for the ‘Stack_N_Blue’ task. The inferred scope of applicability specifies a class

of problems that can be solved with this activity schema. Summary objects are

represented as (summary ?c) where ?c is a canonical name. They represent ar-

bitrary sets of objects with the same properties in a task planning problem, e.g.,

(summary(during,block)(during,blue)) specifies an arbitrary set of objects with

the unary predicate symbols block and blue in a task planning problem. Key-

properties with indefinite values (1/2) appear as (maybe(k)) where k represents a

key-property, i.e., k is a key-property that may exist in a 2-valued logical struc-

ture represented by the scope of the activity schema. They specify predicates

94

Chapter 5. Learning Planning Knowledge

that may be contained in a task planning problem for some objects of the same

properties, e.g., (maybe(end(on ((during,block)(during,blue)) ((during,block)

(during,blue))))) specifies that the predicate on may not exist for all blue blocks

(at the final state). The rest are key-properties specifying predicates contained

in a task planning problem, e.g., (init(ontable ((during,block)(during,blue))

(during,table))) specifies that the predicate ontable exists for all blue blocks (at

the initial state).

5.6 Goal Inference

Depending on the problem formulation in an EBPD (see Section 3.4), the descrip-

tion of goal propositions may not be given in a class of task problems. In this con-

text, the conceptualization approach infers a set of generalized (i.e., ungrounded)

key-properties from an experience as the goal of an activity schema. The inferred

goal of the activity schema is used, during problem solving, to describe the explicit

goal of the given task.

Goal inference is performed on a generalized experience. The parameters of

a taught task, identified by an instructor, define the main target for inferring

goal propositions. In Algorithm 5, we present a breadth first search approach

(GoalInference), which takes as input a set of task arguments and a set of key-

properties in a generalized experience. For every pair of task arguments, the key-

properties are explored to find the shortest connecting path between the argu-

ments. Each path is a set of key-properties that reveals a relation between two task

arguments in the experience. Finally, a union of the shortest paths computed for

all pairs of arguments is used for describing the inferred goal. Note that the key-

properties with temporal symbols init and during cannot be part of the goal in

an experience. During problem solving, they are essentially used to instantiate the

goal predicates for a given task problem based on the world information included

in the problem description. The inferred goal is finally represented in the learned

activity schema.

Example 5.4. We use the (generalized) experience for ‘ServeACoffee’ task in RACE

domain (shown in Listing 4.5 on page 72) to infer a set of goal propositions for

the ‘ServeACoffee’ task. The task parameters are used as cues for inferring goal

propositions. All paths between the parameters (?mug ?counter ?guest ?table) in

the ‘ServeACoffee’ experience after generalization and abstraction are shown in

Figure 5.3. Therefore, the inferred goal includes the following key-properties:

95

Chapter 5. Learning Planning Knowledge

Algorithm 5 Goal Inference

input:
– e= (t,K,π) . a generalized experience (Def. 3.13)

output:
– G . a set of goal predicates

1 G←∅
2 for all distinct pairs (u,v) of args(t) do
3 G←G ∪ FindPaths(u,v,K) . find the shortest path fromu to v inK

4 return G

5 function FindPaths(u,v,K) . a breadth first search returning the shortest path fromu to v inK

6 U← {τ(p) ∈ K | u ∈ args(p), |args(p)|== 1} . set of unary predicates containingu

7 Q← [(u,U)] . initialize a queue withu andU

8 while Q , ∅ do
9 (x,path)← remove(Q)

10 if x== v then
11 return path . v is reached (return the path)

12 for all τ(p) in {K−path} do
13 if x ∈ args(p) then
14 path← path∪ {τ(p)}
15 for all y ∈ {args(p)− x} do
16 U← {τ(p) ∈ K | y ∈ args(p), |args(p)|== 1}
17 Q←Q+ [(y,path∪U)] . add toQ and continue to reach v

18 return ∅

G = {(init(on ?mug ?paerc)),
(during(mug ?mug)),
(during(guest ?guest)),
(during(table ?table)),
(during(counter ?counter)),
(during(placingarearight ?paerc)),
(during(hasplacingareaeastright ?counter ?paerc)),
(during(sittingarea ?sawt)),
(during(placingarearight ?pawrt)),
(during(hasplacingarearight ?sawt ?pawrt)),
(during(hasplacingareawestright ?table ?pawrt)),
(during(at ?guest ?sawt)),
(end(on ?mug ?pawrt))} .

�

When the goal is instantiated for a task problem, only key-properties with tem-

poral symbol end are considered as the goal of the task problem, e.g., (on ?mug

96

Chapter 5. Learning Planning Knowledge

?m
ug

(d
ur

in
g(

m
ug

 ?
m

ug
))

?p
ae

rc

(in
it(

on
 ?

m
ug

 ?
pa

er
c)

)

?p
aw

rt

(e
nd

(o
n

?m
ug

 ?
pa

w
rt)

)

(d
ur

in
g(

pl
ac

in
ga

re
ar

ig
ht

 ?
pa

er
c)

)

?c
ou

nt
er

(d
ur

in
g(

ha
sp

la
ci

ng
ar

ea
ea

st
rig

ht
 ?

co
un

te
r ?

pa
er

c)
)

?m
ae

c

(d
ur

in
g(

ha
sm

an
ip

ul
at

io
na

re
a

?p
ae

rc
 ?

m
ae

c)
)

(d
ur

in
g(

pl
ac

in
ga

re
ar

ig
ht

 ?
pa

w
rt)

)

?t
ab

le

(d
ur

in
g(

ha
sp

la
ci

ng
ar

ea
w

es
tri

gh
t ?

ta
bl

e
?p

aw
rt)

)

?s
aw

t

(d
ur

in
g(

ha
sp

la
ci

ng
ar

ea
rig

ht
 ?

sa
w

t ?
pa

w
rt)

)

?m
as

t

(d
ur

in
g(

ha
sm

an
ip

ul
at

io
na

re
a

?p
aw

rt
?m

as
t))

(d
ur

in
g(

ta
bl

e
?t

ab
le

))

(d
ur

in
g(

ha
ss

itt
in

ga
re

aw
es

t ?
ta

bl
e

?s
aw

t))

?p
ae

lt

(d
ur

in
g(

ha
sp

la
ci

ng
ar

ea
ea

st
le

ft
?t

ab
le

 ?
pa

el
t))

(d
ur

in
g(

ha
sm

an
ip

ul
at

io
na

re
as

ou
th

 ?
ta

bl
e

?m
as

t))

?p
m

as
t

(d
ur

in
g(

ha
sp

re
m

an
ip

ul
at

io
na

re
as

ou
th

 ?
ta

bl
e

?p
m

as
t))

(d
ur

in
g(

co
un

te
r ?

co
un

te
r)

)

?p
m

ae
c

(d
ur

in
g(

ha
sp

re
m

an
ip

ul
at

io
na

re
a

?c
ou

nt
er

 ?
pm

ae
c)

)

(d
ur

in
g(

m
an

ip
ul

at
io

na
re

a
?m

ae
c)

)

(d
ur

in
g(

ha
sp

re
m

an
ip

ul
at

io
na

re
a

?m
ae

c
?p

m
ae

c)
)

(d
ur

in
g(

si
tti

ng
ar

ea
 ?

sa
w

t))
(d

ur
in

g(
pl

ac
in

ga
re

al
ef

t ?
pa

el
t))

(d
ur

in
g(

ha
sm

an
ip

ul
at

io
na

re
a

?p
ae

lt
?m

as
t))

(d
ur

in
g(

pr
em

an
ip

ul
at

io
na

re
a

?p
m

ae
c)

)

(d
ur

in
g(

m
an

ip
ul

at
io

na
re

a
?m

as
t))

(d
ur

in
g(

ha
sp

re
m

an
ip

ul
at

io
na

re
a

?m
as

t ?
pm

as
t))

?g
ue

st

(d
ur

in
g(

at
 ?

gu
es

t ?
sa

w
t))

(d
ur

in
g(

gu
es

t ?
gu

es
t))

(d
ur

in
g(

pr
em

an
ip

ul
at

io
na

re
a

?p
m

as
t))

Fi
gu

re
5.

3:
A

ll
p

at
hs

be
tw

ee
n

th
e

ta
sk

ar
gu

m
en

ts
(?
mu
g
?g
ue
st

?t
ab
le

?c
ou
nt
er

)i
n

th
e

(g
en

er
al

iz
ed

)e
xp

er
ie

nc
e

‘S
er

ve
A

C
off

ee
’.

T
he

ke
y-

p
ro

p
er

ti
es

w
it

h
te

m
p

or
al

sy
m

bo
ls
in
it

,d
ur
in
g

an
d
en
d,

in
vo

lv
ed

in
th

e
sh

or
te

st
p

at
hs

(s
ol

id
ed

ge
s)

,a
re

in
cl

u
d

ed
in

th
e

d
es

cr
ip

ti
on

of
th

e
in

fe
rr

ed
go

al
.

97

Chapter 5. Learning Planning Knowledge

?pawrt) in the above example. This inferred goal was shown as part of the activity

schema for the ‘ServeACoffee’ task in Listing 3.4 on page 53.

The current goal inference approach does not warrant that a set of goal propo-

sitions can always be extracted from experiences. The existence of a set of goal

propositions depends on the information included in the experience.

5.7 Summary

Machine learning enables intelligent systems to perform tasks and improve their

capabilities by learning from examples over the time. Over the years, machine

learning techniques have had great success in many applications such as robotics

(Chernova and Thomaz, 2014) and planning (Jiménez et al., 2012). In this chap-

ter, we used several learning techniques to improve domain theory by acquiring

new knowledge from experiences. We specifically proposed methods, within the

formal framework of EBPDs (Chapter 3), for generating activity schemata, i.e.,

generic solutions to a class of tasks including possible loops of actions, from robot

activity experiences. We used an explanation-based generalization approach to

form a concept from a single experience. Abstraction was used to reduce compu-

tation efforts and achieve more compact and widely applicable activity schemata.

Loops are detected and integrated into the learned activity schemata to increase

the applicability of the learned concepts by repeating sequences of actions for dif-

ferent sets of objects in the target task problems. The computed scope of applica-

bility for the resulting activity schemata may not be sufficient, but can still provide

useful information to decide if a learned activity schema is relevant for a partic-

ular problem. Using the proposed techniques, the obtained activity schemata can

be applied more generally to solve many problems.

98

Chapter 6

Planning Using the Learned
Knowledge

Problem solving in EBPDs is achieved using a hierarchical problem solver which

includes an abstract planner and a concrete planner. The abstract planner derives

an abstract solution to a given task problem by following a learned activity schema.

Then the concrete planner follows the abstract solution and fills the necessary de-

tails to derive a concrete solution. This chapter presents the developed planning

system. First, we present a method of transforming a given concrete task prob-

lem into an abstract task problem (Section 6.1). Then, a learned activity schema

is retrieved for solving the given task problem taking into account the target task

and the scope of applicability of the activity schema (Section 6.2). We present an

abstract planner which transforms possible loops in the activity schema into se-

quences of abstract actions for the objects involved in the abstracted task problem

and generates an abstract plan without loops (Section 6.3). Finally, we present a

concrete planner to generate the final solution plan by refining the abstract plan

towards a concrete plan (Section 6.4). The overall planning process in EBPDs is

depicted in Figure 6.1.

6.1 Problem Abstraction

We propose a problem abstraction methodology for transforming a concrete task

problem into an abstract task problem. As explained in previous chapters, abstrac-

tion is intended to improve problem solving performance by initially ignoring less

relevant features of a problem and solving the problem in a coarse fashion with

less effort. Then, the derived abstract (skeletal) solution serves as a guide for solv-

ing the original concrete problem.

99

Chapter 6. Planning Using the Learned Knowledge

Planning Problem

Problem Abstraction

Activity Schema Retrieval

Abstract Planner (ASBP)

Concrete Planner (SBP)

Concrete plan

Abstraction Hierarchies

Abstract Domain

Concrete Domain +
Abstraction Hierarchies

Activity Schemata

Abstracted problem

Activity schema

Abstract plan

Figure 6.1: Flowchart of the planning system in EBPDs.

Based on the given concrete and abstract planning domains (Dc,Da) and the

predicate abstraction hierarchy (Definition 3.10) in an EBPD, the abstraction of a

concrete task planning problem is achieved by transforming the concrete predi-

cates into abstract predicates, which results in reducing the level of detail in the

concrete task planning problem (see Algorithm 6).

A concrete task planning problem for ‘Stack_N_Blue’ in the Stacking-Blocks

EBPD, containing 10 blue blocks, is shown in Listing 6.1. Listing 6.2 shows this

task planning problem after abstraction. This abstraction is achieved using the

predicate abstraction hierarchy in Table 3.3. The derived abstract task planning

problem is the key input for retrieving an applicable activity schema and generat-

ing an abstract solution.

100

Chapter 6. Planning Using the Learned Knowledge

Algorithm 6 Problem Abstraction (ProbAbstraction)

input:
– ∆= (L,Da,Dc,A,E,M) . an experience-based planning domain (Def. 3.17)

– P= (t,σ,s0,g) . a concrete task planning problem (Def. 3.6)

output:
– Pa = (t,σa,s0a,ga) . an abstracted task planning problem

1 σa←∅
2 s0a←∅
3 ga←∅
4 for all p in σ do
5 if parent(p) , ∅ then
6 σa← σa ∪ {parent(p)}

7 for all p in s0 do
8 if parent(p) , ∅ then
9 s0a← s0a ∪ {parent(p)}

10 for all p in g do
11 if parent(p) , ∅ then
12 ga← ga ∪ {parent(p)}
13 return (t,σa,s0a,ga)

6.2 Activity Schema Retrieval

After generating an abstracted task problem from a concrete task problem, the

planning system retrieves an applicable activity schema for solving the (abstracted)

task problem. An activity schema is applicable for solving a task planning prob-

lem if: (i) the task achieved by the activity schema is unifiable with the task of the

target problem, e.g., the task of the ‘Stack_N_Blue’ activity schema (Stack_N_Blue

?table ?pile) in Listing 5.6 unifies with the task of the abstracted task problem

(Stack_N_Bluetable1pile1) in Listing 6.2 with ?table bound to table1 and ?pile

bound to pile1; and (ii) the abstracted task planning problem is embedded in the

scope of the activity schema, i.e., the abstracted task planning problem maps onto

the scope of the activity schema.

To see how the abstracted task planning problem Pa = (t,σa,s0a,ga) is embed-

ded in the scope of an activity schema, we first simulate the set of key-properties K

for Pa by wrapping the predicates of σa, s0a and ga with temporal symbols during,

init and end, respectively:

K← {during(p) | p ∈ σ}∪ {init(p) | p ∈ s0}∪ {end(p) | p ∈ g} . (6.1)

101

Chapter 6. Planning Using the Learned Knowledge

1 (define (problem Stack_N_Blue)
2 (: domain stacking -blocks)
3 (: parameters table1 pile1)
4 (: objects location1 hoist1 pallet1 block1 block2 block3 block4 block5 block6

block7 block8 block9 block10)
5 (: static (pile pile1)
6 (table table1)
7 (location location1)
8 (hoist hoist1)
9 (attached pile1 location1)

10 (attached table1 location1)
11 (belong hoist1 location1)
12 (pallet pallet1)
13 (block block1)
14 (block block2)
15 (block block3)
16 (block block4)
17 (block block5)
18 (block block6)
19 (block block7)
20 (block block8)
21 (block block9)
22 (block block10)
23 (blue block1)
24 (blue block2)
25 (blue block3)
26 (blue block4)
27 (blue block5)
28 (blue block6)
29 (blue block7)
30 (blue block8)
31 (blue block9)
32 (blue block10))
33 (:init (top pallet1 pile1)
34 (ontable block1 table1)
35 (ontable block2 table1)
36 (ontable block3 table1)
37 (ontable block4 table1)
38 (ontable block5 table1)
39 (ontable block6 table1)
40 (ontable block7 table1)
41 (ontable block8 table1)
42 (ontable block9 table1)
43 (ontable block10 table1)
44 (at hoist1 table1)
45 (empty hoist1))
46 (:goal (on block1 pallet1)
47 (on block2 block1)
48 (on block3 block2)
49 (on block4 block3)
50 (on block5 block4)
51 (on block6 block5)
52 (on block7 block6)
53 (on block8 block7)
54 (on block9 block7)
55 (on block10 block7)
56 (top block10 pile1)))

Listing 6.1: A concrete task planning problem for the ‘Stack_N_Blue’ task, containing 10 blue
blocks, in the Stacking-Blocks domain.

Then K is converted to a 2-valued logical structure (as described in Section 5.5)

and, for each activity schema available for the target task, the 2-valued logical

structure is checked to see if it is embedded in the 3-valued logical structure rep-

102

Chapter 6. Planning Using the Learned Knowledge

1 (define (problem Stack_N_Blue)
2 (: domain stacking -blocks)
3 (: parameters table1 pile1)
4 (: objects pallet1 block1 block2 block3 block4 block5 block6 block7 block8

block9 block10)
5 (: static (pile pile1)
6 (table table1)
7 (pallet pallet1)
8 (block block1)
9 (block block2)

10 (block block3)
11 (block block4)
12 (block block5)
13 (block block6)
14 (block block7)
15 (block block8)
16 (block block9)
17 (block block10)
18 (blue block1)
19 (blue block2)
20 (blue block3)
21 (blue block4)
22 (blue block5)
23 (blue block6)
24 (blue block7)
25 (blue block8)
26 (blue block9)
27 (blue block10))
28 (:init (top pallet1 pile1)
29 (ontable block1 table1)
30 (ontable block2 table1)
31 (ontable block3 table1)
32 (ontable block4 table1)
33 (ontable block5 table1)
34 (ontable block6 table1)
35 (ontable block7 table1)
36 (ontable block8 table1)
37 (ontable block9 table1)
38 (ontable block10 table1))
39 (:goal (on block1 pallet1)
40 (on block2 block1)
41 (on block3 block2)
42 (on block4 block3)
43 (on block5 block4)
44 (on block6 block5)
45 (on block7 block6)
46 (on block8 block7)
47 (on block9 block7)
48 (on block10 block7)
49 (top block10 pile1)))

Listing 6.2: The abstracted task problem for the ‘Stack_N_Blue’ task of Listing 6.1. Compared
to the input task problem, predicates related to the objects location and hoist are omitted in the
abstracted task problem.

resenting the scope of applicability of that activity schema:

Definition 6.1 (Embedding). Let C = (U, ι) be a 2-valued logical structure, repre-

senting an abstracted task problem, and S = (U ′, ι ′) a 3-valued logical structure,

representing the scope of an activity schema, over a set of temporal symbols T and

a set of predicate symbols P. We say that C is embedded in S, denoted by C v S, if

103

Chapter 6. Planning Using the Learned Knowledge

there exists a surjective function f : U→ U ′ such that for every temporal symbol

τ ∈ T , predicate symbol p(k) ∈ P of arity k, and objects u1, ...,uk ∈ U, one of the

following conditions holds:

ι(τ,p)(u1, ...,uk) = ι ′(τ,p)(f(u1), ...,f(uk)) or

ι ′(τ,p)(f(u1), ...,f(uk)) = 1/2 .
(6.2)

�

Using the above embedding function, the planning system finds an applica-

ble activity schema m = (t,S,G,Ω) to an abstracted task planning problem Pa =

(t,σa,s0a,ga) by first checking if the tasks in m and Pa are syntactically unifiable,

and then building a set of key-properties K for Pa (6.1) and checks if K maps onto

S, i.e., checks whether Struct(K)v S holds.

Note that if there are several learned activity schemata for Pa, the most recent

one is used by the planner. In case of failure, the next recent one is used, and so

on. If there exists no activity schema for Pa, the planning system cannot generate a

plan solution. In this case, supervised task teaching is used to teach a new activity

schema.

When an activity schema is retrieved for a task planning problem, the planning

system attempts to generate a solution plan for the task. Generating a solution

plan involves abstract planning to derive an abstract solution to the abstracted

task planning problem by following the retrieved activity schema. The abstract

planning may involve loops extension, i.e., determining concrete iterations of a

loop.

6.3 Abstract Planning

We develop an abstract planner, Abstract Schema-Based Planner (ASBP), to trans-

form the loops in a retrieved activity schema into sequences of abstract operators

and generate an abstract plan to solve the target abstracted problem (see Algo-

rithm 7). The planner follows the general approach proposed by Seabra Lopes

(1999). The idea is to search forward while following the activity schema. ASBP

takes as input an abstract planning domain Da = (La,Σa,Sa,Oa), an abstracted

task problem Pa = (t,σa,s0a,ga) and an activity schema m = (t,S,G,Ω), and re-

turns a grounded abstract plan π without loops. Line 1 creates the initial node of

the search tree. Each node retains a state s, the grounded abstract plan π without

loops built so far, the remaining part of the enriched abstract planΩ, the total cost

104

Chapter 6. Planning Using the Learned Knowledge

Algorithm 7 Abstract Schema-Based Planner (ASBP)

input:
– D= (L,Σ,S,O) . an abstract planning domain (Def. 3.5)

– P= (t,σ,s0,g) . an abstracted task planning problem (Def. 3.6)

– m= (t,S,G,Ω0) . an applicable activity schema (Def. 3.16)

output:
– π . a grounded abstract plan without loops (Def. 3.7)

1 Open← {(s0,∅,Ω0,0,0)} . initialize the root

2 while Open , ∅ do
3 (s,π,Ω,f,c)← pick a node with the lowest f from Open

4 if (g , ∅∧g⊆ s) ∨ (g== ∅∧Ω== ∅) then
5 return π
6 if head(Ω) is a loop then . create two parallel branches

7 step(s,π,head(Ω)+Ω,f,c) . continue loop

8 step(s,π,tail(Ω),f,c) . terminate loop

9 else
10 step(s,π,Ω,f,c)
11 return failure

12 procedure step(s,π,Ω,f,c) . generate successors of the front abstract operator inπ

13 (o,F)← head(Ω) . pick the front enriched abstract operator (Def. 3.15)

14 A← {abstract actions applicable to s instantiated from o}

15 for each abstract action a ∈A do
16 sn← γ(s,a) . state-transition function

17 F ′← extract features of a . Alg. 3

18 k← number of features in F
19 v← number of features in F verified in F ′

20 cn← c+ cost(s,a) · (k+ 1)/(v+ 1) . cost(s,a) = 1

21 if no node with the same s and Ω, and lower f is in Open then
22 Open← add (sn,π ·a,tail(Ω),cn+h+(sn),cn)

f, and the cost c of the path from the start node to the current node (line 1). In

each planning iteration, a leaf node with the lowest f value is retrieved (line 3).

ASBP selects the front enriched abstract operator, head(Ω), and instantiates it, i.e.,

develops the search tree (lines 6–10). If head(Ω) is a loop (line 6), the planner gen-

erates successors for two alternatives: (i) it adds an iteration of the loop to the front

of Ω, i.e, head(Ω) +Ω (line 7); and, (ii) skips the loop and moves on to the next

abstract operator in Ω, i.e, tail(Ω) (line 8). This way, successors are generated by

applying, not only abstract actions instantiated from the front enriched abstract

operator inside the loop, but also abstract actions instantiated from the following

enriched abstract operator after the loop. The key idea is to generate all successors

105

Chapter 6. Planning Using the Learned Knowledge

Figure 6.2: Assume that (ab)∗cd is an enriched abstract plan, in which each letter represents an
enriched abstract operator and (ab)∗ represents a loop. ASBP generates two classes of successors
when gets to a loop in an abstract plan: (i) ASBP generates an iteration of the loop and appends it
to the beginning of the abstract plan and generates the successors for the obtained abstract plan,
i.e., ab(ab)∗cd in the figure; and (ii) ASBP skips the loop and generates the successors for the rest of
the abstract plan, i.e., cd in the figure. ASBP then picks a successor with the lowest cost to develop.
This procedure either extends or skips a loop.

of the front enriched abstract operator inside the loop (line 7), and of the follow-

ing enriched abstract operator after the loop (line 8), and to develop a successor

with the lowest cost, hence the planner either continues or terminates the loop,

based on the cost of the generated successors. This idea is illustrated in Figure 6.2.

On line 10, if head(Ω) is not a loop, successors are generated by applying abstract

actions instantiated from head(Ω).

The core of ASBP is the procedure step, used to generate all successors for the

class of the front enriched abstract operator in a given enriched abstract plan. On

line 13, step selects the front enriched abstract operator (o,F) and, on line 14, gen-

erates applicable abstract actions instantiated from o. On lines 15–20, the features

F ′ of each abstract action are verified with the features in F, and for each abstract

action a a cost cn is computed as,

cn = c+ cost(s,a) · (k+ 1)/(v+ 1), (6.3)

where k is the total number of features in F, v is the number of features in F ′ that

are verified in F (i.e., the unground features in F should be syntactically unifiable

with ground features in F ′), and cost(s,a) is the real cost of a. This means the

applicable abstract actions that verify all features in F, gain the lower cost, and

abstract actions with the lower percentage of verified features, gain higher cost. On

line 22, the planner appends a to the current grounded abstract plan (π ·a); moves

forward on the rest of the enriched abstract plan, i.e., tail(Ω); and computes the

total cost as cn + h+(sn). The heuristic function h+ estimates the cost from the

current state to the goal g (i.e., we used an additive heuristic function). Note that the

h+ is extremely efficient since the ASBP works on abstract planning domain and

abstract task problem. On line 4, ASBP stops when, either the goal g is achieved

106

Chapter 6. Planning Using the Learned Knowledge

in a goal state sg (if g is not empty, depending on the problem formulation of the

EBPD (see Section 3.4)); or Ω is empty, i.e., ASBP reaches the end of the enriched

abstract plan (if g is empty).

6.4 Concrete Planning

A grounded abstract plan produced by ASBP forms the main skeleton of the fi-

nal solution. The basic idea is to refine the grounded abstract plan by generating

and substituting concrete actions for the abstract actions. This also involves gen-

erating and inserting actions from the ∅ (nil) class (see Definition 3.11 and Sec-

tion 3.5). We present the Schema-Based Planner (SBP) in Algorithm 8, which takes

as input an EBPD, ∆ = (L,Da,Dc,A,E,M), and a concrete task planning problem

P= (t,σ,s0,g), and generates a concrete solution plan π for task t. Abstracted task

planning problem Pa is generated from P using the ProbAbstraction function

(see Algorithm 6). Using the Embedding function, introduced in Section 6.2 (see

Definition 6.1), SBP looks for an activity schema m ∈M applicable to solving task

t (line 2). Note that when an activity schema is found applicable to a task plan-

ning problem, the parameters of the activity schema are instantiated based on the

parameters of the task planning problem, i.e., they are bounded to the objects ap-

pearing as arguments of the task, and propagated throughout the activity schema.

For example, the variables ?table and ?pile, the arguments of the ‘Stack_N_Blue’

activity schema, shown in Listing 5.6, are bounded to table1 and pile1, the argu-

ments of the ‘Stack_N_Blue’ task problem, in Listing 6.2, respectively. Depending

on the problem formulation in an EBPD (see Section 3.4), if the set of goal propo-

sitions in P is empty, the GoalInstantiate function (see Algorithm 9) generates a

set of goal propositions for P by grounding the goal propositions in m based on

P. Goal instantiation is achieved by unifying the unground goal propositions inm

(see Section 5.5) with the world information in P. On line 4, the abstract planner

ASBP is called to generate a grounded abstract plan πa without loops (see Algo-

rithm 7). Line 5 creates the root node. In SBP, each node of the search tree retains

a state s, the concrete plan π built so far, the remaining part of the grounded ab-

stract plan πa, the total cost f, and the cost c of the path from the root node to

the current node. On each planning iteration, a node with the lowest f value is

retrieved (line 7). On lines 9–18, the planner selects the front grounded abstract

action, head(πa), and expands the search tree. SBP on each iteration either gen-

erates all concrete actions that have the head(πa) as parent (line 9), and moves

107

Chapter 6. Planning Using the Learned Knowledge

Algorithm 8 Schema-Based Planner (SBP)

input:
– ∆= (L,Da,Dc,A,E,M) . an experience-based planning domain (Def. 3.17)

– P= (t,σ,s0,g) . a concrete task planning problem (Def. 3.6)

output:
– π . a concrete solution plan (Def. 3.7)

1 Pa← ProbAbstraction(∆,P) . generate an abstracted task problem (Alg. 6)

2 m← Embedding(Pa,M) . find an applicable activity schemam (Def. 6.1)

3 g← GoalInstantiate(m,P) . instantiate the goal ofm based on the information in P (Alg. 9)

4 πa← ASBP(Da,Pa,m) . extend loops inm and generate a grounded abstract plan (Alg. 7)

5 Open← {(s0,∅,πa,0,0)} . initialize the root

6 while Open , ∅ do
7 (s,π,πa,f,c)← pick a node with the lowest f from Open

8 if (g , ∅∧g⊆ s) ∨ (g== ∅∧πa == ∅) then return π
9 A← {a ∈ O | action a is applicable to s, parent(a) = head(πa)}

. concrete actions applicable to s having head(πa) as their parents (Def.3.11)

10 if A , ∅ then
11 πa← tail(πa) . move forward onπa

12 else
13 A← {a ∈ O | action a is applicable to s, parent(a) = ∅}

. concrete actions applicable to s from thenil class (Def.3.11)

14 for each concrete action a ∈A do
15 cn← c+ cost(s,a) . cost(s,a) = 1

16 h← α · length(πa) . heuristic based on the length ofπa

17 if no node with the same s and πa, and lower f is in Open then
18 Open← add (γ(s,a),(π ·a),πa,(cn+h),cn)
19 return failure

forward on πa (line 11); or generates all concrete actions from the ∅ (nil) class

(line 13). In either case, SBP computes a cost cn ← c+ cost(s,a) (line 15), and

estimates a heuristic h as the length of the remaining abstract plan πa multiplied

by a factor α, i.e., h= α · length(πa) (line 16). The factor α is used to calibrate the

heuristic value to maximize search efficiency while ensuring admissibility. Em-

pirically, α can be estimated as the average number of actions in a real plan per

abstract action in the abstract plan, for example, in the Stacking-Blocks domain

we estimated α = 3 (see the number of concrete actions in Listing 5.2 compared

to the number of abstract actions in Listing 5.3). Note that the lowest value of α

may cause to underestimate the cost of reaching the goal, and the highest value

may cause to overestimate the actual cost. Determining a suitable value of α may

require some experimentation depending on the used domain.

108

Chapter 6. Planning Using the Learned Knowledge

Algorithm 9 Goal Instantiation (GoalInstantiate)

input:
– P= (t,σ,s0,g) . a task planning problem (Def. 3.6)

– m= (t,S,G,Ω) . an activity schema (Def. 3.16)

output:
– g . the set of grounded goal propositions

1 if g== ∅ then
2 g←G with the grounded variables corresponding to the args(t)
3 for all τ(p) in G where τ= during do
4 g← g∪ {unify(τ(p),σ)}
5 for all τ(p) in G where τ= init do
6 g← g∪ {unify(τ(p),s0)}

7 g← {p | τ(p) ∈ g,τ= end}
8 return g

On line 18, the planner appends the current action a to the concrete plan (π ·a)

and computes a total cost cn+h, and inserts a new node in the search tree. Finally,

on line 8, a concrete solution plan is successfully generated when either the goal g

is achieved in a state s, if g is not empty; or Ω is empty, if the goal g is empty.

6.5 Summary

This chapter completes our development of methods for experience-based prob-

lem solving in EBPDs. We proposed a hierarchical problem solver which derives

a solution plan for a problem using two levels of abstract and concrete planning.

Abstract planning applies an activity schema to derive an abstract skeletal solu-

tion plan to the given task problem by extending the possible loops to objects in the

problem description. During abstract planning, an abstract problem description

is achieved by dropping sentences of the concrete problem description. Ignoring

such sentences leads to an abstract solution useful to reduce the search at the more

concrete planning level. The obtained abstract solution serves as the main skeleton

of the final concrete solution during the concrete planning.

109

Chapter 6. Planning Using the Learned Knowledge

110

Chapter 7

Implementation, Demonstration and
Evaluation

In this chapter, we present the system demonstrations and the results of our ex-

periments with different classes of problems in both real and simulated environ-

ments. The results involve different aspects of the system in the course of its de-

velopment. Each experiment involves three phases, namely experience gathering,

activity schema learning and planning to solve a new problem. We used two real

robotic platforms to demonstrate the utility of our system. The first demonstration

was performed within the RACE project1 on a real PR2 (Section 7.3). The second

demonstration, performed in a robotic arm JACO, shows the utility of loops in solv-

ing a class of problems (Section 7.4). In addition to real robot demonstrations, we

carry out systematic performance evaluation experiments in EBPDs based on clas-

sical planning domains well-known in automated planning literature (Section 7.5).

7.1 Prototyping and Implementation

We implemented a prototype of our system in SWI-Prolog, which is a general-

purpose logic programming language for fast prototyping artificial intelligence

techniques, and used TVLA (Lev-Ami et al., 2004) as an engine, implemented in

Java, for computing the scope of applicability of activity schemata. However, some

modules are based on old resources including the generalization algorithm and its

respective implementation in SWI-Prolog, from (Seabra Lopes, 1997), and the

textual interface implemented in Python, from (Chauhan et al., 2013). We ran all

experiments in simulated domains and simulated robot platforms, e.g., PR2, on a

machine 2.20GHz Intel Core i7 with 12G memory.

1RACE (Robustness by Autonomous Competence Enhancement) http://project-race.eu/

111

http://project-race.eu/

Chapter 7. Implementation, Demonstration and Evaluation

7.2 Evaluation Metrics

We used the metrics penetrance, average branching factor and effective branching fac-
tor to evaluate the performance of the learning and planning system in solving

new problems.

The penetrance is the extent to which the search has focused toward the goal

(Russell and Norvig, 2010). It shows how the extracted features guide the planner

to avoid developing irrelevant nodes during the search:

Definition 7.1 (Penetrance). The penetrance ratio, denoted by P , of a search is:

P =
L

X
, (7.1)

where L is the length of the generated plan, and X is the total number of nodes

expanded during search, i.e., nodes popped out of the open queue for expansion.

�

The average branching factor is the average number of successors generated for

each node in a search problem:

Definition 7.2 (Average Branching Factor). The average branching factor, de-

noted by R, of a search is:

R=
N− 1
X

, (7.2)

where N is the total number of nodes generated during the search and X is the

number of expanded nodes. �

The effective branching factor (Nilsson, 1980; Manickam, 1985) is a measure of

the heuristic’s usefulness.

Definition 7.3 (Effective Branching Factor). The effective branching factor B is

the average number of branches at any given node in a uniform search tree, speci-

fied by:

N=
BL+1 − 1
B− 1

, (7.3)

where L is the plan length and N is the total number of nodes generated during

the search. �

112

Chapter 7. Implementation, Demonstration and Evaluation

7.3 The RACE Demonstrations and Results

The proposed system was initially developed in the framework of the RACE project

(see Sections 1.3 and 3.1.1). We present here the main demonstrations carried out

during the course of the project. This demonstration mainly focused on the in-

tegration of our system on a real PR2. It shows the utility of the learning and

planning system in its early stage of development. The loop detection and scope

inference procedures are not included in this experiment. The goal is not included

in task problems, therefore, in the conceptualization stage, the goal is automati-

cally inferred from experiences. In Section 3.1.1, and Tables 3.1 and 3.2 we have

already described and presented the abstract and concrete planning domains as

well as the abstraction hierarchies in the RACE EBPD.

In Section 4.1, we presented a description of the ‘ServeACoffee’ task scenarios

used within the RACE project: a scenario A for experiences-gathering, which is

then followed by experience-exploitation in a scenario B. Figure 7.1 shows the

initial states of the restaurant environment for scenarios A and B.

Experience gathering is based on the human-robot interaction mechanisms in-

troduced in Chapter 4. This interaction involves a sequence of human instruc-

tions to carry out and teach a task. The sequence of instructions in Listing 4.3

(on page 64 of Chapter 4) was used for teaching the robot the scenario A of the

‘ServeACoffee’ task. Each achieve instruction requests the robot to carry out a spe-

cific task. In RACE, the achieve instructions included compound HTN tasks for

which an HTN planner was used to generate a plan for each requested task in

achieve instructions, e.g, drive_robot, grasp_object, etc. (Stock et al., 2014; S̆.

Konec̆ný et al., 2014). The teach task instruction triggers the experience extractor

module which generates plan-based robot activity experiences. Figure 7.2 shows

snapshots of the main steps in executing a ‘ServeACoffee’ task in a fully physi-

cally simulated Gazebo environment with a PR2 in a restaurant environment. The

extracted ‘ServeACoffee’ experience in this scenario was shown in Listing 4.5 on

page 72 of Chapter 4 (see Chapter 4 for detailed description of human-robot inter-

action and experience gathering). A video of this teaching scenario on a real PR2

is available online: https://youtu.be/5Z6PJX6Ucfg.

Conceptualization is carried out immediately after extracting a plan-based robot

activity experience (as described in Chapter 5). The resulting activity schema for

113

https://youtu.be/5Z6PJX6Ucfg

Chapter 7. Implementation, Demonstration and Evaluation

counter1

mug1

table1 table2

guest1

sawt1

pmast1
mast1

pawrt1

fatr1

North

trix

(a) Scenario A.

counter1

mug1

table1 table2

guest1

sast2

pmaet2
maet2

paert2

fatr1

North

trixi

(b) Scenario B.

Figure 7.1: The initial states of the restaurant floor for the ‘ServeACoffee’ task in scenarios A and
B with trixi PR2. In both scenarios, trixi is taught to place mug1 on the right side of guest1 at
table1 and table2 respectively.

‘ServeACoffee’ experience was shown in Listing 3.4 on page 53 in Chapter 3. 2

After teaching the ‘ServeACoffee’ task, we set up the scenario B and demon-

strated the performance of the planning system on a real PR2. A video of the

operation of the planning system on the real PR2 is available online: https://

youtu.be/mjrP3hiMRnw.

In addition to the ‘ServeACoffee’ task, we used a ‘ClearATable’ task in the RACE

domain, including a scenario A to teach and learn the task, and several test scenar-

ios to evaluate the performance of the learned concept in new contexts. Figure 7.3

2 The original experiences, learned activity schemata and given task problems used in this ex-
periment are available online: https://github.com/mokhtarivahid/icaps2016/.

114

https://youtu.be/mjrP3hiMRnw
https://youtu.be/mjrP3hiMRnw
https://github.com/mokhtarivahid/icaps2016/

Chapter 7. Implementation, Demonstration and Evaluation

Figure 7.2: An example of the execution of a ‘ServeACoffee’ task with a PR2 robot in Gazebo sim-
ulated environment according to the instructions in Listing 4.5 (in Chapter 4). In this scenario,
robot moves to the counter1 (top-left), picks up mug1 from the counter (top-right), moves to the
table1 (bottom-left), and puts the mug on the table in front of a guest (bottom-right).

counter1

mug1

table1 table2

paert1

pawrt1

fatr1

North

trixi

mug2

Figure 7.3: The initial state of the restaurant floor for the ‘ClearATable’ task in scenario A. The
trixi PR2 robot is taught to clear table1.

shows the initial state of the restaurant environment for the ‘ClearATable’ task in

scenario A. To evaluate the planning system over the learned activity schemata,

we used three test scenarios in both ‘ServeACoffee’ and ‘ClearATable’ tasks. The

test scenarios differ in the initial location and configuration of the robot and in

the number of objects and their positions in the world state. Listing 7.1 shows the

plan executed in the teaching scenario of ‘ServeACoffee’ as well as the plans gen-

erated for the three test scenarios (based on the learned activity schema). Table 7.1

presents the performance metrics for the ‘ServeACoffee’ and ‘ClearATable’ tasks in

test scenarios.

115

Chapter 7. Implementation, Demonstration and Evaluation

Original experience of: (ServeACoffee ?mug1 ?guest1 ?table ?counter)

1. (tuck_arms aunp aunp aunp0 aunp1 atp atp atp7 atp13)
2. (move_base fatr1 pmaec1)
3. (move_torso torso1 tdp tdp0 tup tup2)
4. (tuck_arms atp atp atp7 atp13 autp atp autp5 atp1002)
5. (move_arm_to_side leftarm1 autp autp5 atsp21)
6. (move_arm_to_side rightarm1 autp autp9 atsp23)
7. (move_base_blind_to_ma pmaec1 maec1)
8. (pick_up_object mug1 rightarm1)
9. (move_base_blind_to_pma maec1 pmaec1)
10. (move_arms_to_carryposture atsp atsp atsp21 atsp33 acp37 acp39)
11. (move_torso torso1 tup tup2 tmp tmp4)
12. (move_base pmaec1 pmast)
13. (move_torso torso1 tmp tmp4 tup tup6)
14. (move_arm_to_side rightarm1 acp acp39 atsp53)
15. (move_base_blind_to_ma pmast mast1)
16. (place_object mug1 rightarm1 pawrt1)
17. (move_base_blind_to_pma mast1 pmast)

Experiment #1

1. (move_base fatr1 pmaec1)
2. (move_torso torso1 tdp tdp0 tup tup307)
3. (move_base_blind_to_ma pmaec1 maec1)
4. (tuck_arms atp atp atp0 atp1 autp autp autp1101 autp1102)
5. (move_arm_to_side leftarm1 autp autp1101 asp1174)
6. (pick_up_object mug1 leftarm1)
7. (move_base_blind_to_pma maec1 pmaec1)
8. (move_torso torso1 tup tup307 tmp tmp2404)
9. (move_arms_to_carryposture asp autp asp1174 autp1102 acp2414 acp2415)
10. (move_base pmaec1 pmast1)
11. (move_torso torso1 tmp tmp2404 tup tup4595)
12. (move_base_blind_to_ma pmast1 mast1)
13. (move_arm_to_side leftarm1 acp acp2414 asp5011)
14. (place_object mug1 leftarm1 pawrt1)
15. (move_base_blind_to_pma mast1 pmast1)

Experiment #2

1. (tuck_arms aunp aunp aunp0 aunp1 atp atp atp106 atp107)
2. (move_base fatr1 pmaec1)
3. (move_torso torso1 tdp tdp0 tup tup398)
4. (move_base_blind_to_ma pmaec1 maec1)
5. (tuck_arms atp atp atp106 atp107 autp autp autp1192 autp1193)
6. (move_arm_to_side leftarm1 autp autp1192 asp1278)
7. (pick_up_object mug2 leftarm1)
8. (move_base_blind_to_pma maec1 pmaec1)
9. (move_torso torso1 tup tup398 tmp tmp2626)
10. (move_arms_to_carryposture asp autp asp1278 autp1193 acp2636 acp2637)
11. (move_base pmaec1 pmant1)
12. (move_torso torso1 tmp tmp2626 tup tup5822)
13. (move_base_blind_to_ma pmant1 mant1)
14. (move_arm_to_side leftarm1 acp acp2636 asp6358)
15. (place_object mug2 leftarm1 paert1)
16. (move_base_blind_to_pma mant1 pmant1)

Experiment #3

1. (move_torso torso1 tup tup0 tdp tdp110)
2. (tuck_arms aunp aunp aunp0 aunp1 atp atp atp132 atp133)
3. (move_base fatr1 pmaec1)
4. (move_torso torso1 tdp tdp110 tup tup554)
5. (move_base_blind_to_ma pmaec1 maec1)
6. (tuck_arms atp atp atp132 atp133 autp autp autp1348 autp1349)
7. (move_arm_to_side leftarm1 autp autp1348 asp1460)
8. (pick_up_object mug3 leftarm1)
9. (move_base_blind_to_pma maec1 pmaec1)
10. (move_torso torso1 tup tup554 tmp tmp4058)
11. (move_arms_to_carryposture asp autp asp1460 autp1349 acp4068 acp4069)
12. (move_base pmaec1 pmaet2)
13. (move_torso torso1 tmp tmp4058 tup tup9249)
14. (move_base_blind_to_ma pmaet2 maet2)
15. (move_arm_to_side leftarm1 acp acp4068 asp9875)
16. (place_object mug3 leftarm1 pasrt2)
17. (move_base_blind_to_pma maet2 pmaet2)

Listing 7.1: The plan followed in the original experience of the ‘ServeACoffee’ task, and the plans
generated for three given task problems of the same class. Depending on the given task problems,
plans with different lengths and different sequences of actions were generated.

116

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.1: Evaluation metrics in the ‘ServeACoffee’ and ‘ClearATable’ tasks.

Task ServeACoffee ClearATable

Experiment #1 #2 #3 #1 #2 #3
Plan length (L) 15 16 17 15 16 17
Expanded nodes (X) 210 255 485 224 204 230
Search tree size (N) 787 960 1792 705 732 895
Penetrance (%) (P) 7.12 6.27 3.50 6.69 7.84 7.39
Average branching factor (R) 3.74 3.76 3.69 3.14 3.58 3.88
Effective branching factor (B) 1.44 1.42 1.45 1.42 1.39 1.38

7.4 Robotic Arm Demonstration and Results

We also demonstrated the integration of our system into a real robotic arm JACO,

delivered by Kinova Robotics. This is a lightweight assistive robotic device that

is used to perform various functions in many applications. For this purpose,

we developed a Jaco EBPD. Tables 7.2 and 7.3 show the predicate and operator

abstraction hierarchies in the Jaco EBPD. Full descriptions of the abstract and

concrete planning domains can be found in: https://github.com/mokhtarivahid/

prletter2017/tree/master/extra/jaco. We use a ‘JacoClearATable’ task in this

EBPD with three different scenarios: one for teaching a task to the robot, and two

for evaluating the performance of the learned activity schema. The main objective

in this task is to clear a table by removing objects from the table and placing them

on a tray. This demonstration is intended to show the utility of loops in solving a

class of problems with varying sets of objects in a real robot platform. Loop de-

tection and scope inference procedures are included in this experiment. The goal

inference procedure is not included since it is assumed that the goal descriptions

are given in the task problem descriptions. The sequence of instructions (List-

ing 7.2) provided by the human user resulted in generating an experience for this

task (Listing 7.3). Conceptualization derives an activity schema (Listing 7.4) im-

mediately after extracting the experience. Figure 7.4(a) shows the 2-valued logical

structure representing the ‘JacoClearATable’ experience (as in Listing 7.3), and

Figure 7.4(b) shows the 3-valued logical structure representing the scope of the

‘JacoClearATable’ activity schema (as in Listing 7.4). Figure 7.5 shows snapshots

of teaching the ‘JacoClearATable’ task to the robot with two objects on the table.

To demonstrate the performance of the system in solving problems, we used

two test scenarios, one with three objects on the table and the other with four

117

https://github.com/mokhtarivahid/prletter2017/tree/master/extra/jaco
https://github.com/mokhtarivahid/prletter2017/tree/master/extra/jaco

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.2: Predicate abstraction hierarchy in the Jaco EBPD.

Abstract predicates Concrete predicates
(table ?table) (table ?table)
(tray ?table) (tray ?table)

(object ?object) (object ?object)
(holding ?object) (holding ?arm ?object)

(on ?object ?table) (on ?object ?table)
(in ?object ?tray) (in ?object ?tray)

∅ (arm ?arm)
∅ (reach ?arm ?table)
∅ (at ?arm ?table)
∅ (free ?arm)
∅ (detected ?arm ?object ?table)

Table 7.3: Operator abstraction hierarchy in the Jaco EBPD.

Abstract operators Concrete operators
(pick ?object ?table) (pick_up_object ?arm ?object ?table)
(place ?object ?tray) (place_object ?arm ?object ?tray)

∅ (detect_pose_object ?arm ?object ?table)
∅ (move_arm ?arm ?from ?to)
∅ (carry_object ?arm ?object ?from ?to)

objects. We observed that the robot successfully carried out these two tasks. The

system was integrated with the work of Shafii et al. (2016), where a robotic arm

learns to grasp different objects through kinesthetic teaching and object category

learning (Kasaei et al., 2015). Videos of this demonstration are available online in

https://goo.gl/zFhm30.

1 achieve detect_pose_object jaco1 obj1 table1
2 achieve pick_up_object jaco1 obj1 table1
3 achieve carry_object jaco1 obj1 table1 tray1
4 achieve detect_pose_object jaco1 obj1 tray1
5 achieve place_object jaco1 obj1 tray1
6 achieve move_arm jaco1 tray1 table1
7 achieve detect_pose_object jaco1 obj2 table1
8 achieve pick_up_object jaco1 obj2 table1
9 achieve carry_object jaco1 obj2 table1 tray1

10 achieve detect_pose_object jaco1 obj2 tray1
11 achieve place_object jaco1 obj2 tray1
12 teach_task JacoClearATable table1

Listing 7.2: The instructions used to teach the robotic arm the ‘JacoClearATable’ task.

118

https://goo.gl/zFhm30

Chapter 7. Implementation, Demonstration and Evaluation

1 (: experience JacoClearATable
2 :parameters (table1 tray1)
3 :key -properties ((init(on obj1 table1))
4 (init(on obj2 table1))
5 (init(free jaco1))
6 (init(at jaco1 table1))
7 (during(object obj1))
8 (during(object obj2))
9 (during(arm jaco1))

10 (during(reach jaco1 table1))
11 (during(reach jaco1 tray1))
12 (during(table table1))
13 (during(tray tray1))
14 (end(in obj1 tray1))
15 (end(in obj2 tray1))
16 (end(free jaco1))
17 (end(at jaco1 tray1)))
18 :plan ((detect_pose_object jaco1 obj1 table1)
19 (pick_up_object jaco1 obj1 table1)
20 (carry_object jaco1 obj1 table1 tray1)
21 (detect_pose_object jaco1 obj1 tray1)
22 (place_object jaco1 obj1 tray1)
23 (move_arm jaco1 tray1 table1)
24 (detect_pose_object jaco1 obj2 table1)
25 (pick_up_object jaco1 obj2 table1)
26 (carry_object jaco1 obj2 table1 tray1)
27 (detect_pose_object jaco1 obj2 tray1)
28 (place_object jaco1 obj2 tray1)))

Listing 7.3: An experience for the ‘JacoClearATable’ task problem in the Jaco EBPD.

1 (:activity -schema JacoClearATable
2 :parameters (?table ?tray)
3 :scope ((summary (during(object)))
4 (init(on (during(object)) (during(table))))
5 (during(table (during(table))))
6 (during(object (during(object))))
7 (during(tray (during(tray))))
8 (end(in (during(object)) (during(tray)))))
9 :abstract -plan ((loop ((! pick ?obj1 ?table)

10 ((init(on ?obj1 ?table))
11 (during(object ?obj1))
12 (during(table ?table))
13 (end(in ?obj1 ?tray))))
14 ((! place ?obj1 ?tray)
15 ((init(on ?obj1 ?table))
16 (during(object ?obj1))
17 (during(tray ?tray))
18 (end(in ?obj1 ?tray)))))))

Listing 7.4: The learned activity schema for the ‘JacoClearATable’ task with a loop of actions and
its scope of applicability, in the Jaco EBPD.

For evaluating our system more systematically in the ‘JacoClearATable’ task,

we generated a set of ‘JacoClearATable’ task problems with varying number of

objects, ranging from 10 to 30 in each problem, and evaluated the performance of

our system in this set of problems. Table 7.4 presents the performance metrics of

the planning system in this experiment. We also compared the obtained results

119

Chapter 7. Implementation, Demonstration and Evaluation

?table during(table) ?tray during(tray)

?obj1

 init(on) end(in)

 during(object) ?obj2

 init(on) end(in)

 during(object)

(a) A concrete structure C.

{(during,object)} during(object)

{(during,table)}

 init(on)

{(during,tray)}

 end(in)

 during(table) during(tray)

(b) An abstract structure S= β(C).

Figure 7.4: The canonical abstraction of the ‘JacoClearATable’ experience (in Listing 7.3) in the
Jaco EBPD, which represents the scope of applicability of the ‘JacoClearATable’ activity schema.
This abstract structure S represents all ‘JacoClearATable’ problems that have exactly one table,
one tray and at least one object such that objects are initially on the table and finally in the tray.

Figure 7.5: From left to right, robot moves to the cup, picks up the cup from the table, carries the
cup, and place it on the tray.

120

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.4: Evaluation metrics for SBP in the ‘JacoClearATable’ task in the Jaco domain.

Problem Plan Expanded Search Penetrance (%) Average Effective
length (L) nodes (X) tree size (N) (P) branching branching

factor (R) factor (B)
p1 41 62 108 66.13 1.726 1.041
p2 45 68 124 66.18 1.809 1.039
p3 48 72 138 66.67 1.903 1.038
p4 52 78 156 66.67 1.987 1.036
p5 56 84 175 66.67 2.071 1.035
p6 61 92 198 66.30 2.141 1.033
p7 65 98 219 66.33 2.224 1.032
p8 69 104 241 66.35 2.308 1.032
p9 73 110 264 66.36 2.391 1.030
p10 77 116 288 66.38 2.474 1.029
p11 81 122 313 66.39 2.557 1.028
p12 85 128 339 66.41 2.641 1.027
p13 88 132 363 66.67 2.742 1.027
p14 93 140 394 66.43 2.807 1.026
p15 97 146 423 66.44 2.890 1.025
p16 100 150 450 66.67 2.993 1.025
p17 105 158 484 66.46 3.057 1.024
p18 108 162 513 66.67 3.160 1.024
p19 113 170 549 66.47 3.224 1.023
p20 117 176 583 66.48 3.307 1.022

with a state-of-the-art planner, Madagascar (M) (Rintanen, 2012), based on four

measures: time, number of expanded nodes, plan length and memory (see Table 7.5).

Note that the time comparison is not accurate (not fair for SBP) in this evaluation,

since SBP has been implemented in Prolog, in contrast to Madagascar planner,

which has been implemented in C++. Madagascar was slightly faster than SBP,

while SBP, by contrast, is efficient in terms of memory and expanded nodes in the

search tree. Figure 7.6 summarizes the performance of the two planners.

The original experience, the learned activity schema and given task problems

used in this experiment are available online by the link: https://github.com/

mokhtarivahid/prletter2017/.

7.5 Standard Planning Domains

In addition to the real robot demonstrations, we developed two EBPDs based on

classical planning domains well-known in the automated planning literature, and

evaluated our system in different classes of tasks in these EBPDs.

121

https://github.com/mokhtarivahid/prletter2017/
https://github.com/mokhtarivahid/prletter2017/

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.5: Performance of the SBP and Madagascar (M) planners in the ‘JacoClearATable’ task in
Jaco domain.

Problem/ Total time (s) Memory (MB) Expanded nodes Plan length
(#objects) SBP M SBP M SBP M SBP M
p1 (10) 0.84 0.00 2.0 24.4 62 806 41 41
p2 (11) 0.92 0.01 2.2 24.6 68 827 45 45
p3 (12) 0.11 0.01 2.2 24.6 72 691 48 48
p4 (13) 0.10 0.00 2.6 26.9 78 1204 52 52
p5 (14) 0.11 0.01 2.9 27.2 84 1243 56 56
p6 (15) 0.12 0.02 3.3 29.8 92 1847 61 61
p7 (16) 0.15 0.02 3.6 29.8 98 1727 65 65
p8 (17) 0.16 0.03 3.9 30.0 104 1796 69 69
p9 (18) 0.16 0.03 4.2 34.6 110 2395 73 73
p10 (19) 0.18 0.04 4.2 34.6 116 2456 77 77
p11 (20) 0.18 0.04 4.6 37.5 122 3125 81 81
p12 (21) 0.21 0.05 5.0 35.7 128 3259 85 85
p13 (22) 0.22 0.05 5.2 38.0 132 3295 88 88
p14 (23) 0.24 0.07 5.7 40.8 140 3962 93 93
p15 (24) 0.25 0.06 6.1 41.4 146 3977 97 97
p16 (25) 0.27 0.09 6.4 44.5 150 5150 100 100
p17 (26) 0.30 0.09 6.9 43.7 158 5356 105 105
p18 (27) 0.31 0.10 7.5 46.2 162 5186 108 108
p19 (28) 0.34 0.13 7.3 47.8 170 6253 113 113
p20 (29) 0.37 0.12 7.8 47.0 176 6228 117 117

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Planning Time (s)

SBP

M

Number of Problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60
Memory (MB)

SBP

M

Number of Problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1000

2000

3000

4000

5000

6000

7000
Expanded Nodes

SBP

M

Number of Problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140
Plan Length

SBP

M

Number of Problems

Figure 7.6: Performance of the SBP and Madagascar (M) in the ‘JacoClearATable’ task.

122

Chapter 7. Implementation, Demonstration and Evaluation

Stacking-Blocks Domain. The first domain is Stacking-Blocks, an extension and

adaptation of the standard blocks world domain (Gupta and Nau, 1992). In Sec-

tion 3.1.2 we already described and presented this domain (see also Tables 3.3

and 3.4). We develop four classes of ‘Stack_N_Blue_N_Red’ task problems with

the same goal but different initial configurations. The following types of initial

configurations were considered:

1. a number of red and blue blocks on a table;

2. a pile of red and blue blocks, with red blocks at the bottom and blue blocks

on top;

3. a pile of alternating red and blue blocks, with a blue block at the bottom and

a red block on top; and

4. a pile of alternating red and blue blocks, with a red block at the bottom and a

blue block on top.

In the four types of problems, the goal is always to make a new pile of red

and blue blocks with blue blocks at the bottom and red blocks on top. The main

objective of this experiment is to learn a set of different activity schemata (tasks)

with the same goal but different scopes of applicability, and to evaluate how the

scope testing (embedding) function allows the system to automatically find an

applicable activity schema to a given task problem.

To show the effectiveness of the proposed scope of applicability inference, we

simulated an experience (containing an equal number of 20 blocks of red and blue

colors) in each of the above classes. Based on them the system generates four

activity schemata with distinct scopes of applicability (see Figures 7.7, 7.8, 7.9 and

7.10). We evaluated the system over the learned activity schemata by randomly

generating 60 task problems in all four classes of the ‘Stack_N_Blue_N_Red’ tasks,

ranging from 20 to 50 equal number of red and blue blocks in each problem. In this

experiment, the system retrieved applicable activity schemata to solve the given

task problems in under 50ms for testing the scope of applicability (see Table 7.7).

Note that the average time of retrieving an activity schema increases linearly with

the number of learned activity schemata for a specific task, i.e., in this experiment

we ran among four learned activity schemata for the ‘Stack_N_Blue_N_Red’ task.

After finding relevant activity schemata, SBP successfully solved all the problems.

The performance metrics of the planning system are presented in Table 7.6.

123

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.6: Evaluation metrics for SBP in the ‘Stack_N_Blue_N_Red’ task.

Problem Plan Expanded Search tree Penetrance (%) Average branching Effective branching
length (L) nodes (X) size (N) (P) factor (R) factor (B)

p1 87 131 593 66.41 4.519 1.035
p2 88 133 152 66.17 1.135 1.011
p3 95 143 695 66.43 4.853 1.034
p4 96 145 166 66.21 1.138 1.011
p5 103 155 805 66.45 5.187 1.032
p6 104 157 180 66.24 1.140 1.010
p7 111 167 923 66.47 5.521 1.031
p8 119 179 1049 66.48 5.855 1.029
p9 112 169 194 66.27 1.142 1.009
p10 120 181 208 66.30 1.144 1.008
p11 127 191 1183 66.49 6.188 1.028
p12 172 271 472 63.47 1.738 1.010
p13 128 193 222 66.32 1.145 1.007
p14 135 203 1325 66.50 6.522 1.026
p15 136 205 236 66.34 1.146 1.007
p16 143 215 1475 66.51 6.856 1.026
p17 144 217 250 66.36 1.147 1.007
p18 151 227 1633 66.52 7.189 1.024
p19 152 229 264 66.38 1.148 1.006
p20 191 288 586 66.32 2.031 1.010
p21 175 264 515 66.29 1.947 1.010
p22 160 241 278 66.39 1.149 1.006
p23 188 296 539 63.51 1.818 1.009
p24 207 312 661 66.35 2.115 1.009
p25 223 336 740 66.37 2.199 1.009
p26 159 239 1799 66.53 7.523 1.024
p27 204 321 610 63.55 1.897 1.009
p28 167 251 1973 66.53 7.857 1.023
p29 168 253 292 66.40 1.150 1.006
p30 220 346 685 63.58 1.977 1.008
p31 236 371 764 63.61 2.057 1.008
p32 176 265 306 66.42 1.151 1.005
p33 175 263 2155 66.54 8.190 1.022
p34 239 360 823 66.39 2.283 1.008
p35 252 396 847 63.64 2.136 1.008
p36 255 384 910 66.41 2.367 1.008
p37 183 275 2345 66.55 8.524 1.021
p38 184 277 320 66.43 1.152 1.005
p39 271 408 1001 66.42 2.451 1.008
p40 268 421 934 63.66 2.216 1.007
p41 192 289 334 66.44 1.152 1.005
p42 287 432 1096 66.44 2.535 1.007
p43 191 287 2543 66.55 8.857 1.021
p44 199 299 2749 66.56 9.191 1.021
p45 284 446 1025 63.68 2.296 1.007
p46 200 301 348 66.45 1.153 1.005
p47 303 456 1195 66.45 2.618 1.007
p48 316 496 1120 63.69 2.376 1.007
p49 300 471 1219 63.71 2.456 1.007
p50 335 504 1298 66.46 2.702 1.007
p51 319 480 1405 66.47 2.786 1.007
p52 332 521 1322 63.72 2.536 1.007
p53 348 546 1429 63.74 2.615 1.006
p54 351 528 1516 66.48 2.869 1.007
p55 367 552 1631 66.49 2.953 1.006
p56 364 571 1540 63.75 2.695 1.006
p57 383 576 1750 66.49 3.036 1.006
p58 380 596 1655 63.76 2.775 1.006
p59 399 600 1873 66.50 3.120 1.006
p60 396 621 1774 63.77 2.855 1.006

124

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.7: Performance of the SBP and Madagascar (M) planners in terms of applicability test
(retrieval) time, search time, memory, expanded nodes and plan length in the different classes of
‘Stack_N_Blue_N_Red’ problems in the Stacking-Blocks EBPD.

Problem/ Retrieval time (s) Search time (s) Memory (MB) Expanded nodes Plan length
(#blocks) SBP SBP M SBP M SBP M SBP M
p1 (22) 0.011 0.29 0.550 10.6 57.2 131 813 87 87
p2 (22) 0.022 0.90 0.820 8.1 92.5 133 597 88 88
p3 (24) 0.010 0.37 0.820 12.4 76.9 143 1011 95 95
p4 (24) 0.021 1.44 1.250 8.9 124.9 145 985 96 96
p5 (26) 0.010 0.49 1.290 13.9 100.2 155 1k 103 103
p6 (26) 0.023 2.16 1.780 9.8 162.4 157 1k 104 104
p7 (28) 0.010 0.61 1.780 15.9 130.2 167 1k 111 111
p8 (30) 0.010 0.77 2.360 17.3 148.8 179 1k 119 119
p9 (28) 0.026 3.22 2.750 10.3 212.9 169 1k 112 112
p10 (30) 0.029 4.67 3.170 11.4 271.2 181 1k 120 127
p11 (32) 0.010 0.95 3.330 19.7 187.10 191 1k 127 127
p12 (22) 0.035 1.48 4.220 16.9 369.7 271 4k 172 172
p13 (32) 0.023 6.84 4.460 12.5 307.4 193 1k 128 128
p14 (34) 0.010 1.16 4.570 22.1 238.5 203 2k 135 135
p15 (34) 0.022 9.14 5.270 13.5 382.8 205 2k 136 136
p16 (36) 0.010 1.43 6.390 24.1 296.7 215 2k 143 143
p17 (36) 0.026 12.31 6.900 13.9 478.5 217 2k 144 144
p18 (38) 0.014 1.73 8.770 26.9 366.7 227 3k 151 151
p19 (38) 0.028 16.87 9.200 15.0 592.2 229 3k 152 152
p20 (24) 0.055 2.05 9.950 17.7 577.7 288 7k 191 184
p21 (22) 0.048 1.33 10.930 16.1 642.6 264 7k 175 168
p22 (40) 0.024 22.23 11.100 16.1 714.4 241 3k 160 160
p23 (24) 0.032 2.30 11.190 19.4 698.8 296 10k 188 188
p24 (26) 0.046 3.04 11.630 20.1 709.5 312 7k 207 200
p25 (28) 0.050 4.50 12.560 22.5 929.2 336 8k 223 216
p26 (40) 0.010 2.07 12.900 29.7 401.1 239 2k 159 159
p27 (26) 0.039 3.78 13.530 21.9 802.6 321 7k 204 204
p28 (42) 0.011 2.48 16.120 31.5 491.7 251 3k 167 167
p29 (42) 0.023 29.52 16.930 17.3 799.7 253 3k 168 168
p30 (28) 0.040 5.27 18.330 23.7 1098.0 346 10k 220 220
p31 (30) 0.037 7.50 21.680 26.6 1388.7 371 11k 236 236
p32 (44) 0.022 38.26 23.090 17.9 947.1 265 4k 176 176
p33 (44) 0.014 2.96 24.690 35.0 593.8 263 4k 175 175
p34 (30) 0.046 6.50 24.980 24.1 1537.7 360 13k 239 232
p35 (32) 0.039 10.69 25.570 28.5 1645.8 396 12k 252 252
p36 (32) 0.046 9.71 26.170 26.8 1645.7 384 11k 255 248
p37 (46) 0.010 3.48 27.970 38.4 709.6 275 4k 183 183
p38 (46) 0.022 63.59 31.420 19.1 1128.5 277 4k 184 184
p39 (34) 0.058 12.68 35.910 29.5 2140.1 408 15k 271 264
p40 (34) 0.040 15.41 36.030 31.7 2126.8 421 13k 268 268
p41 (48) 0.022 103.44 36.120 20.3 1359.2 289 5k 192 192
p42 (36) 0.054 17.65 37.100 31.5 2410.5 432 18k 287 280
p43 (48) 0.010 4.06 37.820 41.9 841.0 287 6k 191 191
p44 (50) 0.014 4.72 41.650 44.7 904.3 299 5k 199 199
p45 (36) 0.040 20.64 42.470 34.9 2397.2 446 18k 284 284
p46 (50) 0.022 131.65 45.770 21.6 1575.5 301 6k 200 207
p47 (38) 0.048 25.80 48.710 34.5 2553.2 456 21k 303 296
p48 (40) 0.034 60.81 55.480 40.0 2658.5 496 19k 316 316
p49 (38) 0.042 35.48 57.540 38.1 2586.7 471 28k 300 300
p50 (42) 0.053 47.82 72.320 40.6 2665.7 504 26k 335 328
p51 (40) 0.061 47.58 84.570 37.5 2727.0 480 35k 319 312
p52 (42) 0.039 53.22 101.080 43.7 2724.10 521 36k 332 332
p53 (44) 0.037 75.32 105.530 47.4 2817.1 546 36k 348 348
p54 (44) 0.049 62.14 114.780 42.6 2793.1 528 43k 351 344
p55 (46) 0.048 84.28 – 46.0 – 552 – 367 –
p56 (46) 0.034 95.31 – 51.1 – 571 – 364 –
p57 (48) 0.056 108.66 – 49.5 – 576 – 383 –
p58 (48) 0.038 120.24 – 53.8 – 596 – 380 –
p59 (50) 0.050 132.46 – 51.6 – 600 – 399 –
p60 (50) 0.040 147.93 – 57.9 – 621 – 396 –

125

Chapter 7. Implementation, Demonstration and Evaluation

{(during,pile)} during(pile) {(during,table)} during(table)

{(during,pallet)}

 init(top)

 during(pallet)

{(during,block),(during,blue)}

 init(ontable)

 end(on)

 during(block)
during(blue) end(on)

{(during,block),(during,red)}

 end(top) init(ontable)

 end(on)

 during(red)
during(block) end(on)

Figure 7.7: The scope of applicability for the task 1 in ‘Stack_N_Blue_N_Red’. This scope represents
all ‘Stack_N_Blue_N_Red’ problems that have exactly one table and at least one pile, one pallet,
one blue block and one red block such that red and blue blocks are initially on a table and finally
red blocks are on top of blue blocks (on a pallet) on a pile.

{(during,table)} during(table) {(during,pile)} during(pile)

{(during,block),(during,blue)}

 init(top)

 during(block)
during(blue)

 init(on)
end(on)

{(during,pallet)}

 end(on) {(during,block),(during,red)}

 init(on)

 end(top)
init(top)

 during(pallet) end(top)

 end(on)

 init(on)

 during(red)
during(block)

 init(on)
end(on)

Figure 7.8: The scope of applicability for the task 2 in ‘Stack_N_Blue_N_Red’. This scope represents
all ‘Stack_N_Blue_N_Red’ problems that have exactly one table and at least one pile, one pallet,
one blue block and one red block such that blue blocks are initially on top of red blocks and
finally red blocks are on top of blue blocks on a pile.

126

Chapter 7. Implementation, Demonstration and Evaluation

{(during,table)} during(table) {(during,pile)} during(pile)

{(during,block),(during,blue)} during(block)
during(blue) end(on)

{(during,pallet)}

 init(on)
end(on)

{(during,block),(during,red)}

 init(on)

 end(top)
init(top)

 during(pallet)

 end(top)
init(top)

 init(on)
end(on)

 during(red)
during(block) end(on)

Figure 7.9: The scope of applicability for the task 3 in ‘Stack_N_Blue_N_Red’. This scope represents
all ‘Stack_N_Blue_N_Red’ problems that have exactly one table and at least one pile, one pallet,
one blue block and one red block such that alternate red and blue blocks are initially on a pile
with a blue block at the bottom (on a pallet) and a red block on top and finally red blocks are on
top of blue blocks.

{(during,table)} during(table) {(during,pile)} during(pile)

{(during,block),(during,blue)}

 init(top)

 during(block)
during(blue) end(on)

{(during,pallet)}

 end(on) {(during,block),(during,red)}

 init(on)

 end(top)
init(top)

 during(pallet) end(top)

 init(on)
end(on)

 init(on)

 during(red)
during(block) end(on)

Figure 7.10: The scope of applicability for the task 4 in ‘Stack_N_Blue_N_Red’. This scope repre-
sents all ‘Stack_N_Blue_N_Red’ problems that have exactly one table and at least one pile, one
pallet, one blue block and one red block such that alternate red and blue blocks are initially on
a pile with a red block at the bottom (on a pallet) and a blue block on top and finally red blocks are
on top of blue blocks.

127

Chapter 7. Implementation, Demonstration and Evaluation

20 25 30 35 40 45 50 55
0

5

10

15

20
Testing Time Per Class (ms)

class1
class2

class3

class4

Number of objects

20 25 30 35 40 45 50
0

200

400

600

800

1000

1200
Planning Time (s)

class1 SBP

class1 M
class2 SBP

class2 M

class3 SBP

class3 M

class4 SBP
class4 M

Number of objects

20 25 30 35 40 45 50
0

500000
1000000
1500000
2000000
2500000
3000000
3500000

Memory (MB)
class1 SBP

class1 M

class2 SBP

class2 M

class3 SBP
class3 M

class4 SBP

class4 M
Number of objects

20 25 30 35 40 45 50
0

10000

20000

30000

40000

50000
Expanded Nodes

class1 SBP

class1 M
class2 SBP

class2 M

class3 SBP

class3 M

class4 SBP
class4 M

Number of objects

20 25 30 35 40 45 50
0

100

200

300

400

500
Plan Length

class1 SBP

class1 M

class2 SBP

class2 M

class3 SBP
class3 M

class4 SBP

class4 M
Number of objects

Figure 7.11: Performance of the SBP and Madagascar (M) planners in the ‘Stack_N_Blue_N_Red’
task.

128

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.8: Abstract and concrete planning operators in the Satellite domain.

Abstract / Concrete operators
(turn-to ?satellite ?direction1 ?direction2)

(switch-on ?instrument ?satellite)
(switch-off ?instrument ?satellite)

(calibrate ?satellite ?instrument ?direction)
(take-image ?satellite ?direction ?instrument ?mode)

To show the efficiency of the system, we also evaluated and compared the per-

formance of the SBP with Madagascar based on measures: time, memory, number

of expanded nodes and plan length (Table 7.7). In this experiment, SBP was ex-

tremely efficient in terms of memory and expanded nodes in the search tree. How-

ever, Madagascar was slightly faster to solve some problems. Note that the time

comparison is not accurate in this evaluation, since SBP has been implemented in

Prolog, whereas Madagascar has been implemented in C++. Figure 7.11 sum-

marizes the performance of the two planners.

The original experiences, learned activity schemata and given task problems

used in this experiment are available online by the link: https://github.com/

mokhtarivahid/ebpd/tree/master/domains/stacking-blocks.

Satellite Domain. The second EBPD is based on the standard Satellite domain

(from IPC-2000). In this case, the abstract and concrete planning domains are the

same, since the concrete planning domain offers no details to ignore in an abstrac-

tion process (see Table 7.8). Full specification of the abstract and concrete plan-

ning domains can be found in: https://github.com/mokhtarivahid/ebpd/tree/

master/domains/satellite. This experiment is mainly intended to show that the

system still works when the abstraction is not available. In this domain, there is a

set of satellites equipped with different instruments, which can operate in different

modes. The goal is to acquire desired images of targets by dividing the observation

tasks between the satellites based on the capabilities of their instruments.

We generated 40 problems in two classes assuming one satellite, a maximum

of two instruments, a number of modes ranging from 2 to 10 and a number of

targets ranging from 10 to 50 in each problem. We simulated two experiences by

randomly choosing one task problem in each class with different configurations

(i.e., two experiences differ in the number of instruments used in solutions) and

generated two activity schemata with two distinct scopes of applicability for this

129

https://github.com/mokhtarivahid/ebpd/tree/master/domains/stacking-blocks
https://github.com/mokhtarivahid/ebpd/tree/master/domains/stacking-blocks
https://github.com/mokhtarivahid/ebpd/tree/master/domains/satellite
https://github.com/mokhtarivahid/ebpd/tree/master/domains/satellite

Chapter 7. Implementation, Demonstration and Evaluation

class of the problems. The activity schema retrieval time was negligible in this

experiment. SBP solved all problems in this class using the two learned activity

schemata. Table 7.9 shows the efficiency of SBP in the Satellite EBPD compared

to Madagascar. SBP was efficient in terms of memory and expanded nodes in

the search tree, and Madagascar was fairly fast in time. Figure 7.12 summarizes

the performance of the two planners. The original experiences, learned activity

schemata and given task problems used in this experiment are available online:

https://github.com/mokhtarivahid/ebpd/tree/master/domains/satellite.

ROVER. In this experiment, we used the Rover domain from the 3rd International

Planning Competition (IPC-3). We adopt a different approach for evaluating the

proposed scope inference technique. We randomly generated 50 problems con-

taining exactly 1 rover and ranging from 1 to 3 waypoints, 5 to 30 objectives, 5 to

10 cameras and 5 to 20 goals in each problem. Using the scope inference proce-

dure, the problems are classified into 9 sets of problems. That is, problems that

converge to the same 3-valued structure are put together in the same set. Hence,

each set of problems is identified with a distinct scope of applicability. Figure 7.13

shows the distribution of the problems in the obtained sets of problems. In each

set of problems, we simulated an experience and generated an activity schema for

problem solving. Figure 7.14 shows the time required to retrieve an applicable

activity schema (among 9 activity schemata in this experiment) for solving given

problems, i.e., the time required to check whether a given problem is embedded

in the scope of an activity schema. SBP successfully solved all problems in each

class.

7.6 Summary

In this chapter, we presented the experimental results of our system in different

real-world and simulated tasks. We showed how the system integrates and oper-

ates in real robot platforms, e.g., a PR2 and a JACO arm robot. Through these ex-

periments, we demonstrated different functionalities of the system, including loop

detection, scope inference and goal inference. We showed the results using differ-

ent evaluation metrics. We showed the timing results for test problems in these

experiments. The time required for learning activity schemata, and computing

and testing their scopes were negligible. While the results show good scalability,

many engineering optimizations are possible on our prototype implementation of

130

https://github.com/mokhtarivahid/ebpd/tree/master/domains/satellite

Chapter 7. Implementation, Demonstration and Evaluation

Table 7.9: Performance of the SBP and Madagascar (M) planners in terms of applicability test
(retrieval) time, search time, memory, expanded nodes and plan length in the Satellite EBPD.

Problem/ Retrieval time (ms) Search time (s) Memory (MB) Expanded nodes Plan length
(class#) SBP SBP M SBP M SBP M SBP M
p1 (1) 11 0.20 0.01 0.85 7.6 20 7784 10 11
p2 (1) 10 0.52 0.01 1.78 7.9 32 8048 16 18
p3 (2) 10 0.69 0.00 1.36 8.1 28 8312 13 19
p4 (1) 10 0.91 0.00 1.87 8.6 38 8840 19 19
p5 (2) 10 0.94 0.02 1.81 8.9 32 9104 15 16
p6 (1) 10 1.05 0.01 1.94 9.1 35 9368 15 15
p7 (2) 10 1.15 0.01 1.77 8.9 38 9104 17 18
p8 (1) 10 2.26 0.03 2.56 10.7 43 10952 21 21
p9 (2) 14 2.79 0.02 2.09 10.4 39 10688 19 19
p10 (1) 10 3.19 0.02 3.20 11.2 50 11480 25 26
p11 (2) 11 3.65 0.00 3.57 8.4 67 8576 15 17
p12 (2) 14 4.53 0.05 1.88 13.0 37 13328 15 16
p14 (1) 10 4.70 0.04 3.12 12.8 56 13064 27 28
p13 (1) 10 4.94 0.04 3.04 12.5 54 12800 27 28
p15 (2) 14 6.85 0.03 3.52 13.8 59 14120 29 29
p16 (2) 13 7.60 0.02 3.25 12.0 50 12272 25 26
p17 (1) 14 8.10 0.05 3.34 14.3 58 14648 27 28
p18 (1) 12 8.70 0.07 3.25 16.1 57 16496 25 25
p19 (2) 12 9.12 0.08 4.28 16.9 63 17288 31 32
p20 (1) 11 12.48 0.08 5.14 18.4 70 18872 35 35
p21 (1) 14 14.32 0.11 5.28 19.3 72 19712 35 32
p22 (2) 12 14.58 0.08 4.71 19.2 68 19696 31 35
p23 (2) 12 17.54 0.03 5.46 12.0 94 12272 22 28
p24 (2) 13 18.45 0.10 4.50 22.6 60 23096 30 32
p25 (2) 12 18.95 0.08 3.38 18.2 58 18608 25 25
p26 (1) 12 19.46 0.08 4.64 20.5 67 20984 29 29
p27 (2) 15 25.25 0.11 3.02 22.7 40 23252 20 21
p28 (1) 14 25.76 0.11 5.71 24.4 75 25000 35 35
p29 (2) 12 28.72 0.12 5.16 24.8 73 25392 31 32
p30 (1) 13 29.90 0.15 5.69 25.6 82 26176 39 39
p31 (1) 15 41.21 0.23 6.35 32.0 86 32796 41 42
p32 (2) 12 42.45 0.16 5.89 27.8 83 28416 39 39
p33 (1) 12 46.44 0.16 5.59 28.9 76 29544 38 39
p34 (1) 14 56.43 0.26 6.29 35.0 88 35880 39 39
p35 (2) 13 63.93 0.24 6.93 37.8 91 38684 41 42
p36 (1) 13 65.36 0.23 8.17 39.1 96 39992 45 45
p37 (2) 11 76.25 0.27 6.52 41.9 83 42904 39 39
p38 (1) 14 81.29 0.35 8.78 41.9 100 42908 47 47
p39 (2) 13 114.04 0.27 9.95 38.2 189 39160 36 51
p40 (2) 12 854.11 0.51 31.53 51.7 323 52932 50 68

131

Chapter 7. Implementation, Demonstration and Evaluation

10 15 20 25 30 35 40 45 50 55
0

5

10

15

20
Testing Time Per Class (ms)

class1

class2

Number of objects

10 15 20 25 30 35 40 45 50 55
0

200

400

600

800

1000
Planning Time (s)

class1 SBP

class1 M

class2 SBP

class2 M

Number of objects

10 15 20 25 30 35 40 45 50 55
0

10000

20000

30000

40000

50000

60000
Memory (MB)

class1 SBP

class1 M

class2 SBP
class2 M

Number of objects

10 15 20 25 30 35 40 45 50 55
0

500

1000

1500

2000

2500
Expanded Nodes

class1 SBP

class1 M

class2 SBP

class2 M

Number of objects

10 15 20 25 30 35 40 45 50 55
0

20

40

60

80
Plan Length

class1 SBP

class1 M

class2 SBP
class2 M

Number of objects

Figure 7.12: Performance of the SBP and Madagascar (M) planners in the Satellite domain.

132

Chapter 7. Implementation, Demonstration and Evaluation

ProbSet1
6%

ProbSet2
6%
ProbSet3

7%

ProbSet4
7%

ProbSet5
9%

ProbSet6
13%

ProbSet7
14%

ProbSet8
17%

ProbSet9
21%

Figure 7.13: Distribution of the problems in the obtained problem sets in the Rover domain

20 25 30 35 40 45 50 55
0

20
40
60
80

100
120

Testing Time Per Class (ms)
class1

class2

class3
class4

class5

class6

class7
class8

class9
Number of objects

Figure 7.14: CPU time used by SBP to find an applicable activity schema (among 9) for solving
problems in the Rover domain.

the presented algorithms. Faster results can be obtained from an implementation

in a compiled language.

Our system learned activity schemata from single examples in under a second,

in contrast to other machine learning techniques, reviewed in the related work,

which usually require large sets of plan traces and longer cpu time to learn plan-

ning domain knowledge, e.g., HTN-Maker (Hogg et al., 2008) uses 75 out of 100

input problems to train the system, and CaMeL (Ilghami et al., 2002, 2005) takes

about 40 seconds to train the system in the Blocks-World domain.

133

Chapter 7. Implementation, Demonstration and Evaluation

134

Chapter 8

Conclusions

The central investigation of this thesis is towards the development of robot capa-

bilities to acquire high-level task planning models, by conceptualizing past expe-

riences, for solving any particular instances of the same tasks. The motivation for

tackling this problem centers on the belief that it is impossible to preprogram all

the necessary knowledge into a robot operating in a diverse, dynamic and unstruc-

tured environment. Instead, robots must have abilities to interact with end-users,

and learn and generalize from their own experiences. While significant research

has been performed in the area of learning low-level skills, little work concerns

learning of high-level task knowledge. Conceptualizing experiences is essential

for intelligent robots since it enables them to incrementally and open-endedly ac-

quire new task knowledge. High-level task learning makes robot programs inde-

pendent from the platform and eases their exchange between robots with different

kinematics. The lack of works on symbolic learning of planning algorithms and

high-level task representation in robotics motivated us to develop tangible meth-

ods for acquiring high-level planning knowledge from experiences which could

potentially solve classes of similar problems.

8.1 Summary of the Thesis Contributions

In many robotics applications, particularly those involving Learning from Demon-

stration, structures are defined and guidelines for information flow are specified

in an architecture (Vernon et al., 2007). Apart from basic principles of all cognitive

architectures, there are common key components in most architectures for robot

learning. According to Langley et al. (2009), following principles are aspects of an

agent, which are essential for all mechanisms to work in different application do-

135

Chapter 8. Conclusions

mains: (i) short and long-term memories; (ii) representation of elements residing

in these memories; and (iii) functional processes operating on these structures.

In Chapter 3, we proposed a robot architecture (see Section 3.2) for instruction-

based task teaching, experience acquisition, learning of high-level methods and

problem solving in robotics. This architecture is the underlying framework for

Experience-Based Planning Domains (EBPDs) (see Section 3.8). EBPDs integrate

the main elements of information involved in the long-term learning and task-level

problem solving loop of an intelligent robot. The EBPD representation scheme

uses notation derived from first-order logic. The textual representation is an ex-

tension and adaptation of the well-established Planning Domain Definition Lan-

guage (PDDL) (Mcdermott et al., 1998). The proposed EBPD formalization cap-

tures many interesting aspects of experience-based learning and planning, which

can foster the reuse of this research. It is assumed that the robot is equipped with

a set of basic actions (e.g., pickup and putdown) and we aim to enable the robot to

construct a high-level task representation of a complex task (e.g., serve a coffee to

a guest) built from the existing behavior set.

In Chapter 4, we proposed to use a human-robot interaction interface to sup-

port task teaching and supervised experience extraction. A novel graph simplifi-

cation approach, based on ego networks, was proposed to reduce the complexity

and data dimensionality in an experience and to improve the performance in the

learning stage (see Section 4.4). The obtained robot activity experiences contain

relevant information for learning planning knowledge.

In Chapter 5, we presented our contribution towards developing a methodol-

ogy for conceptualizing experiences, and generating task planning knowledge in

the form of robot activity schemata. The conceptualization approach is based on

deductive generalization which allows for one-shot-learning by generalizing from

a single example (see Section 5.1). This approach is useful for real-world robotic

tasks when setting up and performing similar examples is a time-consuming or

annoying task. We proposed to use an abstraction methodology for removing

inessential details and to identify a common “essence” in an experience (see Sec-

tion 5.2). Abstraction is the key to computing (Kramer, 2007). Abstract represen-

tation allows, during problem solving, to solve more easily the given problems, i.e.,

with a reduced computational effort. It also makes the learned concepts broader,

more compact and more widely applicable. A feature extraction methodology was

proposed for selecting a subset of relevant features to include in the learned activ-

ity schema (see Section 5.3). Features improve the performance of problem solving

136

Chapter 8. Conclusions

by guiding the planner toward a goal state and reducing the probability of back-

tracking. They are also useful to capture social norms, physical constraints, etc.

One of the key components of the conceptualization procedure is loop detection.

In Section 5.4, we proposed a novel algorithm of loop detection, based on the stan-

dard method of constructing the Longest Common Prefix (LCP) array. Manber

and Myers (1993) have already proved that LCP array is computed in O(n logn)

time where n is the length of the given string, i.e., the length of the plan in an ex-

perience, in our work. We also proposed to use Canonical Abstraction, originally

developed as part of the TVLA system (Sagiv et al., 2002), to construct an abstract

representation of the scope of applicability of the activity schema (see Section 5.5).

The inferred scope allows for testing the applicability of a learned activity schema

to solve a given problem. The computed scope of applicability for the resulting

activity schemata may be not sufficient, but still provides useful information to

classify the learned activity schemata. Using the proposed techniques, the ob-

tained activity schemata can be applied more generally to solve many problems

instances.

In Chapter 6, we used the embedding function of TVLA, to retrieve an activity

schema relevant for solving a given task problem. The embedding function checks

if the task problem matches the scope of applicability of the activity schema. We

proposed a hierarchical problem solver which applies a learned activity schema for

generating a solution plan to a task problem. Problem solving is achieved by first

ignoring less relevant features of a problem description and solving an abstract

problem in a coarse fashion with less effort. Then the derived abstract solution

serves as a skeleton or guide for solving the original concrete problem.

We demonstrated the utility of our system in different domains, and effectively

tackled complex, real world tasks, in contrast to the vast majority of existing robot

learning techniques that have been applied to only a single, often unique, domain.

8.2 Directions for Future Work

Although the objectives of this dissertation were successfully achieved, there are

still many issues of importance to be tackled in the future. This section is aimed at

discussing new possible routes of research arising from the work presented in the

previous chapters, taking into consideration the current and future requirements

to be fulfilled in order to build more autonomous and smarter robot companions.

137

Chapter 8. Conclusions

The most important prerequisite of this work is the availability of the required

background knowledge, namely the concrete planning domain, the abstract plan-

ning domain, and the predicate and operator abstraction hierarchies. The formu-

lation of an adequate abstract domain is essential to the success of the approach.

If those abstract operators are missing the flexibility of the learned knowledge to

solve a wider range of problems with varying initial configurations is constrained.

Normally, for the construction of a planning system, the concrete planning do-

main must be acquired anyway, since it specifies the “language” of the problem

description and the problem solution. In our work, the abstract planning domain

and the (predicate and operator) abstraction hierarchies must also be acquired.

However, for a stronger abstraction framework, the automatic generation of predi-

cate and operator abstraction hierarchies is desirable and can alleviate the burden

of domain knowledge engineering. Some early research on knowledge acquisition

already described approaches and tools for the acquisition of abstract level oper-

ators and hierarchies in real-world domains, e.g., in (Knoblock, 1993, 1994), that

can be properly integrated with our system.

We proposed a planning system to generate totally-ordered plans. However a

non-linear planner that can generate partially-ordered plans is of interest to real

robots. The principal use of a partially-ordered plan is to optimize the execution

time by taking advantage of the agent’s execution capabilities for parallel actions.

In future work we plan to integrate a partial-order planner, based on lifted partial-

order planning (Veloso et al., 1990), with the EBPDs’ planning system for the ex-

traction of parallel actions. This technique transforms produced sequential plans

into plans with parallelism using a post-processing which uncovers the dependen-

cies between the actions.

The proposed abstract planner (ASBP) (Section 6.3) offers a guided state-based

search approach to planning. In the abstract planning, the heuristic is the key

to increase the efficiency of the planner. In future work we plan to utilize the

vast literature on heuristic search to refine and develop methods for guiding the

proposed abstract planner.

One of the contributions of this thesis is the Contiguous Non-overlapping Long-

est Common Prefix (CNLCP) algorithm to identify possible loops of actions in a

robot activity experience (see Section 5.4). A limitation of the CNLCP algorithm is

to only detect simple loops of actions. The current implementation of the CNLCP

algorithm is unable to uncover nested loops (i.e., loops inside loops) in an expe-

rience. It would be desirable to extend this algorithm to identify the loops in-

138

Chapter 8. Conclusions

side loops. It will increase the compactness and make broader the applicability

of the learned activity schemata. This extension of the CNLCP algorithm could

be achieved by recursively applying the CNLCP approach to the identified loops,

that is, the identified loops can be given as the new inputs to the CNLCP algorithm

until no more loop can be detected. However, the abstract planner is also required

to adapt to deal with and expand nested loops during problem solving.

139

Chapter 8. Conclusions

140

Bibliography

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of rein-

forcement learning to aerobatic helicopter flight. In Advances in neural infor-
mation processing systems, pages 1–8.

Agostini, A. G., Torras, C., and Wörgötter, F. (2011). Integrating task planning

and interactive learning for robots to work in human environments. In In-
ternational Joint Conference on Artificial Intelligence, pages 2386–2391. AAAI

Press.

Ahmadzadeh, S. R., Kormushev, P., and Caldwell, D. G. (2013). Visuospatial skill

learning for object reconfiguration tasks. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 685–691. IEEE.

Ahmadzadeh, S. R., Paikan, A., Mastrogiovanni, F., Natale, L., Kormushev, P., and

Caldwell, D. G. (2015). Learning symbolic representations of actions from

human demonstrations. In Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, pages 3801–3808. IEEE.

Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., and Taysom,

W. (2007). PLOW: A collaborative task learning agent. In AAAI, volume 7,

pages 1514–1519.

Antoniou, G. and Van Harmelen, F. (2004). Web ontology language: Owl. In

Handbook on ontologies, pages 67–92. Springer.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469 –

483.

Bacchus, F. and Yang, Q. (1994). Downward refinement and the efficiency of hier-

archical problem solving. Artificial Intelligence, 71(1):43–100.

141

Chapter 8. BIBLIOGRAPHY

Ben-Kiki, O., Evans, C., and Ingerson, B. (2005). Yaml ain’t markup language

(yamlâĎć) version 1.1. yaml. org, Tech. Rep, page 23.

Bentivegna, D. C., Ude, A., Atkeson, C. G., and Cheng, G. (2002). Humanoid robot

learning and game playing using pc-based vision. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages 2449–

2454. IEEE.

Bergmann, R. and Wilke, W. (1995). Building and refining abstract planning cases

by change of representation language. Journal of Artificial Intelligence Research,

3:53–118.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming

by demonstration. In Springer handbook of robotics, pages 1371–1394. Springer.

Billard, A. and Matarić, M. J. (2001). Learning human arm movements by imita-

tion:: Evaluation of a biologically inspired connectionist architecture. Robotics
and Autonomous Systems, 37(2-3):145–160.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analy-

sis. Artificial intelligence, 90(1-2):281–300.

Bonet, B. (2013). An admissible heuristic for SAS+ planning obtained from the

state equation. In Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (IJCAI), IJCAI ’13, pages 2268–2274. AAAI Press.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results. In

European Conference on Planning, pages 360–372. Springer.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33.

Bonet, B., Loerincs, G., and Geffner, H. (1997). A robust and fast action selection

mechanism for planning. In AAAI/IAAI, pages 714–719.

Borrajo, D., Roubíčková, A., and Serina, I. (2015). Progress in case-based planning.

ACM Computing Surveys (CSUR), 47(2):35:1–35:39.

Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005). Macro-FF: im-

proving AI planning with automatically learned macro-operators. Journal of
Artificial Intelligence Research, pages 581–621.

142

Chapter 8. BIBLIOGRAPHY

Botea, A., Müller, M., Schaeffer, J., et al. (2007). Fast planning with iterative

macros. In IJCAI, pages 1828–1833.

Browning, B., Xu, L., and Veloso, M. (2004). Skill acquisition and use for a

dynamically-balancing soccer robot. In AAAI, pages 599–604.

Bylander, T. (1994). The computational complexity of propositional STRIPS plan-

ning. Artificial Intelligence, 69(1-2):165–204.

Calinon, S. and Billard, A. G. (2007). What is the teacherâĂŹs role in robot pro-

gramming by demonstration?: Toward benchmarks for improved learning.

Interaction Studies, 8(3):441–464.

Calinon, S., Guenter, F., and Billard, A. (2007). On learning, representing, and

generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 37(2):286–298.

Carbonell, J. G. and Veloso, M. (1988). Integrating derivational analogy into a

general problem solving architecture. In Proceedings of the First Workshop on
Case-Based Reasoning, pages 104–124.

Chao, C., Cakmak, M., and Thomaz, A. L. (2011). Towards grounding concepts for

transfer in goal learning from demonstration. In Development and Learning
(ICDL), 2011 IEEE International Conference on, volume 2, pages 1–6. IEEE.

Chapman, D. (1987). Planning for conjunctive goals. Artificial intelligence,

32(3):333–377.

Chauhan, A., Seabra Lopes, L., Tomé, A. M., and Pinho, A. (2013). Towards super-

vised acquisition of robot activity experiences: an ontology-based approach.

In 16th Portuguese Conference on Artificial Intelligence - EPIA’2013.

Chen, J. and Zelinsky, A. (2003). Programing by demonstration: Coping with

suboptimal teaching actions. The International Journal of Robotics Research,

22(5):299–319.

Chernova, S. and Thomaz, A. L. (2014). Robot learning from human teachers.

Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(3):1–121.

Chrpa, L. (2010). Generation of macro-operators via investigation of action de-

pendencies in plans. The Knowledge Engineering Review, 25(3):281–297.

143

Chapter 8. BIBLIOGRAPHY

Connell, J. H. and Mahadevan, S. (1993). Robot learning, volume 233 of The
Springer International Series in Engineering and Computer Science. Springer.

De la Rosa, T., García-Olaya, A., and Borrajo, D. (2013). A case-based approach to

heuristic planning. Applied intelligence, 39(1):184–201.

Dean, T. and Boddy, M. (1988). Reasoning about partially ordered events. Artificial
Intelligence, 36(3):375–399.

DeJong, G. and Mooney, R. (1986). Explanation-based learning: an alternative

view. Machine learning, 1(2):145–176.

Dillmann, R. (2004). Teaching and learning of robot tasks via observation of hu-

man performance. Robotics and Autonomous Systems, 47(2-3):109–116.

Dubba, K. S., De Oliveira, M. R., Lim, G. H., Kasaei, H., Lopes, L. S., Tomé, A., and

Cohn, A. G. (2014). Grounding language in perception for scene conceptual-

ization in autonomous robots. In Proceedings of AAAI 2014 spring symposium
on qualitative representations for robots.

Edelkamp, S. and Hoffmann, J. (2004). PDDL2.2: The language for the classical

part of the 4th international planning competition. 4th International Planning
Competition (IPCâĂŹ04), at ICAPSâĂŹ04.

Eén, N. and Sörensson, N. (2003). An extensible sat-solver. In International confer-
ence on theory and applications of satisfiability testing, pages 502–518. Springer.

Ehrenmann, M., Zollner, R., Rogalla, O., and Dillmann, R. (2002). Programming

service tasks in household environments by human demonstration. In Robot
and Human Interactive Communication, 2002. Proceedings. 11th IEEE Interna-
tional Workshop on, pages 460–467. IEEE.

Ekvall, S. and Kragic, D. (2005). Grasp recognition for programming by demon-

stration. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pages 748–753. IEEE.

Ekvall, S. and Kragic, D. (2006). Learning task models from multiple human

demonstrations. In Robot and Human Interactive Communication, 2006. RO-
MAN 2006. The 15th IEEE International Symposium on, pages 358–363. IEEE.

144

Chapter 8. BIBLIOGRAPHY

Ekvall, S. and Kragic, D. (2008). Robot learning from demonstration: a task-

level planning approach. International Journal of Advanced Robotic Systems,
5(3):223–234.

Estlin, T. A. and Mooney, R. J. (1997). Learning to improve both efficiency and

quality of planning. In Proceedings of the Fifteenth International Joint Conference
on Artifical Intelligence - Volume 2, IJCAI’97, pages 1227–1232, San Francisco,

CA, USA. Morgan Kaufmann Publishers Inc.

Fawcett, T. E. and Utgoff, P. E. (1991). A hybrid method for feature generation. In

Machine Learning Proceedings 1991, pages 137–141. Elsevier.

Fawcett, T. E. and Utgoff, P. E. (1992). Automatic feature generation for problem

solving systems. In Machine Learning Proceedings 1992, pages 144–153. Else-

vier.

Feil-Seifer, D. and Matarić, M. J. (2009). Human-robot interaction. In Encyclopedia
of complexity and systems science, pages 4643–4659. Springer.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing general-

ized robot plans. Artificial intelligence, 3:251–288.

Fikes, R. E. and Nilsson, N. J. (1972). STRIPS: a new approach to the application

of theorem proving to problem solving. Artificial intelligence, 2(3):189–208.

Fox, M. and Long, D. (2002). PDDL+: Modeling continuous time dependent ef-

fects. In Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space, volume 4, page 34.

Fox, M. and Long, D. (2003). PDDL2.1: An extension to pddl for expressing tem-

poral planning domains. Journal of artificial intelligence research.

Friedrich, H., Mnch, S., Dillmann, R., Bocionek, S., and Sassin, M. (1996). Robot

programming by demonstration (rpd): Supporting the induction by human

interaction. Machine Learning, 23(2-3):163–189.

Garland, A. and Lesh, N. (2003). Learning hierarchical task models by demonstra-

tion. Mitsubishi Electric Research Laboratory (MERL), USA–(January 2002).

Georgievski, I. and Aiello, M. (2015). HTN planning: Overview, comparison, and

beyond. Artificial Intelligence, 222:124–156.

145

Chapter 8. BIBLIOGRAPHY

Gerevini, A., Saetti, A., and Vallati, M. (2011). Exploiting macro-actions and pre-

dicting plan length in planning as satisfiability. In Pirrone, R. and Sorbello,

F., editors, AI*IA 2011: Artificial Intelligence Around Man and Beyond, volume

6934 of Lecture Notes in Computer Science, pages 189–200. Springer Berlin Hei-

delberg.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated planning: theory & prac-
tice. Elsevier.

Goodrich, M. A. and Schultz, A. C. (2007). Human-robot interaction: a survey.

Foundations and trends in human-computer interaction, 1(3):203–275.

Gupta, N. and Nau, D. S. (1992). On the complexity of blocks-world planning.

Artificial Intelligence, 56(2-3):223–254.

Hammond, K. J. (1986). CHEF: a model of case-based planning. In Proceedings
of the Fifth National Conference on Artificial Intelligence, pages 267–271. AAAI

Press.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science
and Cybernetics, 4(2):100–107.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial
Intelligence Research (JAIR), 26:191–246.

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). Rgb-d mapping: Us-

ing kinect-style depth cameras for dense 3d modeling of indoor environments.

The International Journal of Robotics Research, 31(5):647–663.

Hertzberg, J., Zhang, J., Zhang, L., Rockel, S., Neumann, B., Lehmann, J., Dubba,

K., Cohn, A., Saffiotti, A., Pecora, F., Mansouri, M., Konec̆ný, Š., Günther, M.,

Stock, S., Seabra Lopes, L., Oliveira, M., Lim, G., Kasaei, H., Mokhtari, V.,

Hotz, L., and Bohlken, W. (2014). The RACE project. KI - Künstliche Intelligenz,

28(4):297–304.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence prob-

lem. Journal of the ACM (JACM), 24(4):664–675.

Hoffmann, J. (2002). Extending ff to numerical state variables. In ECAI, pages

571–575. Citeseer.

146

Chapter 8. BIBLIOGRAPHY

Hoffmann, J. and Brafman, R. (2005). Contingent planning via heuristic forward

search with implicit belief states. In 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS), volume 2005.

Hoffmann, J. and Brafman, R. I. (2006). Conformant planning via heuristic for-

ward search: A new approach. Artificial Intelligence, 170(6-7):507–541.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in planning.

Journal of Artificial Intelligence Research, 22:215–278.

Hogg, C., Kuter, U., and Muñoz-Avila, H. (2009). Learning hierarchical task net-

works for nondeterministic planning domains. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI), pages 1708–

1714.

Hogg, C., Munoz-Avila, H., and Kuter, U. (2008). HTN-MAKER: learning HTNs

with minimal additional knowledge engineering required. In Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, pages 950–956.

AAAI Press.

Holder, L. B. (1990). The general utility problem in machine learning. In Porter, B.

and Mooney, R., editors, Machine Learning Proceedings 1990, pages 402–410.

Morgan Kaufmann, San Francisco (CA).

Hu, Y. and De Giacomo, G. (2011). Generalized planning: synthesizing plans that

work for multiple environments. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), volume 22, pages 918–

923.

Hu, Y. and Levesque, H. (2009). Planning with loops: Some new results. In ICAPS
Workshop on Generalized Planning, page 37.

Hu, Y. and Levesque, H. J. (2011). A correctness result for reasoning about one-

dimensional planning problems. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), volume 22, pages 26–38.

147

Chapter 8. BIBLIOGRAPHY

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dy-

namical movement primitives: learning attractor models for motor behaviors.

Neural computation, 25(2):328–373.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Learning rhythmic movements

by demonstration using nonlinear oscillators. In Proceedings of the ieee/rsj int.
conference on intelligent robots and systems (iros2002), number BIOROB-CONF-

2002-003, pages 958–963.

Ikeuchi, K. (1995). Assembly plan from observation. In Electronic Manufactur-
ing Technology Symposium, 1995, Proceedings of 1995 Japan International, 18th
IEEE/CPMT International, pages 9–12. IEEE.

Ilghami, O. and Nau, D. S. (2006). Learning to do HTN planning. In 16st In-
ternational Conference on Automated Planning and Scheduling (ICAPS), pages

390–393. AAAI Press.

Ilghami, O., Nau, D. S., Munoz-Avila, H., and Aha, D. W. (2002). CaMeL: learn-

ing method preconditions for HTN planning. In Proceedings of the Sixth In-
ternational Conference on Artificial Intelligence Planning Systems (AIPS), pages

131–142.

Ilghami, O., Nau, D. S., Munoz-Avila, H., and Aha, D. W. (2005). Learning pre-

conditions for planning from plan traces and HTN structure. Computational
Intelligence, 21(4):388–413.

Ingrand, F. and Ghallab, M. (2014). Robotics and artificial intelligence: a perspec-

tive on deliberation functions. AI Communications, 27(1):63–80.

Ingrand, F. and Ghallab, M. (2015). Deliberation for autonomous robots: a survey.

Artificial Intelligence.

Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F., and Borrajo, D. (2012). A

review of machine learning for automated planning. The Knowledge Engineer-
ing Review, 27:433–467.

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the sub-

set selection problem. In Machine Learning Proceedings 1994, pages 121–129.

Elsevier.

148

Chapter 8. BIBLIOGRAPHY

Kambhampati, S. and Hendler, J. A. (1992). A validation-structure-based theory

of plan modification and reuse. Artificial Intelligence, 55(2-3):193–258.

Kambhampati, S., Katukam, S., and Qu, Y. (1996). Failure driven dynamic search

control for partial order planners: an explanation based approach. Artificial
Intelligence, 88(1-2):253–315.

Kambhampati, S., Parker, E., and Lambrecht, E. (1997). Understanding and

extending graphplan. In European Conference on Planning, pages 260–272.

Springer.

Kasaei, S. H., Oliveira, M., Lim, G. H., Seabra Lopes, L., and Tomé, A. M. (2015).

Interactive open-ended learning for 3d object recognition: an approach and

experiments. Journal of Intelligent & Robotic Systems, 80(3):537–553.

Kautz, H. A., Selman, B., et al. (1992). Planning as satisfiability. In ECAI, vol-

ume 92, pages 359–363. Citeseer.

Kleene, S. C. (1952). Introduction to metamathematics, volume 483. D. Van Nos-

trand Co., Inc., New York, N. Y.

Knoblock, C. (1993). Generating abstraction hierarchies. Springer US, San Francisco,

CA, USA.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial
Intelligence, 68(2):243 – 302.

Knoblock, C. A., Minton, S., and Etzioni, O. (1991). Integrating abstraction and

explanation-based learning in PRODIGY. In Proceedings of the Ninth AAAI
Conference on Artificial Intelligence, pages 541–546. AAAI Press.

Koenemann, J., Burget, F., and Bennewitz, M. (2014). Real-time imitation of hu-

man whole-body motions by humanoids. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 2806–2812. IEEE.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree

search. Artificial intelligence, 27(1):97–109.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42.

149

Chapter 8. BIBLIOGRAPHY

Kulic, D., Takano, W., and Nakamura, Y. (2009). Online segmentation and cluster-

ing from continuous observation of whole body motions. IEEE Transactions on
Robotics, 25(5):1158–1166.

Kuniyoshi, Y., Inaba, M., and Inoue, H. (1994). Learning by watching: extract-

ing reusable task knowledge from visual observation of human performance.

IEEE transactions on robotics and automation, 10(6):799–822.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C.,

Salvucci, D., Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., and

Kirk, J. R. (2017). Interactive task learning. IEEE Intelligent Systems, 32(4):6–

21.

Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: Research

issues and challenges. Cognitive Systems Research, 10(2):141–160.

Lelis, L., Stern, R., Felner, A., Zilles, S., and Holte, R. C. (2012). Predicting optimal

solution cost with bidirectional stratified sampling. In 22st International Con-
ference on Automated Planning and Scheduling (ICAPS), pages 155–163. AAAI

Press.

León, A., Morales, E. F., Altamirano, L., and Ruiz, J. R. (2011). Teaching a robot

to perform task through imitation and on-line feedback. In Iberoamerican
Congress on Pattern Recognition, pages 549–556. Springer.

Lev-Ami, T., Manevich, R., and Sagiv, M. (2004). TVLA: a system for generat-

ing abstract interpreters. In Building the Information Society, pages 367–375.

Springer.

Lev-Ami, T. and Sagiv, M. (2000). TVLA: a framework for kleene logic based static

analyses. Master’s thesis, Tel Aviv University.

Levesque, H. J., Pirri, F., and Reiter, R. (1998). Foundations for the situation cal-

culus. Electronic Transactions on Artificial Intelligence, 2:159–178.

Levine, G. and DeJong, G. (2006). Explanation-based acquisition of planning op-

erators. In ICAPS, pages 152–161.

Lifschitz, V. (1987). On the semantics of STRIPS. In Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop, pages 1–9.

150

Chapter 8. BIBLIOGRAPHY

Lim, G. H., Oliveira, M., Mokhtari, V., Hamidreza Kasaei, S., Chauhan, A., Seabra

Lopes, L., and Tome, A. (2014). Interactive teaching and experience extraction

for learning about objects and robot activities. In Robot and Human Interactive
Communication, 2014 RO-MAN: The 23rd IEEE International Symposium on,

pages 153–160.

Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948.

Manickam, S. (1985). On penetrance and branching factor for search trees, pages

381–388. Springer US, Boston, MA.

Markovitch, S. and Rosenstein, D. (2002). Feature generation using general con-

structor functions. Machine Learning, 49(1):59–98.

Martín, M. and Geffner, H. (2004). Learning generalized policies from planning

examples using concept languages. Applied Intelligence, 20(1):9–19.

McCarthy, J. (1963). Situations, actions, and causal laws. Technical report, STAN-

FORD UNIV CA DEPT OF COMPUTER SCIENCE.

Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,

D., and Wilkins, D. (1998). PDDL – the planning domain definition language.

Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for Computa-

tional Vision and Control.

McDermott, D. V. (1996). A heuristic estimator for means-ends analysis in plan-

ning. In AIPS, volume 96, pages 142–149.

McGann, C., Py, F., Rajan, K., Ryan, J. P., and Henthorn, R. (2008). Adaptive control

for autonomous underwater vehicles. In AAAI, pages 1319–1324.

Merrill, M. D. (2002). First principles of instruction. Educational technology re-
search and development, 50(3):43–59.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based

learning. Artificial Intelligence, 42(2-3):363–391.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., and Gil, Y.

(1989). Explanation-based learning: A problem solving perspective. Artificial
Intelligence, 40(1-3):63–118.

151

Chapter 8. BIBLIOGRAPHY

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule

learning. In Proceedings of the 5th international joint conference on Artificial
intelligence-Volume 1, pages 305–310. Morgan Kaufmann Publishers Inc.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. (1986). Explanation-based

generalization: a unifying view. Machine Learning, 1(1):47–80.

Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C. L., and Miller, D. (2015). In-

teractive hierarchical task learning from a single demonstration. In Proceed-
ings of the Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction, HRI ’15, pages 205–212, New York, NY, USA. ACM.

Mokhtari, V., Lim, G., Seabra Lopes, L., and Pinho, A. J. (2016a). Gathering

and conceptualizing plan-based robot activity experiences. In Menegatti, E.,

Michael, N., Berns, K., and Yamaguchi, H., editors, Intelligent Autonomous Sys-
tems 13, volume 302 of Advances in Intelligent Systems and Computing, pages

993–1005. Springer International Publishing.

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2015a). Experience-based plan-

ning domains: An approach to robot task learning. In Proceedings of the 21st
Portuguese Conference on Pattern Recognition, RecPad 2015, Faro, Portugal, Oc-
tober 2015, pages 30–31.

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2016b). Experience-based plan-

ning domains: an integrated learning and deliberation approach for intelli-

gent robots. Journal of Intelligent & Robotic Systems, 83(3):463–483.

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2016c). Experience-based robot

task learning and planning with goal inference. In 26st International Con-
ference on Automated Planning and Scheduling (ICAPS), pages 509–517. AAAI

Press.

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2017a). An approach to robot task

learning and planning with loops. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6033–6038.

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2017b). Learning and planning of

robot tasks with loops. In 2017 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), pages 296–301.

152

Chapter 8. BIBLIOGRAPHY

Mokhtari, V., Seabra Lopes, L., and Pinho, A. J. (2017c). Learning robot tasks

with loops from experiences to enhance robot adaptability. Pattern Recognition
Letters, 99(Supplement C):57 – 66. User Profiling and Behavior Adaptation for

Human-Robot Interaction.

Mokhtari, V., Seabra Lopes, L., Pinho, A. J., and Lim, G. H. (2015b). Planning with

activity schemata: closing the loop in experience-based planning. In Auto-
nomous Robot Systems and Competitions (ICARSC), 2015 IEEE International
Conference on, pages 9–14.

Muise, C., McIlraith, S., Baier, J. A., and Reimer, M. (2009). Exploiting n-gram

analysis to predict operator sequences. In 19th International Conference on
Automated Planning and Scheduling (ICAPS), pages 374–377.

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman,

F. (2003). SHOP2: An HTN planning system. Journal of artificial intelligence
research, 20:379–404.

Nejati, N., Langley, P., and Konik, T. (2006). Learning hierarchical task networks

by observation. In Proceedings of the 23rd international conference on Machine
learning, pages 665–672. ACM.

Newman, M. E. (2003). Ego-centered networks and the ripple effect. Social Net-
works, 25(1):83–95.

Newton, M. A. H., Levine, J., Fox, M., and Long, D. (2007). Learning macro-actions

for arbitrary planners and domains. In 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 256–263.

Nicolescu, M. N. and Mataric, M. J. (2003). Natural methods for robot task learn-

ing: Instructive demonstrations, generalization and practice. In Proceedings
of the second international joint conference on Autonomous agents and multiagent
systems, pages 241–248. ACM.

Niekum, S., Chitta, S., Barto, A. G., Marthi, B., and Osentoski, S. (2013). Incremen-

tal semantically grounded learning from demonstration. In Robotics: Science
and Systems, volume 9. Berlin, Germany.

153

Chapter 8. BIBLIOGRAPHY

Niekum, S., Osentoski, S., Konidaris, G., and Barto, A. G. (2012). Learning and

generalization of complex tasks from unstructured demonstrations. In Intel-
ligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,

pages 5239–5246. IEEE.

Nilsson, N. J. (1980). Principles of artificial intelligence. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

Oliveira, M., Seabra Lopes, L., Lim, G. H., Kasaei, S. H., Tomé, A. M., and Chauhan,

A. (2016). 3d object perception and perceptual learning in the race project.

Robotics and Autonomous Systems, 75:614–626.

Pardowitz, M., Knoop, S., Dillmann, R., and Zollner, R. D. (2007). Incremental

learning of tasks from user demonstrations, past experiences, and vocal com-

ments. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 37(2):322–332.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving.

Pecora, F., Mansouri, M., Rockel, S., Stock, S., Günther, M., Seabra Lopes, L., Tomé,

A. M., Neumann, B., von Riegen, S., Hotz, L., and Dubba, K. S. R. (2012). Rele-

vant knowledge representation tools and formalisms. Deliverable D1.1 Avail-

able from http://race.informatik.uni-hamburg.de/wordpress/wp-content/

uploads/2011/11/RACE-D1.1.pdf.

Pednault, E. P. (1989). ADL: exploring the middle ground between STRIPS and the

situation calculus. Kr, 89:324–332.

Pednault, E. P. (1994). ADL and the state-transition model of action. Journal of
logic and computation, 4(5):467–512.

Penberthy, J. S., Weld, D. S., et al. (1992). UCPOP: A sound, complete, partial order

planner for ADL. Kr, 92:103–114.

Peot, M. A. and Smith, D. E. (1992). Conditional nonlinear planning. In Proceed-
ings of the first international conference on Artificial intelligence planning systems,
pages 189–197.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural networks, 21(4):682–697.

154

http://race.informatik.uni-hamburg.de/wordpress/wp-content/uploads/2011/11/RACE-D1.1.pdf
http://race.informatik.uni-hamburg.de/wordpress/wp-content/uploads/2011/11/RACE-D1.1.pdf

Chapter 8. BIBLIOGRAPHY

Petrick, R. P. and Foster, M. E. (2013). Planning for social interaction in a robot

bartender domain. In 23rd International Conference on Automated Planning
and Scheduling (ICAPS), pages 389–397. AAAI Press.

Rao, R. P. N., Shon, A. P., and Meltzoff, A. N. (2007). A Bayesian model of imitation
in infants and robots, page 217âĂŞ248. Cambridge University Press.

Reddy, S. Y., Frank, J. D., Iatauro, M. J., Boyce, M. E., Kürklü, E., Ai-Chang, M., and

Jónsson, A. K. (2011). Planning solar array operations on the international

space station. ACM Transactions on Intelligent Systems and Technology (TIST),
2(4):41.

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks revisited. In AAAI,
volume 8, pages 975–982.

Richter, S. and Westphal, M. (2010). The lama planner: Guiding cost-based

anytime planning with landmarks. Journal of Artificial Intelligence Research,

39:127–177.

Rintanen, J. (2010). Heuristic planning with sat: beyond uninformed depth-first

search. In Australasian Joint Conference on Artificial Intelligence, pages 415–

424. Springer.

Rintanen, J. (2012). Planning as satisfiability: heuristics. Artificial Intelligence,

193:45 – 86.

Rockel, S., Neumann, B., Zhang, J., Dubba, K. S. R., Cohn, A. G., S̆. Konec̆ný, Man-

souri, M., Pecora, F., Saffiotti, A., Günther, M., Stock, S., Hertzberg, J., Tomé,

A. M., Pinho, A. J., Seabra Lopes, L., von Riegen, S., and Hotz, L. (2013). An

ontology-based multi-level robot architecture for learning from experiences.

In Designing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium,

Stanford (USA).

Russell, S. and Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice

Hall, 3 edition.

Rybski, P., Yoon, K., Stolarz, J., and Veloso, M. (2007). Interactive robot task train-

ing through dialog and demonstration. In Human-Robot Interaction (HRI),
2007 2nd ACM/IEEE International Conference on, pages 49–56.

155

Chapter 8. BIBLIOGRAPHY

Sagiv, S., Reps, T. W., and Wilhelm, R. (2002). Parametric shape analysis via 3-

valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298.

Saitta, L. and Zucker, J.-D. (2013). Abstraction in artificial intelligence and complex
systems, volume 456. Springer.

Saunders, J., Nehaniv, C. L., and Dautenhahn, K. (2006). Teaching robots by

moulding behavior and scaffolding the environment. In Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot interaction, pages 118–125.

ACM.

Seabra Lopes, L. (1997). Robot Learning at the Task Level. A Study in the Assembly
Domain. PhD thesis, Universidade Nova de Lisboa, Monte da Caparica.

Seabra Lopes, L. (1999). Failure recovery planning in assembly based on ac-

quired experience: learning by analogy. In Assembly and Task Planning,
1999.(ISATP’99) Proceedings of the 1999 IEEE International Symposium on,

pages 294–300. IEEE.

Seabra Lopes, L. (2007). Failure recovery planning for robotized assembly based

on learned semantic structures. In IFAC Workshop on Intelligent Assembly and
Disassembly (IAD’2007), pages 65–70.

Seabra Lopes, L. and Connell, J. (2001). Semisentient robots: routes to integrated

intelligence. Intelligent Systems, IEEE, 16(5):10–14.

Shafii, N., Kasaei, S. H., and Seabra Lopes, L. (2016). Learning to grasp familiar ob-

jects using object view recognition and template matching. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2895–

2900.

Shavlik, J. W. (1990). Acquiring recursive and iterative concepts with explanation-

based learning. Machine Learning, 5(1):39–70.

Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. MIT

press.

Skoglund, A., Iliev, B., and Palm, R. (2010). Programming-by-demonstration of

reaching motions–a next-state-planner approach. Robotics and Autonomous
Systems, 58(5):607–621.

156

Chapter 8. BIBLIOGRAPHY

Srivastava, S., Immerman, N., and Zilberstein, S. (2008). Learning generalized

plans using abstract counting. In Proceedings of the Twenty-Third Conference on
Artificial Intelligence, pages 991–997. AAAI Press.

Srivastava, S., Immerman, N., and Zilberstein, S. (2011). A new representation

and associated algorithms for generalized planning. Artificial Intelligence,

175(2):615 – 647.

Stock, S., Guenther, M., and Hertzberg, J. (2014). Generating and executing hier-

archical mobile manipulation plans. In ISR/Robotik 2014; 41st International
Symposium on Robotics; Proceedings of, pages 1–6.

Sullivan, K., Luke, S., and Ziparo, V. A. (2010). Hierarchical learning from demon-

stration on humanoid robots. In Proceedings of Humanoid Robots Learning from
Human Interaction Workshop, volume 38. Citeseer.

Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In

H. S. Terrace, . J. M., editor, The Missing Link in Cognition, pages 4–56. Ox-

ford Univ. Press, NewYork, NY.

S̆. Konec̆ný, Stock, S., Pecora, F., and Saffiotti, A. (2014). Planning domain + execu-

tion semantics: a way towards robust execution? In Qualitative Representations
for Robots, AAAI Spring Symposium.

Van Lent, M. and Laird, J. E. (2001). Learning procedural knowledge through

observation. In Proceedings of the 1st international conference on Knowledge
capture, pages 179–186. ACM.

Veeraraghavan, H. and Veloso, M. (2008). Teaching sequential tasks with repetition

through demonstration. In Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’08, pages

1357–1360, Richland, SC. International Foundation for Autonomous Agents

and Multiagent Systems.

Veloso, M. M. (1992). Learning by analogical reasoning in general problem solving.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-

burgh, PA.

Veloso, M. M. (1993). Prodilogy/analogy: Analogical reasoning in general problem

solving. In European Workshop on Case-Based Reasoning, pages 33–50. Springer.

157

Chapter 8. BIBLIOGRAPHY

Veloso, M. M., Pérez, M. A., and Carbonell, J. G. (1990). Nonlinear planning with

parallel resource allocation. In Proceedings of the DARPA Workshop on Innova-
tive Approaches to Planning, Scheduling, and Control, pages 207–212. Morgan

Kaufmann San Diego, CA.

Vernon, D., Metta, G., and Sandini, G. (2007). A survey of artificial cognitive

systems: Implications for the autonomous development of mental capabili-

ties in computational agents. IEEE transactions on evolutionary computation,

11(2):151–180.

Walsh, T. J. and Littman, M. L. (2008). Efficient learning of action schemas and

web-service descriptions. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), volume 8, pages 714–719.

Winner, E. and Veloso, M. M. (2007). LoopDISTILL: learning domain-specific

planners from example plans. In ICAPS Workshop on Planning and Schedul-
ing.

Winner, E. Z. (2008). Learning domain-specific planners from example plans. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA.

Wood, R., Baxter, P., and Belpaeme, T. (2012). A review of long-term memory in

natural and synthetic systems. Adaptive Behavior, 20(2):81–103.

Yang, Q. (1997). Intelligent planning: a decomposition and abstraction based approach.

Springer-Verlag Berlin Heidelberg.

Yang, Y., Li, Y., Fermüller, C., and Aloimonos, Y. (2015). Robot learning manipula-

tion action plans by watching unconstrained videos from the world wide web.

In AAAI, pages 3686–3693.

Yoon, S., Fern, A., and Givan, R. (2008). Learning control knowledge for forward

search planning. J. Mach. Learn. Res., 9:683–718.

Zhuo, H., Li, L., Yang, Q., and Bian, R. (2008). Learning action models with quan-

tified conditional effects for software requirement specification. In Huang,

D.-S., Wunsch, D. C., Levine, D. S., and Jo, K.-H., editors, Advanced Intelligent
Computing Theories and Applications. With Aspects of Theoretical and Method-
ological Issues, pages 874–881, Berlin, Heidelberg. Springer Berlin Heidelberg.

158

BIBLIOGRAPHY

Zhuo, H. H., Hu, D. H., Hogg, C., Yang, Q., and Munoz-Avila, H. (2009). Learning

HTN method preconditions and action models from partial observations. In

Proceedings of the Twenty-First International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1804–1810.

Zhuo, H. H., noz Avila, H. M., and Yang, Q. (2014). Learning hierarchical task

network domains from partially observed plan traces. Artificial Intelligence,

212(0):134 – 157.

Zimmerman, T. and Kambhampati, S. (2003). Learning-assisted automated plan-

ning: looking back, taking stock, going forward. AI Magazine, 24(2):73–96.

159

Appendix A

The Stacking-Blocks EBPD

In this appendix, we illustrate a full description and representation of the con-

crete planning domain, the abstract planning domain, and the abstraction hier-

archies for the Stacking-Blocks planning domain, in Experience-Based Planning

Domains (EBPDs).

160

Chapter A. The Stacking-Blocks EBPD

1 (define (domain stacking -blocks)
2 (: requirements :strips)
3 (: predicates (location ?l)
4 (pile ?p)
5 (table ?t)
6 (hoist ?h)
7 (block ?b)
8 (blue ?b)
9 (red ?b)

10 (pallet ?b)
11 (attached ?p ?l)
12 (belong ?h ?l)
13 (at ?h ?p)
14 (holding ?h ?b)
15 (empty ?h)
16 (in ?b ?p)
17 (top ?b ?p)
18 (on ?b1 ?b2)
19 (ontable ?b ?t))
20

21 (: action move
22 :parameters (?h ?from ?to ?l)
23 :parent (nil ())
24 :static (and (location ?l)
25 (hoist ?h)
26 (belong ?h ?l)
27 (attached ?from ?l)
28 (attached ?to ?l))
29 :precondition (and (at ?h ?from)
30 (not (= ?to ?from)))
31 :effect (and (at ?h ?to)
32 (not (at ?h ?from))))
33

34 (: action unstack
35 :parameters (?h ?a ?b ?p ?l)
36 :parent (unstack (?a ?b ?p))
37 :static (and (location ?l)
38 (hoist ?h)
39 (pile ?p)
40 (belong ?h ?l)
41 (attached ?p ?l))
42 :precondition (and (at ?h ?p)
43 (empty ?h)
44 (in ?a ?p)
45 (top ?a ?p)
46 (on ?a ?b))
47 :effect (and (holding ?h ?b)
48 (top ?b ?p)
49 (not (in ?a ?p))
50 (not (top ?a ?p))
51 (not (on ?a ?b))
52 (not (empty ?h))))
53

54 (: action stack
55 :parameters (?h ?b ?a ?p ?l)
56 :parent (stack (?b ?a ?p))
57 :static (and (location ?l)
58 (hoist ?h)
59 (pile ?p)
60 (belong ?h ?l)
61 (attached ?p ?l))
62 :precondition (and (at ?h ?p)
63 (holding ?h ?b)
64 (top ?a ?p))
65 :effect (and (in ?b ?p)
66 (top ?b ?p)
67 (on ?b ?a)
68 (not (top ?a ?p))
69 (not (holding ?h ?b))

161

Chapter A. The Stacking-Blocks EBPD

70 (empty ?h)))
71

72 (: action pickup
73 :parameters (?h ?b ?t ?l)
74 :parent (pick (?b ?t))
75 :static (and (location ?l)
76 (hoist ?h)
77 (table ?t)
78 (belong ?h ?l)
79 (attached ?t ?l))
80 :precondition (and (at ?h ?t)
81 (empty ?h)
82 (ontable ?b ?t))
83 :effect (and (holding ?h ?b)
84 (not (ontable ?b ?t))
85 (not (empty ?h))))
86

87 (: action putdown
88 :parameters (?h ?b ?t ?l)
89 :parent (put (?b ?t))
90 :static (and (location ?l)
91 (hoist ?h)
92 (table ?t)
93 (belong ?h ?l)
94 (attached ?t ?l))
95 :precondition (and (holding ?h ?b)
96 (at ?h ?t))
97 :effect (and (ontable ?b ?t)
98 (not (holding ?h ?b))
99 (empty ?h)))

100)

Listing A.1: The concrete planning domain in the Stacking-Blocks EBPD.

162

Chapter A. The Stacking-Blocks EBPD

1 (define (domain stacking -blocks)
2 (: requirements :strips)
3 (: predicates (pile ?p)
4 (table ?t)
5 (block ?b)
6 (blue ?b)
7 (red ?b)
8 (pallet ?b)
9 (holding ?b)

10 (in ?b ?p)
11 (top ?b ?p)
12 (on ?b1 ?b2)
13 (ontable ?b ?t))
14

15 (: action unstack
16 :parameters (?a ?b ?p)
17 :static (pile ?p)
18 :precondition (and (in ?a ?p)
19 (top ?a ?p)
20 (on ?a ?b))
21 :effect (and (holding ?a)
22 (top ?b ?p)
23 (not (in ?a ?p))
24 (not (top ?a ?p))
25 (not (on ?a ?b))))
26

27 (: action stack
28 :parameters (?b ?a ?p)
29 :static (pile ?p)
30 :precondition (and (holding ?b)
31 (top ?a ?p))
32 :effect (and (in ?b ?p)
33 (top ?b ?p)
34 (on ?b ?a)
35 (not (top ?a ?p))
36 (not (holding ?b))))
37

38 (: action pickup
39 :parameters (?b ?t)
40 :static (table ?t)
41 :precondition (ontable ?b ?t)
42 :effect (and (holding ?b)
43 (not (ontable ?b ?t))))
44

45 (: action putdown
46 :parameters (?b ?t)
47 :static (table ?t)
48 :precondition (holding ?b)
49 :effect (and (ontable ?b ?t)
50 (not (holding ?b))))
51)

Listing A.2: The abstract planning domain in the Stacking-Blocks EBPD.

163

Chapter A. The Stacking-Blocks EBPD

1 (define (abstraction -hierarchies)
2 (: domain stacking -blocks)
3

4 (:predicate -abstraction
5 (table ?table) : (table ?table)
6 (pile ?pile) : (pile ?pile)
7 (block ?block) : (block ?block)
8 (blue ?block) : (blue ?block)
9 (red ?block) : (red ?block)

10 (pallet ?pallet) : (pallet ?pallet)
11 (on ?block1 ?block2) : (on ?block1 ?block2)
12 (ontable ?block ?table) : (ontable ?block ?table)
13 (top ?block ?pile) : (top ?block ?pile)
14 (holding ?hoist ?block) : (holding ?block)
15 (location ?location) : ()
16 (hoist ?hoist) : ()
17 (attached ?pile ?location) : ()
18 (belong ?hoist ?location) : ()
19 (at ?hoist ?pile) : ()
20 (empty ?hoist) : ())
21

22 (:operator -abstraction
23 (unstack ?hoist ?block1 ?block2 ?pile ?loc)
24 : (unstack ?block1 ?block2 ?pile)
25 (stack ?hoist ?block2 ?block1 ?pile ?loc)
26 : (stack ?block2 ?block1 ?pile)
27 (pickup ?hoist ?block ?table ?loc)
28 : (pick ?block ?table)
29 (putdown ?hoist ?block ?table ?loc)
30 : (put ?block ?table)
31 (move ?hoist ?from ?to ?loc)
32 : ())
33)

Listing A.3: The predicate and operator abstraction hierarchies in the Stacking-Blocks EBPD.

164

	Acknowledgments
	Dedication
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Notations
	Introduction
	Motivation
	Objectives
	Research Context
	Thesis Outline and Contributions
	Publications

	A Review of Robot Task Learning and Planning
	Robot Learning from Demonstration
	Teacher Demonstrations
	Low-Level Skill Learning from Demonstration
	High-Level Task Learning from Demonstration

	Artificial Intelligence Planning
	Classical Planning Framework
	Planning Domain Definition Language
	Algorithms for Classical Planning
	Hierarchical Task Network Planning

	Machine Learning for Automated Planning
	Learning Macro Actions
	Learning Hierarchical Decomposition Models
	Generalized Planning
	Explanation Based Learning
	Other Techniques for Acquiring Planning Knowledge

	Summary

	Experience-Based Planning Domains
	Running Examples
	The RACE Domain
	The Stacking Blocks Domain

	Architectural Overview
	Planning Domains
	Task Planning Problems and Solutions
	Abstraction Hierarchies
	Plan-Based Robot Activity Experiences
	Robot Activity Schemata
	Experience-Based Planning Domains
	Summary

	Human-Robot Interaction and the Extraction of Experiences
	Running Example: Teaching Tasks in the RACE Domain
	Knowledge Representation Aspects
	Ontology of Experiences
	Human-Robot Interaction Ontology

	Interactive Teaching
	Robot Activity Experience Extraction
	Summary

	Learning Planning Knowledge
	Experience Generalization
	Experience Abstraction
	Feature Extraction
	Loop Detection
	Scope Inference
	Goal Inference
	Summary

	Planning Using the Learned Knowledge
	Problem Abstraction
	Activity Schema Retrieval
	Abstract Planning
	Concrete Planning
	Summary

	Implementation, Demonstration and Evaluation
	Prototyping and Implementation
	Evaluation Metrics
	The RACE Demonstrations and Results
	Robotic Arm Demonstration and Results
	Standard Planning Domains
	Summary

	Conclusions
	Summary of the Thesis Contributions
	Directions for Future Work

	Bibliography
	The Stacking-Blocks EBPD

