55 research outputs found

    A Decision Feedback Based Scheme for Slepian-Wolf Coding of sources with Hidden Markov Correlation

    Full text link
    We consider the problem of compression of two memoryless binary sources, the correlation between which is defined by a Hidden Markov Model (HMM). We propose a Decision Feedback (DF) based scheme which when used with low density parity check codes results in compression close to the Slepian Wolf limits.Comment: Submitted to IEEE Comm. Letter

    Linear Interactive Encoding and Decoding Schemes for Lossless Source Coding with Decoder Only Side Information

    Get PDF
    Near lossless source coding with side information only at the decoder, was first considered by Slepian and Wolf in 1970s, and rediscovered recently due to applications such as sensor network and distributed video coding. Suppose X is a source and Y is the side information. The coding scheme proposed by Slepian and Wolf, called SW coding, in which information only flows from the encoder to the decoder, was shown to achieve the rate H(X|Y) asymptotically for stationary ergodic source pairs, but not for non-ergodic case, shown by Yang and He. Recently, a new source coding paradigm called interactive encoding and decoding(IED) was proposed for near lossless coding with side information only at the decoder, where information flows in both ways, from the encoder to the decoder and vice verse. The results by Yang and He show that IED schemes are much more appealing than SW coding schemes to applications where the interaction between the encoder and the decoder is possible. However, the IED schemes proposed by Yang and He do not have an intrinsic structure that is amenable to design and implement in practice. Towards practical design, we restrict the encoding method to linear block codes, resulting in linear IED schemes. It is then shown that this restriction will not undermine the asymptotical performance of IED. Another step of practical design of IED schemes is to make the computational complexity incurred by encoding and decoding feasible. In the framework of linear IED, a scheme can be conveniently described by parity check matrices. Then we get an interesting trade-off between the density of the associated parity check matrices and the resulting symbol error probability. To implement the idea of linear IED and follow the instinct provided by the result above, Low Density Parity Check(LDPC) codes and Belief Propagation(BP) decoding are utilized. A successive LDPC code is proposed, and a new BP decoding algorithm is proposed, which applies to the case where the correlation between YY and XX can be modeled as a finite state channel. Finally, simulation results show that linear IED schemes are indeed superior to SW coding schemes

    Efficient decentralized communications in sensor networks

    Get PDF
    This thesis is concerned with problems in decentralized communication in large networks. Namely, we address the problems of joint rate allocation and transmission of data sources measured at nodes, and of controlling the multiple access of sources to a shared medium. In our study, we consider in particular the important case of a sensor network measuring correlated data. In the first part of this thesis, we consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a Slepian-Wolf model where optimal coding is complex and transmission optimization is simple, and a joint entropy coding model with explicit communication where coding is simple and transmission optimization is difficult. This problem requires a joint optimization of the rate allocation at the nodes and of the transmission structure. For the Slepian-Wolf setting, we derive a closed form solution and an efficient distributed approximation algorithm with a good performance. We generalize our results to the case of multiple sinks. For the explicit communication case, we prove that building an optimal data gathering tree is NP-complete and we propose various distributed approximation algorithms. We compare asymptotically, for dense networks, the total costs associated with Slepian-Wolf coding and explicit communication, by finding their corresponding scaling laws and analyzing the ratio of their respective costs. We argue that, for large networks and under certain conditions on the correlation structure, "intelligent", but more complex Slepian-Wolf coding provides unbounded gains over the widely used straightforward approach of opportunistic aggregation and compression by explicit communication. In the second part of this thesis, we consider a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain, and in which the arrivals are controlled based on those partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state based on which to make control decisions. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results may be applied for designing efficient and stable algorithms for medium access control in multiple accessed systems, in particular for sensor networks

    Decentralized Narrowband and Wideband Spectrum Sensing with Correlated Observations

    Get PDF
    This dissertation evaluates the utility of several approaches to the design of good distributed sensing systems for both narrowband and wideband spectrum sensing problems with correlated sensor observations

    Distortion-Tolerant Communications with Correlated Information

    Get PDF
    This dissertation is devoted to the development of distortion-tolerant communication techniques by exploiting the spatial and/or temporal correlation in a broad range of wireless communication systems under various system configurations. Signals observed in wireless communication systems are often correlated in the spatial and/or temporal domains, and the correlation can be used to facilitate system designs and to improve system performance. First, the optimum node density, i.e., the optimum number of nodes in a unit area, is identified by utilizing the spatial data correlation in the one- and two-dimensional wireless sensor networks (WSNs), under the constraint of fixed power per unit area. The WSNs distortion is quantized as the mean square error between the original and the reconstructed signals. Then we extend the analysis into WSNs with spatial-temporally correlated data. The optimum sampling in the space and time domains is derived. The analytical optimum results can provide insights and guidelines on the design of practical WSNs. Second, distributed source coding schemes are developed by exploiting the data correlation in a wireless network with spatially distributed sources. A new symmetric distributed joint source-channel coding scheme (DJSCC) is proposed by utilizing the spatial source correlation. Then the DJSCC code is applied to spatial-temporally correlated sources. The temporal correlated data is modeled as the Markov chain. Correspondingly, two decoding algorithms are proposed. The first multi-codeword message passing algorithm (MCMP) is designed for spatially correlated memoryless sources. In the second algorithm, a hidden Markov decoding process is added to the MCMP decoder to effectively exploit the data correlation in both the space and time domains. Third, we develop distortion-tolerant high mobility wireless communication systems by considering correlated channel state information (CSI) in the time domain, and study the optimum designs with imperfect CSI. The pilot-assisted channel estimation mean square error is expressed as a closed-form expression of various system parameters through asymptotic analysis. Based on the statistical properties of the channel estimation error, we quantify the impacts of imperfect CSI on system performance by developing the analytical symbol error rate and a spectral efficiency lower bound of the communication system

    Correlated Sources In Distributed Networks - Data Transmission, Common Information Characterization and Inferencing

    Get PDF
    Correlation is often present among observations in a distributed system. This thesis deals with various design issues when correlated data are observed at distributed terminals, including: communicating correlated sources over interference channels, characterizing the common information among dependent random variables, and testing the presence of dependence among observations. It is well known that separated source and channel coding is optimal for point-to-point communication. However, this is not the case for multi-terminal communications. In this thesis, we study the problem of communicating correlated sources over interference channels (IC), for both the lossless and the lossy case. For lossless case, a sufficient condition is found using the technique of random source partition and correlation preserving codeword generation. The sufficient condition reduces to the Han-Kobayashi achievable rate region for IC with independent observations. Moreover, the proposed coding scheme is optimal for transmitting a special correlated sources over a class of deterministic interference channels. We then study the general case of lossy transmission of two correlated sources over a two-user discrete memoryless interference channel (DMIC). An achievable distortion region is obtained and Gaussian examples are studied. The second topic is the generalization of Wyner\u27s definition of common information of a pair of random variables to that of N random variables. Coding theorems are obtained to show that the same operational meanings for the common information of two random variables apply to that of N random variables. We establish a monotone property of Wyner\u27s common information which is in contrast to other notions of the common information, specifically Shannon\u27s mutual information and G\u27{a}cs and K {o}rner\u27s common randomness. Later, we extend Wyner\u27s common information to that of continuous random variables and provide an operational meaning using the Gray-Wyner network with lossy source coding. We show that Wyner\u27s common information equals the smallest common message rate when the total rate is arbitrarily close to the rate-distortion function with joint decoding. Finally, we consider the problem of distributed test of statistical independence under communication constraints. Focusing on the Gaussian case because of its tractability, we study in this thesis the characteristics of optimal scalar quantizers for distributed test of independence where the optimality is both in the finite sample regime and in the asymptotic regime

    Systematic hybrid analog/digital signal coding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 201-206).This thesis develops low-latency, low-complexity signal processing solutions for systematic source coding, or source coding with side information at the decoder. We consider an analog source signal transmitted through a hybrid channel that is the composition of two channels: a noisy analog channel through which the source is sent unprocessed and a secondary rate-constrained digital channel; the source is processed prior to transmission through the digital channel. The challenge is to design a digital encoder and decoder that provide a minimum-distortion reconstruction of the source at the decoder, which has observations of analog and digital channel outputs. The methods described in this thesis have importance to a wide array of applications. For example, in the case of in-band on-channel (IBOC) digital audio broadcast (DAB), an existing noisy analog communications infrastructure may be augmented by a low-bandwidth digital side channel for improved fidelity, while compatibility with existing analog receivers is preserved. Another application is a source coding scheme which devotes a fraction of available bandwidth to the analog source and the rest of the bandwidth to a digital representation. This scheme is applicable in a wireless communications environment (or any environment with unknown SNR), where analog transmission has the advantage of a gentle roll-off of fidelity with SNR. A very general paradigm for low-latency, low-complexity source coding is composed of three basic cascaded elements: 1) a space rotation, or transformation, 2) quantization, and 3) lossless bitstream coding. The paradigm has been applied with great success to conventional source coding, and it applies equally well to systematic source coding. Focusing on the case involving a Gaussian source, Gaussian channel and mean-squared distortion, we determine optimal or near-optimal components for each of the three elements, each of which has analogous components in conventional source coding. The space rotation can take many forms such as linear block transforms, lapped transforms, or subband decomposition, all for which we derive conditions of optimality. For a very general case we develop algorithms for the design of locally optimal quantizers. For the Gaussian case, we describe a low-complexity scalar quantizer, the nested lattice scalar quantizer, that has performance very near that of the optimal systematic scalar quantizer. Analogous to entropy coding for conventional source coding, Slepian-Wolf coding is shown to be an effective lossless bitstream coding stage for systematic source coding.by Richard J. Barron.Ph.D

    Adaptive Distributed Source Coding Based on Bayesian Inference

    Get PDF
    Distributed Source Coding (DSC) is an important topic for both in information theory and communication. DSC utilizes the correlations among the sources to compress data, and it has the advantages of being simple and easy to carry out. In DSC, Slepian-Wolf (S-W) and Wyner-Ziv (W-Z) are two important problems, which can be classified as lossless compression and loss compression, respectively. Although the lower bounds of the S-W and W-Z problems have been known to researchers for many decades, the code design to achieve the lower bounds is still an open problem. This dissertation focuses on three DSC problems: the adaptive Slepian-Wolf decoding for two binary sources (ASWDTBS) problem, the compression of correlated temperature data of sensor network (CCTDSN) problem and the streamlined genome sequence compression using distributed source coding (SGSCUDSC) problem. For the CCTDSN and SGSCUDSC problems, sources will be converted into the binary expression as the sources in ASWDTBS problem for encoding. The Bayesian inference will be applied to all of these three problems. To efficiently solve these Bayesian inferences, message passing algorithm will be applied. For a discrete variable that takes a small number of values, the belief propagation (BP) algorithm is able to implement the message passing algorithm efficiently. However, the complexity of the BP algorithm increases exponentially with the number of values of the variable. Therefore, the BP algorithm can only deal with discrete variable that takes a small number of values and limited continuous variables. For the more complex variables, deterministic approximation methods are used. These methods, such as the variational Bayes (VB) method and expectation propagation (EP) method, can efficiently incorporated into the message passing algorithm. A virtual binary asymmetric channel (BAC) channel was introduced to model the correlation between the source data and the side information (SI) in ASWDTBS problem, in which two parameters are required to be learned. The two parameters correspond to the crossover probabilities that are 0->1 and 1->0. Based on this model, a factor graph was established that includes LDPC code, source data, SI and both of the crossover probabilities. Since the crossover probabilities are continuous variables, the deterministic approximate inference methods will be incorporated into the message passing algorithm. The proposed algorithm was applied to the synthetic data, and the results showed that the VB-based algorithm achieved much better performance than the performances of the EP-based algorithm and the standard BP algorithm. The poor performance of the EP-based algorithm was also analyzed. For the CCTDSN problem, the temperature data were collected by crossbow sensors. Four sensors were established in different locations of the laboratory and their readings were sent to the common destination. The data from one sensor were used as the SI, and the data from the other 3 sensors were compressed. The decoding algorithm considers both spatial and temporal correlations, which are in the form of Kalman filter in the factor graph. To deal with the mixtures of the discrete messages and the continuous messages (Gaussians) in the Kalman filter region of the factor graph, the EP algorithm was implemented so that all of the messages were approximated by the Gaussian distribution. The testing results on the wireless network have indicated that the proposed algorithm outperforms the prior algorithm. The SGSCUDSC consists of developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require a heavy-client (encoder side) cannot be applied. To tackle this challenge, the DSC theory was carefully examined, and a customized reference-based genome compression protocol was developed to meet the low-complexity need at the client side. Based on the variation between the source and the SI, this protocol will adaptively select either syndrome coding or hash coding to compress variable lengths of code subsequences. The experimental results of the proposed method showed promising performance when compared with the state of the art algorithm (GRS)
    • …
    corecore