153 research outputs found

    Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    Full text link
    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.Comment: It has been submitted to IEEE International Conference on Communications (ICC

    Microgrid state estimation and control using Kalman filter and semidefinite programming technique

    Full text link
    The design of environment-friendly microgrids at the smart distribution level requires a stable behaviour for multiple state operations. This paper develops a Kalman filter based optimal feedback control method for the microgrid state estimation and stabilization. First, the microgrid is modelled by a discrete-time state space equation. Then the cost-effective smart sensors are deployed in order to obtain the required system information. From the communication point of view, the recursive systematic convolution code is adopted to add the redundancy in the system. At the end, the soft output Viterbi decoder is used to recover the system information from the noisy measurements and transmission uncertainties. Thereafter, the Kalman filter is utilized to estimate the system states, which acts as a precursor for applying the control algorithm. Finally, this paper proposes an optimal feedback control method to stabilize the microgrid based on semidefinite programming. The performance of the proposed approach is demonstrated by extensive numerical simulations

    Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection

    Get PDF
    In this paper, it is argued that some low-level aspects of the usual IEC 61850 mapping to Ethernet are not well suited to microgrids due to their dynamic nature and geographical distribution as compared to substations. It is proposed that the integration of IEEE time-sensitive networking (TSN) concepts (which are currently implemented as audio video bridging (AVB) technologies) within an IEC 61850 / Manufacturing Message Specification framework provides a flexible and reconfigurable platform capable of overcoming such issues. A prototype test platform and bump-in-the-wire device for tunneling horizontal traffic through AVB are described. Experimental results are presented for sending IEC 61850 GOOSE (generic object oriented substation events) and SV (sampled values) messages through AVB tunnels. The obtained results verify that IEC 61850 event and sampled data may be reliably transported within the proposed framework with very low latency, even over a congested network. It is argued that since AVB streams can be flexibly configured from one or more central locations, and bandwidth reserved for their data ensuring predictability of delivery, this gives a solution which seems significantly more reliable than a pure MMS-based solution

    Distributed State Estimation Using RSC Coded Smart Grid Communications

    Full text link
    © 2013 IEEE. Recently, the renewable distributed energy resources (DERs) have become more and more popular due to carbon-free energy sources and environment-friendly electricity generation. Unfortunately, these power generation patterns are mostly intermittent in nature and distributed over the electrical grid, which creates challenging problems in the reliability of the smart grid. Thus, the smart grid has a strong requisite for an efficient communication infrastructure to facilitate estimating the DER states. In contrast to the traditional methods of centralized state estimation (SE), we propose a distributed approach to microgrid SE based on the concatenated coding structure. In this framework, the DER state is treated as a dynamic outer code, and the recursive systematic convolutional (RSC) code is seen as a concatenated inner code for protection and redundancy in the system states. Furthermore, in order to properly monitor the intermittent energy source from any place, this paper proposes a distributed SE method. Particularly, the outputs of the local SE are treated as measurements, which are fed into the master fusion station. At the end, the global SE can be obtained by combining local SEs with corresponding weighting factors. The weighting factors can be calculated by inspiring the covariance intersection method. The simulation results show that the proposed method is able to estimate the system state properly

    Robust and real-time state estimation of unstable microgrids over IoT networks

    Get PDF
    Smart grid is expected to make use of Internet-of-Things (IoT) networks to reliably monitor its state from remote places.However, due to a potentially unstable nature of a smart grid plant, in particular, when using renewable energy sources, and an unreliable wireless channel used in IoT, it is a challenging task to reliably track the state of smart grids. This article proposes a robust communication framework for state estimation/tracking of unstable microgrids, which is a key component of a smart grid. We present an IoT-integrated smart grid system to monitor the status of microgrids over a wireless network. A delay-universal-based error correction code is utilized to achieve a reliable and real-time estimation of microgrids. To exploit the features of the delay-universal coding scheme, we propose an iterative estimation technique. Through numerical results, we show that the proposed scheme can closely track the state of an unstable microgrid. We also show the impact of wireless network parameters on the estimation performance. The estimation performance of the proposed scheme is compared with the estimation performance of a traditional error correction coding scheme. We show that the proposed scheme substantially outperforms the traditional scheme

    An overview of distributed microgrid state estimation and control for smart grids

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method

    LoRa-based communication system for data transfer in microgrids

    Get PDF
    This paper proposes a LoRa-based wireless communication system for data transfer in microgrids. The proposed system allows connection of multiple sensors to the LoRa transceivers, and enables data collection from various units within a microgrid. The proposed system focuses on communications at the secondary communication level of the microgrid between local controllers of each distributed generation (DG) unit and the microgrid central controller due to the possibility of applying low-bandwidth communication systems at this level. In a proof of concept test bed setup, the data collected by the sensors are sent to the LoRa gateway, which serves as the central monitoring system from which control messages are sent to various microgrid components through their local controllers such as DG units, storage systems and load. In this work, to improve communication security, a private server has been developed using Node-Red instead of cloud servers that are currently used in most Internet-of-Things (IoT) monitoring systems. A range test of the proposed system is carried out to observe the rate of data delivery. It demonstrated over 90% data delivery at 4 km. Finally, a test bed experiment is conducted to validate key features of the proposed system by achieving one-directional data transfer in a grid monitoring system

    Power line communications: an implementation of a real time control architecture for smart grid

    Get PDF
    Negli ultimi anni è aumentata la presenza di risorse energetiche distribuite (DERs) nella rete elettrica. La visione della ``rete intelligente'' (Smart Grid) cerca di introdurre un'infrastruttura di controllo e di comunicazione di tipo distribuito in modo da sfruttare le potenzialità delle DERs e quindi potenziare e modernizzare la rete di distribuzione attuale. Applicandolo alle reti a bassa tensione, la cosiddetta ``Smart Microgrids'', si è sviluppato un banco di prova (testbed) che permette di dimostrare tecniche di riduzione delle perdite di distribuzione. La soluzione adottata bilancia localmente la potenza reattiva della microgrid attraverso il controllo delle risorse locali ottenendo una riduzione della corrente necessaria per alimentare la rete. Inoltre, vengono analizzati i vantaggi nell'usare la linea elettrica come mezzo di comunicazione e vengono evidenziati alcuni standard di comunicazion

    A Communications Testbed for Testing Power Electronic Agent Systems

    Get PDF
    As power electronic system (PES) continue to incorporate complex intra-system communication, understanding and characterizing this communication has become a complex task. Knowing how a system’s communication will behave is vital to ensuring proper operation of these systems. This thesis proposes and outlines a communication testbed that streamlines the development and testing of the communications between the components of PES, and further presents the characterization of communication protocol utilized in these multi-agent PESs. These communication protocols include MQTT, Modbus, or User Datagram Protocol (UDP). Understanding the different behavior of these protocols presents is paramount for the design of PESs
    • …
    corecore