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Structure learning algorithms for Bayesian networks are typically evaluated by examining how accu-
rately they recover the correct structure, given data sampled from a benchmark network. A popular
metric for the evaluation is the structural Hamming distance. For real-world data there is no ground
truth to compare the learned structures against. Thus, to use such data, one has been limited to
evaluating the algorithms’ predictive performance on separate test data or via cross-validation. The
predictive performance, however, depends on the parameters of the network, for which some fixed
values can be used or which can be marginalized over to obtain the posterior predictive distribu-
tion using some parameter prior. Predictive performance therefore has an intricate relationship to
structural accuracy – the two do not always perfectly mirror each other.

We present intersection-validation, a method for evaluating structure learning without ground truth.
The input to the method is a dataset and a set of compared algorithms. First, a partial structure,
called the agreement graph, is constructed consisting of the features that the algorithms agree on
given the dataset. Then, the algorithms are evaluated against the agreement graph on subsamples
of the data, using a variant of the structural Hamming distance. To test the method’s validity we
define a set of algorithms that return a score maximizing structure using various scoring functions
in combination with an exact search algorithm. Given data sampled from benchmark networks, we
compare the results of the method to those obtained through direct evaluation against the ground
truth structure. Specifically, we consider whether the rankings for the algorithms determined by
the distances measured using the two methods conform with each other, and whether there is a
strong positive correlation between the two distances.

We find that across the experiments the method gives a correct ranking for two algorithms (relative
to each other) with an accuracy of approximately 0.9, including when the method is applied onto
a set of only two algorithms. The Pearson correlations between the distances are fairly strong but
vary to a great extent, depending on the benchmark network, the amount of data given as input to
intersection-validation and the sample size at which the distances are measured. We also attempt to
predict when the method produces accurate results from information available in situations where
the method would be used in practice, namely, without knowledge of the ground truth. The results
from these experiments indicate that although some predictors can be found they do not have the
same strength in all instances of use of the method. Finally, to illustrate the uses for the method
we apply it on a number of real-world datasets in order to study the effect of structure priors on
learning.
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1 Introduction

A joint probability distribution over some variables of interest can be used to answer
any probabilistic query on them. If the sets of possible values for the variables are
discrete and finite – as they will be in this thesis – the distribution can naively
be represented as a table with a row for each configuration of the variables and
the corresponding probability (Figure 1). The size of the table grows exponentially
with the number of variables, making storing it require large amounts of memory,
answering queries on it slow and estimating the probabilities in it from data difficult.

Many observed distributions, however, approximately satisfy a number of condi-
tional independence assertions over the variables (Koller and Friedman 2009; p. 8).
If a factorization of a distribution is found such that it implies the set of conditional
independencies in the distribution, the number of individual probabilities required
to specify it might be dramatically decreased.

Graphical models – a class of statistical models – encode these independencies into
a structure. The structure is a graph where the nodes and edges correspond to
variables and statistical dependencies between them, respectively (Lauritzen 1996;
p. 28). Bayesian network is a type of graphical model where the structure is a simple,
directed and acyclic graph (DAG, Pearl 1985). The factorization that a Bayesian
network implies can be read directly from its structure: it is the product of the local
distributions of each variable conditional on its parents in the graph.

Each local distribution is specified by a conditional probability table (CPT) where
the entries are the probabilities for the variable to take some value given a con-
figuration of the conditioning variables. The form of the CPTs is determined by
the structure and the number of possible values, the arities, of the variables. The
structure together with the corresponding CPTs determine the distribution that the
Bayesian network represents (Figure 2).

A B C D E P (A,B,C,D,E)

0 0 0 0 0 0.04536

1 0 0 0 0 0.04374
...

...
1 1 1 1 1 0.01176



E ⊥⊥ A|C
E ⊥⊥ B|C
E ⊥⊥ D|C

D ⊥⊥ A,E| {B,C}
C ⊥⊥ B|A


Figure 1: A joint distribution and the set of conditional independencies it satisfies.
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Figure 2: A Bayesian network consist of a structure (in the middle), and the cor-
responding CPTs. Here they represent the distribution in Figure 1 through the
implied factorization P (A)P (B|A)P (C|A)P (D|B,C)P (E|C) .

Devising algorithms that learn Bayesian networks or other statistical models from
data is a typical problem in machine learning research. For Bayesian networks the
learning happens in two consecutive steps, for two different learning targets. First, a
structure is learned. Second, a distribution is estimated conditional on the structure.
For discrete valued Bayesian networks estimating the distribution given a structure
reduces to learning the individual probabilities, the parameters, of the CPTs.

Solutions to the learning problem rely on methods to validate the algorithms and
their output, i.e. to assess the algorithms’ performance. Validating Bayesian net-
work learning therefore concerns evaluating the performance of a given algorithm
in learning a well fitting structure or distribution for some set of data. The focus
of the analysis can either be on the absolute performance of a given algorithm or
comparing the relative performances among a set of them. Here the term algorithm
is used somewhat informally and can mean, depending on the learning target, either
the procedure used to learn a structure or the combination of structure learning
and parameter estimation. In practice, only the first step is solved by a procedure
described as an algorithm; the latter step is fitting the parameters of a statistical
model whose form has already been determined.

For performing accurate probabilistic inference with the model a well fitting dis-
tribution suffices. Learning such a distribution is possible, even if the structure is
in some ways inaccurate. Specifically, any complete DAG (i.e., every node pair is
connected by an edge) is able to host any distribution. Such a model would, how-
ever, tell nothing about the interrelations between the variables and inference on
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Figure 3: Evaluating structure recovery among 5 compared algorithms with data
sampled from the benchmark network Alarm. Structural Hamming distance is used
as evaluation metric.

the model would be slow. Though spurious edges then might not weaken a model’s
predictive performance, except the query running times, they by definition are a
problem if the goal is to discover the correct structure. With limited training data,
missing edges might even improve the predictive performance of a model, due to a
given node’s each parameter being estimated based on exponentially bigger subsets
of the training data as edges to the node are removed. This phenomenon, called
data fragmentation, might then give reason to favor sparser structures than the true
one, even if it were known a priori.

Sometimes the interest is in knowledge discovery : understanding the domain un-
derlying the observed distribution, rather than prediction. Rudimentary insights
into the interrelations among the model variables can be gained by considering, for
example, the pairwise correlations among the variables. However, a much more
complete understanding can be formed by observing the direct and indirect depen-
dencies encoded into the structure of a graphical model. With such interest one is
therefore specifically concerned with learning a structure that closely approximates
the “correct structure”, as opposed to learning a well fitting distribution.

Algorithms are often evaluated by measuring how closely they recover a ground
truth model given data sampled from it (Figure 3). We might for example take a
fully specified Bayesian network as a starting point, sample data from it, learn a
Bayesian network on the data using some evaluated algorithm, and finally measure
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Figure 4: Approaches to evaluating Bayesian network learning.

the distance between the learned model and the ground truth using some metric.
The structures of Bayesian networks are discrete objects for which variants of the
Hamming distance are convenient metrics (e.g., Tsamardinos et al. 2006, Perrier
et al. 2008). To evaluate how closely a learned distribution matches the ground
truth distribution, we can calculate cross-entropy between the two. By learning on
a sequence of datasets of increasing size we can also examine the statistical efficiency
of an algorithm as an estimator of a learning target, that is how fast as a function of
dataset size the algorithm’s output approaches the correct structure or distribution.
Due to the different convergence rates of different algorithms comparing a set of
them in this way might reveal some algorithm to fare better than others starting
from a certain dataset size, even if it performed worse on smaller sample sizes.

For real-world data there is no ground truth model to compare against. Even then,
indirect comparison to the unknown ground truth distribution – assuming it exists
– is possible by considering the predictive performance of a learned model on sep-
arate test data. The performance of an algorithm in terms of learning well fitting
distributions can consequently be evaluated in such situations by cross-validation.
In contrast, there does not seem to exist any established method for evaluating
structure learning indirectly, without the ground truth model (Figure 4).

The thesis presents intersection-validation, a method for evaluating structure learn-
ing that does not rely on knowing the ground truth structure. The method first
constructs a partial structure, the agreement graph, consisting of the features that a
set of input algorithms agree on given a dataset. The agreement graph then func-
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tions as a proxy for the ground truth structure against which the algorithms are
evaluated on subsamples of the data. Ideally, the agreement graph consists of the
features easiest to learn in the unknown true structure, while difficult enough to dif-
ferentiate the algorithms on smaller datasets. The hypothesis is that the conclusions
that can be drawn about the performance of the algorithms – such as the ranking
of them for a given dataset size – are the same that one could draw if the ground
truth was known.

The hypothesis is tested empirically through a number of experiments using data
sampled from benchmark Bayesian networks and a set of structure discovery algo-
rithms. The approach allows for evaluating the algorithms’ performances using both
the ground truth and intersection-validation methods and thus finally comparing the
two. Strong positive correlation between the two evaluation methods is interpreted
as supportive evidence for the hypothesis. Finally, experiments are conducted to an-
alyze under what conditions intersection-validation seems to work. Specifically, the
attributes of the agreement graph are considered as potential predictors of strong
correlation between the intersection-validation and ground truth based results.

The thesis expands the experiments in a previously published conference paper on
the intersection-validation method (Viinikka et al. 2018). Compared to the paper,
both the number of input algorithms and benchmark networks are greater. Also,
due to improved computational resources, the structure learning is conducted in
less restricted search spaces, that is, the algorithms learn potentially more complex
models. The types of experiments conducted to study various aspects of the results
of the method include some additions as well. For example, the question whether
the rankings the method yields for the input algorithms conform to those obtained
through ground truth based evaluation is considered as a separate criterion for the
method’s validity. Additionally, another conference paper where the method was
employed is summarized in relevant parts as an example use case for the method
(Eggeling et al. 2019).

After the introduction, the thesis continues in section 2 with more formal treatment
of concepts relevant to understanding intersection-validation and to interpreting the
results obtained when using the method. These include Bayesian networks, learning
them from data, and evaluating learning. Intersection-validation is presented in
detail in section 3, after which its validity is tested through a number of experiments
in section 4. The example use case for the method is presented in section 5, and the
thesis ends with some concluding remarks in section 6.
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2 Preliminaries

This section formalizes the concepts and sets the used notation related to the defini-
tion and properties of Bayesian networks touched upon in the introductory section.
First some mathematical tools will be introduced to support the more analytical
parts of the thesis, found later in this section and in section 3. Then learning
Bayesian networks from data and evaluating learning is covered insofar as is nec-
essary for understanding the experiments conducted and interpreting the results in
section 4.

2.1 Mathematical notation and basic tools

Before treating the subject matter of the thesis, we specify some general notation
that will be used in various places throughout the work. Also some basic mathe-
matical tools will be presented. The notation specific to a certain topic will be given
in conjunction with the topic itself, however.

For sets we clarify two notations. First, the set of positive integers up to (and in-
cluding) some number k we will write as [k], instead of some more explicit form such
as {1, 2, . . . , k}. Second, the notation {Ai}i we will use to denote the set of all Ai,
where i is in some exhaustive index set. For example, for i ∈ [n], j ∈ [qi] and k ∈ [ri]

the notation {θijk}ijk should be understood as {θijk : i ∈ [n] , j ∈ [qi] , k ∈ [ri]}. In
the example, for brevity, we also wrote ijk instead i, j, k, and we will use similar
contractions when there is no risk of misunderstanding. The notation also allows for
some of the subscripts to be fixed. Continuing the previous example, the notation
{θijk}k thus equals {θijk : k ∈ [ri]}.

For the indicator function we will use the Iverson bracket notation [·], which maps
true propositions to the integer 1 and false ones to 0 (see, e.g., Graham et al. 1994;
p. 24). For example [x = x] maps to 1 and [1 = 0] to 0.

The uppercase P will denote a probability measure, mapping events in the underly-
ing probability space to their probabilities in the same. The lowercase p denotes a
probability mass or density function, depending on the context. When we need to be
explicit about the corresponding random variable we will write p(X). The notation
p(x) is a shorthand for the value of the probability mass or density function when
the corresponding variable is clear from context.

We are interested in the converging behaviour of various estimators, as the amount
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of input data grows. Specifically, the mode of of convergence we will be referring to
is the following (given for example in Gut 2009; p. 147).

Definition 1. A sequence of random variables X1, X2, . . . converges in probability
to a random variable X, denoted as XN

P→ X, if for all ε > 0 it holds that

lim
N→∞

P (|XN −X| > ε) = 0.

With the above definition, we can state the weak law of large numbers (Gut 2009;
p. 162).

Theorem 1 (The weak law of large numbers). For independent and identically
distributed random variables Y1, Y2, . . . with finite first moment EY it holds that

Y1 + Y2 + . . . YN
N

P→ EY.

The law of large numbers can be used to approximate expectations of various func-
tions of random variables using the so calledMonte-Carlo methods (see, e.g., Murphy
2013; p. 52). Let X then be a discrete random variable, taking values in some set
S. The Monte Carlo approximation of the expectation of the random variable under
some transformation f (assuming the expectation is finite) is given by

Ef (X) =
∑
x∈S

p (x) f (x) ≈ 1

N

N∑
i=1

f (xi) ,

where Xi ∼ p(X).

We will also use two variants of correlation for measuring the relationship between
two variables. The first normalizes the covariance between the two variables to the
interval [−1, 1] (see, e.g., Murphy 2013; p. 45).

Definition 2. The Pearson correlation coefficient between random variables X and
Y is defined as

ρX,Y :=
cov (X, Y )

σXσY
,

where σX =
√

var (X) is the standard deviation of X (similarly for Y ), and where
cov is the covariance.

The second variant we use when the interest is in the ranks of the variables (the
highest value, the 2nd highest value and so on, in some dataset) and not on their
absolute values. The definition only changes from the previous one by considering
the corresponding rank variables rX and rY .
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Definition 3. The Spearman correlation coefficient between the rank variables rX
and rY is defined as

ρrX ,rY :=
cov (rX , rY )

σrXσrY
.

2.2 Bayesian networks

A Bayesian network models a joint distribution over a set of n random variables X
through a structure and a set of local distributions. The structure is a DAG encoded
by pair G = (V,E), where V is a set of nodes and E ⊆ (V × V ) is a set of edges.
The set of nodes comprises the integers [n]. For brevity we denote edge (u, v) ∈ E
as uv. Each node v ∈ V corresponds to a random variable Xv ∈ X , taking values
in Sv. The parents of node v in G are denoted by Gv = {u : uv ∈ E} and the set
of possible configurations for the parents by SGv . The number of parents for a node
is called its indegree. The DAG factorizes the joint distribution as product of local
distributions:

p(X ) =
∏
v

p(Xv|(Xu)u ∈Gv). (1)

The structure encodes the conditional independences between the variables in X .
Using the terms variable and node interchangeably, the local Markov property for
Bayesian networks states that a variable is independent of its non-descendants given
its parents. Non-descendants of a given node is the set of nodes left when the node
itself, its parents and all the nodes to which there is a directed path from the
node are removed from the full set of nodes. Intuitively the property states that
given variable X’s parents’ values no additional information regarding some non-
descendant variable Y is obtained by knowing the value of the variable X itself.
The full set of conditional independences that the graph encodes, the global Markov
independences, can be found through a graphical criterion called d-separation (Pearl
1988).

Though the factorization that a given structure implies is unique it is possible for
different factorizations, and thus different structures, to imply the same set of con-
ditional independences. Structures that imply the same set of conditional inde-
pendences are called Markov equivalent and the set of them constitute a Markov
equivalence class.

Theorem 2 (Verma and Pearl 1992). Two structures are equivalent if and only if
they have the same skeleton and the same set of v-structures.
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Skeleton is the structure disregarding edge directions and a v-structure is any set of
three nodes where two are parents of the third and the parents are not connected
by an edge. Structures from the same equivalence class can host the same set of
distributions. Given observational data such structures therefore are indistinguish-
able. If the edge directions are interpreted causally, however, some structures from
the same Markov equivalence class capture the causal mechanism underlying an ob-
served distribution better than others. In such sense Markov equivalent structures
thus are not equivalent.

Completed partially directed acyclic graph (CPDAG) is a representation of a Markov
equivalence class (Chickering 2002). A CPDAG has the same skeleton as any struc-
ture in the equivalence class. The direction of an edge is specified according to the
equivalent structures if they all agree on it, otherwise it is left undirected (Figure 5).
The encoding G = (V,E) for DAGs extends to accommodate CPDAGs by including
both directions in E for every undirected edge.

One way to obtain a CPDAG for an input DAG is to enumerate all equivalent struc-
tures and direct the edges accordingly. More efficient algorithms can be developed on
the idea of identifying edges that are compelled to have the same direction as in the
input DAG in all equivalent structures (Chickering 2002). As per theorem 2, edges
in a v-structure are such compelled edges. Additionally, the acyclicity constraint in
DAGs also compels the direction of certain edges.

Some additional notation needs to be introduced, to extend the discussion to the
parameters of Bayesian networks. We will assume the codomains of the variables are
finite and discrete, so we can write |Sv| = |{xvk}k| = rv and |SGv | = |{wvj}j| = qv for
some rv ∈ N and qv =

∏
u∈Gv

ru. Without loss of generality we will further assume
Sv = [rv]. The full set of parameters required to specify the local distributions
then is θ = {θijk}ijk, where θijk = p(Xi = xik|(Xu)u∈Gi

= wij) and which can be
represented as a set of CPTs (Figure 2). The structure together with the parameters
define the distribution p(X ) that the Bayesian network induces over the variables.
Conversely, if equation (1) holds for a pair (G, p) on a set of variables X where G is
a DAG and p is a distribution then it is a Bayesian network.

A
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Figure 5: CPDAG, on the left, represents a Markov equivalence class, on the right
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Sampling data from a Bayesian network proceeds by sampling a value for each
variable in some topological order specified by the DAG. A topological order on X
given by DAG G is any such order where for all uv ∈ E, Xu comes before Xv. The
order ensures that the conditional distribution of a variable given its parents in G
is fixed by the time it is to be sampled from by first assigning values to the parents.
The sampling process described above is known as forward sampling (Jensen et al.
1995).

2.3 Training data

Learning Bayesian networks from data relies on a set of assumptions. For data
the assumptions in the thesis are that the samples are independent and identically
distributed (i.i.d.), and that the data is complete. The assumption of identical dis-
tribution in essence states, that the data contains information specific to the distri-
bution that the learned model is to represent. The completeness assumption rules
out the possibility of missing values for some variables in some samples, and specifi-
cally the existence of latent variables. A practical result from the independence and
completeness assumptions is simplified mathematics, e.g., closed form expressions
for parameter estimates. A repeated application of the forward sampling technique
presented in the previous subsection yields a set of i.i.d. samples.

Throughout the thesis we assume the dataset D is a N × n matrix where N is the
number of samples and n is their dimension (i.e., |X | = n). We denote by Di the
ith column of D corresponding to the random variable Xi and by DV the columns
corresponding to some subset V ⊂ X of the variables. The notation Di,Gi

is used
for Di∪Gi

, Di,Gi=j denotes the entries of column i on the rows on which Gi takes the
jth configuration and Di=k,Gi=j adds a further constraint for the column i to take
its kth value.

2.4 Parameter estimation

With data satisfying the assumptions discussed, learning a Bayesian network from
it is a two-step process where first a structure is learned, after which the structure
dependent CPT parameters are estimated. As the likelihood term p (D|θ,G) is
relevant for both steps it is more convenient, though, to explain the steps in reverse
order.
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With the i.i.d. assumption the likelihood of data is the product of the likelihoods
of the samples the data comprises. Assuming thus some structure G, the likelihood
for a full dataset D given parameters θG consistent with G is

p (D|θG) =
n∏
i

qi∏
j

ri∏
k

θ
Nijk

ijk (2)

where Nijk = |Di=k,Gi=j| is the number of samples where the ith variable takes on
the kth value with its parents in the jth configuration in the data. In this setting,
the counts {Nijk}k follow a multinomial distribution with parameters {θijk}k. The
likelihood thus is a product of

∑
i qi likelihood functions for counts following inde-

pendent multinomial distributions. The set of counts {Nijk}ijk is a sufficient statistic
for θG. The maximum likelihood estimates (MLE) for the parameters are obtained
by dividing the counts corresponding to a single multinomial distribution (i.e., CPT
row) by their sum:

θ̂ijk (Di,Gi
;G) =

Nijk∑ri
k′=1Nijk′

. (3)

When D and G are clear from the context we will not explicitly refer to them. For
parent configurations not appearing in the data – a situation occurring when not
all values of a given variable participating in some parent set are observed – the
parameters {θijk}k can be set arbitrarily as it will not change the likelihood.

The obvious drawback is that the MLE parameters overfit the data, and thus com-
promise the predictive performance of the model. To overcome this a prior p (θ) is
applied to obtain the posterior density

p (θG|D) ∝ p (D|θG) p (θG) =

[
n∏
i

qi∏
j

ri∏
k

θ
Nijk

ijk

]
p ({θijk}ijk) .

To simplify the prior, we will assume that the parameters for different variables are
independent of each other (global parameter independence) and that the parameters
for different parent configurations for a given variable are independent of each other
(local parameter independence) (Spiegelhalter and Lauritzen 1990). With the two
assumptions the posterior factorizes as

p (θG|D) ∝
n∏
i

[
qi∏
j

ri∏
k

θ
Nijk

ijk p ({θijk}jk)

]
︸ ︷︷ ︸

global independence

=
n∏
i

qi∏
j

[
ri∏
k

θ
Nijk

ijk p ({θijk}k)

]
︸ ︷︷ ︸

local independence

.

Dirichlet distribution is a conjugate prior for the likelihood function of a multinomial
distribution. The probability density function for a vector x in the n-dimensional
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unit simplex in Rn (i.e. xi ≥ 0 for all i and
∑

i xi = 1) following a Dirichlet
distribution is defined as (Ng et al. 2011; p. 38)

Dirichlet (x;α) :=

∏
i Γ (αi)

Γ (
∑

i αi)

∏
i

xαi−1
i ,

where Γ is a generalization of the factorial known as gamma function, given by the
integral Γ (t) =

∫∞
0
xt−1e−xdx, t > 0 (Olver et al. 2010; p. 136).

Using a Dirichlet prior for each component likelihood function in the overall likeli-
hood (equation 2), the posterior simplifies to:

p (θG|D) ∝
n∏
i=1

qi∏
j=1

[
ri∏
k=1

θ
Nijk

ijk

ri∏
k′=1

θαijk′−1

]

=
n∏
i=1

qi∏
j=1

[
ri∏
k=1

θ
Nijk+αijk−1

ijk

]

∝
n∏
i=1

qi∏
j=1

Dirichlet
(
{θij}k ; {Nijk + αijk}k

)
.

(4)

The parameters could now be set to maximize equation 4 to obtain their maxi-
mum aposteriori (MAP) estimates. Alternatively, as is done in the experiments in
this thesis, they can be set to their expected value under the posterior Dirichlet
distribution, i.e. the mean posterior estimate (Ng et al. 2011; p. 39):

θMP
ijk =

Nijk + αijk∑ri
k′=1 (Nijk′ + αijk′)

.

The distribution induced by a Bayesian network with these parameters coincides
with the predictive distribution p (d|D,G, α) where α is the set of hyperparameters
(Koller and Friedman 2009; p. 748).

2.5 Structure learning

Structure learning algorithms, principally, are either constraint-based or score-based,
though hybrid algorithms also exists combining ideas from the first two. In constraint-
based approaches (e.g., Pearl and Verma 1991, Verma and Pearl 1992, Meek 1995,
Spirtes et al. 2000, Cheng et al. 2002) the data is analyzed using frequentist hy-
pothesis tests to discover conditional independencies between the variables. Once
the independencies are found they are mapped to a structure that encodes them.
In score-based approaches a hypothesis space of possible structures is searched to
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find high scoring ones, given a function that scores each candidate structure based
on its goodness of fit to the data. Tsamardinos et al. (2006) present an example
of a hybrid method, which first finds a skeleton using constraint-based learning and
then orients the edges by running a score-based search conditional on the skeleton

Score-based structure learning can be seen as solving an optimization or model
selection problem, where the optimality criterion is determined by the used score.
Depending on the search algorithm used, either a locally (e.g., Cooper and Herskovits
1992, Heckerman et al. 1995, Teyssier and Koller 2005) or globally optimal structure
is found (e.g., Koivisto and Sood 2004, Cussens 2011, Yuan and Malone 2013). The
former are called heuristic and the latter exact search algorithms.

Assuming the hypothesis space is the space of possible DAGs, the size of it grows
super-exponentially with the number of variables in the joint distribution. This is
easy to see, as there are 2(n

2) undirected graphs on n nodes and each of them has
at least one causal ordering corresponding to a DAG. Consequently, the score-based
approach to learning Bayesian network structures is NP-hard, with both running
time and memory usage being exponential in the amount of variables in the worst
case (Chickering 1996). Beyond the worst-case and best-case bounds the analytic
time complexities of the state-of-the-art exact structure discovery algorithms are
not well understood (Malone et al. 2014), but in practice they limit the application
of the algorithms to problem instances where the number of variables is in the tens
(Beek and Hoffmann 2015). Using heuristic algorithms much larger problems can
be solved, but these algorithms are not able to provide any guarantee on the quality
of the structures they discover (Malone et al. 2014). Often, to make the problem
more tractable, the hypothesis space is limited by considering only structures whose
maximum indegree is below some limit.

Using an exact search algorithm with a scoring function S given a dataset D, the
optimization problem of score-based structure learning can be expressed as finding
some structure

G∗ ∈ arg max
G

S(G,D). (5)

The function maximizing structure may not be unique. For example, some scoring
functions satisfy the property of score equivalence, by which structures from the same
Markov equivalence class are given equal scores. The property is desirable, as given
observational data the correct structure is identifiable only up to its equivalence
class, giving no reason to prefer one equivalent structure over another. Also, in
some cases, structures from different equivalence classes might be score maximizing
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ones.

The globally optimal structure of equation 5 can be found using a search algorithm
that casts the problem as, for example, dynamic programming, finding a shortest
path or integer linear programming. As the practical differences among the algo-
rithms are limited to running times and memory requirements, and as neither is a
relevant parameter to the method presented in the thesis, the search algorithms will
not, however, be presented in any detail. Next we will thus concentrate on the com-
ponent that directly influences the output of the used structure learning algorithms
– the scoring function.

2.6 Scoring functions

Decomposability as a property of scoring functions states that the score assigned
to a structure is the sum of the scores of each local structure, that is, node and
its parents (Heckerman et al. 1995). Denoting the local structure of node v as
Gl(v) = ({v,Gv} , {(u, v) : u ∈ Gv}) a decomposable score takes the form

S(G,D) =
∑
v

S(Gl(v), Dv,Gv).

Decomposability is an important property as it simplifies the search through the
hypothesis space speeding it up significantly. All of the considered scores therefore
are decomposable.

2.6.1 Bayesian Dirichlet family of scores

A family of scoring functions can be derived by adopting a Bayesian approach to
structure learning. The posterior probability of a structure given data is given by
the Bayes’ theorem as

p(G|D) =
p(D|G)p(G)

p(D)
∝ p(D|G)p(G).

The denominator is identical for all structures so it can be ignored when compar-
ing them. Taking the logarithm of the last expression yields the Bayesian score
(Heckerman et al. 1995):

SB (G,D) := log p (D|G) + log p (G) (6)

The P (G) term specifies the prior probability given for a structure and can be used
to, for example, explicitly favor sparse structures. The P (D|G) term is the marginal
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likelihood as it is calculated by integrating over the set of all possible parameters
ΘG consistent with G:

p (D|G) =

∫
ΘG

p (D|θG, G) p (θG|G) dθG.

With the assumptions of globally and locally independent parameters with Dirichlet
priors parameterized by the set α = {αijk}ijk, the integral decomposes as (Buntine
1991, Heckerman et al. 1995)

p (D|G,α) =
n∏
i=1

qi∏
j=1

p (Di,Gi=j;α) =
n∏
i=1

qi∏
j=1

∫
p (Di,Gi=j|θij) p (θij;α) dθij.

The integral has a closed form solution the logarithm of which yields the Bayesian
Dirichlet score (BD):

SBD (G,D;α) :=
n∑
i=1

log

qi∏
j=1

[
Γ (αij)

Γ (Nij + αij)

ri∏
k=1

Γ (Nijk + αijk)

Γ (αijk)

]
, (7)

where Nij =
∑

kNijk and αij =
∑

k αijk (Heckerman et al. 1995). The BD score
depends on the Dirichlet hyperparameters. It thus defines a class of scoring functions
within the Bayesian framework.

To use a score from the BD family one needs to specify the Dirichlet hyperparameters
for each structure in the hypothesis space. Clearly, this cannot be done arbitrarily
due to the sheer number of parameters for most problem instances of realistic size.
To set the parameters systematically a principled approach is to first specify a set
of desirable properties for a scoring function and then set the parameters so as to
satisfy those properties, if possible. We have argued for decomposability and score
equivalence to be such properties.

To achieve decomposability it suffices to set the hyperparameters so, that the prior
probability distribution for the parameters of a variable given a set of parents is the
same in every structure where the set of parents is the same. The distribution should
thus only depend on local structure, that is, it should satisfy parameter modularity
(Heckerman et al. 1995). This is achieved simply by specifying the set {αijk}jk
identically for every structure where variable i has some fixed set of parents.

In order for a BD score to satisfy score equivalence we first need a prior probability
distribution p over the entire probability space. Score equivalence is then achieved
by selecting an equivalent sample size (ESS) α, quantifying how many samples our
prior knowledge is equivalent to, and setting

αijk = α · p (xik, wij) ,
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where xik is the kth value of variable i and wij is the jth configuration of the variable’s
parents. Setting the parameters in this fashion clearly satisfies parameter modular-
ity, so the resulting Bayesian Dirichlet equivalent (BDe) score is also decomposable
(Heckerman et al. 1995).

When there is no reason to use an informed prior p in the above procedure, an
uninformative uniform prior should be used instead. The hyperparameters are then
set as

αijk =
α

qi · ri
(8)

where qi is the number of parent configurations and ri is the number of possible
values or arity of variable i. Finally, the score defined by the logarithm of equation
7 and the hyperparameters specified in equation 8 can be seen to depend on only one
parameter, the equivalent sample size, and is called the Bayesian Dirichlet equivalent
uniform (BDeu, Buntine 1991).

2.6.2 Penalized log-likelihoods

One might think of defining the scoring function so, that the score maximizing
structure is the one that maximizes the likelihood of observing the data. This is
achieved by mapping an input structure to the likelihood of the data under the
maximum likelihood parameters θ̂G (equation 3) consistent with the structure. For
convenience of computation the logarithmic likelihood is used to arrive at the log-
likelihood score:

SLL (G,D) := log p
(
D|θ̂G, G

)
=

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log θ̂ijk

Clearly, the log-likelihood score is decomposable. The problem with the score is ex-
plained by two observations. First, for any edge in a structure of a Bayesian network
it is trivial to set the parameters so that the dependencies implied by the edge do
not appear in the distribution induced by the Bayesian network. In other words,
a complete DAG as a structure for a Bayesian network can host any set of inde-
pendencies and thus any distribution by setting the parameters accordingly. This
implies that the likelihood score can never be decreased by introducing additional
edges to the structure. Thus for any pair of DAGs G = (V,E) and G′ = (V,E ′)

where E ⊂ E ′ it holds that

SLL (G,D) ≤ SLL (G′, D) . (9)
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Second, given a finite sample D = {di}i of N observations from a distri-
bution p satisfying some conditional independence, the empirical distribution
pN(A) = 1

N

∑
i [di ∈ A] almost never satisfies the independence exactly. The im-

plication of this is that the inequality 9 is almost always strict, and thus structure
learning based on the likelihood score is almost guaranteed to output complete
DAGs. In essence, the score overfits the data.

One solution to the problem is to introduce various model complexity penalizing
terms to the likelihood score. The resulting penalized log-likelihood scores take the
form

S (G,D) = SLL (G,D)−∆ (G,D) ,

where ∆ (G,D) is the function specific penalty term. Intuitively, after a certain
level of complexity, the penalty term should become dominant and the overall score
start to decrease even if the likelihood term continues increasing with more edges
added. If also the penalty term decomposes, these functions are called decomposable
penalized log-likelihood scores. A simple implementation of the idea is to directly
penalize by the amount of free parameters of the model, that is, to use the Akaike
information criterion (Akaike 1974) whose local penalty term is thus given by

∆AIC
i

(
Gl(i)

)
= qi (ri − 1)).

The previously introduced BD-score also yields a specific penalized log-likelihood
score. Asymptotically it evaluates to (Koller and Friedman 2009; p. 801)

lim
N→∞

SBD (G,D) = SBD (G,D)− logN

2

n∑
i=1

qi (ri − 1) +O (1) .

Unlike the other considered BD-score variants, the asymptotic approximation thus
does not depend on the hyperparameters and, ignoring the constant term, defines a
penalized log-likelihood score. The score is called the Bayesian information criterion
(BIC, Schwarz 1978), whose local penalty term for discrete valued Bayesian networks
is given by

∆BIC
i

(
Gl(i), D

)
=

logN

2
qi (ri − 1) .

The BIC score, clearly, is decomposable.

Also the BDeu-score has an interpretation as a penalized log-likelihood score, where
the local penalty is given by (Silander et al. 2008)

∆BDeu
i

(
Gl(i), D

)
=

qi∑
j

ri∑
k

log
p (Dijk|Dij)

p (Dijk|Dij, αij)
.
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2.6.3 Scores based on the normalized maximum likelihood

As final alternatives, we consider two scoring functions derived from information
theory. The factorized normalized maximum likelihood (fNML) score is based on
the normalized maximum likelihood (NML) distribution given by

pNML (D|G) :=
p
(
D|θ̂ (D;G)

)
∑

D′ p
(
D′|θ̂ (D′;G)

)
which has a minimum description length justification (Rissanen 1978, Grünwald
2007). The sum in the denominator is over all N × n data matrices and the log of
it is called the parametric complexity or regret. NML is score equivalent but not de-
composable, and the sum makes the score impractical. To achieve decomposability,
fNML uses the NML distribution for the column partitions of D to obtain the score
as a sum of 1-dimensional pNML-codes (Silander et al. 2008):

SfNML (G,D) :=
n∑
i=1

qi∑
j=1

log pNML (Di,Gi=j|G)

=
n∑
i=1

qi∑
j=1

log
p
(
Di,Gi=j

|θ̂
(
Di,Gi=j

;G
))

∑
D′

i
p
(
D′i|θ̂ (D′i;G)

) .

Now the sum in the denominator is over the multinomial vectors D′i ∈ [ri]
|Di,Gi=j|,

that is, vectors of length |Di,Gi=j| with each component taking values in [ri]. The
sum in the case of a multinomial vector is given by

Crn =
∑

k1+k2+...kr=n

n!

k1!k2! . . . kr!

r∏
j=1

(
kj
n

)kj
where n denotes the length of the vector, r is the number of possible values for the
multinomial variable, and the sum is over the possible counts for the different values
in the vector. There is a linear time algorithm for computing Crn (Kontkanen and
Myllymäki 2007) and accurate approximations for large n exist (Kontkanen et al.
2003), making the score usable in practice. The score can be viewed as an alternative
definition for the marginal likelihood or a penalized log-likelihood score where the
local penalty is given by

∆fNML
i (G,D) =

qi∑
j=1

log CriNij
.



19

The quotient normalized maximum likelihood (qNML) is closely related to fNML
but it is score equivalent (Silander et al. 2018). The score, defined as

SqNML (G,D) :=
n∑
i=1

log
pNML (Di,Gi

|G)

pNML (DGi
|G)

,

does not partition the data columns corresponding to each variable by the configura-
tions of the parent variables as in fNML. Instead, the relevant variables in some set S
are collapsed together to form a single variable with

∏
Xi∈S ri different values, which

is then modeled with a 1-dimensional PNML-code. As a penalized log-likelihood
score its local penalty term is given by

∆qNML
i (G,D) = log

CriqiN

CqiN
.

2.7 Evaluating learning

The approaches to evaluating Bayesian network learning, as they were summarized
in Figure 4, can be viewed along two dimensions: whether they are applied on the
structure or the distribution and whether they require knowing the model underlying
the data or not. From the approaches considered, structural Hamming distance is
a metric (Tsamardinos et al. 2006), cross-entropy is a divergence (Heckerman et al.
1995, Kullback and Leibler 1951), and cross-validation is a general technique for
evaluating how well a statistical analysis generalizes to unseen data (Russell and
Norvig 2009; p. 708).

The intuitive notion of a distance, or a metric, has a well defined mathematical
meaning (see, e.g., Arkhangel’skǐı and Fedorchuk 1990; p. 20).

Definition 4. A non-negative function d : X × X → R is considered a metric on
X if for all x, y, z ∈ X it satisfies the following conditions:

1. d(x, y) = 0⇔ x = y (identity of indiscernibles),

2. d(x, y) = d(y, x) (symmetry axiom),

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle axiom).

By relaxing one or more of the above conditions functions can be defined, which,
though not metrics in the strict sense, can still be useful in analyzing the extent of
similarity between two objects. In this thesis the interest lies in comparing a set of
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learned Bayesian networks in terms of how close they are to some true model or a
proxy of it. The question does not depend on the condition of symmetry for the
applied evaluation function, as by convention the learned model can always take
the place of the first (or the second) operand. Also the question does not require
comparing the learned models directly against each other, so the triangle axiom
need not be required.

Knowing the ground truth Bayesian network and the possibility to draw infinite
amounts of data from it make the conceptual framework of evaluating the statistical
efficiency of learning algorithms straightforward. Given a structure learning algo-
rithm and some parameter estimates the evaluation of them for some fixed dataset
size consists of (1) drawing a number of datasets of the chosen size, (2) learning a
Bayesian network on each of the datasets, (3) measuring the distance between the
learned models and the ground truth, and (4) reporting the results. Analyzing the
statistical efficiency of learning then consists of repeating the above process for vary-
ing data sizes. In the first step a number of datasets are drawn to offset the effect
of sampling bias; in the last step the mean distance and possible other summary
statistics, such as standard errors of the means are reported.

2.7.1 Cross-entropy

A Bayesian network defined over a set of variables induces a distribution over the
possible configurations the variables can assume. Let X be the set of variables and
SX the set of possible configurations over them. How closely the induced distribution
q matches some target distribution p defined over the same set of variables can
be measured with the Kullback–Leibler divergence (KL-divergence, Kullback and
Leibler 1951) defined as

dKL(p ‖ q) :=
∑
i∈SX

p(i) log
p(i)

q(i)
. (10)

KL-divergence is not a proper distance metric as generally it does not satisfy the
symmetry and triangle axioms, but it is commonly used to analyze the similarity
between distributions.

KL-divergence decomposes as

dKL(p ‖ q) =
∑
i∈SX

p(i) log p(i)−
∑
i∈SX

p(i) log q(i) = −H(p) +H(p, q)

where H(p) is the entropy of p and H(p, q) is the cross-entropy between p and q. For
a given target distribution p the entropy term is constant so to choose the closest



21

approximation of it in some set of candidate distributions it suffices to analyze the
cross-entropy terms.

In most situations explicit summation over SX is not feasible as the number of
different configurations is exponential in the number of variables. If also p is induced
by a Bayesian network the summation can exploit the independencies encoded into
the network structures to reduce the amount of summed terms. In the case where
the structures and thus the set of parameters are identical (with possibly differing
values) cross-entropy takes the form (Heckerman et al. 1995)

H (p, q) = −
n∑
i=1

qi∑
j=1

ri∑
k=1

p (xik, wij) log q (xik|wij) , (11)

which can be evaluated efficiently depending on the complexity of the structure. If
the structures are different, the above equation is not applicable. But, as noted,
any complete DAG can host any distribution on the set of variables it is defined
on. It is therefore possible to embed both of the induced distributions on to the
same complete DAG in order to apply equation 11. A complete DAG, however, does
not encode any independencies so the embedding does not provide computational
benefits compared to evaluating equation 10 explicitly. An optimal solution can be
derived by embedding the two distributions onto a consensus DAG that encodes the
maximum amount of the independencies of the two DAGs without introducing spu-
rious ones. Finding such a DAG, however, is NP-hard, although heuristic algorithms
exist (Peña 2011).

A practical alternative to exact calculation of cross-entropy is to use Monte Carlo
approximation. The approximation is of the form

H(p, q) ≈ − 1

N

N∑
j=1

log q(xj)

where xj are random samples from p. Here, to satisfy the assumption of finite first
moment required by the law of large numbers (Theorem 1, p. 7), we will assume that
the probabilities q(x) are positive for all x. In a setting where the target distribution
is known this asymptotic result is not just a theoretical curiosity, as arbitrarily large
numbers of samples can be drawn from the distribution.

2.7.2 Structural Hamming distance

The structure of a Bayesian network as noted is a graph. To quantify the distance
between two graphs defined on the same set of nodes (e.g., a learned one and the
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ground truth), an intuitive measure is to calculate the number of editing operations
required to transform one into the other, or the so called edit distance. A less
ambiguous alternative formulation is to count the number of node pairs that differ
with regard to the edge type between them in the operand graphs. Among the graph
types considered in the thesis, a node pair (u, v) can either be connected by an edge
from u to v, from v to u, have both edges in which case the node pair is said to be
connected by a bidirected edge, or not be connected by an edge. If two graphs differ
with respect to d ∈ N node pairs the distance between them would then be d. This
type of a discrete distance measure is called a Hamming distance and was originally
formulated on strings (Hamming 1950).

Hamming distance between two different DAGs in the same Markov equivalence class
is non-zero. As noted, such structures encode the same conditional independencies
and thus are able to host the same set of distributions – they are statistically indis-
tinguishable given observational data. A desirable property for a distance measure
on structures without causal interpretation therefore is that the distance between
equivalent structures is zero. Structural Hamming distance (SHD) is a metric de-
fined on CPDAGs (Figure 5), so clearly it satisfies the property (Tsamardinos et al.
2006).

Using SHD as a metric, any difference between any node pair in the operand
CPDAGs yields an additional distance of one. There can be justified reasons to
regard some specific type of difference more serious than another, in which case the
metric can be adjusted to yield a greater additional distance from the more serious
mismatch. For example, it can be argued that a difference in the graph skeleton
is more consequential than a difference in edge orientation (Perrier et al. 2008). In
this thesis such adjustments however are not done.

The above formulation is still ambiguous in that it does not specify whether the
node pairs considered are ordered or unordered. To have a convenient formalization
of the Hamming distance for graphs that is well aligned with the notation we have
used thus far we will first introduce an auxiliary definition.

Definition 5. The type of an ordered node pair (u, v) given a set of edges E is given
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by the function fE defined as

fE(u, v) :=



bidirected if uv ∈ E and vu ∈ E,

forward if uv ∈ E and vu 6∈ E,

backward if uv 6∈ E and vu ∈ E,

non-adjacent if uv 6∈ E and vu 6∈ E.

Now the Hamming distance can be defined using the definition 5 and the indicator
function.

Definition 6. The Hamming distance between graphs G = (V,E) and G′ = (V,E ′)

is given by

dH (G,G′) :=
1

2

∑
(u,v)∈V×V

[fE(u, v) 6= fE′(u, v)] .

The multiplier is necessary as without it a difference between an unordered node pair
in the compared graphs would be counted twice, both for (u, v) and (v, u) for some
fixed u, v ∈ V . We will use the Hamming distance, as defined above, exclusively on
CPDAGs, and therefore denote it as dSHD.

2.7.3 Approximating cross-entropy via cross-validation

If there is only a finite set of data, but the ground truth model is not known, neither
SHD nor cross-entropy can be evaluated. As an alternative, one can divide the
dataset into parts for training and validating, learn a model on the training part
and evaluate the learned model based on how well it predicts the validation data
(i.e., how high probability it gives to it). Equivalently, the mean log probability that
a learned distribution q assigns to the validation data is computed as

1

N

N∑
i=1

log q(xi).

As can be seen, the expression is identical to that of Monte Carlo approximation of
cross-entropy, except for a change of sign. Approximating cross-entropy between a
distribution and some hypothetically existing true distribution underlying a dataset
is thus possible based solely on the data. However, in this setting the amount of
data is limited, so the accuracy of the approximation is too. Also, the learning
only happens on one part of the data – the information in the validation set is not
exploited.
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Cross-validation is a technique by which the approximation can be made more accu-
rate. Instead of splitting the data once into training and validation sets, the idea is
to make a number of systematic splits, so that each data sample is used for learning
at least once. Then, for each split, the test measure is computed, and finally the
average of the results is reported. If the interest is in evaluating the performance of
some algorithm given a dataset of N samples and the full data consists of M > N

samples there are
(
M
N

)
ways in which the full data can be partitioned into the learn-

ing and testing parts. Instead of approximating the test measure at a chosen fixed
amount of training data, a more common framework is to use as much as possible
of the available data for training. Taken to extreme, each split would then consists
of one sample for testing and the remainder for training. This is known as the
leave-one-out cross-validation. As each learning process might be computationally
expensive, in practice some simpler scheme is used. A common choice is k-fold
cross-validation for some integer k. Using it, the data is split into k equally sized
disjoint parts, each of which are used as a testing set once, thus defining k different
splits of the data.

Analyzing the statistical efficiency of a learning algorithm in a setting where only a
real-world dataset is available differs in two ways from the process described for the
situation where the ground truth was known. Firstly, as the ground truth model
is not available, the construction of datasets cannot be based on sampling from it.
What is possible, however, is to take subsamples of the original dataset. Secondly,
the distance measure cannot be based on directly comparing a learned model against
the unknown ground truth model. We have seen a way to approximate cross-entropy
via cross-validation. Intersection-validation aims to specify an analogous method for
structural measures.

3 Intersection-Validation

Algorithms that learn Bayesian network structures from data are developed based
on properties that ensure they perform well in some theoretical sense. When eval-
uating and comparing their performance, however, empirical studies are the norm.
Basing the studies on data sampled from benchmark Bayesian networks gives the
possibility to directly evaluate how well the different algorithms reconstruct the cor-
rect structure, using metrics such as the structural Hamming distance. If real-world
data is preferred, one has been limited to evaluating the predictive performance of
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the structures by assigning some fixed parameter values to the CPTs or marginal-
izing over the parameters using some prior. Intersection-validation is – to the best
knowledge of the author – the first published method to extend evaluation specific
to structure learning to situations where the correct structure is not known.

The input to the method is at least two structure learning algorithms and a dataset.
First, an agreement graph is constructed from the features common to the structures
discovered by the algorithms, given the full dataset. The agreement graph does not
fit into existing graph formalisms, so the concept of partial graph is defined. Then,
using the agreement graph as a proxy for the ground truth structure, the algorithms
are evaluated against it on subsamples of the data. The metric applied is a variant
of the Hamming distance defined for partial graphs, the partial Hamming distance.

Intuitively, the agreement graph consists of the features easiest to learn in the hypo-
thetical ground truth, yet difficult enough to differentiate the algorithms on smaller
sample sizes. The hope is that the conclusions that can be drawn about the perfor-
mance of the algorithms using the method are the same one could draw if the ground
truth was known. At a given sample size the conclusions can be for example the
ranking of the algorithms or the magnitude of differences in the obtained distances
to the target structure.

3.1 Agreement graph

The construction of the agreement graph corresponding to a dataset D and a set of
algorithms {Ai}i starts with running each of the algorithms on the dataset. Denoting
the CPDAG corresponding to the structure discovered by algorithm Ai on dataset
D as Gi = Ai (D), the first step produces a set of structures

{Ai(D)}i = {Gi}i = {(V,Ei)}i.

The agreement graph, on the discovered structures, is defined through an intersection
operation (Figure 6). However, defining the agreement graph for graphs Gi and
Gj by intersecting the sets of edges to arrive at G = Gi ∩ Gj = (V,Ei ∩ Ej) is
unsatisfactory. First, if some node pair (u, v) is non-adjacent in Gi, but connected
by an edge in Gj, it would be included as a non-adjacent node pair in G. Second, if
the node pair is of the type forward in Gi and bidirected in Gj, it would be included
as a forward node pair in G (since {(u, v)} ∩ {(u, v) , (v, u)} = {(u, v)}). Both of
the results are misleading, since clearly the operands did not agree on the type of
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Figure 6: CPDAGs G, G′ and their strict intersection. Dashed lines indicate node
pairs not in the intersection.

connection between u and v. To overcome the above problem the notions of partial
graph and strict intersection are defined.

Definition 7. A partial graph is a pair (S,E), where S ⊆ V ×V is a set of node pairs
and E ⊆ S is a set of edges. The inclusion of an ordered node pair in S implies the in-
clusion of the node pair in the opposite order as well, that is, (u, v) ∈ S ⇔ (v, u) ∈ S.

Definition 8. A strict intersection of partial graphs P = (S,E) and P ′ = (S ′, E ′)

is the partial graph P e P ′ = (I, I ∩ E ∩ E ′), where I ⊆ S ∩ S ′ is the set of node
pairs with the same type in P and P ′.

An ordinary graph, such as a CPDAG, is a special case of partial graph, where
S = V × V . For CPDAGs G = (S,E) and G′ = (S ′, E ′) the initially considered
intersection thus results in G∩G′ = (I, I ∩ E ∩ E ′), where I = S∩S ′, in contrast to
the strict intersection in which only a subset of the common node pairs are included.
Both intersections are associate and commutative so the operations can be executed
in any pairwise order among a set of operand graphs, allowing for the following
definition:

Definition 9. The agreement graph corresponding to a dataset D and a set of
algorithms {Ai}i is the partial graph G0 =

⋂⋂ k
i=1 Ai(D).

3.2 Partial Hamming distance

The agreement graph is a partial graph. Also, any CPDAG learned by one of the
compared algorithms is a (special case of) partial graph. To measure the distance
between them, a metric on partial graphs thus has to be defined. Partial Hamming
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distance is a straightforward extension of Hamming distance for partial graphs. It
is defined as the number of unordered node pairs that differ with respect to the type
of connection between them in the two operand partial graphs.

Definition 10. The partial Hamming distance between partial graphs P = (S,E)

and P ′ = (S ′, E ′) is given by

dPHD (P, P ′) :=
1

2

∑
(u,v)∈S∩S′

[fE(u, v) 6= fE′(u, v)]

where fE is a function mapping an ordered node pair to its type in E (definition 5,
p. 22).

From the assumption dPHD(P, P ′) = 0, it does not generally follow that P = P ′,
since the distance only considers node pairs common to both operands. The partial
Hamming distance as defined thus violates the identity of indiscernibles, and there-
fore is not a metric (Definition 4, p. 19). However, with the additional constraint of
a fixed set of node pairs, on which the operands are defined, PHD is a metric.

Proposition 3. Partial Hamming distance is a metric in the set of partial graphs
on a fixed set of node pairs.

Proof. Clearly, PHD is non-negative. From the definition we also directly see that
dPHD(P, P ′) = 0 ⇔ P = P ′, and the symmetry of PHD follows from the symmetry
of the inequality relation. To prove that PHD satisfies the triangle axiom, we specify
the partial graphs P = (S, P ), Q = (S,Q), and R = (S,R) and the sets

A = {(u, v) : (u, v) ∈ S, fP (u, v) 6= fR(u, v)},

B = {(u, v) : (u, v) ∈ S, fP (u, v) 6= fQ(u, v)},

C = {(u, v) : (u, v) ∈ S, fQ(u, v) 6= fR(u, v)}.

For all (u, v) ∈ A, we have that if (u, v) 6∈ B then (u, v) ∈ C, and if (u, v) 6∈ C then
(u, v) ∈ B. It holds thus that A ⊂ B ∪ C, and therefore

dPHD(P ,R) =
1

2
|A| ≤ 1

2
(|B|+ |C|) = dPHD(P ,Q) + dPHD(Q,R).

3.3 Evaluation pipeline

To evaluate the performance of an algorithm (among a set of them) at a given
sample size using intersection-validation we first run the algorithm on subsamples
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of the chosen size of the original input data. Then the PHDs between the output
structures and the agreement graph are measured and the results are reported. The
process is repeated for varying sample sizes to analyze the statistical efficiency of
the algorithm, that is, to obtain a “learning curve” representation of the results.

The details of the above process need not be fixed. Here, however, we present the
way the method was used in the experiments, with the hope that the choices made
represent a good baseline for the general case.

Assuming thus that D is a dataset of size N , A = {Ai, . . . , Ak} is a set of algo-
rithms, and G0 =

⋂⋂ k
i=1Ai(D) is the agreement graph of A on D, the evaluation of

the algorithms at some sample size s < N follows the following process. First, we
draw r = 10 independent subsamples of size s uniformly at random, without replace-
ment from D, denoted as D1, . . . , Dr. Next, we compute the CPDAG structures,
Gij = Ai (Dj), and their distances to the agreement graph, dij = dPHD (G0, Gij),
for each algorithm (i ∈ [k]) and subsampled dataset (j ∈ [r]). Finally, for each
algorithm the mean distance

µri (s) :=
1

r

r∑
j=1

dPHD (G0, Gij) (12)

and the standard error of the mean

σµri (s) :=
σ√
s

=

√∑
j(dij−µri (s))

2

s−1√
s

,

where σ is the population standard deviation, are reported. The process is then
repeated for subsample sizes following the pattern N/2i for i = 1, . . . ,m so that
N/2m ≤ 100.

3.4 Asymptotic consistency

The rationale presented thus far for the intersection-validation method has been in-
formal. In the asymptotic case, assuming the method is applied onto asymptotically
consistent algorithms, it, however, has a simple theoretical justification.

Let B then be a set of Bayesian networks defined on a fixed set of variables, and
θ a map from them to some set R. Further, let T (N) be a function from a dataset
of N samples to an element in R. The sequence of functions

(
T (1), T (2), . . . , T (N)

)
is called a consistent estimator of θ if for all (G, p) ∈ B the sequence converges in



29

probability (definition 1, p. 7) to θ (G, p) as N tends to infinity, assuming the data
consists of independent draws from p.

Convergence in probability was defined in terms of real valued random variables.
A structure learning algorithm given input data of size N , sampled from a ground
truth distribution, can be viewed as a random variable, whose codomain is the space
of CPDAGs. To consider the convergence of such a random variable, we should first
thus encode the possible CPDAGs with some unique numbers. Doing the encoding
implicitly, a structure learning algorithm Ai is a consistent estimator of the ground
truth CPDAG C∗, or just consistent, if

Ai
(
D(N)

) P→ C∗,

where N =
∣∣D(N)

∣∣. A scoring function is called consistent if the score maximizing
structure converges in probability to a member of the correct equivalence class as
N → ∞. All of the scoring functions considered in the thesis, except for AIC, are
consistent.

Let D be a dataset of s samples, and µi(s) the expected value of dSHD(Ai(D), C∗).
We call the mean distance in formula 12 the intersection-validation estimator for the
expected SHD. Its consistency follows from the consistency of the input algorithms.

Theorem 4. Let A1, A2, . . . , Ak be consistent learning algorithms. Let i ∈ [k] and
s ∈ N. Then (µNi (s))∞N=s is a consistent estimator for µi(s).

Proof. Let ε and δ be positive numbers. To prove the theorem we should show that
for all i ∈ [k] and s ∈ N, there is some N0 such that for N > N0 the following holds

P
(∣∣µNi (s)− µi (s)

∣∣ > ε
)
< δ.

Let C∗ be the ground truth CPDAG and let p be the ground truth distribution.
The proof (1) first shows that the probability of the agreement graph A0 equaling
C∗ can be made arbitrarily close to 1, and specifically larger than 1− δ, by learning
the operand structures on a large enough dataset from p. Then (2) assuming the
agreement graph equals the ground truth CPDAG, we show that the subsampling
distribution converges to the ground truth distribution from which the claim follows.

1. From the consistency of the algorithms it directly follows that there is N ′ such
that for all i ∈ [k]

P
(
Ai

(
D(N ′)

)
= C∗

)
> 1− δ

2k
,
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whereDN ′ is a dataset ofN ′ samples. In other words, we can choose such dataset size
that independently for each algorithm the probability of the algorithm not finding
the correct CPDAG is less than (or equal to) δ

2k
.

Using Boole’s inequality, we can then bound the probability of the event that at
least one algorithm does not learn the correct CPDAG as

P
(
∪ki=1

{
Ai

(
D(N ′)

)
6= C∗

})
≤

k∑
i=1

P
(
Ai

(
D(N ′)

)
6= C∗

)
≤ k · δ

2k
=
δ

2
.

Equivalently, the probability of the agreement graph equaling the ground truth
CPDAG is now lower bounded as

P (A0 = C∗) > 1− δ

2
.

2. Assume then that the agreement graph equals the ground truth CPDAG. Now it
holds that dPHD (A0, Ai (D)) = dSHD (C∗, Ai (D)). With the assumption A0 = C∗ we
can thus treat the two metrics as equal, when measuring distances to the agreement
graph. Let D = (X1, X2, . . . , XN) be a dataset of size N , where Xi ∼ p are random
samples from the ground truth distribution. For a fixed algorithm Ai and subsample
size s define

Yj,N := dSHD (C∗, Ai (Dj)) ,

where Dj ⊂ D is a random variable corresponding to the jth subsample from D.
To prove the theorem, it is now enough to show that for the empirical mean of the
random variables Yj,N , j = 1, . . . , N it holds that

1

N

N∑
j=1

Yj,N
P→ E [Y1,N | FN ]

P→ µi (s) ,

where
FN (x) =

|{i : Xi = x}|
N

is the empirical distribution of X.

The first convergence follows from the law of large numbers, as the variables Yj,N
are i.i.d. given FN . The second convergence follows from

FN (x)
P→ P (X1 = x) ,

for all x, from which it follows that for each z = (x1, . . . , xs) the conditional proba-
bility P (D1 = z | FN) converges to probability P (D = z).
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4 Experimental results

Intersection-validation is intended to be used as a replacement for SHD based eval-
uation in situations where the ground truth structure is not known. Ideally, any
conclusions one could draw concerning the performance of a structure learning algo-
rithm among a set of them when the ground truth is known, one should be able to
draw using intersection-validation when the ground truth is not known. Intersection-
validation thus, as a method, is evaluated by considering the following question:

Are the results of the method similar to those obtainable with ground truth?

To explore the question, an experiment pipeline is specified, where intersection-
validation based PHD results are compared to ground truth based SHD re-
sults. In order to conduct the experiments, we sample datasets from the bench-
mark Bayesian networks Sachs (Sachs et al. 2005), Child (Spiegelhalter et al.
1993), Insurance (Binder et al. 1997), Water (Jensen et al. 1989), Alarm (Bein-
lich et al. 1989) and Barley-Fungal (Kristensen and Rasmussen 2002), whose
basic properties are given in Table 1. The networks were downloaded from
www.bnlearn.com/bnrepository, except Barley-Fungal which was downloaded
from repo.bayesfusion.com. From each benchmark Bayesian network we sampled
independent datasets of sizes 50× 2i where i ∈ {0, . . . , 8}, repeating the process 10
times for a total of 90 datasets per network.

The compared algorithms were formed by combining each of the scoring functions
AIC, BIC, BDeu (with ess 1), fNML and qNML to an exact search algorithm. The
local scores were calculated with the software bene (Silander and Myllymäki 2006)
and the search was performed with the integer linear programming based software
Gobnilp (Cussens 2011, Barlett and Cussens 2013).

Table 1: The benchmark networks used in the experiments.

Name Nodes Edges Max Indegree Parameters

Sachs 11 17 3 178
Barley-Fungal 15 19 4 43007
Child 20 25 2 230
Insurance 27 52 3 984
Water 32 66 5 10083
Alarm 37 46 4 509
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The differences among the compared algorithms are thereby limited to the differences
between the scoring functions themselves. Specifying the algorithms in this manner
does not eliminate all random variation from the results. It does, however, rule out
one layer of uncertainty that would arise from the use of heuristic algorithms. The
choice of algorithms also makes the results in principle replicable.

4.1 Evaluation with established methods

To evaluate intersection-validation, we must first obtain a point of reference by eval-
uating the considered algorithms against the ground truth structure using the SHD
as a metric. Also, by additionally evaluating the algorithms using the other two
established methods, namely cross-entropy and its approximation obtained through
cross-validation, we can consider the relationships among them. An obvious pre-
liminary question, for example, is to what extent cross-validation can be used to
assess the performance of structure learning algorithms when the ground truth is
not known.

We therefore computed the quantities at each considered sample size and averaged
the results over the ten independent datasets. In order to compute cross-entropy and
its approximation through cross-validation we equipped the learned structures with
mean posterior estimates of the parameters, using equivalent sample size of 1, given
the data that was used to learn each structure. Then the cross entropies between
the ground truth distribution and the learned distributions were approximated using
the Monte Carlo method discussed previously. The log probability of each dataset
was approximated with 10-fold cross-validation. The sign of the log probability is
changed to make the numbers conform to those of cross-entropy. Figure 7 presents
the results for all of the three measures.

It can be seen clearly, that the networks pose different levels of difficulty in terms of
structure learning, although in none of the networks is 12,800 samples sufficient for
all of the scores to find a structure from the correct equivalence class. For Sachs and
Child this observation, however, is only a consequence of the AIC score not being
consistent – all the other scores find a correct structure (i.e., zero SHD) already by
6,400 samples. The choice of the number of independent datasets to use for each
sample size has a direct effect on the standard error of the mean, represented by the
vertical bars in the plots, with more repetitions yielding smaller standard errors.
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Figure 7: Mean values for structural Hamming distance, cross-entropy and negative
log probability, where the last quantity is computed with 10-fold cross-validation.
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By visually comparing the cross-entropy results to the cross-validation ones it is
clear that the latter approximates cross-entropy accurately even on small sample
sizes. Comparing the SHD and the cross-entropy results reveals, perhaps less obvi-
ously, that the relative performance of a structure learning algorithm in finding well
predicting structures does not always seem to imply equal performance in terms
of accuracy of the structures. Computing the correlations between the SHD and
cross-entropy values as shown in Figure 8 confirm these observations. In a setting
without ground truth one cannot thus rely on cross-validation if the interest lies in
evaluating the structure learning performance of a set of algorithms.

4.2 Performance of intersection-validation

To apply intersection-validation, a choice has to be made regarding the size of the
input data. When the method is used in a “real life” setting this question does
not arise, as there is only a certain amount of data available. In the set up of the
experiments, where we have data sampled at various dataset sizes, and a generative
model from which we could draw data in arbitrarily large amounts, some number
needs to be fixed. We call the chosen amount of data the intersection point, as it
determines the point on the scale of considered sample sizes at which we apply the
strict intersection operation on the learned CPDAGs to obtain the agreement graph.

With a fixed intersection point N , the method produces PHD results between the
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agreement graph learned on N samples and structures learned on fewer than N

samples. In the asymptotic case, when applying the method on a set of consistent
algorithms, the PHD results converge to the SHD between the ground truth and
the learned structures (Theorem 4, p. 29). Intuitively, one would then expect
the PHD results to reflect the corresponding SHD results more accurately as the
intersection point is increased, even with finite data sizes. Conversely, a question of
interest becomes how low can we set the intersection point and still expect to obtain
meaningful results?

To consider the similarity between the PHD and the SHD results, we must specify
how we measure similarity. Since we are using intersection-validation to evaluate
the relative performance of a set of algorithms, a simple criterion for the similarity
is to compare the rankings that the PHD and SHD measurements determine for the
algorithms. A second, stronger, criterion for similarity is to consider the magnitudes
of relative differences between the algorithms at the various sample sizes. Similarity
in the latter sense would then imply similarity in the former sense as well.

4.2.1 Visual similarity to structural Hamming distance

To begin analysing the results, we will first, however, rely on visual inspection to
compare the SHD and PHD values. We thus set the intersection point se to 1,600.
Then for each sample size s < se we computed the mean PHD values and compared
them with the corresponding mean SHD values. To be clear, the PHD values are
computed by first averaging the PHDs measured on 10 subsamples of size s from a
full dataset whose size is given by the intersection point. This process is repeated
for each of the 10 independent full datasets, and finally the mean of the means is
reported. The standard errors of the means in the SHD case are based on the 10
independent SHD measurements, whereas for PHD they are calculated from the 10
independent mean PHD measurements. The results are plotted side by in Figure 9.

We can make an immediate observation: the results look strikingly similar. The
PHD results do not reproduce the SHD ones perfectly, however, as some differences
can also be seen, most noticeably in the Barley-Fungal network. A somewhat trivial
observation is, that the absolute PHD values tend to be smaller than the SHD ones.
This is a direct consequence of the agreement graph consisting of only some subset of
the total node pairs, even if strictly speaking it does not guarantee lower number of
mismatching node pairs. For example, the mean PHD to the underlying agreement
graph at sample size 800 using BIC on Sachs data is greater than the corresponding



36

50 100
200
400
800

0

6

11

17

23

50 100
200
400
800

0

4

8

12

17

Sachs
SHD PHD

Sample size

50 100
200
400
800

15

21

28

34

41

50 100
200
400
800

0

5

9

13

18

Barley-Fungal
SHD PHD

Sample size

50 100
200
400
800

1

12

23

34

46

50 100
200
400
800

0

10

19

27

37

Child
SHD PHD

Sample size

50 100
200
400
800

24

41

58

75

92

50 100
200
400
800

2

17

31

45

60

Insurance
SHD PHD

Sample size

50 100
200
400
800

59

80

101

121

142
50 100
200
400
800

0

16

31

46

62

Water
SHD PHD

Sample size

50 100
200
400
800

9

31

53

75

98

50 100
200
400
800

2

22

40

59

78

Alarm
SHD PHD

Sample size

AIC BIC BDeu fNML qNML

Figure 9: Comparison of ground truth based SHD results (left) to intersection-
validation based PHD results (right), with intersection point set to 1600.

mean SHD to the ground truth structure.

It is not clear how to best compare the curves, to consider how close the PHD
curves are to the SHD ones. Though having the disadvantage of subjectivity, visual
inspection permits us to freely concentrate on any aspect of the curves deemed
important by any particular use case for the method. The aspects could be the
ones discussed, the ranking and the magnitudes of differences, or for example the
convergence rates of the algorithms. In such sense, visual inspection is the most
information preserving method for comparing the results.

Visual inspection does not, however, assign a number on the similarity between the
results. To be able to objectively analyze how the similarity varies as a function of
the inputs to the method we need to quantify it. For example, it seems intersection



37

validation works better for data sampled from Sachs than from Barley-Fungal.
Though the difference, if sufficiently pronounced as it is between the two networks,
might be clearly visible in the graphical representation, it will be difficult to see
subtle ones, let alone compare such differences against each other.

4.2.2 Similarity of rankings

To quantify the similarity between the SHD and PHD results, we will begin by
considering the question of rankings given by the two metrics. To compare the
rankings we will use two measures: Spearman (rank) correlation, and the ratio of
matching pairwise rankings. Specifically, for each intersection point se we have a
set of pairs

rSHD(Ai, s), rPHD(Ai, s|se)

where rSHD(Ai, s) is the SHD based ranking for algorithm Ai at sample size s, and
where s < se. The notation for the PHD based ranking is only different in that it
conditions the rank on the intersection point. Due to the setup of the experiments we
cannot directly establish a correspondence between SHD and PHD values. We can,
however, form meaningful pairs from the mean distances. Therefore, the rankings
are determined by the mean measurements obtained as previously explained. The
correlation is then computed from this set.

For the ratio of matching pairwise rankings, we iterate over every combination
(Ai, Aj) of pairs of algorithms and count the number of times the equivalence

(rSHD(Ai, s) < rSHD(Aj, s))⇔ (rPHD(Ai, s|se) < rPHD(Aj, s|se))

holds true, divided by the total number of observations. Observation here refers to
the computation of the rankings at some sample size for a pair of algorithms, given
the intersection point. The results presented in Figure 10 show that the measure is
largely equivalent with the Spearman rank correlation, with both showing moderate
to strong results, as hinted by the results in Figure 7. The overall ratio of matching
pairwise rankings is 0.875. One should note, however, that the rankings might be
somewhat arbitrary in cases where the mean distance values are so close to each other
that the standard errors overlap. Moreover, the SHD and PHD values at a given
sample size should be understood as data dependent random variables. Whether the
mean is a meaningful statistic depends on the shape of the distribution. Though not
presented here in any detail, a preliminary analysis shows the standard deviations in
the empirical distributions are moderate, so focusing on the means seems reasonable.
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Figure 10: Spearman correlation between SHD and PHD rankings (left) and ratio
of matching pairwise SHD and PHD rankings (right).

4.2.3 Correlations and root-mean-square error

Next we will consider three performance measures given intersection point and sam-
ple size. The quantities based on which we compute the measures are therefore the
sets of pairs

d̄SHD (Ai|s) , d̄PHD (Ai|s, se) ,

where d̄SHD (Ai|s) is the mean SHD for algorithm Ai at sample size s and
d̄PHD (Ai|s, se) is the mean of the mean PHDs measured for algorithm Ai at sample
size s when the intersection point is set to se. In each set there is 5 such pairs,
corresponding to each of the considered scoring functions.

First performance measure is the Spearman correlation for the rankings determined
by the above quantities. The only difference to the previous analysis is that in
addition to the intersection point we also condition on sample size.

Second is the Pearson correlation between the mean distances. For the Pearson
correlation we could not condition the results only on the intersection points as we
did for the ranking based correlations, as there is a nearly monotonic relationship
between both of the distance metrics and the sample size (see Figure 9). Calculating
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the Pearson correlation per intersection point would then allow the sample size to
have a strong confounding effect on the metrics, and consequently invalidate the
obtained correlation coefficient.

Third measure is the root-mean-square error (RMSE) obtained by fitting a least
squares regression line to the sets of mean distance pairs (i.e., points in R2). The
procedure is equivalent to finding the scaling and translation of the PHD values that
minimizes the squared error between them and the corresponding SHD values.

Finally, to obtain some baseline upon which we expect intersection-validation to
improve, we computed the same performance measures based on the pairs

d̄SHD (Ai|s) , d̄CE (Ai|s, ) ,

where the second quantity is the mean cross-entropy estimate we computed with
cross-validation earlier (Figure 7). The quantity, similarly to PHD, does not rely on
knowing the ground truth. Correlations above and RMSE below the baseline conse-
quently indicate improvement in our ability to evaluate structure learning without
ground truth.

The results in Figure 11 show that, though in general the correlations are moderately
strong, for some of the networks for certain sample sizes they suddenly drop. On
closer inspection a reason for most of these ocurrences can be observed in the SHD
curves, where the drops in correlations correspond to the distances measured for the
various algorithms coming very close to each other. Further, in cases where all of
the distances are close to each other both the Spearman and Pearson correlations
drop (Sachs at sample sizes 100, 200; Child at 200; Insurance at 1600). In cases
where all the distances except for one algorithm are close to each other the Spearman
correlation drops while the Pearson correlation remains strong (Insurance at 100;
Water at 800; Alarm at 3200, 6400).

The only clear exception to the pattern is Barley-Fungal, where the drops in corre-
lations are due to intersection-validation producing unarguably wrong results. Also,
the correlations for the network decrease with higher sample sizes, in contrast to a
weak pattern indicating the opposite trend in the other networks. The last observa-
tion seems explainable by the slow convergence of the SHD results for the network
(Figure 7). With higher sample sizes Barley-Fungal should see similar improve-
ment in the correlations as the other networks.

The strong performances across all the networks at the smallest sample size might
mostly be indicative of the varying amount of penalty that the scores impose on
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complexity. Without sufficient data, structure discovery for each algorithm is largely
guesswork, where the complexity penalty determines the number of edges, and con-
sequently the expected distance to the correct structure. At large sample sizes many
of the algorithms start converging on the ground truth CPDAG, inflating the Pear-
son correlation if there is one outlier algorithm, as there seems to be for each network
except Barley-Fungal and Insurance. The sample sizes in between the extremes
seem the most relevant for assessing the performance of intersection-validation ex-
pected in practice. Though it is there that the method performs the weakeast, the
results still seem strong enough to make the method useful.

Importantly, intersection-validation seems to mostly improve on the baseline. In
places where the baseline performs better the difference seem moderate. At no
sample size in any of the networks do the correlations between the SHD and PHD
results fall below zero, whereas for the baseline this happens for Sachs, Insurance
and Water. Intersection-validation thus seems more reliable method for evaluating
the structure learning performance of a set of algorithms than trying to infer the
same from the algorithms’ predictive performance.
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Figure 11: Three performance measures (Y-axis) given sample size (X-axis) and
intersection-point (legend) to evaluate similarity of SHD and PHD results: Spear-
man rank correlation, Pearson correlation and RMSE for least squares regression
from PHD to SHD. Baseline shows the same between SHD and cross-validated CE.
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4.3 Quality of the agreement graphs

Intersection-validation effectively is based on using the agreement graph as a proxy
for the ground truth structure. It would seem reasonable then, that the performance
of the method depends on the quality of the agreement graphs. To gain an initial
understanding into how the agreement graphs develop as the intersection point is
increased, Figure 12 visualizes the CPDAG and the agreement graph at three dif-
ferent intersection points for the benchmark network Barley-Fungal. There are
10 independent datasets for each sample size, each producing a possibly differing
agreement graph. The visualized graphs correspond to the datasets that had been
assigned the index number 1. The dashed lines indicate, as in the minimal example
seen earlier (Figure 6), node pairs excluded from the agreement graph.

Defining the agreement graph size as the ratio between the number of node pairs
included in it and the total amount of node pairs, we can see the size grow – i.e.,
the number of dashed lines decrease – with the intersection point, corresponding
to a greater agreement among the compared algorithms. The number of connected
node pairs, that is node pairs connected by any type of an edge, does not seem
to grow very fast, however. In the agreement graph corresponding to intersection
point 800 there is only a single edge, and only 5 when the intersection point is set
to 12,800. We can also see some differences between the agreement graphs and the
ground truth: at intersection point 800 the algorithms agree not to have an edge
between the nodes areal and lt22, while the ground truth does have an edge from
the former to the latter; at 12,800 the algorithms agree to have an edge between
udbrsv and lt22, while there is no such edge in the ground truth.

To begin analyzing the observations systematically Figure 13 plots the sizes of the
agreement graphs and the numbers of connected node pairs as a function of the
intersection point for each network. As a further analysis, also the mean pairwise
distances between the agreement graph operand CPDAGs is reported. We can
observe, that the Barley-Fungal network seems to be the most difficult to agree
on for the algorithms. Even if the size of the agreement graph grows with every
increase of the intersection point, it is only at 6,400 samples that the algorithms
start finding edges to agree on.

Assuming we know the ground truth structure, we can also consider the types of
errors in the agreement graphs. An error is defined as a difference in the edge type
between a pair of nodes in the agreement graph and the ground truth CPDAG,
among the node pairs included in the agreement graph. The results presented in
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Figure 12: From left to right, top to bottom: Barley-Fungal ground truth CPDAG
and agreement graphs at intersection points 800, 6,400 and 12,800 for first of the 10
datasets.

Figure 14 distinguish between three types of errors: missing edges (relative to the
ground truth structure), spurious edges, and incorrect orientations. The last error
type refers to node pairs where the compared graphs disagree on the direction of a
directed edge, or on whether the edge is directed or bi-directed. We can see that
missing edges represent the vast majority of the errors, and that there is in fact
very few spurious edges, less than 1 on average for any intersection point for any
network.

The above analysis disregards the fact that unconnected node pairs form the ma-
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Figure 15: Agreement graph error type empirical probabilities. The missing values
for spurious edge probabilities in Barley-Fungal are due to 0 connected node pairs
in the agreement graphs.

jority both in the ground truth and in the agreement graphs. It is therefore hardly
surprising, that they also form the majority of errors. To account for this and to
consider the empirical probability that an edge type is indeed incorrectly agreed
upon by the algorithms, Figure 15 plots the probability for an absence of an edge to
be a missing edge and the probability of an edge to be a spurious one. The empirical
probability for each error type is the sum of the incorrectly agreed node pairs of the
given type in the agreement graphs, computed at a given intersection point, divided
by the total sum of node pairs of the given type in the same.

The probabilities for both error types in general are low. Values above 0.10 are
observable only at the lowest one or two intersection points for Sachs and Alarm,
and one particular intersection point for Barley-Fungal, where the agreement graph
seems to contain an error in its only edge. Across all the networks and intersection
points up to 800 samples the probability for an absence of an edge to be a missing
edge is 0.04 and the probability for an edge to be a spurious one is 0.02.
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The analysis shows that the agreement graphs behave somewhat predictably, with
nearly monotonous relationship between their size and the considered intersection
points. The probabilites for errors are low, even if the agreement graph sizes are
above 0.85 already at 100 samples (except for Barley-Fungal which starts at 0.7).
The qualities of the agreement graphs therefore do not seem to present any obvious
bottlenecks for the performance of intersection validation.

4.4 Performance with error-free agreement graphs of limited

size

We would like to consider the relative effects the size and the correctness of the
agreement graphs have on the performance of the method. One way to look at
the question, is to evaluate the performance using agreement graphs of limited size
that do not contain any errors. Repeating the performance evaluation using only
those instances of runs of intersection-validation that result in agreement graphs
without errors is not reasonable however, due to the small number of such runs
(Figure 14). As an alternative we can evaluate the performance after first removing
the errors from the agreement graphs. Accordingly, we repeat the analysis performed
for Figure 11, with two exceptions:

1. The new agreement graphs are constructed by projecting the ground truth
CPDAG onto the original agreement graph node pairs. Denoting the original
agreement graph by G0 = (S,E0) and the ground truth CPDAG by G = (V,E)

the new agreement graph then is defined as the pair (S, S ∩ E).

2. The structures compared against the agreement graphs are those computed
on the original independent datasets, not on subsamples of the data that the
original agreement graph was computed on.

The second exception is introduced to lessen the effect of sampling error on the
results, and to focus the analysis on examining how much of the lack of performance
might be attributable to the limited size of the agreement graph as opposed to errors
in it. The experiment, however, suffers from a disconnect between any dataset and
the set of node pairs chosen for the agreement graph. With these reservations, the
results presented in Figure 16 show, that even when the size of the agreement graph
is large and contains no errors, the performance might be relatively weak (e.g., Alarm
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Figure 16: Three performance measures (Y-axis) given sample size (X-axis) and
intersection-point (legend) computed identically to Figure 11, but with error-free
agreement graphs.
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at intersection-point 3200 and sample sizes 200 and 400) due to the node pairs not
included in the agreement graph.

4.5 Predicting the performance of the method

As we have seen, intersection-validation performs rather well across the considered
datasets. There is, however, some variation to the level of performance. To have
confidence in the results when the method is applied on real-world data, we would
like to know whether the variation can be explained by statistics computable from
the observable data. We have also analyzed the properties of the agreement graphs
both against the ground truth structure and in terms of what can be observed when
only data is available. Focusing on the latter properties we will now try to predict
the performance of intersection-validation.

4.5.1 Agreement graph size as predictor

We saw earlier, that the size of the agreement graph grows (somewhat monotonically
for Child, Insurance and Alarm and less so for Sachs, Barley-Fungal and Water)
with the intersection point (Figure 13). Also, the Spearman correlations between
the SHD and PHD determined rankings over all the sample sizes do not seem to
show any clear connection to the intersection-point (Figure 10). If the agreement
graph size predicts the Spearman correlation between the PHD and SHD rankings,
the predictive power thus does not seem to be strong.

The other two performance statistics – Pearson correlation and RMSE – have been
calculated based on the SHD and PHD values averaged over the ten independent
datasets, independently for each sample size (Figure 11). These statistics could then
be meaningfully predicted only using the mean qualities of the agreement graphs,
as each of the independent datasets produces a possibly differing agreement graph.
Alternatively, to pair the performance statistics with the qualities of a single agree-
ment graph, we can recompute the statistics based on the mean SHDs and mean
PHDs obtained through a single run of intersection-validation.

We choose the latter alternative. The relevant elements in the analysis thus are

1. a “full dataset” of size s0 given as input to intersection-validation and the
associated agreement graph;
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2. mean PHD between structures learned on 10 subsamples of size s < s0 from
the full dataset and the agreement graph;

3. mean SHD between structures learned on 10 independent datasets of size s
sampled from the ground truth network, and the ground truth.

We will then consider whether some quality of the agreement graph (1) predicts a
performance measure computed between (2) and (3). For s0 = 100 the size of the
set of possible values for s is |{50}| = 1, for s0 = 200 the size is |{50, 100}| = 2 and
so on, for a total of 36 combinations of intersection point and sample size, at which
the performance measure can be computed. As there are 10 independent datasets
of size s0 we can perform the evaluation for a total of 10 × 36 = 360 times. Each
evaluation outcome is finally paired with a quality of the agreement graph, whose
predictive power we are interested in, to produce a scatter plot.

The analysis can be run for any combination of agreement graph quality (size, num-
ber of connected node pairs and mean pairwise operand distance) and performance
measure (Pearson and Spearman correlations, RMSE). Figure 17 presents the re-
sults for predicting the Pearson correlation based on the agreement graph size, as it
seemed to yield the strongest results out of the possible combinations. The results
have a strong dependence on the sample size. To make more sense out of the scat-
terplot, the different samples sizes are coded with symbols of different shape and
color.

It can be seen that, for some combinations of benchmark network and sample size,
the agreement graph size seems to predict the method’s performance rather well.
This observation holds for example for Insurance at sample size 1600, and for Alarm
at sample size 200. For some other combinations there does not seem to be any easily
observable connection between the two quantities. To further quantify the analysis
we can, again, compute the Pearson correlation between the agreement graph size
and the performance measure at the various sample sizes. The results presented in
Table 2 confirm the observation: though the size of the agreement graph does seem
to predict the performance in many instances, in a lot of cases it also fails or even
correlates negatively with the method’s performance.

4.5.2 Mean absolute deviation as predictor

Previously we observed, that if the SHD values for the algorithms are close to each
other the correlations between them and the corresponding PHD values degrade.
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Figure 17: Pearson correlation between mean SHD and PHD (Y-axis) for varying
agreement graph sizes (X-axis) at different sample sizes (legend).

If the same happens with the observable PHD values, we can hope to attach more
confidence in the intersection-validation results when the values are more varied.
Denoting the set of 5 mean PHD values, corresponding to each algorithm, of the

Table 2: The Pearson correlation between the agreement graph size and the Pear-
son correlation between the mean SHD and PHD values at different sample sizes.
Correlations with absolute value of at least 0.7 in bold.

50 100 200 400 800 1600 3200 6400
Sachs 0.19 0.59 0.49 0.00 -0.05 -0.18 0.05 0.43
Barley-Fungal 0.57 0.42 0.70 0.56 0.55 0.09 0.04 -0.18
Child -0.25 0.35 -0.50 -0.32 -0.07 0.24 0.03 -0.03
Insurance -0.43 0.67 0.17 0.61 0.56 0.72 0.00 0.05
Water -0.14 -0.33 -0.65 -0.75 -0.73 -0.49 -0.17 -0.08
Alarm 0.63 -0.14 0.62 0.27 -0.06 0.44 -0.17 -0.37
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Figure 18: Pearson correlation between mean SHD and PHD (Y-axis) against mean
absolute deviation between the PHDs divided by total amount of node pairs (X-axis)
at different sample sizes (markers).

point (2) above as {di}5
i=1 and the mean of them as d̄, the mean absolute deviation

(MAD) of the set is
1

5

5∑
i=1

∣∣di − d̄∣∣ .
Plotting the MAD (normalized with the total number of node pairs) against the
Pearson correlation in Figure 18 shows, that there is a clear connection between the
two quantities. Even though, for some of the networks, high correlation coefficients
can be observed even when the MAD is close to 0, for all of the networks high MAD
values (> 0.03) imply strong correlation.

Repeating the analysis with Spearman correlation (Figure 19) for the ranks of the
algorithms reveals a similar pattern, though not as clearly. The only exception is
in the instances of high MAD for Alarm, where the correlation is not as high as the
pattern would seem to indicate, though still mostly above 0.6.
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Figure 19: Spearman correlation between the ranks determined by the mean SHD
and PHD (Y-axis) against mean absolute deviation between the PHDs divided by
total amount of node pairs (X-axis) at different sample sizes (markers).

4.6 Pairwise comparisons

The experiments presented thus far have been based on using intersection-validation
with the full set of considered scoring functions: AIC, BIC, BDeu, fNML and qNML.
We have examined the effect the amount of data has on the performance of the
method. In an analogous manner, we can evaluate the performance of intersection-
validation when the amount of compared algorithms is limited. In the extreme case
there is only two algorithms to compare. Out of the five scoring functions we can
form ten pairs. Given an intersection point and a sample size we now have only
two measurements of mean SHD and mean PHD. Evaluating the performance of
intersection-validation in this setting with Pearson correlation therefore is not pos-
sible, because of zero standard deviations for the two correlates. We can, however,
still calculate the fraction of matching rankings as determined by the two metrics.

Computing the ratio of matching rankings over all the parameters (the benchmark
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Figure 20: Ratio of matching SHD and PHD rankings when applying intersection-
validation on pairs of scores. Plot on the left only considers the mean values for the
metrics, while plot on the right ranks scores with overlapping standard errors of the
means equally.

Bayesian networks, the pairs of scores, the intersection points and sample sizes), we
find it to be as high as 0.880, a slight improvement over the 0.875 obtained when
intersection-validation was applied on the full set of scores. When multiple scores
were under analysis it was difficult to take the standard errors of the means into
account when determining the rankings, except by noting that when they overlap
they make the results more uncertain. In the case of compared score pairs the
situation is somewhat clearer. To analyze how many of the ranking mismatches
between SHD and PHD are in fact due to the scores being assigned very similar
distances, we will next define the two metrics to produce identical rankings also in
the case when the compared scores have overlapping standard errors given by both
of the metrics. After the redefinition the accuracy improves to 0.920. The total
ratio can be examined in finer resolution in multiple ways. Figure 20 plots the ratio
per benchmark network and intersection point, similarly to Figure 10, for both of
the discussed variants.

To consider the effect the specific scores have on the ratios we will now summarize
the results on a per score pair basis in Table 3. The results indicate that there is
no particular pair of scores, among the considered ones, using which intersection-
validation would fail to reliably predict their SHD-based ranking. The accuracy
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Table 3: Ratio of correct pairwise mean-based rankings (upper triangular) and when
overlapping standard errors of the means are taken into account (lower triangular).
Extreme values for both variants are in bold.

AIC BIC BDeu fNML qNML
AIC 0.824 0.819 0.917 0.870
BIC 0.875 0.810 0.963 0.870
BDeu 0.870 0.843 0.917 0.829
fNML 0.949 0.981 0.963 0.958
qNML 0.944 0.917 0.880 0.972

of the predictions varies, from 0.810 (0.843, when standard errors are taken into
account) for the pair BIC-BDeu to 0.963 (0.981) for BIC-fNML. The differences in
the accuracies seem attributable to the differences in the scores’ performances in the
SHD-based evaluation.

5 Case study: Structure priors

In the presented experiments, we have used scores mostly based on alternative ways
to define the marginal likelihood component in the equation 6, ignoring the prior.
The prior has in general received relatively little attention, motivating the need
for the second paper that the thesis builds on (Eggeling et al. 2019). This section
summarizes the paper as an example use case for intersection-validation.

5.1 Modular priors and search space penalty

In the paper four different sparsity promoting priors are considered and compared
to the uniform prior, that is, to not setting a prior. Three of the priors are modular,
meaning that they decompose, with some normalizing constant, according to the
factorization

P (G) ∝
n∏
i=1

ρi (Gi) ,

where ρi are functions from the subsets of [n] \ {i} (i.e., from the possible sets of
parents for variable i) to non-negative reals. The modular priors considered in the
paper are presented in Table 4.
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Table 4: The uniform prior and three sparsity promoting modular priors. Fair is
non-parametric, Edge is parameterized with p and Data with τ .

Name Factor Notes Reference
Unif 1 Uniform over DAGs –
Edge (p/(1− p))|Gi| Edge probability p Heckerman et al. (1995)

Fair 1/
(
n−1
|Gi|

)
Balances indegrees Friedman and Koller (2003)

Data exp
(
−(1+τ)|Gi| lnN

)
N is the data size Pensar et al. (2016)

The names of the priors reflect the main ideas behind them: Unif is the usual
uniform prior assigning equal probability to each DAG; Edge is equivalent to a
random graph model where each edge is created with probability p, discarding graphs
with directed cycles; Fair aims to allocate equal total probability for all indegrees;
Data depends on the size of data.

Additionally, the paper presents a procedure that can be used to implement a spar-
sity promoting prior, even when a software used for structure discovery does not al-
low for setting any explicitly. The procedure, called the search space penalty (SSP),
only depends on the possibility to set the maximum indegree for the search and
that the score is returned together with the structure – requirements customarily
satisfied by existing software.

Each possible value of maximum indegree specifies a space of DAGs. Let Gdn denote
such a space on DAGs of n nodes with a maximum indegree of d. Clearly, the spaces
(i.e., sets) of increasing indegree are nested, with each successive set being a superset
of the previous:

G0
n ⊂ G1

n ⊂ · · · ⊂ Gn−1
n = Gn.

Let d (G) be the maximum indegree of DAG G. The search space penalty is a non-
modular prior to promote sparseness, by which the prior probability assigned to a
structure is inversely proportional to the size of the smallest search space that it is
a member of, that is, by setting

PSSP (G) ∝ 1∣∣∣Gd(g)
n

∣∣∣ .
To find a score maximizing structure under the prior, one can first find the score
maximizing structures under the uniform prior separately for each indegree. The



56

SSP prior is then applied as a postprocessing step, by multiplying the scores of each
found structure with the prior, and finally selecting the one with the highest resulting
score. The normalizing constant factor in the prior, naturally, can be ignored if the
interest is only in finding the highest scoring structure and not in the final score
itself. The process, for some scoring function f , can be formalized in three simple
steps as follows.

Algorithm Search Space Penalization

Step 1. For each indegree d = 0, 1, . . . , n− 1, let
Ĝ(d) ∈ arg max

{
f(G) : G ∈ Gdn

}
.

“Find a score maximizing DAG for each search space.”

Step 2. Let
d̂ ∈ arg max

{
f(Ĝ(d))/|Gdn| : d = 0, 1, . . . , n− 1

}
.

“Find a score maximizing indegree after applying SSP prior.”

Step 3. Output Ĝ(d̂).

The output is the DAG G that maximizes PSSP (G) f (G). In the first step one
could limit the maximum indegree to some tractable number. Running the first
step for each of the indegrees up to the selected maximum one results in longer
computations than searching through a single search space. The running times,
however, are in practice dominated by the largest indegree. The additional cost of
running the algorithm, compared to search in a single space, thus seems acceptable.
Also, the size of the search space, required in step 2, can be calculated efficiently
with a recurrence formula provided in the paper.

5.2 Empirical studies

The main results of the paper are based on evaluating benchmark Bayesian net-
work recovery, given datasets sampled from them. The benchmark networks are the
same that we have seen before: Alarm, Insurance, Child and Water. Additionally,
the paper includes experiments using the intersection-validation method on vari-
ous real-world datasets. The datasets, preprocessed by Malone et al. (2018) and
originating from the UCI machine learning repository (Dua and Graff 2017), repre-
sent measurements of various real-world quantities, from Turkish university course
evaluation data, to hypothyroid disease data. The results for both experiments are
shown in Figure 21, for the BDeu baseline score. The conclusions from the latter
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Figure 21: The effect of various priors on exact structure learning using BDeu score.
Top row shows benchmark network recovery, while bottom row shows intersection-
validation applied on a number of real-world datasets.

experiments confirm those of the former ones: the priors have a significant improv-
ing effect on structure learning, especially on low sample sizes, and the strength of
the effect depends on the scoring function.

In the case of real-world data there is no ground truth structure, so we cannot mea-
sure how close the intersection-validation results are to the correct ones. However,
the fact, that the conclusions drawn from using both synthetic and real data are the
same, can be regarded as weak supportive evidence for the validity of intersection-
validation.

6 Conclusions and discussion

The thesis has introduced intersection-validation, a method for evaluating the per-
formance of algorithms that learn Bayesian network structures from data, without a
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ground truth to compare the learned structures against. As a proxy for the ground
truth, the method constructs an agreement graph from the features common to the
structures learned by the evaluated input algorithms on an input dataset. Then
the algorithms are evaluated against the agreement graph, given subsamples of the
input data.

The empirical experiments tested the validity of the method by using it on data gen-
erated from ground truth networks. The approach allowed comparing the method’s
results to those obtained by directly evaluating the algorithms against the correct
structure. The results provide moderately strong evidence for the method’s validity,
both for ranking the input algorithms correctly, and for estimating the (relative)
distances between their outputs and the ground truth, at some predetermined sizes
of subsampled data.

We considered five different scoring functions to specify the algorithms and data
from six benchmark Bayesian networks. The benchmark networks, from which the
experiment data were sampled, were chosen to represent different learning scenarios,
where the properties of the networks vary considerably. The thesis has also included
an experiment to study the performance of the method when there are only two
input algorithms. Further, the experiments in the paper in which the method was
first presented were based on yet another set of algorithms (Viinikka et al. 2018).
Though no amount of experiments will provide irrefutable evidence that the method
works in any theoretical sense, the positive results from these experiments would
seem to indicate that the method can be applied with some confidence in a variety
of settings.

Specifically, we have seen, that across the experiments the method gives a correct
ranking for two algorithms (relative to each other) with an accuracy of approximately
0.9, including when the method is applied onto a set of only two algorithms. The
Pearson correlations between the SHDs and PHDs measured for the set of algorithms
vary a lot, depending on the benchmark network, intersection point and sample size
at which the quantities are measured. In general, they seem fairly strong, and for the
most part improve when the method is given increasing amounts of data as input.
The results seem to exhibit three sample size regimes, where at the lowest sample
size the method performs well, after which the performance degrades, until finally
improving again. We compared the results to the baseline obtained by computing
the correlations between the SHDs and the cross-entropies approximated via cross-
validation – another evaluation approach not relying on knowing the ground truth.
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The results revealed that intersection-validation mostly improves on the baseline
and never fails as bad as the baseline on occasions does.

We have also attempted to predict the performance of the method based on quan-
tities observable when the method is applied in practice. The size of the agreement
graph (defined as the fraction of node pairs in it out of the total) is a straightforward
and intuitive potential predictor. Though in some cases it does predict the Pearson
correlation, in many other cases it does not. Additionally, we examined whether
greater differences in the PHDs measured for the the compared algorithms allow for
greater confidence in the results, and found the answer to be affirmative.

The method can, however, also give misleading results, even when the measured
distances differ greatly. As there are no theoretical guarantees as to when the
method works, and predicting the method’s failure or success from observable data
does not seem to be easy, one might then want to consider alternatives.

An obvious alternative, when evaluating the structure learning performance of an
algorithm, is to rely on studies using benchmark Bayesian networks. The problem
with the approach is that it leads to disproportionate importance given to the per-
formance evaluated on specific networks, as there are not many such networks easily
available. To avoid the problem of scarcity, one can sample Bayesian networks syn-
thetically (Melançon et al. 2001, Ide and Cozman 2002). In both approaches the
problem, however, remains that the data sampled from the networks is synthetic,
even if in the first alternative the network might have been created to model some
real-world phenomenon. The ultimate interest in developing structure discovery al-
gorithms, however, remains in their performance given real-world data – despite the
inherent difficulty of defining such performance. Evaluating them on synthetic data
thus might yield misleading results.

The method as presented relies on the structural Hamming distance, and the ex-
tension presented in the thesis, the partial Hamming distance. Any conclusions
regarding the performance of intersection-validation thus are subject to the used
metrics. Though popular, the SHD might not be without problems. For one, it
has a very local view to the differences in the graphs between which the distance is
measured. Equal importance is given to the differences in every part of the operand
graphs, though changes between certain node pairs could be argued in some senses
to be more consequential than others. The structural intervention distance, which
examines the causal implications of the differences between the graphs, for example,
has a more global approach (Peters and Bühlmann 2015). It is, however, the local
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and decomposable nature of the SHD that allowed for the metric’s straightforward
extension to the partial graphs that the method is fundamentally based on. Some fu-
ture directions for the study of intersection-validation could be found by examining
whether some other metrics are similarly extendable to be used with the method.

Asymptotically, with reasonable assumptions, intersection-validation produces re-
sults identical to ground truth based evaluation. A fundamental open question
remains whether guarantees on the accuracy of the results can be found assuming
finite data.
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Appendix 1. SHD vs. PHD comparisons for all
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Figure 22: SHD (left) vs. PHD (right), with intersection point set to 100.
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Figure 23: SHD (left) vs. PHD (right), with intersection point set to 200.
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Figure 24: SHD (left) vs. PHD (right), with intersection point set to 400.
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Figure 25: SHD (left) vs. PHD (right), with intersection point set to 800.
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Figure 26: SHD (left) vs. PHD (right), with intersection point set to 1600.
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Figure 27: SHD (left) vs. PHD (right), with intersection point set to 3200.
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Figure 28: SHD (left) vs. PHD (right), with intersection point set to 6400.
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Figure 29: SHD (left) vs. PHD (right), with intersection point set to 12800.



Appendix 2. Predicting performance with all combi-

nations of performance measure and predictor
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Figure 30: Spearman correlation (Y-axis), size of agreement graph (X-axis)
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Figure 31: Spearman correlation (Y-axis), connected node pairs (X-axis)
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Figure 32: Spearman correlation (Y-axis), mean pairwise agreement graph operand
distance (X-axis)
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Figure 33: Pearson correlation (Y-axis), size of agreement graph (X-axis)
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Figure 34: Pearson correlation (Y-axis), connected node pairs (X-axis)
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Figure 35: Pearson correlation (Y-axis), mean pairwise agreement graph operand
distance (X-axis)
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Figure 36: RMSE (Y-axis), size of agreement graph (X-axis)
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Figure 37: RMSE (Y-axis), connected node pairs (X-axis)
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Figure 38: RMSE (Y-axis), mean pairwise agreement graph operand distance (X-
axis)


