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Abstract

Metabolic networks are among the most widely studied biological systems. The
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topology and interconnections of metabolic reactions have been well described for
many species, but are not sufficient to understand how their activity is regulated
in living organisms. The principles directing the dynamic organisation of reaction
fluxes remain poorly understood. Cyclic structures are thought to play a central
role in the homeostasis of biological systems and in their resilience to a changing
environment. In this work, we investigate the role of fluxes of matter cycling in

metabolic networks. First, we introduce a methodology for the computation of
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cyclic and acyclic fluxes in metabolic networks, adapted from an algorithm
initially developed to study cyclic fluxes in trophic networks. Subsequently, we
apply this methodology to the analysis of three metabolic systems, including the
central metabolism of wild type and a deletion mutant of Escherichia coli,
erythrocyte metabolism and the central metabolism of the bacterium
Methylobacterium extorquens. The role of cycles in driving and maintaining the
performance of metabolic functions upon perturbations is unveiled through these
examples. This methodology may be used to further investigate the role of cycles
in living organisms, their pro-activity and organisational invariance, leading to a

better understanding of biological entailment and information processing.

Keywords: systems biology; organisation; flux; cycle.
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1. Introduction

Biological systems are highly complex and dynamic by nature. From the scale of
molecules to that of ecosystems, numerous components and processes interact,
and these interactions create the biological functions that allow entities to live,
reproduce and grow. The challenge of making sense of this complex organisation
is not new, but it is becoming all the more crucial in the post-genome era. With
the development of omics technologies and systems biology, large amounts of
biological data are produced each day, using various experimental techniques.
However the integration and interpretation of these data is proving to be very
challenging and a large effort is needed in developing new methods for analysing

and interpreting such complex data.

Metabolic networks are among the best characterised and most widely studied
cellular interaction networks. The present availability of extensive data is allowing
the construction of genome-scale metabolic networks for an increasing number of
species, generally through a careful human-driven curation process (Feist et al.,
2007; Heinemann et al., 2005; Herrgérd et al., 2008; Ma et al., 2007). The
topological properties of metabolic networks have been investigated in great
details, revealing scale-free, modular and hierarchical properties (Jeong et al.,

2000; Ravasz et al., 2002; Sales-Pardo et al., 2007).

These networks, however, primarily reflect our knowledge about the possible

biochemical reactions in a given organism. The reactions and substrates that
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compose them are not active all the time or present everywhere in the cell.
Despite the rich knowledge already gained about the topology and connectivity of
metabolic reactions, the principles regulating the dynamic activity of metabolic
networks remain poorly understood. It is now widely accepted that the regulation
of metabolic networks is distributed, and it is becoming ever clearer that reactions
occur at different localisations and rates in a cell at any given time (Binder et al.,
2008; Bluthgen & Platt, 2008; Fell & Poolman, 2008). The distribution of fluxes in
a metabolic network cannot be understood by studying the properties of
individual enzymes or rate-limiting steps, but it arises from the set of complex
interactions between interconnected reactions, regulated at the transcriptional,
translational, signalling and metabolic levels (Heinrich & Rapoport, 1974; Kacser
& Burns, 1995; Rossell et al., 2005). So far, many efforts to understand the
behaviour of large metabolic systems have taken a 'linear' view, essentially
considering stoichiometrically consistent sets of reactions that link one or several
source compounds to one or several products. Examples of such approaches
include analyses by elementary modes, extreme pathways (Gagneur & Klamt,
2004; Papin et al., 2003; Schwartz & Kanehisa, 2006; Teixeira et al., 2007), as
well as expansions of sets of source compounds and their metabolic scopes

(Handorf et al., 2005; Raymond & Segre, 2006).

Thus, the topology of metabolic networks is not sufficient. To improve our
knowledge about the localisation of reactions and the distribution of substrate

concentrations in cells, it is necessary to enhance our understanding about their
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dynamic activity and their characteristics as living entities. However, the presently
available methods still impose severe constrains on observing chemical activity
distributed in space and time. One possibility for advancing our knowledge with
respect to cell dynamics, then, is to investigate the distribution of flows that
overlays the possible chemical interactions reflected by metabolic networks; that
is, to search for knowledge about how much of a substrate present in a cell may be
distributed among the reactions in its scope. What is the capacity of a metabolic
network to retain and distribute substrate concentrations? How do fluxes split
among the many pathways of a network and supply the substrates and energy
needed by the cell at any given time? One manner of retaining substrates and

making fluxes available is to keep them cycling.

Notwithstanding, cyclic structures have been often neglected in metabolic network
studies. For a long time, metabolic cycles were characterised as 'futile', as it was
thought that they could only result in unnecessary energy dissipation and should
have been repressed by evolution (Rohwer & Botha, 2001; Schilling et al., 2000;
Schuster et al., 2000). However, it is known that cyclic structures play a central
role in the homeostasis of biological systems at several scales, as well as in their
resilience and apt responses to environmental stimuli (Gleiss et al., 2001; Kun et
al., 2008; Ma'ayan et al., 2008). This aspect has been investigated both in
macroscopic and microscopic biological systems, but is far from being extensively

addressed.
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One feature distinguishing biological systems from physico-chemical systems is the
nature of entailment. For a biochemical system the cause does not necessarily
precede the effect in time (Wolkenhauer, 2001). Also, living entities embed all
information required for their own functional activity, which is a necessary but not
sufficient requirement for their organisational invariance (Cornish-Bowden &
Cdrdenas, 2007; Letelier, 2006). Cycles have been shown to play a major role in
both embedding information and organisational invariance, since they disrupt the
arrow of time. Thus, we ought to develop methods for analysing biological data
from several perspectives in order to get a better understanding of living

phenomena.

The concept of cyclic decomposition in networks was described in the context of
trophic networks by Ulanowicz (1983). Metabolic networks, however, distinguish
themselves from trophic networks in several manners. Aside the computational
complexity of enumerating cycles in graph structures, there is the problem of
interpreting and manipulating them properly in the context of metabolism. Our
purpose here is to present a cyclic decomposition methodology for metabolic
networks based on that of Ulanowicz, and to illustrate its relevance by applying it
to the analysis of three examples of interest. This approach is expected to enhance
our knowledge of cellular dynamics by decomposing a metabolic network, with a

given flux distribution, into flux cycles and a residual acyclic flow graph.
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We are working under the following premises, supported by non-quantitative
observations, which may not be directly seen in the arguments but are subjacent
to the whole approach. First, we are assuming that the available metabolic
networks represent possible reactions and their interconnections, which may or
not take place at a given steady-state. Second, reactions connected in the network
may not be functionally related if the occur at different localisations. Third, the
available data about metabolic fluxes reflect mean values over populations of cells
that may be in different steady-states. Although they are not usually made explicit,

these assumptions underlie the majority of current studies of metabolic networks.

The approach presented here allows for investigations about the organisation of
metabolic networks based on the decomposition of a flux distribution into cyclic
and acyclic fluxes. Each example reveals different properties of the decomposition
and different manners of thinking the organisation of the cell. The decomposition
algorithm and methodology are described in the next section. Examples and
results obtained are presented in the third section. In the fourth section, we

discuss this approach and some of its implications.

2. Methods and algorithms

The cycle decomposition algorithm consists of two phases. The first phase finds all
existing cycles of a network; this is an NP-complete problem whose results do not
depend, however, on any flux values. The second phase uses fluxes or other values

associated to arcs to gradually extract the identified cycles from the graph, leaving
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a residual acyclic graph in the case of open networks. A first distinction about
metabolic and trophic networks is that the former are indeed hypergraphs while
the second are graphs. This is circumvented here by considering the
representation of hypergraphs as bipartite graphs and is discussed in the first
subsection. The second subsection presents the details of our decomposition
method and the last section discusses characteristics and other possibilities for

inspecting the cycle and flux structure of a metabolic network.

a) Representation of metabolic networks

Strictly speaking, metabolic networks are hypergraphs, since reactions are in
general associated with several substrates and products. They may be represented
in at least three interchangeable forms. In the first form, metabolites are
represented as nodes and the reactions as edges or arcs (which are directed edges)
if reactions have a preferred direction. In the second form, reactions are depicted
as nodes while metabolites are depicted as edges, which is the dual form of the
first in terms of hypergraphs. In the third form, both metabolites and reactions are
represented as two different types of nodes, and arcs connect them in accordance
with biochemistry laws. The latter is essentially the representation of hypergraphs
as bipartite graphs. The most general representation is the latest, the other two
may be obtained from it (Figure 1). Moreover, there is a one to one association

between cycles in each of these representations.
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In the sequel, the directed bipartite graph representation will be used for
metabolic networks. An arc from a metabolite into a reaction means that the
metabolite is a substrate for the reaction, and an arc from a reaction into a
metabolite means that the latter is a product of the reaction. If a reaction is
reversible, arcs in both directions may be used. Arcs and nodes may be labelled
with indicative values. Usually, metabolic networks have fluxes attributed to
reactions and concentrations to metabolites. While employing the bipartite
representation, we have migrated this information to the bipartite arcs by means

of the stoichiometry of each reaction, in order to apply the decomposition method.

b) Fluxes and mass conservation

Since we are working in steady-state conditions, it is important that flux values
and the decomposition algorithm conform to mass conservation laws. Mass
particles flow from one reaction to another or are exchanged with the
environment. Therefore, to apply the cycle decomposition methodology to
metabolic networks, the values associated to arcs of the hypergraph should reflect

conserved quantities.

To accomplish this we convert the molar flux V(R) of each reaction R into mass
fluxes associated to each arc, either incoming or outgoing, incident to R. An arc
‘a' (or an edge 'e') and a node 'n' are said to be incident if 'n' is a node

belonging to'a'. The conversion is done proportionally to the molar masses and
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stoichiometric coefficients of each metabolite associated to the reaction, in the

following manner.

Let A,1<i<m, denote the substrates of reaction R and B;,1< ] <P, denote the

products of this reaction. Then, the mass flux f(A) associated to substrate arc
(A,R) is:
f(A)=a xM(A)xVv(R),1<i<m,
where & is the stoichiometric coefficient of A in R, M(A) is the molar mass of
A, and V(R) the molar reaction flux. Likewise, the mass flux of the product arc
(B,R) of R is given by:
f(B))=b, xM(B,)xVv(R),1<j<p,

where b; is the stoichiometric coefficient of B;in R, M(B)) is the molar mass of

B, , and(R) the molar reaction flux.

In a given metabolic model, cofactors do not necessarily need to be represented
explicitly. In this case, fluxes through some reactions may be apparently
unbalanced, because a part of the mass flux has been exported to or imported
from the environment through cofactors. To cope with this apparent unbalance of
mass flux we associate to a reaction node R a gateway (an arc and a node), that

represents mass exchange with the environment, whenever required. Moreover,

sequences of reactions may be represented as a single reaction R;. In this case, all
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co-factors exchanged in the sequence and not explicitly represented are summed

up into a single gateway.

¢) Computing cycles
We use Tarjan's algorithm (Tarjan, 1973) to solve the cycle enumeration problem

for the direct bipartite graph representation of metabolic networks. Tarjan's

algorithm requires as input a directed graph G={N ,A} with nodes enumerated

from 1 to n, the number of elements in N, and an adjacency list Adj(n) for each

nON .The adjacency list Adj(n) is a list containing all nodes n’ for which

(n,n")OA . Apath P is defined as a sequence of arcs

(nl, n, ), (nz, n3), s (ni_l, n, ) ON , such that the terminal node of an arc is the initial

node of the next one. Paths will be represented, without loss of generality, by their

set of nodes p; = (nh,n,-z,--., n, ) A path P is called elementary if all its nodes

occur only once in P . An elementary cycle C; is defined as an elementary path P;

in which the first node N;, and last node Nj, coincide. The following description of

a generic cycle finding algorithm justifies our choice of Tarjan’s algorithm, that is

fully described in Appendix A.

General searches for cycles in a graph can be performed by an unconstrained

backtracking algorithm; this means exploring all possible elementary paths on the

graph and verifying which paths are elementary cycles. Given G = {N ,A} with its
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nodes enumerated from 1 to n and its adjacency list Adj(n), an unconstrained

algorithm proceeds as follows:

Start from any given node N, chose an arc a HAdj(n) traversing from node N, to
node N,,i <h. Continue traversing to another node N,,h <Kk, via the adjacency list

of nh.

Whenever N, is adjacent to N, an elementary cycle p; = (nh,njz,---, n, ) has been

found and is enumerated.

Continue until there are no more subsequent nodes. Then return one node back,

choosing another arc to traverse.

Stop when all elementary paths p; = (nh,njz,..., n; ), such that N, <N for all

Ik J°

2 <i <k have being examined.

This basic procedure explores many more paths than necessary and has
exponential computational complexity. For an efficient cycle enumeration there
must be a pruning method to avoid futile searches. Tarjan's algorithm provides

such an efficient pruning method (see a pseudo-code of the algorithm in Appendix

A), theoretically requiring O((N +A)(C+ 1)) run time steps, where N, A and C

are the total number of nodes, arcs and cycles, respectively. It is thus bilinear in
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these preceding quantities. In the name of simplicity, the algorithm does not take
into account graphs with self-loops or multiple arcs, conditions that are naturally
satisfied by the bipartite representation of hypergraphs that reflect metabolic

networks.

d) Network decomposition and residual acyclic graphs
The second phase of the method is the decomposition of the network by
subtracting cycles based on the mass flux values up to a point where there are no

more cycles to be subtracted. The algorithm proceeds as follows (Figure 2).

Let C= {Co, C.;Cyys C } be the set of elementary cycles resulting from phase 1,

where G = R,8,,...8, F for 0si<0, and &,0=] <k, are the arcs composing

each cycle C .. Then, the procedure is as follows:

Step 1. Find the critical arc (Ca&) of C, which is defined as the arc with the
minimum flux value f(ca) among the arcs of all cycles in C. That is,
f(ca) = min min f(a,.j)

0<i<qO0s<j<k

Step 2. Find the set N(c@) of elementary cycles in C that contain this critical arc

ca. The set N(ca) is called the nexus of €a and is a subset of C.

Step 3. Assign probabilities to each cycle in N(ca) as follows (Figure 3):
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1. Let & = (nin’nout )ij be any arc of a cycle Cin N(ca),
2. Define P(&,— ): f (31,- )+ fin (a,-,- ), where f (a,-,-) is the flux through arc &; and
f, (a,»j) is the total flux at its first node N, . The ratio P (81,- )< 1 designates the

portion of flux entering the first arc node N, and remaining in arc &;.

3. Assign to all cycles ¢ in N(C) the probability P(G )= [ osie P(a,-j).

The value P(Q ) can be interpreted as the probability that a given mass amount m

in cycle G flows through all arcs of this cycle, returning to the initial node; that is,
the probability that m remains in the cycle. This sub-procedure distributes the flux

of the critical arc ca among the cycles of nexus N(Ca) according to the cycle

probabilities P(c ).

Step 4. Each cycle in nexus N(C&) now has a flux value f(c )= xP(c)x f(ca),

where y= (Zi P(C, ))_l is a normalisation factor. The flux amount f (q) of each

cycle is then subtracted from the flux at all arcs &; in cycle G, for all cycles G in

nexus N(ca); that is f(a”)<_ f(aﬁ )— f(c) forall 0<j<k andall ¢ in N(ca).
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After this subtraction, the flux of the critical arc ca in N(ca), f(ca), becomes
zero. The arc Ca is then removed from the network and all cycles in the nexus

N(ca) become open paths.

Step 5. If C is empty, STOP. Otherwise, restart from Step 1, with another critical

arc ca and its nexus N(ca).

e) Key characteristics of the decomposition

This decomposition has the following characteristics:

+ The enumeration of cycles of a network (graph) is unique and does not depend
on flux values. Cycles are enumerated only once.

« The decomposition result, however, particularly the final acyclic graph, does
depend on the values of fluxes.

+ The heuristics that distributes the flux through the critical arc according to the
probability of a given mass to remain on a cycle is meaningful in the case of
metabolic networks, as much as for ecological networks.

+ The heuristics employed reflects our current knowledge of metabolism. The
final result, though, may depend on the choice of the heuristics (Ulanowicz,
1983).

+ The sub-algorithm that associates probabilities to each cycle in a nexus
depends on a choice of probability distribution that also reflects current
knowledge; namely, that there is very little information about the distribution

of substrate masses in a cell.
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The choice of a heuristics essentially defines one algorithm. Other heuristics are
possible but, given the presently available knowledge, the above solution is the

most natural one. Therefore, the foregoing method is in fact a class of algorithms.

3. Results

We applied this cycle decomposition algorithm to three different examples of

metabolic networks of growing complexity.

a) Central metabolism of E. coli

The first case under study is a model of the central metabolism of the bacterium
Escherichia coli published by Kurata et al. (2007). The authors constructed a
model that combines glycolysis, the pentose phosphate pathway and the
tricarboxylic acid (TCA) cycle, and measured the metabolic steady-state fluxes in
these pathways in both wild-type and pyruvate kinase knockout (pykF) mutant
cells. In the latter, the pyruvate kinase reaction that links phosphoenolpyruvate
(PEP) and pyruvate (PYR) is deleted. The decomposition in cycles of the network
is shown for both wild-type (Figure 4) and pykF knockout mutant (Figure 5). All
reactions in these figures are colour coded to indicate the intensity of flux carried

by reactions.

As expected, the cycle enumeration algorithm identified 16 cycles in both cases. A

comparison of fluxes of individual reactions clearly shows that the flux in the
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pyruvate kinase reaction (R4) is depleted in the mutant, but it is difficult to assess
the effect of the deletion on the global organisation of fluxes by considering only
individual fluxes. The cycle decomposition however reveals several additional
properties. First, the structure of the acyclic graph is unaffected by the deletion;
the cell maintains its global growth regime, continuing to process glucose into
biomass compounds and energy. Second, the intensity of fluxes changes in parts of
the acyclic graph, because the deletion of pyruvate kinase results in a reduction of
acyclic flux in the entire branch from glucose-6-phosphate (Glc6P) to pyruvate
(PYR). Third, the inspection of the set of cycles reveals that most of them maintain
the same flux level in the wild-type and mutant. A notable exception is the cycle
running through glucose-6-phosphate (Glc6P), fructose-6-phosphate (Fru6P),
glyceraldehyde-phosphate (GAP) and phosphoenolpyruvate (PEP) (Figure 5b).
This cycle does not contain the mutated reaction and yet, interestingly, its activity
has decreased by a factor of 12 as a result of the pyruvate kinase mutation. The
quantification of cyclic mass fluxes thus reveals a more fundamental disturbance
in the cell's functional organisation than simply a decrease of flux in an individual
branch. The recycling of matter from phosphoenolpyruvate to glucose-6-phosphate
is the fundamental engine driving glycolysis and allowing it to produce energy
with a limited input of additional glucose. When this recycling process is
hampered, the efficiency of the cell's metabolism is fundamentally altered, since
larger amounts of new glucose have to be imported to maintain the same
metabolic activity. This example illustrates how the analysis of cyclic mass fluxes

is able to cast new light on the organisation of cellular processes.
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b) Erythrocyte metabolism

We applied the same algorithm to a model of central erythrocyte metabolism built
by Holzhiitter (2004), which contains glycolysis and the pentose phosphate
pathway (Figure 6a). In contrast to the previous example, all cofactors were
explicitly represented in this example. There were 848 cycles identified by the
enumeration algorithm. The decomposition reveals that the cycles carrying the
highest flux values are indeed those involving cofactors: in this case the
NAD/NADH cycle and the ATP/ADP cycle. Almost all cycles carrying significant
fluxes contain at least one of these four cofactors. The only exception is the
erythrose-4-phosphate/glyceraldehyde-phosphate cycle. The acyclic graph shows
one dominant route carrying a large amount of flux, which runs from glucose to
lactose.

These observations raise some important points about the role of cofactors in
metabolic networks. It is well known that cofactors are essential energy providers
to metabolic reactions (Morowitz & Smith, 2007). These molecules are usually
heavier than small metabolites; it is thus not surprising that they carry the highest
flux of matter. As already shown by the example of the pyruvate kinase deletion
mutant, this observation reinforces the fact that recycling of matter is an efficient
way to drive cellular processes at minimal expenses, since it reduces the amount
of new compounds needed to be input into the system to keep cellular metabolism
running. At the same time, this result raises the question of whether mass is the

best indicator in terms of biomass output and energy production of a metabolic
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network. While larger molecules in principle have a higher potential to provide
energy and elementary molecules for cellular anabolism, there is no absolute
dependency between the two. Intense cofactor cycles may obscure other cyclic
processes present in cellular activity. Depending on the cellular process under
investigation, it may be instructive to distinguish between different levels of cyclic

activity and to represent this by means of a proper model of organisation.

c) Central metabolism of Methylobacterium extorquens

Our third example is a model of the central metabolism of Methylobacterium
extorquens AM1 presented by Holzhiitter (2004). The model covers the pathways
of formaldehyde metabolism, glycolysis and gluconeogenesis, tricarboxylic acid
(TCA) cycle, pentose phosphate shunt, serine cycle, poly b-hydroxy butyrate
synthesis, respiration and oxidative phosphorylation of the bacterium (Figure 7a).
The distribution of fluxes was calculated by Holzhiitter (2004) relying upon the
principle of flux minimisation and subsequently validated by 13C label tracing and
mass spectroscopy measurements. Cofactors were not explicitly represented in this
example. In this case, 16 cycles were enumerated by the algorithm. This model is
significantly larger than the previous two examples (78 fluxes and 77
metabolites), yet the computation of cycles could still be carried out in a few
seconds on a common desktop computer. If cofactors were to be included
however, the number of cycles would rise over two million and the enumeration

algorithm would need several hours to complete.
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The two cycles carrying the largest of flux values are the tetrahydromethanopterin
(H4MPT) cycle and the tetrahydrofolate (H4F) cycle. They correspond to two
pools of folate that drive the metabolism of the bacterium (this metabolism
processes formaldehyde produced out of methanol). Interestingly, the acyclic
graph also shows an intense flux carried from acetoacetyl-CoA to succinate-CoA,
entering and exiting the system via cofactors; the cofactor entering via R46 is
acetyl-CoA, the cofactor exiting via R27 is CoA. This branch constitutes in fact the
main part of a cycle, which could be closed by the pyruvate dehydrogenase
reaction transforming pyruvate and CoA into acetyl-CoA. However, this reaction
carries no flux in the observed distribution, effectively breaking the cycle that
would recycle CoA into Acetyl-CoA. The bacterium is thus apparently consuming
acetyl-CoA without replacing it from internal carbon sources, heavily relying on
external sources of Acetyl-CoA. This observation casts doubts onto whether the

flux distribution under consideration is biologically viable.

4. Discussion

As the reductionist approach that has dominated biology until now is progressively
being complemented by a more integrated understanding of biological systems,
cyclic structures are thought to play a more fundamental role in the organisation
and origin of life than previously thought. Cycles of chemical reactions are

thought to be one of the determining characteristics of living systems (Cornish-
Bowden & Cardenas, 2008). Ordered cycles are also believed to contribute to

dynamic stability (Ma'ayan et al., 2008). Cycles help keeping the organisational
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characteristics of a system invariant. It is important to note that the cycles
considered in this study are not stoichiometrically closed. Stoichiometric cycles,
which have been described in other works (Schilling et al., 2000; Wright &
Wagner, 2008), represent closed sets of chemical reactions that do not exchange
matter or energy with their environment. Such cycles are believed to be
thermodynamically unfeasible. The cycles considered here on the contrary
represent cyclic flows of mass transferred between different molecules. Even
though the flow of mass is conserved within each cycle, several cycles may
overlap, exchanging mass with each other. They are driven by external sources of
mass and energy, which may enter a cycle in the form of a certain molecular
species and leave it under a different form. A classical example of mass cycle in
ecology is the carbon cycle, which provides a representation of carbon exchanges
between the biomass, the ocean and the atmosphere; carbon atoms are embedded
into different molecular forms in each part of the cycle. Similarly, mass cycles in
metabolism represent flows of matter that are reorganised by living organisms into
different chemical forms, while participating in different metabolic processes and

being exchanged between different molecules.

The inclusion of cofactors drastically influences the number of cycles in a network
and the applicability of Tarjan's algorithm and this decomposition method. The
enumeration of cycles is theoretically of order O((N +A)(C+ 1)) in time, where

N, A and C are the total number of nodes, arcs and cycles of a graph G,

respectively. Because of their ubiquity as metabolites in biochemical reactions, a
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single pair of cofactors like ATP/ADP may be attached to many functionally
unrelated reactions and add thousands of arcs to a metabolic network. This leads
to a considerable increase in the number of network cycles, that do not necessarily
correspond to occurring cycles of biochemical reactions. If cofactors are filtered
from the complete network, our method may also be applied to genome-scale
models; otherwise, it would require large scale computing resources or additional
refinements, e.g. a parallelisation procedure. We however believe that a more
fruitful way to extend this methodology to complete models at the genome-scale
would be to find biologically grounded methods to gradually and selectively
include cofactors and repeat the decomposition in an iterative manner. A related
approach to tackle genome-scale models may consist in a hierarchisation of the
network representation and decomposition. Biologically related subparts of the
network may be condensed into reaction-like nodes at a higher level of
representation, enabling cycles to be determined at different levels of this
hierarchy. However the question of ubiquitous metabolites that may interact at

different levels remains to be solved.

The consideration of spacio-temporal information offers a perspective for solving
such problems. As already noted in the introduction, the localisation of reactions is
also of great importance to the comprehension of cellular organisation and
biochemical flows. Till now it has been challenging to both obtain and embed this
information into models. Nevertheless, there are indications that reactions

associated in a metabolic network may occur in different places inside a cell
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(Binder et al., 2008). Therefore, substrates attached to each reaction in a
metabolic network may occupy different cellular compartments or even specific
regions of space within a single compartment. Systems of equations associated to
metabolic reactions describe the overall dynamical behaviour of many instances of
reactions of the same type and represent universal conservation laws. To render
their localisation explicit would require information about space-time distributions
and fluctuations, for which data are largely unavailable. Such information may
nevertheless lead to important progress in our understanding of cellular

organisation in the future.

5. Conclusion

Systems are precise, formal whenever possible, descriptions of an object of study.
A system is not a model but a step towards it. In physics and chemistry, a system is
primarily attached to the choice of a region in space-time and parameter space
where the phenomenon of interest occurs. System biology focuses on the
description of the elements intervening in the phenomenon and their interactions.
In many senses it is an outcome (Kitano, 2000) or revival (Wolkenhauer, 2001) of
General Systems Theory, which is also associated with circuits, signals, networks,
observability and control. There are thus two conceptions of a system: that
associated to space and time and that associated to elements and their

interactions.
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These two concepts are facets of the same thing. Components of a general system
need to be close together to interact, while chemical and biological components
only interact when they are of the appropriate type, even when occupying a
sufficiently small neighbourhood in space or colliding. Concepts inherited from
both approaches must be taken into account when interpreting biological results.
Reaction networks typically reflect connections between reacting substrates. They
contain intensive information about possible interaction among the many
substrates. They conceal extensive information about where these substrates react
within the cell and what percentage of the total volume of each is performing a
given reaction. Numbers associated to network arcs or reaction nodes only reflect

a mean, instantaneous state, usually related to steady-state regimes.

In this work we presented a methodology for studying the role of cycles in the
organisation of mass fluxes in metabolic networks. Once a network is properly
represented, the algorithm unveils cyclic and acyclic flows of matter through the
network, leading towards a joint treatment of both system perspectives. This
methodology was applied to three metabolic network models, showing that it
unveils how disturbances in flux distributions due to perturbations, like mutations
and environmental changes, affect the biochemical behaviour of the cell. These
effects could not be identified only by inspecting the original graph and flux
distribution. This methodology can be used to further investigate the importance

of cycles in living organisms, their pro-activity and organisational invariance,
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leading to a better understanding of biological entailment and information

processing.
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We here present a pseudo-code describing Tarjan’s algorithm (Tarjan, 1973).
Given a graph G with nodes n;, where 1 < i < N, and the adjacency lists A(i) for
each node, the algorithm searches the paths in G for cycles starting from any node
s. The path p currently being considered in the search is stored on a path_stack
that has s as its bottom element. Any other node j of G entering the path p
satisfies s<j. Another stack, named marked_stack, stores a flag. A vertex I at the
top of path_stack is “marked” if (1) it belongs to the elementary path p (see
subsection 2.c) or (2) if every other possible elementary path connectingito s

intersects p at a node different from s.

Input:

A graph G of size n, given by an array A of adjacency lists.

Restriction 1:
For each node index s, the algorithm generates elementary paths starting at s

containing no nodes with an index smaller than s (s<i).

Restriction 2:

Once a node i has been used in a path p it can only be used in another path if

1. it has been removed from stack path_stack and

2. it has been removed from stack marked_stack.
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A node i becomes unmarked when a path from i to s is found, such that it does
not intersect p in any node other than s. This restriction drastically reduces the

search space.

Output:
If the top node index i of the stack is adjacent to its bottom node with index s,

path is returned, containing an enumerated cycle.

Procedure CYCLE_ ENUMERATION (integer n, array of lists A(1:n)) {

Procedure BACKTRACK (integer n, boolean f) {

boolean g;
f := false;
# place n on path_stack
path_stack(n) := true;
# place n on marked_stack
marked_stack(n) := true;
foreach w in A(n) {

ifw<s{

delete w from A(n);
¥
else if w=s {

f .= true;



Nature Precedings : hdl:10101/npre.2009.3932.1 : Posted 2 Nov 2009

return path_stack with an enumerated cycle

h

else if not marked_stack(w) {

BACKTRACK (w, 8);

f:=1f]] g
}
¥
If f=true {
pop marked_stack until top of marked_stack = n;
by

delete n from marked_stack
marked_stack(n) := false;

# end of BACKTRACK

# start the enumeration of cycles

for (i:=1 until n) {
marked_stack(i) : = false;

by

for (s:=1 until n) {
BACKTRACK(s, flag);

delete all nodes from marked_stack;



6002 NON ¢ PaIsod : T'2€6€ 6002 a1du/TOTOT:IPY : SBuipadald aineN



Nature Precedings : hdl:10101/npre.2009.3932.1 : Posted 2 Nov 2009

Figure legends

Figure 1: Bipartite representation of metabolic networks. The figure represents the

network given by (i) R1: A+B->C; (ii) R2: B+C->D; (iii) R3: D->F.

Figure 2: Decomposition algorithm. See detailed explanations in the Methods

section.

Figure 3: Probability assignment to arcs and cycles. As an illustration, considering
the nexus N = {C;, C,, C3} the probability for arc ai; is calculated as follows:
P(a:1) = f(an) / (f(ain) + f(az21) + f(as1) + f (a)). Thus, P(Cy) =

P(ai10) *P(a11) *P(ai2) *P(ai13). P(Cy) and P(C;) are calculated in the same way. As a
result, the proportions of the critical arc flux f(a;) to be subtracted from each

cycle in the nexus N are determined.

Figure 4: Decomposition in cycles of a model of the central metabolism of
Escherichia coli (wild-type). Cofactors are not explicitly represented in this model
and are indicated by yellow triangles. The colour of each reaction indicates the
mass flux it carries. The full set of cycles is represented on the right-hand side,

where the colour indicates the flux value carried by each cycle.

Figure 5: Decomposition in cycles of a model of central metabolism of Escherichia

coli (pykF knockout mutant). Cofactors are not explicitly represented in this model
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and are indicated by yellow triangles. The colour of each reaction indicates the
mass flux it carries. The full set of cycles is represented on the right-hand side,

where the colour indicates the flux value carried by each cycle.

Figure 6: Decomposition in cycles of a model of erythrocyte metabolism. All
cofactors are explicitly represented in this model. The colour of each reaction
indicates the mass flux it carries. Only cycles carrying the highest flux are
represented on the right-hand side, where the colour indicates the flux value

carried by each cycle.

Figure 7: Decomposition in cycles of a metabolic model of Methylobacterium
extorquens. Cofactors are not explicitly described in this model and are indicated
by yellow triangles. The colour of each reaction indicates the mass flux it carries.
Only cycles carrying the highest flux are represented on the right-hand side, where

the colour indicates the flux value carried by each cycle.
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Figure 5
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