3,655 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    AI-driven approaches for optimizing the energy efficiency of integrated energy system

    Get PDF
    To decarbonize the global energy system and replace the unidirectional architecture of existing grid networks, integrated and electrified energy systems are becoming more demanding. Energy integration is critical for renewable energy sources like wind, solar, and hydropower. However, there are still specific challenges to overcome, such as their high reliance on the weather and the complexity of their integrated operation. As a result, this research goes through the study of a new approach to energy service that has arisen in the shape of data-driven AI technologies, which hold tremendous promise for system improvement while maximizing energy efficiency and reducing carbon emissions. This research aims to evaluate the use of data-driven AI techniques in electrical integrated energy systems, focusing on energy integration, operation, and planning of multiple energy supplies and demand. Based on the formation point, the main research question is: "To what extent do AI algorithms contribute to attaining greater efficiency of integrated grid systems?". It also included a discussion on four key research areas of AI application: Energy and load prediction, fault prediction, AI-based technologies IoT used for smart monitoring grid system optimization such as energy storage, demand response, grid flexibility, and Business value creation. The study adopted a two-way approach that includes empirical research on energy industry expert interviews and a Likert scale survey among energy sector representatives from Finland, Norway, and Nepal. On the other hand, the theoretical part was from current energy industry optimization models and a review of publications linked to a given research issue. The research's key findings were AI's significant potential in electrically integrated energy systems, which concluded AI's implication as a better understanding of energy consumption patterns, highly effective and precise energy load and fault prediction, automated energy management, enhanced energy storage system, more excellent business value, a smart control center, smooth monitoring, tracking, and communication of energy networks. In addition, further research directions are prospects towards its technical characteristics on energy conversion

    Fuzzy Logic Based Smart Grid for Power System Application

    Get PDF
    Smart grid manages the innovation for modernizing power flow frameworks by exploitation circulated and PC based remote detecting, administration and robotization, and two-way correspondences. Potential edges of the innovation region unit that the great grid's focal administration can right now have the capacity to administration and work a few remote station, streamline the general quality use and operational speedily. Amid this paper, there is an inventive methodology for the great framework to handle vulnerability emerging from condition perception and support of force plant. The mentality utilizes optional versatile support advisor and a framework upkeep analyser for outlining/executing streamlined condition-based protection happenings, and together handles [2] operational dissimilarities happening in every station. The framework upkeep enhancer creates the starting support anticipates each station with multi objective enhancement by taking into consideration just the look or normal operational conditions.[2] Amid methodology, the station can experience ageing, administration movements, moving climate and payload components, and shaky estimations. Living on every host station, the upkeep advisor can survey the capacity of beginning support arranges; and gauge the obligation changes created by effective dissimilarities on the substation utilizing a hierarchal fuzzy framework. The consultant determination caution the preservation streamlining agent on regardless of whether a reoptimization of its support exercises should be started for meeting the general framework dependability request.[7]. Mean time between failure (MTBF) and mean time to failure (MTTF) are studied in this thesis and fuzzy logic is generate to find he MTTF and MTBF, such that the components that present in the grid may be maintained from time to time without any failure in the system

    Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis

    Get PDF
    Risks and uncertainties are inevitable in construction projects and can drastically change the expected outcome, negatively impacting the project’s success. However, risk management (RM) is still conducted in a manual, largely ineffective, and experience-based fashion, hindering automation and knowledge transfer in projects. The construction industry is benefitting from the recent Industry 4.0 revolution and the advancements in data science branches, such as artificial intelligence (AI), for the digitalization and optimization of processes. Data-driven methods, e.g., AI and machine learning algorithms, Bayesian inference, and fuzzy logic, are being widely explored as possible solutions to RM domain shortcomings. These methods use deterministic or probabilistic risk reasoning approaches, the first of which proposes a fixed predicted value, and the latter embraces the notion of uncertainty, causal dependencies, and inferences between variables affecting projects’ risk in the predicted value. This research used a systematic literature review method with the objective of investigating and comparatively analyzing the main deterministic and probabilistic methods applied to construction RM in respect of scope, primary applications, advantages, disadvantages, limitations, and proven accuracy. The findings established recommendations for optimum AI-based frameworks for different management levels—enterprise, project, and operational—for large or small data sets

    An overview of artificial intelligence applications for power electronics

    Get PDF

    Who needs XAI in the Energy Sector? A Framework to Upgrade Black Box Explainability

    Get PDF
    Artificial Intelligence (AI)-based methods in the energy sector challenge companies, organizations, and societies. Organizational issues include traceability, certifiability, explainability, responsibility, and efficiency. Societal challenges include ethical norms, bias, discrimination, privacy, and information security. Explainable Artificial Intelligence (XAI) can address these issues in various application areas of the energy sector, e.g., power generation forecasting, load management, and network security operations. We derive Key Topics (KTs) and Design Requirements (DRs) and develop Design Principles (DPs) for efficient XAI applications through Design Science Research (DSR). We analyze 179 scientific articles to identify our 8 KTs for XAI implementation through text mining and topic modeling. Based on the KTs, we derive 15 DRs and develop 18 DPs. After that, we discuss and evaluate our results and findings through expert surveys. We develop a Three-Forces Model as a framework for implementing efficient XAI solutions. We provide recommendations and a further research agenda
    corecore