173 research outputs found

    MRI-based prostate cancer detection with high-level representation and hierarchical classification

    Get PDF
    Extracting the high-level feature representation by using deep neural networks for detection of prostate cancer, and then based on high-level feature representation constructing hierarchical classification to refine the detection results

    In vivo MRI based prostate cancer localization with random forests and auto-context model

    Get PDF
    Prostate cancer is one of the major causes of cancer death for men. Magnetic resonance (MR) imaging is being increasingly used as an important modality to localize prostate cancer. Therefore, localizing prostate cancer in MRI with automated detection methods has become an active area of research. Many methods have been proposed for this task. However, most of previous methods focused on identifying cancer only in the peripheral zone (PZ), or classifying suspicious cancer ROIs into benign tissue and cancer tissue. Few works have been done on developing a fully automatic method for cancer localization in the entire prostate region, including central gland (CG) and transition zone (TZ). In this paper, we propose a novel learning-based multi-source integration framework to directly localize prostate cancer regions from in vivo MRI. We employ random forests to effectively integrate features from multi-source images together for cancer localization. Here, multi-source images include initially the multi-parametric MRIs (i.e., T2, DWI, and dADC) and later also the iteratively-estimated and refined tissue probability map of prostate cancer. Experimental results on 26 real patient data show that our method can accurately localize cancerous sections. The higher section-based evaluation (SBE), combined with the ROC analysis result of individual patients, shows that the proposed method is promising for in vivo MRI based prostate cancer localization, which can be used for guiding prostate biopsy, targeting the tumor in focal therapy planning, triage and follow-up of patients with active surveillance, as well as the decision making in treatment selection. The common ROC analysis with the AUC value of 0.832 and also the ROI-based ROC analysis with the AUC value of 0.883 both illustrate the effectiveness of our proposed method

    Radiomics in prostate cancer: an up-to-date review

    Get PDF
    : Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications

    Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Objectives: To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS). // Methods: The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospectively by four uro-radiologists with 5–16 years’ experience. T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong’s test. // Results: The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months. PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity (92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43, and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value range 0.34–0.77). // Conclusions: PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in AS patients

    Prostate Cancer Diagnosis using Magnetic Resonance Imaging - a Machine Learning Approach

    Get PDF
    • …
    corecore