325 research outputs found

    Analysis of complex metabolic behavior through pathway decomposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding complex systems through decomposition into simple interacting components is a pervasive paradigm throughout modern science and engineering. For cellular metabolism, complexity can be reduced by decomposition into pathways with particular biochemical functions, and the concept of elementary flux modes provides a systematic way for organizing metabolic networks into such pathways. While decomposition using elementary flux modes has proven to be a powerful tool for understanding and manipulating cellular metabolism, its utility, however, is severely limited since the number of modes in a network increases exponentially with its size.</p> <p>Results</p> <p>Here, we present a new method for decomposition of metabolic flux distributions into elementary flux modes. Our method can easily operate on large, genome-scale networks since it does not require all relevant modes of the metabolic network to be generated. We illustrate the utility of our method for metabolic engineering of <it>Escherichia coli </it>and for understanding the survival of <it>Mycobacterium tuberculosis </it>(MTB) during infection.</p> <p>Conclusions</p> <p>Our method can achieve computational time improvements exceeding 2000-fold and requires only several seconds to generate elementary mode decompositions on genome-scale networks. These improvements arise from not having to generate all relevant elementary modes prior to initiating the decomposition. The decompositions from our method are useful for understanding complex flux distributions and debugging genome-scale models.</p

    On the geometry of elementary flux modes

    Get PDF
    Elementary flux modes (EFMs) play a prominent role in the constraint-based analysis of metabolic networks. They correspond to minimal functional units of the metabolic network at steady-state and as such have been studied for almost 30 years. The set of all EFMs in a metabolic network tends to be very large and may have exponential size in the number of reactions. Hence, there is a need to elucidate the structure of this set. Here we focus on geometric properties of EFMs. We analyze the distribution of EFMs in the face lattice of the steady-state flux cone of the metabolic network and show that EFMs in the relative interior of the cone occur only in very special cases. We introduce the concept of degree of an EFM as a measure how elementary it is and study the decomposition of flux vectors and EFMs depending on their degree. Geometric analysis can help to better understand the structure of the set of EFMs, which is important from both the mathematical and the biological viewpoint

    Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among Elementary Modes, Extreme Pathways and Minimal Generators

    Get PDF
    Important efforts are being done to systematically identify the relevant pathways in a metabolic network. Unsurprisingly, there is not a unique set of network-based pathways to be tagged as relevant, and at least four related concepts have been proposed: extreme currents, elementary modes, extreme pathways, and minimal generators. Basically, there are two properties that these sets of pathways can hold: they can generate the flux space—if every feasible flux distribution can be represented as a nonnegative combination of flux through them—or they can comprise all the nondecomposable pathways in the network. The four concepts fulfill the first property, but only the elementary modes fulfill the second one. This subtle difference has been a source of errors and misunderstandings. This paper attempts to clarify the intricate relationship between the network-based pathways performing a comparison among them

    Organising metabolic networks: cycles in flux distributions

    Get PDF
    Metabolic networks are among the most widely studied biological systems. The topology and interconnections of metabolic reactions have been well described for many species, but are not sufficient to understand how their activity is regulated in living organisms. The principles directing the dynamic organisation of reaction fluxes remain poorly understood. Cyclic structures are thought to play a central role in the homeostasis of biological systems and in their resilience to a changing environment. In this work, we investigate the role of fluxes of matter cycling in metabolic networks. First, we introduce a methodology for the computation of cyclic and acyclic fluxes in metabolic networks, adapted from an algorithm initially developed to study cyclic fluxes in trophic networks. Subsequently, we apply this methodology to the analysis of three metabolic systems, including the central metabolism of wild type and a deletion mutant of Escherichia coli, erythrocyte metabolism and the central metabolism of the bacterium Methylobacterium extorquens. The role of cycles in driving and maintaining the performance of metabolic functions upon perturbations is unveiled through these examples. This methodology may be used to further investigate the role of cycles in living organisms, their pro-activity and organisational invariance, leading to a better understanding of biological entailment and information processing

    Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    Get PDF
    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated

    Stoichiometric representation of geneproteinreaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction

    Get PDF
    Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.DM was supported by the Portuguese Foundationfor Science and Technologythrough a post-doc fellowship (ref: SFRH/BPD/111519/ 2015). This study was supported by the PortugueseFoundationfor Science and Technology (FCT) under the scope of the strategic fundingof UID/BIO/04469/2013 unitand COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145FEDER-000004) fundedby EuropeanRegional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte. This project has received fundingfrom the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 686070. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial hosts offer a number of unique advantages when used as production systems for both native and heterologous small-molecules. These advantages include high selectivity and benign environmental impact; however, a principal drawback is low yield and/or productivity, which limits economic viability. Therefore a major challenge in developing a microbial production system is to maximize formation of a specific product while sustaining cell growth. Tools to rationally reconfigure microbial metabolism for these potentially conflicting objectives remain limited. Exhaustively exploring combinations of genetic modifications is both experimentally and computationally inefficient, and can become intractable when multiple gene deletions or insertions need to be considered. Alternatively, the search for desirable gene modifications may be solved heuristically as an evolutionary optimization problem. In this study, we combine a genetic algorithm and elementary mode analysis to develop an optimization framework for evolving metabolic networks with energetically favorable pathways for production of both biomass and a compound of interest.</p> <p>Results</p> <p>Utilization of thermodynamically-weighted elementary modes for flux reconstruction of <it>E. coli </it>central metabolism revealed two clusters of EMs with respect to their Δ<it>G</it><sub><it>p</it></sub>°. For proof of principle testing, the algorithm was applied to ethanol and lycopene production in <it>E. coli</it>. The algorithm was used to optimize product formation, biomass formation, and product and biomass formation simultaneously. Predicted knockouts often matched those that have previously been implemented experimentally for improved product formation. The performance of a multi-objective genetic algorithm showed that it is better to couple the two objectives in a single objective genetic algorithm.</p> <p>Conclusion</p> <p>A computationally tractable framework is presented for the redesign of metabolic networks for maximal product formation combining elementary mode analysis (a form of convex analysis), pathway thermodynamics, and a genetic algorithm to optimize the production of two industrially-relevant products, ethanol and lycopene, from <it>E. coli</it>. The designed algorithm can be applied to any small-scale model of cellular metabolism theoretically utilizing any substrate and applied towards the production of any product.</p
    corecore