357 research outputs found

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications

    The Intersection-Validation Method for Evaluating Bayesian Network Structure Learning Without Ground Truth

    Get PDF
    Structure learning algorithms for Bayesian networks are typically evaluated by examining how accurately they recover the correct structure, given data sampled from a benchmark network. A popular metric for the evaluation is the structural Hamming distance. For real-world data there is no ground truth to compare the learned structures against. Thus, to use such data, one has been limited to evaluating the algorithms' predictive performance on separate test data or via cross-validation. The predictive performance, however, depends on the parameters of the network, for which some fixed values can be used or which can be marginalized over to obtain the posterior predictive distribution using some parameter prior. Predictive performance therefore has an intricate relationship to structural accuracy -- the two do not always perfectly mirror each other. We present intersection-validation, a method for evaluating structure learning without ground truth. The input to the method is a dataset and a set of compared algorithms. First, a partial structure, called the agreement graph, is constructed consisting of the features that the algorithms agree on given the dataset. Then, the algorithms are evaluated against the agreement graph on subsamples of the data, using a variant of the structural Hamming distance. To test the method's validity we define a set of algorithms that return a score maximizing structure using various scoring functions in combination with an exact search algorithm. Given data sampled from benchmark networks, we compare the results of the method to those obtained through direct evaluation against the ground truth structure. Specifically, we consider whether the rankings for the algorithms determined by the distances measured using the two methods conform with each other, and whether there is a strong positive correlation between the two distances. We find that across the experiments the method gives a correct ranking for two algorithms (relative to each other) with an accuracy of approximately 0.9, including when the method is applied onto a set of only two algorithms. The Pearson correlations between the distances are fairly strong but vary to a great extent, depending on the benchmark network, the amount of data given as input to intersection-validation and the sample size at which the distances are measured. We also attempt to predict when the method produces accurate results from information available in situations where the method would be used in practice, namely, without knowledge of the ground truth. The results from these experiments indicate that although some predictors can be found they do not have the same strength in all instances of use of the method. Finally, to illustrate the uses for the method we apply it on a number of real-world datasets in order to study the effect of structure priors on learning

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches

    Efficient Generalized Spherical CNNs

    Get PDF
    Many problems across computer vision and the natural sciences require the analysis of spherical data, for which representations may be learned efficiently by encoding equivariance to rotational symmetries. We present a generalized spherical CNN framework that encompasses various existing approaches and allows them to be leveraged alongside each other. The only existing non-linear spherical CNN layer that is strictly equivariant has complexity OpC2L5q, where C is a measure of representational capacity and L the spherical harmonic bandlimit. Such a high computational cost often prohibits the use of strictly equivariant spherical CNNs. We develop two new strictly equivariant layers with reduced complexity OpCL4q and OpCL3 log Lq, making larger, more expressive models computationally feasible. Moreover, we adopt efficient sampling theory to achieve further computational savings. We show that these developments allow the construction of more expressive hybrid models that achieve state-of-the-art accuracy and parameter efficiency on spherical benchmark problems
    • …
    corecore