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Abstract

This thesis is concerned with problems in decentralized communication in large net-
works. Namely, we address the problems of joint rate allocation and transmission of
data sources measured at nodes, and of controlling the multiple access of sources to
a shared medium. In our study, we consider in particular the important case of a
sensor network measuring correlated data.

In the first part of this thesis, we consider the problem of correlated data gathering
by a network with a sink node and a tree communication structure, where the goal is
to minimize the total transmission cost of transporting the information collected by
the nodes, to the sink node. Two coding strategies are analyzed: a Slepian-Wolf model
where optimal coding is complex and transmission optimization is simple, and a joint
entropy coding model with explicit communication where coding is simple and trans-
mission optimization is difficult. This problem requires a joint optimization of the
rate allocation at the nodes and of the transmission structure. For the Slepian-Wolf
setting, we derive a closed form solution and an efficient distributed approximation
algorithm with a good performance. We generalize our results to the case of multiple
sinks. For the explicit communication case, we prove that building an optimal data
gathering tree is NP-complete and we propose various distributed approximation al-
gorithms. We compare asymptotically, for dense networks, the total costs associated
with Slepian-Wolf coding and explicit communication, by finding their corresponding
scaling laws and analyzing the ratio of their respective costs. We argue that, for large
networks and under certain conditions on the correlation structure, ’intelligent’, but
more complex Slepian-Wolf coding provides unbounded gains over the widely used
straightforward approach of opportunistic aggregation and compression by explicit
communication.

In the second part of this thesis, we consider a queuing problem in which the service
rate of a queue is a function of a partially observed Markov chain, and in which the
arrivals are controlled based on those partial observations so as to keep the system in
a desirable mildly unstable regime. The optimal controller for this problem satisfies
a separation property: we first compute a probability measure on the state space
of the chain, namely the information state, then use this measure as the new state
based on which to make control decisions. We give a formal description of the system
considered and of its dynamics, we formalize and solve an optimal control problem,
and we show numerical simulations to illustrate with concrete examples properties of
the optimal control law. We show how the ergodic behavior of our queuing model
is characterized by an invariant measure over all possible information states, and we
construct that measure. Our results may be applied for designing efficient and stable
algorithms for medium access control in multiple accessed systems, in particular for
sensor networks.
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Résumé

Cette thèse est concernée par des problèmes de la communication décentralisée dans
des grands réseaux. Nous abordons d’une part le problème d’allocation de débit et
de transmission de données mesurés aux noeuds, d’autre part le probléme de controle
d’accès multiple des sources à un milieu partagé. Dans notre étude, nous considérons
en particulier le cas important d’un réseau de senseurs mesurant des données corrélées.

Dans la première partie de cette thèse, nous considérons le problème de récolte de
données corrélées par un réseau ayant un noeud évier et une structure de communi-
cation en arbre, où le but est de réduire au minimum le coût de transmission pour
transporter l’information rassemblé par les noeuds au noeud évier. Deux stratégies de
codage sont analysées: un modèle Slepian-Wolf où le codage optimal est complexe et
l’optimisation de transmission est simple, et un modèle de codage avec la communica-
tion explicite où le codage est simple et l’optimisation de transmission est difficile. Ce
problème exige une optimisation commune de l’allocation de débit aux noeuds et de
la structure de transmission. Pour le codage Slepian-Wolf, nous dérivons une solution
forme-fermée et un algorithme distribué efficace d’approximation. Nous généralisons
nos résultats au cas d’éviers multiples. Pour le codage avec communication explicite,
nous montrons qu’établir l’arbre de transmission est NP-complet et nous proposons
divers algorithmes distribués d’approximation. Nous comparons asymptotiquement,
pour des réseaux denses, les coûts liés au codage Slepian-Wolf et au codage avec com-
munication explicite, en trouvant leurs lois correspondantes et en analysant le rapport
du leur coûts respectifs. Pour des grands réseaux et dans certaines conditions sur la
structure de corrélation, un codage Slepian-Wolf plus complexe mais ’intelligent’ four-
nit des gains illimités au-dessus du l’approche largement répandue de l’agrégation et
de la compression par communication explicite.

Dans la deuxième partie de cette thèse, nous considérons un problème dans lequel
le taux de service d’une file d’attente est une fonction d’une châıne de Markov partielle-
ment observée, et où les arrivées sont basées sur des observations partiels, afin de main-
tenir le système dans un régime modérément instable souhaitable. Le contrôleur opti-
mal pour ce problème satisfait une propriété de séparation: nous calculons d’abord une
mesure de probabilité sur l’espace d’état de la châıne, à savoir l’état de l’information,
en employant alors cette mesure comme le nouvel état pour prendre des décisions
de commande. Nous donnons une description formelle du système considéré et de
sa dynamique, nous formalisons et résolvons un problème de commande optimale, et
nous montrons avec des simulations numériques les propriétés concrètes de la loi de
commande optimale. Nous montrons comment le comportement ergodique de notre
modèle est caractérisé par une mesure invariable au-dessus de tous états possibles de
l’information, et nous construisons cette mesure. Nos résultats peuvent être appliqués
pour concevoir des algorithmes efficaces et stables pour le contrôle d’accès dans les
systèmes d’access, en particulier pour les réseaux de senseurs.
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Chapter 1

Introduction

1.1 Distributed Communications
in Sensor Networks

Sensor networks have recently received a considerable attention from the research com-
munity. Such networks are composed of autonomous units (sensors), usually deployed
in areas where it is difficult or expensive to use an existing classical communication
infrastructure [57], [54], [20], [34]. Sensor networks are used to measure properties of
the environment (temperature, seismic data etc.). Data have to reach some specific
destination, for further processing, storage or use.

Communication in sensor networks has to be done over an inherently multiple
access channel. Moreover, the sensors have limited processing capabilities and must
rely on a small amount of energy (battery power). Thus, in most practical cases,
communications in such networks have to be done in a distributed manner. The
study of various research problems encountered in distributed communications in
sensor networks is the main goal of this thesis.

1.2 Communications over Large Networks

In this work, we will analyze various problems in communications in systems with a
large number of users. In many practical scenarios, the users have limited processing
and transmission abilities. In such systems, communications rarely take place solely
in an isolated manner, that is, from some end providing data to another end which
needs that data (this kind of communication is usually refereed as point to point). On
the contrary, communications in this case rather involve various users participating:
one or more users sending data, possibly other users helping the transmission (e.g.
by relaying data), and some other set of users receiving the data.

A typical example of such a system is the case of a sensor network, where deployed
nodes measure some property of the environment like temperature or seismic data.
Data from these nodes is transmitted over the network, using other nodes as relays,
to one or more base stations, for storage or control purposes.

1
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Figure 1.1: An example of a communication network. Source nodes A and B (in green)
use the relays (in blue) to transmit their data to the sinks X and Y (in red). The chosen
transmission structure is shown in bold arrows; the other links are represented in dashed
lines.

An abstraction of a communication system is the network entity. Users are gener-
ically represented as nodes. We call the users from where data originates as sources,
and we call sinks the users where the data is needed. The nodes are able to com-
municate among them by means of communication links. Some of the nodes are
supplied with amounts of information (supplies). These data must travel across the
network, over the links, possibly via some other nodes, to their destinations, or sinks.
Sinks have demands (negative supplies) assigned. The example in Figure 1.1 shows a
network where the sources A and B transmit their data over a set of selected links,
highlighted by arrows, via relays, to the sinks X and Y.

Communications over large networks are subject to some important constraints.
Like in any network, flow conservation laws are valid: the total amount of data
entering a relay node together with its supply must be equal to the amount of data
that exits that node.

There are also supplementary constraints, that take into account the specific lim-
itations of such networks. These constraints essentially result from the fact that the
resources available at nodes are limited. For instance, in the case of sensor networks,
these resources include battery power and processing capabilities. We consider the
graph corresponding to the sensor network, that has the sensor sources as nodes, and
the connecting links given by the (radio) transmission range of nodes. As battery
power is limited, some links may be more expensive to use than others. For instance,
if the two ends of a link are at a large distance far apart from each other, the power
needed to transmit over that link is very large, and thus that link is not efficient to
use. In order to differentiate among links, they are assigned costs, or weights, that
account for how expensive it is to use that link. The link weights can be either bulk
or, more generally, per unit of use (for instance, per packet/time slot).

Another constraint on communications is associated with the nodes that relay
transmission (the relays). Namely, the relay nodes have a maximum bandwidth as-
sociated to each of them. This bandwidth is determined for instance by the limited
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size of their buffers and the finite rate of processing. This means that such a node
cannot forward data simultaneously from more than a limited number of other nodes
that use it as a relay. The nodes accessing the relay need usually to content for the
access.

All these constraints present in a network give rise to interesting research questions.
Such questions are aimed at deciding what amount of supply should each of the
nodes provide for complete representation of the data, what links should be used
for efficient transmission, and how to deal with the information flow bottlenecks for
maximizing the throughput. In this work, we will use a unified approach to address
these questions.

One important issue that has to be taken into account in the study of large net-
works is the fact that it is rather impossible to develop centralized algorithms for tasks
such as the design of the transmission structure, rate allocation, or flow control. Any
centralized approach, even if realistic in some cases for small networks, is not scalable
in general. Thus, the design of decentralized algorithms should play an important role
in the approach of typical network issues. These issues include:

• coding of the information measured at the nodes,

• the transmission and routing of that information across the network from its
source to the destination,

• scheduling of the access to the multiple access (MAC) layer, when more than
one source access a limited bandwidth communication channel at the same time.

Consider again the example of a sensor network. In such a case, the nodes are
usually deployed randomly, are autonomous (meaning that their battery is limited
and not renewable), and communication over long distances is very costly. It is thus
impossible in practice to employ a central agent to resolve the tasks enumerated
above. Any practical implementation of such a network must resort to decentralized
algorithms.

Traditionally, the network aspects mentioned above have been considered as sep-
arate problems by the research community. An important goal of this work is to
illustrate how a joint treatment of these issues may provide important improvements
over approaches that consider each layer separately.

1.3 Motivation

We will consider sensor networks as an example, and as main motivation for our
discussion further. Note that our analysis can be easily generalized to other types of
networks, where centralized control is unrealistic. We will begin by enumerating some
of the important issues that make large scale sensor networks different from classical
networks, and thus require new decentralized, efficient, and computationally simple
methods to solve them.

First, we consider the primary task of sensing. In these networks there exists a set
of privileged end sites (sinks, or base station) where data from the sensors is needed
for measure, control or storage purposes. The goal of a sensor network is, in most
cases, to transport the data sensed by the nodes to the base stations. An important
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Figure 1.2: The tasks of MAC control and rate allocation/transmission structure opti-
mization for a simple network.

aspect that can be exploited is that, in general, the data measured at different sites
on the field is correlated. This means that nodes that are spatially close to each other
measure data characterized by a strong interdependence.

Second, we consider the task of transmission. Sending the data over the links costs
energy which is usually proportional to a function of the length of that link. This
function is usually monotonically increasing. Due to this reason, the straight line is in
general not the most cost efficient way to transmit between two points. Cost efficient
paths rather make use of relay nodes. These can be nodes especially assigned for that
task, or nodes that simultaneously perform sensing and relaying.

Third, from the point of view of the shared transmission layer, the multiple access
cannot be controlled in a centralized manner by the node that is acting as a relay,
since communication with the children is very costly. It is thus needed to design
simple decentralized algorithms that regulate the access to the shared medium. These
algorithms, implemented by the data sources, should rely only on limited feedback
from the routing node.

Finally, in order to perform all these tasks, nodes must have multiple function-
alities, while only limited energy and processing abilities are available locally. To
summarize, typical functions of a node include:

• Sense the environment.

• Relay data coming from other nodes.

• Control their rate of sending further the measured and/or relayed data.

We illustrate these issues with a simple network example shown in Figure 1.2.
All three nodes 1, 2, 3 sense the environment. The data measured by the nodes 1,

2 and 3 have to arrive at the base station S. We consider now the various tasks the
nodes have to perform.

1.3.1 Rate Allocation and Transmission Structure Optimization

First, nodes have to code their data so that it can be fully reconstructed when it arrives
at the base station S. We assume the measured quantities are random variables. This
involves a decentralized rate allocation. Let us denote the rate allocation at the three
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nodes with (R1, R2, R3). This rate allocation has to provide an exact representation
of the data measured.

For instance, let us consider a scenario where nodes measure temperature, and the
values of the measurements are approximated by integer numbers. Suppose that the
reading at a certain time slot is T1 = 10o, T2 = 9o, T3 = 11o. If the data measured at
nodes were independent, then the rates R1, R2 and R3 can be chosen independently,
too. Then, for independent encoding, a possible rate encoding would be R1 = R2 =
R3 = 4 bits. However, in general, the data measured at nodes is correlated. Then,
depending on the correlation model, it is very likely that, given the value of T1 = 10o,
the values of T2 and T3 would rather have a value in the set {9o, 10o, 11o}, than
outside this set. Then, if the nodes were aware of their inter-correlation, they can use
for instance1 R1 = 4 bits to code the measurement at node 1, and R2 = R3 = 2 bits
to code nodes 2 and 3 relative difference from the measurement of node 1.

We see however that even without a-priori knowledge about the correlation struc-
ture, node 3 can assess the interdependence in the measured data by using the data
received from nodes 1 and 2, since it is used as a relay by those nodes. Thus, it can
adjust its coding rate accordingly (for example, in Figure 1.2, nodes can code with
R1 = R2 = 4 bits, but R3 = 2 bits).

Let us now consider the costs on the links as well. If the links costs were simply
given by the Euclidean distance, then the straight line between any node and the sink
would be the best path to transmit data from that node. In this case, no node would
be used as relay. However, in practical situations, the cost function on a link depends
super-linearly on the length of that link. Thus, nodes 1 and 2 may use node 3 as relay,
and not waste their energy by sending data directly to the sink over a large distance.

Even in this simple network example, it is not easy to determine the optimal
transmission structure. In Figure 1.2, we show a possible transmission structure for
gathering data from nodes 1, 2 and 3. In this scenario, the links used are shown as
arrows in the figure, and the rates are R1 = R2 = 4 bits, R3 = 2 bits. However,
suppose the following alternative scenario is employed: node 3 sends its R3 = 4 bits
data to node 2, which reduces the rate at node 2 from R2 = 4 to R2 = 2 bits, and then
node 2 sends the whole R1 +R2 = 6 bits to node 3. Then, the trade-off is of whether
or not, in terms of total cost, to reduce the rate R2 at the expense of increasing the
total transmission path traveled by the data from node 1 to the sink.

The situation is different should nodes be aware beforehand of the correlation
structure, namely the transmission structure and rate allocation can be more easily
determined, at the cost of considerably increased complexity in coding. The study of
the trade-offs involved in the rate allocation/transmission structure optimization for
networks measuring correlated data is what drives the first part of this work.

1.3.2 Multiple Access Control

Suppose now that, as a result of the joint optimization for power efficiency in the
previous paragraph, we obtain a transmission structure in which nodes 1 and 2 do
indeed use both as relay the node 3. If the relay is aware of the numbers of nodes that
access it (in this case, two), it can just allocate some fair proportion of its bandwidth

1This can be done by Slepian-Wolf coding, that we present later in this work.
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to each of them, avoiding thus collisions. However, such an information is not available
in general nor at the relay, neither at the nodes accessing it. Moreover, node 3 has
a limited processing/buffering ability, thus it cannot accept, process and forward
unconditionally all information received from its children nodes. In order to avoid
too many losses, it is thus necessary that nodes 1 and 2 control their transmission
rates such that this results in packet losses below a given level, while ensuring a steady
throughput. This requires a multiple access control (MAC) protocol that the three
nodes involved need to implement.

Suppose each of the two nodes 1 and 2 employs a simple random medium access
protocol, defined by two Bernoulli random variables that determine the injection
probabilities, respectively. Let us denote by u1, u2 the transmission rates with which
the nodes 1 and 2 access the relay (router). These random variables may for instance
be weighted by the actual data rate that the nodes have to transmit (i.e. E[u1] ≈
R1, E[u2] ≈ R2). Due to the above mentioned power and communication limitations,
the nodes are not able to communicate between them. For the same reasons of
minimizing the overhead, they need to control the rate of transmission by using only
limited information (feedback) from the relay node. This feedback is usually restricted
only to acknowledgments from the router of whether the packet sent has been accepted
or not. Most current protocols for data transmission, including Aloha or TCP, use this
kind of information for the rate control. Current proposals for medium access protocol
in sensor networks make use of randomized controllers. The study of performance and
stability of such protocols is thus of obvious importance.

As an example, suppose node 1 uses a probability of injection u1 = 0.5, that is,
it will try to inject on average a packet every two time slots. If it sends a packet
and this is accepted (there is free place in the buffer of node 3), an adequate policy
will consequently increase its rate u1, since it is probable that node 2 is not active
at that particular time. As a result, node 1 accesses the buffer more often. If on the
contrary the packet is rejected, then it is probable that node 2 accesses the channel
in the same time, too. Then, node 1 will decrease its rate. Note that care must be
taken so that none of the nodes takes alone full use of the buffer. This fairness can be
achieved, for instance, by drastically reducing the injection probability when losses
are experienced. The design and analysis of such control policies is the goal of the
second part of this work.

From our discussion so far, it is clear that there is a stringent need for simple, de-
centralized and efficient algorithms for sensing, transmission and controlling in sensor
networks. To summarize, the main issues that motivate our work and constrain the
algorithms that we propose along this thesis are:

• Decentralization;

• Power efficiency;

• Joint sensing/transmission/control.

As underlined in the previous paragraphs, our contribution addresses two funda-
mental tasks for these systems:

• The joint treatment of source coding and transmission structure, as a function
of the available knowledge about the correlation structure.
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• The control of the access to the shared medium by means of partial observations
obtained about the state of the system by simple protocols2.

1.4 Contributions

1.4.1 Network Correlated Data Gathering

Consider a network of N nodes. Let X1, . . . , XN be the random variables representing
the data measured at nodes 1, . . . , N . This data at nodes is correlated, and has to
arrive at a sink (or set of sinks), by using the links of the network.

The goal of the first part of this work is to find a rate allocation R1, . . . , RN at
the nodes, that fully describe the measured information, while minimizing the cost
[function (data size)] × [link weight]. For example, for a sensor network, this cost
is of particular interest, being the total energy utilized by the network. Our main
contributions are:

• An original problem statement that jointly addresses the rate allocation and the
transmission costs for correlated sources.

• The identification of the two possible coding cases, namely:

– The case when additional data (side information) is available at a node only
when relayed from other nodes (we call this the explicit communication
case).

– The case when full information of the correlation structure in the network
is known locally at a node, and thus Slepian-Wolf coding of correlated data
can be employed.

• The full analysis of Slepian-Wolf coding, namely:

– An analysis of the complexity in the arbitrary traffic matrix case: we prove
that the problems of rate allocation and transmission optimization sepa-
rate. Further, we show that finding the transmission structure is NP-
complete, and finding the optimal rate allocation reduces to Lagrangian
minimization under constraints. If the cost function is linear, then the
optimization problem is a linear program (LP).

– A full analysis of the special case of data gathering: we show the opti-
mal transmission structure is the shortest path tree (SPT), and then find
the optimal rate allocation in closed form. We are also able to provide
performant approximation algorithms, based on only local information.

– We assess the complexity of practical implementation of algorithms for rate
allocation based on Slepian-Wolf coding.

• The complexity analysis of the explicit communication case, namely:

2The design of such systems is directly related with the Heisenberg principle: to control a system
requires to observe/probe the system, and thus to influence the system by the respective observation.
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Figure 1.3: One-dimensional example: the transmission costs are represented by filled
rectangles (allocated rate on the vertical, total distance to the sink on the horizontal). If
limi→∞ i ·H(Xi|Xi−1, . . . , X1) = 0, then the transmission cost for Slepian-Wolf coding
(left) is asymptotically arbitrarily smaller than the transmission cost for explicit commu-

nication (right): limN→∞
cSW (N)
cEC(N) = 0.

– We state an original graph problem corresponding to a simplified setting,
and we show that the problem is NP-complete even in this very simple
case. There is no longer a separation of the rate allocation optimization
and transmission optimization, and we provide simple examples where al-
ternative structures provide asymptotically unbounded better results in
terms of total energy than usual structures such as the SPT.

– We provide performant heuristics based on insights given by simulated
annealing.

• We compare asymptotically, for dense networks, the total costs associated with
Slepian-Wolf coding and explicit communication, by finding their corresponding
scaling laws and analyzing the ratio of their respective costs. We show that,
for large networks and under certain conditions on the correlation structure,
Slepian-Wolf coding provides unbounded gains over explicit communication (we
illustrate this with a simple one-dimensional example, in Figure 1.3).

• We illustrate all our results with numerical examples based on a Gaussian ran-
dom field example with correlation matrix dependent on the inter-node dis-
tances.

1.4.2 Multiple Access Control with Limited Feedback

Now, suppose that in the resulting transmission structure, there are relay nodes used
by one or more nodes. We assume these nodes have no information about each other’s
scheduling of transmissions, because this would require a large overhead, and the relay
nodes have a limited bandwidth. Each of the nodes implements a random controller
for accessing the shared medium, which essentially is a Bernoulli random variable ui

that represents the probability of packet injection by that node. The goal is to get as
many packets through as possible, while limiting the loss rate due to buffering at the
router. In practical scenarios, the relay provides limited feedback to the nodes, and
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we consider that this information is only in the form of ack/nacks, when the packet
was accepted/rejected.

The goal of the second part of this thesis is to design efficient algorithms for deter-
mining the access rate ui of the nodes transmitting data, based on limited feedback
(partial information) about the state of the relay’s buffer. Namely, this part of the
thesis is concerned with the theory and simulation of partially observed systems, in
particular of information sources accessing a commonly shared resource. Our main
contributions are:

• We state an original problem of multiple access queues with random Bernoulli
arrival rates.

• We derive a provably optimal flow control algorithm that maximizes average
throughput under loss constraints, and which is based only on partial informa-
tion available from the relay node.

• We prove convergence results on the long time performance of transmitters
employing such a control policy, namely we prove the existence of a limit mea-
sure over the space of information state3 vectors. As a result, we are able to
prove convergence in probability of significant performance parameters such as
throughput and loss rate.

• Furthermore, we prove the uniqueness of this limit measure, and we show a
method to construct it.

• We illustrate all our theoretical insights with numerical experiments, and we
show how our control policy can be implemented in practice.

• We show how our results may be applied to designing efficient and stable algo-
rithms for MAC access, in particular for sensor networks.

• We derive a provably stable implementation of the slotted Aloha protocol.

1.5 Related Work

1.5.1 Data Gathering in Sensor Networks

Recently, there has been a strong interest in the research community focused on
designing power efficient algorithms for several common tasks in sensor networks.
These studies are directly related to the problem addressed in the first part of this
thesis. Thorough discussions of the main issues specific to sensor networks, and
interesting research topics in this area are described in state-of-the-art surveys like
[2], [54], [57].

When all nodes need to communicate among each other (like for instance in an ad-
hoc network), it is of great interest to solve the general problem of finding minimum
energy topologies. Routing in ad-hoc networks has been addressed in [5], [23], [42],

3The information state is an entity which comprises all available information about the network
that is contained in the sequence of controls and feedback.
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[52], however these works do not take the power issue specifically into account. Recent
algorithms proposed for power efficient routing can be found in [9], [21], [59], [64]. The
work in [62] uses the wireless multicast advantage. All nodes within some transmission
range receive a transmission without additional power expenditure. This results in
Voronoi cells for energy efficient communication. Minimum energy trees are built
with distributed algorithms restricted to the topology previously determined. The
algorithm needs information on the nodes location and the deployment region. In
[68], the deployment region is equivalent with the maximum power, but the power
law is assumed to be unknown. The result is a structure where the average node
degree is small. Then the authors use the multihop advantage to further reduce the
number of neighbors. All these algorithms require connectivity of the network graph.
The relation between the wireless range and the connectivity of the graph is studied
in [18].

In [58], the authors introduce the cluster based LEACH algorithm. In their model,
the base station is located far from the network. Sensors elect themselves randomly
as cluster heads (probability depending on the remaining power), and form Voronoi
type of clusters. Then the cluster heads compress data arriving from nodes that
belong to the respective cluster and send an aggregated equal size packet to the
base station. The work in [43] introduces the PEGASIS algorithm, that uses the
energy × delay metric. Their algorithm find chains instead of clusters, and assume
equally sized fused data packets. The procedure induces high delays, so the energy
× delay is a good metric to use. They provide solutions for the TDMA and CDMA
contention cases by proposing hierarchical versions of their algorithm. The delay
constraint in communication trees is formalized in [63], where the problem is shown to
be NP-complete and the authors introduce a heuristic for finding the delay-constrained
minimum spanning tree.

The work which is most related to the problem we consider in this thesis is the
concept of directed diffusion and data aggregation [32]. In that model, sensors mea-
sure events characterized by an [attribute, value] set of pairs; this creates gradients
of information in the respective neighborhood. The base station requests data by
broadcasting interests. Also, it is assumed that messages are exchanged only between
neighbors. When interests fit gradients, paths of information flow are formed, then
the best paths are reinforced. Gradients of events may originate from different lo-
cations, when redundant data are measured at different places. In order to reduce
communication costs, data may be aggregated on the way. Early aggregation (close
to the origin of information) increases the loss probability, since if the packet is lost
no information at all will reach the base station. On the other hand, late aggregation
(close to the base station) requires more power, as packets originating from different
sources will use different paths. The other nodes can be used as relays (this translates
into a Steiner tree problem). The main question in this setting is from which sensor
to take a particular piece of information; this is a version of the computationally hard
set covering problem. The goal is to find a good aggregation tree, that gets the data
from some of the nodes to the base station. The method implemented is a greedy
incremental algorithm: find one shortest path to a particular source node, and incre-
mentally add nodes with minimum cost to the tree. Related work can be found in
[37], [26].

In [26] the authors address the problem of data gathering and compression at
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relay nodes by using the theory of concave costs applied to single source aggregation.
The authors present a thorough background of existing work and develop an elegant
algorithm that finds good trees that simultaneously maximize several concave cost
functions. Their model is different from ours in the sense that their setting assumes
information sources are supplied a constant amount of information regardless of the
topology of the gathering tree. Moreover, nodes do not collaborate to exploit the
correlation. In our case the amount of aggregated information out of a particular
node sent down the tree to the base station depends on the structure of the subtree
which has that source as ‘parent’, due to the correlation structure.

General bounds on the performance of wireless sensor networks have been found
in [25], [28]. Progress towards practical implementation of Slepian-Wolf coding has
been achieved in [1], [55], [56]. Bounds on the performance of networks measuring
correlated data have been derived in [48], [64]. However, none of these works takes
into consideration the cost of transmitting the data over the links and the additional
constraints that are imposed on the rate allocation by the joint treatment of source
coding and transmission.

1.5.2 Design, Stability and Performance of Medium Access Control

Related work to the problem we study in the second part of this thesis includes
the various extensive studies of randomized medium access algorithms (e.g. Aloha
[7]). Our work on the analysis of feedback controlled queues was, to a large extent,
triggered by the work of Anantharam and Verdú, on the Shannon capacity of a simple
queuing model [3]. The main question studied in that work is that of how many bits
of information can flow across a queue. We see our study as a step towards the study
of the capacity of multiple access queues.

The need of a unified theory of control and information in the case of dynamic
systems is underlined in the overview of [50], where the author discusses topics related
to the control of systems with limited information. These issues are discussed in the
context of several examples (stabilizing a single-input LTI unstable system, quanti-
zation in a distributed control two stage setting, and LQG), where improvements in
the considered cost functions can be obtained by considering information and control
together, namely by “measuring information upon its effect on performance”. Exten-
sive work along these lines is presented in [67], where the author derived techniques
which consider the use of partial information, for capacity optimization of Markov
sources and channels, formulated as dynamic programming problems.

There are some important results in the literature dealing with related results on
convergence in distribution, in which the state of a system can only be inferred from
partial observations. Kaijser proved convergence in distribution of the information
state for finite state ergodic Markov chains, for the case when the chain transition
matrix and the function which links the partial observation with the original Markov
chain (the observation function) satisfy some mild conditions [35]. Kaijser’s results
were used by Goldsmith and Varaiya, in the context of finite state Markov chan-
nels [27]. This convergence result is obtained as a step in computing the Shannon
capacity of finite state Markov channels, and it holds under the assumption of i.i.d.
inputs; this assumption is crucial to the proof presented there, a key step of that
proof is shown in the paper to break down for an example of Markov inputs. This
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assumption however is removed in a recent work of Sharma and Singh [65], where it
is shown that for convergence in distribution the inputs need not be i.i.d., but in turn
the pair [channel input, channel state] should be drawn from an irreducible, aperiodic
and ergodic Markov chain. Their convergence result is proved using the more general
theory of regenerative processes. However, none of these works address the case of
control of queues with feedback based on partial information.

1.6 Thesis Outline

The first part of this thesis is concerned with the study of total flow cost in networks
measuring correlated data. We show that, in general, the flow problems for such
networks involve both the tasks of supply allocation at nodes, and of finding good
transmission structures. We show that a separate treatment of these tasks can lead
to highly sub-optimal solutions. Thus, an important goal is to solve the joint problem
of rate allocation and transmission structure optimization for such networks. For
our analysis, we consider a family of cost function that is very important in various
practical scenarios, namely the [F(rate on link)] × [link weight] metric. We study the
two possible paradigms that are met in such cases, namely Slepian-Wolf coding and
coding by using explicit communication. The main setting that we analyze is data
gathering, namely the case when there is a single sink to which data from all the other
nodes needs to arrive. We show also generalizations of our results to arbitrary traffic
matrix problems.

In Chapter 2, we study the problem of rate allocation with explicit communication,
namely when local compression of data at a node is based only on data received by
that node from other nodes that use it as a relay. For such a setting, no a-priori local
knowledge at nodes is needed about the correlation structure among nodes, as this
knowledge is only estimated from the data that is received from neighbor nodes. Rate
allocation is easy to be done in such a scenario, since the compression at a node is
directly dependent on the data from nodes that use it as a relay. However, we prove
that the rate allocation is directly dependent on the chosen transmission structure,
so the two tasks cannot be separated. Furthermore, we prove that finding an optimal
transmission structure is NP-complete even for very simplifying assumptions. We also
propose some distributed approximation algorithms that perform well.

In Chapter 3, we study the problem of rate allocation with Slepian-Wolf coding,
namely when joint compression of data at nodes can be done even without nodes
communicating among them. This approach assumes that the correlation structure is
known a-priori. In such a case, we prove that a well-studied transmission structure,
namely the shortest path tree, is optimal for any rate allocation. Thus, the tasks of
rate allocation and transmission structure optimization separate in this case. Namely,
first an optimal transmission structure is determined. Second, the rate allocation is
found as the solution of an optimization problem that has the weights of the shortest
path tree as coefficients. We show how the problem can be solved numerically with
the help of Lagrange multipliers, for the case of a general separable cost function, and
we concentrate our study on linear cost functions. If the cost function is linear, the
optimization problem reduces to an LP problem. We assess the difficulty of the prob-
lem in the multiple sink case, and we study in more detail the data gathering problem
with a single sink. Namely, we find the solution of this LP problem in a closed form
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in the case of data gathering. We present a decentralized approximation algorithm
that is based only on local information available at nodes from their neighborhood.

Further, we study the asymptotic behavior of the ratio of costs involved by the
two coding approaches, for large networks. We end this chapter with a complexity
study of a mixed approach that uses Slepian-Wolf coding on clusters of nodes, and
coding by explicit communication among clusters.

The second part of this thesis is dedicated to the study of queues under feedback
control. Namely, our goal is to design a decentralized algorithm, based on only partial
information about the state of system, that controls the access of several concurrent
data sources to a limited buffer queue.

In Chapter 4 we present a system that models a queue in a multiple access regime.
Each user accesses the queue with a controllable injection rate that is modeled by a
Bernoulli random variable. The users control their rate of access by means of only
limited feedback from the queue, namely acknowledgments of whether the injected
packet had or had not been accepted in the queue’s buffer. This feedback is private,
that is the queue sends acknowledgments about a packet only to the source that
generated that packet. Moreover, the users have no knowledge about the number
of other users accessing the queue simultaneously. We only make the reasonable
assumption that the number of active sources forms a Markov chain, and the transition
matrix of this Markov chain can be estimated or computed a-priori. The goal is to
maximize the throughput of the source, under loss constraints. We design a provably
optimal control algorithm based on the information state. The information state can
be computed locally in a recursive manner at each node, and it fully contains the
information about the network that can be assessed given the sequence of previous
controls and acknowledgments from the queue, available at a node. We present a set
of numerical simulations that show that our algorithm provides good performance in
terms of throughput while maintaining fairness among the set of active sources.

In Chapter 5 we prove that the information state converges in the limit, under some
mild conditions. This implies that important quantities related to the performance of
the system, like the average throughput and average loss rate, converge in the limit as
well. This also shows that the control algorithm that we propose is stable. We base
our proof on the theory of Markov chains defined on infinite state-spaces. We first
prove the existence and uniqueness of our sought limit distribution of probability over
the space of information states. Then, by using discretization techniques, we show
how the sought distribution can be constructed and approximated for practical use.
We show numerical experiments about the stability of the average throughput and
average loss rate that confirm our theory. We also apply our control design policy to
the Aloha protocol.

Finally, in Chapter 6 we present our conclusions and ideas of further work.





Chapter 2

Network Correlated Data
Gathering with Explicit
Communication

2.1 The Problem and its Motivation

Consider a number of distributed data sources with a certain correlation structure
among the sources. A number of links connects sources to each other, establishing
a graph where sources are nodes and links are edges. The task is to send all the
data to a particular node of the graph, and we refer to this set up as the correlated
data gathering on a graph problem. The goal is to achieve the data gathering while
minimizing a cost functional (e.g. power on links or distance accumulated), possibly
under constraints (e.g. some maximal capacities on links). This is of course an
instance of a network flow problem, but with an original twist: because the data is
correlated, standard solutions may not be optimal, leading to original rate allocation
problems and original tree building problems, depending on the source coding model
that will be used.

An example is shown in Figure 2.1, where we haveN nodes with sourcesX1, . . . , XN ,
a sink S, and a number of edges that connect the sources. Nodes are supplied amounts
of measured data which need to be transmitted to end sites, called base stations or
sinks. Intermediate nodes can be also used as relays in addition to measuring data.
They aggregate their own data with the data received from other nodes. A very im-
portant task in this scenario is to find a transmission structure on the network graph
that minimizes a cost of interest (e.g. flow cost [rate] × [link weight], distance, etc.).
In the case of a single sink, the optimal structure is usually a tree. This leads to the
question of how to construct efficient data gathering trees.

When the data measured at nodes are statistically independent, the problem sep-
arates: the rate allocation becomes trivial, as each node codes its data independently;
then next, well developed algorithms can be used to solve various network problems
(minimum and shortest path spanning tree, minimum cost flow etc.).

However, in many situations, data at nodes are not independent. Due to the cor-
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Figure 2.1: In this example, data from nodes X1, X2, . . . , XN need to arrive at sink S.
A rate supply Ri is allocated to each source Xi. In thick solid lines, a chosen transmission
structure is shown. In thin dashed lines, the other possible links are shown.

relation present, it is expected that approaches that take into account this correlation,
will outperform traditional approaches, for various cost functions (metrics). More-
over, jointly exploiting the data structure and optimizing the transmission topology
(structure) in the network can provide substantial further improvements. Therefore,
it is worth studying the interaction between the correlation of the data measured at
nodes and the transmission structure that is used to transport these data.

A practical instance can be found in sensor networks [2], [51], [54]: a number
of sensors acquire measurements which are typically correlated to each other, and
these measurements are sent to a base station for evaluation or decision purposes.
Collecting images from various sources into a common repository on the internet is
another example of correlated data gathering.

In particular, let us consider the case of a network of sensors taking measurements
from the environment. Let X = (X1, . . . , XN ) be the vector formed by the random
variables measured at the nodes 1, . . . , N . We assume that the random variables are
continuous and that there is a quantizer in each sensor (with the same resolution for
all sensors)1. A rate allocation (R1, . . . , RN ) (bits) has to be assigned at the nodes
so that the quantized measured information samples are described losslessly. That
information has to be transmitted through the links of the network to the designated
sink (see Figure 2.1).

We make a set of additional assumptions for the case of a sensor network. We
assume that the multiple access is controlled by an appropriate ideal protocol, and
thus interference and collisions are solved by the upper layers. Since nodes have
limited processing capability and/or energy, it is necessary that the rate allocation and

1Note that this procedure is sub-optimal; an optimal solution would have to resort to vector
quantization, however this is prohibitively complex for the case of sensor networks.
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transmission structure optimization are done locally at each node, in a decentralized
manner, by using information available only from nodes in the neighborhood. We
abstract the wireless case as a graph with point-to-point links, mainly because the
full wireless multi-point case is an open problem, and practical schemes transform the
problem into a graph with nearest neighbor connectivity.

As battery power is the scarce resource for autonomous sensors, a meaningful
metric to minimize is the energy consumption, which is essentially given by the sum
of products [rate] × [link weight], for all the links used in the transmission. Here the
weight of the link between two nodes is a function of the distance d of the two nodes
(e.g. kdα or k exp(αd), with k > 0, α > 0 constants that depend on the medium
properties).

We will consider two complementary approaches that may be used in this problem.
In the first approach, nodes can exploit the data correlation only by receiving explicit
side information from other nodes (for example, when other nodes use a node as relay,
their data is locally available at that relaying node). Thus, the correlation structure
is exploited through communication and joint aggregate coding/decoding locally at
each node. In this case data coding is easy and relies only on locally available data as
side information. We call this approach coding by explicit communication. However,
we will see that optimizing the routing structure becomes complex.

The second approach is to allow nodes to use joint coding of correlated data
without explicit communication (this is possible with binning arguments, that is using
Slepian-Wolf coding [10], [55], [56], [66]). With this approach, finding a good routing
structure turns out to be easy, because routing and coding are separated (decoupled);
however data coding becomes complex and global network knowledge is needed for
an optimal solution.

The main tradeoff between these two settings is:

• If the correlation structure is not known a-priori, then side information is needed
to reduce the entropy. In other words, the correlation structure is learned (ex-
plicitly) in a distributed manner through explicit communication. This leads to
a simple source coding, but the transmission structure optimization is hard.

• If nodes are assumed to know the correlation structure (or equivalently, the
dependence on the distance or other prior dependencies), then they can employ
Slepian-Wolf coding. In this case, source coding is complex while the trans-
mission structure can be found with classical polynomial time network flow
algorithms.

In this work, we show how the rate allocation is dependent on the chosen setting.
In the Slepian-Wolf case, optimal coding allocates most of the load to nodes close to
the sink and small rates to nodes at the extremity of the network. In the explicit
communication model, data compression is done only when side data is available, and
thus large rates are allocated to nodes far from the sink, and much smaller rates at
nodes close to the sink. It is therefore expected that a combined third approach will
provide not only a complexity tradeoff between the source coding and the transmission
structure strategy, but will also distribute more evenly the rate load throughout the
network. One possible approach is to consider a combination of Slepian-Wolf coding
for clusters of nodes, and explicit communication among clusters.
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In this chapter, we study the case when joint coding of correlated data is performed
with coding by explicit communication, that is, the reduction in rate by entropy coding
due to the correlation is possible only when side information is explicitly available (as
relayed data). We prove that this makes the problem NP-complete and propose
distributed approximation algorithms with a good performance.

The treatment of the Slepian-Wolf coding approach is presented in the next Chap-
ter 3. In that chapter, we also consider a particular case of the mixed approach, where
Slepian-Wolf coding on clusters is used.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the
minimum cost network correlated data gathering tree problem. In Section 2.3 we
formulate the explicit communication coding approach, we show a simplified system
model that preserves the complexity of the original problem, and we discuss some
simple network examples that show intuitively that the SPT might not be the opti-
mal transmission structure. Further, we assess the difficulty of jointly optimizing the
transmission structure and performing the rate allocation, namely we prove that the
problem is NP-complete. Next, in Section 2.4 we propose some tree approximation
algorithms expected to provide important improvements over SPT, and show numer-
ical experiments that show that these gains are indeed obtained for random network
instances.

2.2 Problem Formulation

We consider the problem of data gathering with a single sink, to which all the data
has to be sent. Let G = (V,E) be a weighted graph with |V | = N + 1. We denote
by S the particular (N + 1)th node called sink. Except the sink, every node in the
graph generates a source. Each edge e = (i, j) ∈ E has a weight we. Since the
data are correlated, depending on the chosen transmission structure, each node i has
to transmit a certain rate Ri through the network to the sink. Let f(xe, we) be an
arbitrary cost function of the total rate (flow) xe going through a particular edge with
weight we. Then the general minimum cost data gathering tree problem is defined as
follows: find the spanning tree (ST ) of the graph G that minimizes the cost function:

cST =
∑

e∈ST

f(xe, we), (2.1)

under constraints

xi→e −
∑
e→i

xe = Ri, i = 1, . . . , N ; RS =
N∑

i=1

Ri,

where we denote by e → i the set of edges entering node i, and by i → e the
edge from node i to its parent in the tree. We restrict our discussion to functions
f(·, ·) which are separable as the product of a function that depends only on the
rate and another function that depends only on the link weights of the transmission
structure2. Without loss of generality, we assume f(x,w) = x·w. Then, the expression

2This corresponds to many practical settings (e.g. the [rate] · [path weight] cost function measures
the transmission cost in wired networks, and the [exp(rate)] · [path weight] measures the battery
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(2.1) to be minimized can be rewritten as:

cST =
∑
i∈V

RidST (i, S) (2.2)

where dST (i, S) is the total weight of the path connecting node i to S on the ST tree.
The important new feature that makes this problem different from classical net-

work flow theory is the following: by changing the transmission structure, since we
change the inter-node distances, both the set of rates {Ri}Ni=1, which depends on the
inter-node correlation, and the path weights {dST (i)}Ni=1 are affected. Thus, the opti-
mization of the set of rates and the path weights has to be done jointly, and it cannot
be decoupled. We call this new problem the minimum cost correlated data gathering
tree problem.

We now particularize the optimization problem (2.2) to the explicit communication
based coding setting. In classical network transport theory, the amount of supply (rate
in our case) at a node is fixed and independent of the communication links that are
chosen to transport the various supplies. In particular, the supply provided by the
ith node is independent of the nodes that are connected to the ith node through the
chosen edges. In our problem formulation, an important novelty is that the supply at
a given node depends on the incoming flow from other nodes that use that node as
relay, and also on the transmission structure that is used for these nodes.

Consider again the example in Figure 2.1, where nodes have to communicate their
correlated data to one sink. To reduce the complexity of local coding, we assume
that each relay node forwards received packets without decoding/re-coding received
information and they only perform compression by conditional entropy coding of its
own measured data, given the received data from the nodes that are using it as
intermediate relay node. Denote by H(X) the entropy3 of a discrete random variable
X , and by H(X |Y ) the conditional entropy of a random variable X given that the
random variable Y is known. If we consider node X3, then the rate it has to supply
depends on whether:

1. Neither X1 nor X2 use X3 as relay. In this case X1 uses a rate H(X1), X2 uses
a rate H(X2), and X3 uses a rate H(X3).

2. Node X1 uses X2 as relay, and X2 transmits its aggregate further to X3 (this
case is shown with solid line in Figure 2.1). In this case X1 uses a rate H(X1),
X2 uses a rate H(X2|X1), and X3 uses a rate H(X3|X1, X2).

3. Both X1 and X2 use X3 as relay. In this case X1 uses a rate H(X1), X2 uses a
rate H(X2), and X3 uses a rate H(X3|X1, X2).

In the first case, no side information is available at nodeX3 from other nodes. Thus,
node X3 sends its entire amount of data on a path to the sink. In the second case, node
X3 does have side information available from node X2. The information at these two

consumption in wireless networks, where the [path weight] term is a function of the inter-node
distances along a path).

3The entropy is a measure of uncertainty of a random variable [10]: H(X) =
−∑x∈X p(x) log p(x), where X is the discrete alphabet of X.
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nodes is not independent. Therefore node X3 can reduce correspondingly the amount
of data it sends further. It jointly codes its data with the data from node X2 and sends
the resulting coded data further. In the third case, the amount of side information
available is even larger at node X3, since two nodes use it as relay. Thus, the data
amount reduction at node X3 is even larger because the conditional coding involves
more sources.

It is clear that in either of these three cases, the optimal transmission structure
might not be the shortest path tree. We show in the next Section 2.3 how the joint
dependence of rates and path weights on the transmission structure actually makes
our optimization problem NP-complete.

2.3 Complexity Analysis and Approximation Algorithms

For the sake of simplicity and clarity in our arguments, and without loss of generality
in the complexity analysis, we use in this section a simplified model for the data
correlation, which allows a clearer analysis of complexity, and for which we develop
efficient heuristic approximation algorithms. As we show in this work, this model still
completely preserves the original complexity of the optimization problem. Namely,
in our model, data at each node are entropy coded with H(Xi) = R bits if no side
information is available from other nodes; but only H(Xi|Xj1 , . . . , Xjk

) = r ≤ R
bits, ∀k, are needed if the node i has side information available coming from at least
another node, which uses node i as relay. Thus, our simplification is that r is constant
and does not depend on the number of nodes on which conditioning is done. We
denote by ρ = 1− r/R the correlation coefficient.

2.3.1 The Tradeoff between Shortest Path Tree and Traveling Sales-
man Path

In the case of uncorrelated data, if the cost for transmitting over an edge was propor-
tional (by a fixed constant) to the Euclidean length of that edge, then the problem
is trivial and the optimal communication structure is the edge connecting the node
to the sink. However, for an arbitrary weight function on the edge, transmitting via
relays may be better than direct transmission (for example, if the edge weight is dα,
α > 1). In the case of correlated data, as it is the case in sensor networks, things be-
come even more interesting, even for very simple networks, because the rates {Ri}Ni=1

are affected by the choice of the transmission structure.
The example in Figure 2.2 shows that even in simple network cases, finding good

correlated data gathering structures is not trivial at all. If the data were independent,
the shortest path tree (SPT) would be optimal (see Figure 2.2 (a)). However, we see
that in this example, if ρ > 1/2, the SPT is no longer optimal, since its cost is larger
than the one corresponding to the gathering tree in Figure 2.2 (b).

Figure 2.3 shows one other simple network example, with N nodes equally-spaced
on an unit length arc circle at distance D from the sink. It is straightforward to show
that limN→∞ cTSP

cSPT
= (1 − ρ) ( 1

2D + 1
)
, where cTSP , cSPT are the total flow costs of

the two corresponding trees. Consider the case when the number of nodes is very large
and the correlation coefficient is arbitrarily close to unity. This means that a path
passing through all the nodes and ending at the sink (a traveling salesman path, TSP)
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can be arbitrarily more cost efficient than the direct transmission which corresponds
to the SPT in this case.

From these simple examples, it can be seen that the correlated data gathering
problem with explicit communication is actually a hard optimization problem, in
general. Formally, in terms of graph optimization, we can rewrite the minimization
of (2.2) for the case of explicit communication as follows:

• Given: graph (V,E).

• Find: the spanning tree ST = {L, T } with L leaves, T non-terminal nodes,
L ∪ T = V , L ∩ T = ∅.
• such that:

ST = arg min
{L,T}

(
r
∑
t∈T

dST (t, S) +R
∑
l∈L

dST (l, S)

)

where dST (i, S) is the total weight of the path on the ST tree from node i to the
sink S.
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In terms of the correlation coefficient, ρ = 1− r/R:

ST = argmin
L

(
(1 − ρ)

∑
i∈V

dST (i, S) + ρ
∑
l∈L

dST (l, S)

)
(2.3)

Let us first look at the two extreme cases, that is ρ→ 0 and ρ→ 1. When ρ→ 0
(independent data), the optimal tree is the SPT, which is known to be solvable in
polynomial time by e.g. a distributed Bellman-Ford algorithm. At the other extreme,
when ρ→ 1 (data maximally correlated), the optimal solution is a spanning tree for
which the sum of paths from the leaves to the sink is minimum. For this, the core
information is taken from the leaf nodes, and passing through all the in-tree nodes
only adds an infinitesimally small amount of new information, since data is strongly
correlated. It is straightforward to show that solving this problem is equivalent to
solving the multiple traveling salesman optimization problem (k − TSP )[41], which
is known to be NP-hard.

To the best of our knowledge, (2.3) is an original spanning tree optimization
problem on a graph. In Section 2.3.2, we show that this problem is also NP-hard for
the general case 0 < ρ ≤ 1. However, it is possible to design good approximation
algorithms and we provide them in Section 2.4.

2.3.2 NP-Completeness

In order to prove the NP-hardness of the optimization problem given in (2.3), we
show that the decision version of the problem is NP-complete. The decision version
of our optimization problem is:

Definition 2.1 Network data gathering tree cost decision problem.

• Instance: An undirected graph G = (V,E) with weights we assigned to the edges
e ∈ E, a positive integer M , and a particular node S ∈ V .

• Question: Does the graph admit a spanning tree ST such that, when assigning
supplies Ri = R to the leaf nodes and Ri = r < R to the in-tree nodes in the
spanning tree ST , the total cost of ST given by (2.3) is at most M?

Theorem 2.1 (NP-completeness) There is no polynomial time algorithm that solves
the network data gathering tree cost problem, unless P=NP.

Proof: See Appendix 2.A (we use a non-trivial reduction from the min-set cover
problem).

Since this problem is a particular version of the general problem given in (2.3), it
follows by a trivial reduction that the general problem is also NP-hard.

Corollary 2.1 Minimizing
∑

i∈V RidST (i, S) with Ri = f(
∑

e→i xe) for an arbitrary
monotonic function f(·), is NP-hard.

Note also that, in general, node i has information from all the nodes in the subtree
sbt(i) rooted at node i. Our simplified model is a particular case of this general entropy
coding problem, where H(Xi|{Xj}, j ∈ sbt(i)) is approximated with H(Xi|Xj), with
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j being a child of i. Then it can be shown easily that the NP-complexity of our
simplified example extends also to this more general case by means of a trivial further
reduction.

Note that the NP-hardness of the problem for a single sink generalizes by a
straightforward reduction to the case of multiple sinks. However, the derivation of ap-
proximation algorithms for the multiple sinks case is significantly more difficult. For
instance, the generalization of the SPT/TSP structure to multiple sinks is non-trivial
due to the interactions between the approximated structures derived for each single
sink in particular. This is because nodes that are leaves for a particular structure
can be in-tree nodes for other structures, and thus their corresponding rate alloca-
tion cannot be uniquely determined. The study of approximation algorithms for the
multiple sink case is a subject of our current research.

Arbitrary function of rate

Note that the NP-completeness result holds for any function of the rate, since an
arbitrary function only modifies the values of R and r, but not the multiplicative
separable form of the cost function.

2.4 Heuristic Approximation Algorithms

In this section we introduce a set of approximation algorithms for solving problem
(2.3).

2.4.1 Shortest path tree

SPT is computed by using the distributed Bellman-Ford algorithm for simultaneously
determining the shortest paths from all nodes to the sink. If the data is independent,
this is the optimum solution, but it is far from optimal if there are high correlations.

Algorithm 2.1 Shortest Path Tree:

• Initialize Di =∞ and parent nodes with par(i) = S, i = 1, . . . , N .

• While par(i) changes for some i:

– Di = min(Dj + dij), j = {1 . . .N}\{i}.
– par(i) = argminj(Dj + dij), j = {1 . . .N}\{i}.

• Endwhile.

Note that in the distributed version of the algorithm, the search for par(i) can be
done only over a neighborhood of node i (given by the transmission range, or the
k-nearest nodes neighborhood).
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2.4.2 Greedy algorithm

We start from an initial subtree composed only of the sink node. Then, we add
successively, to the existing subtree, the node whose addition results in the minimum
cost increment.

Algorithm 2.2 Greedy algorithm:

• Let VST denote the nodes in ST . VST = {S}. Let VG = V \VST .

• While: VG �= ∅
– Find: {j0, i0} =

= arg min{j∈VG,i∈VST } (R(dj,i + dST (i, S)) + (r −R)isLeaf(i)dST (i, S))
– ST = ST ∪ (i0, j0), VST = VST ∪ {j0}, VG = VG\{j0}.

• Endwhile.

As expected, given the relationships between the problem in this paper and the
TSP problem, greedy algorithms perform suboptimally (as we show experimentally
in Section 2.4.6), in the same way as the greedy approximation algorithm for TSP
provides a quite suboptimal solution. The reason is that far nodes are being left out,
so they need to connect to the sink via a path with large weight.

2.4.3 Simulated annealing

We propose now a computationally heavy method which is known to provide results
that are close to optimal for combinatorial problems involving a large number of
variables, similar to the problem considered in this paper (e.g. TSP). This method
was inspired by the fitness landscape concept used in evolutionary biology, physics
of disordered systems and combinatorial optimization [60]. Its ingredients are: (a) a
configuration space Z (finite set of possible types), (b) a move set Z (set of adjacencies
among types), and (c) a fitness function f : Z → � (value assigned to each type). The
goal is to optimize the fitness over the configuration space.

A very general heuristic optimization method is simulated annealing (SA) [30]. It
is based on stochastically simulating the slow cooling of a system and it is closely
related to the Gibbs field transition structures. It gives very good results when applied
to another NP-hard combinatorial problem in graphs, the traveling salesman problem
(TSP) [41, 60].

The fitness landscape formulation [60] of our problem is as follows: (a) the con-
figuration space is the set of all spanning trees (completely defined by the parent
relationship), (b) the move set is: one node changes its parent, (c) the fitness func-
tion is g(ST ) = R

∑
l∈L dST (l, S) + r

∑
t∈T dST (t, S). Our goal is to minimize the

fitness over the set of spanning trees.

Algorithm 2.3 Simulated annealing:

• Take a cooling schedule T [k], k = 1, . . . ,K.

• Initialize parent nodes with par(i) = S, i = 1, . . . , N . Denote by N (i) the set of
one-hop neighbors of i.
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• While k < K

– k = k + 1, l = g(ST );
– choose i, j ∈ N (i), at random such that deleting edge (i, par(i)), and adding

edge (i, j) to the tree, does not form a cycle; let ST ′ be the newly generated
spanning tree and let l′ = g(ST ′) be its corresponding fitness.

– make the change par(i)← j, and assign ST ← ST ′ with probability

p =

{
1, if l′ ≤ l
exp(− l′−l

T [k] ), if l′ > l
.

• Endwhile.

The main feature of this method is that it avoids getting stuck at a local mini-
mum. With a correctly chosen cooling schedule and if the algorithm runs for a suf-
ficient number of steps, the final version of the spanning tree ST is very close to
optimal. The convergence of the method depends on the ruggedness and neutrality
of the fitness landscape [60]. For ρ = 0 (SPT), our experiments show that it does
provide the exact solution, and convergence is easy to achieve. When ρ is close to 1,
the generated landscape is not smooth any longer, so convergence is difficult to obtain
in a reasonable number of iterations. We obtained good results (iteration steps vs.
ruggedness) with the Lundy and Mees schedule [47]:

Tk =
Tk−1

1 + T0−TK

KT0TK

.

A provably optimal, but slow schedule for Tk is c/ log (1 + k) [30], with c the maximum
local minimum depth of the landscape.

However, in general, simulated annealing is usually hard to implement in a decen-
tralized manner, and is computationally expensive. It does however provide a good
benchmark close to optimal against which other heuristic algorithms can be tested.

2.4.4 Balanced SPT / TSP tree

We propose a heuristic approximation algorithm consisting of a combination of SPT
and k − TSP , from the solutions obtained using simulated annealing. The solution
provided by this algorithm consists of a SPT structure around the sink that has a
certain radius and a set of TSP paths starting from each of the leaves of the SPT .
Depending on the amount of correlation, that is the value of ρ, a certain radius for the
SPT is more appropriate. We briefly describe the intuition why there is such a value
for this radius. Since the leaf nodes contribute most to the cost (R > r), then in order
to minimize the cost, the flows of R data coming from the leaves of the tree have to
travel short paths to the sink (the SPT effect), but in the same time through as many
nodes as possible (the TSP effect). On the other hand, when the correlation is large
(r is small), the effect of transporting flows of r data through the tree is negligible, so
it is essential to have as many in-tree nodes as possible, thus the TSP effect is more
important, whereas when the correlation is small (r is large), it is more important
that the data from in-tree nodes reach the sink on shortest paths, and thus the SPT
effect becomes more pronounced.
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Algorithm 2.4 SPT/TSP balanced tree:

• Build the SPT for the nodes that are in a radius q(ρ) from the sink. Denote this
SPT by ST . The optimal choice for the radius q(ρ) decreases with the increase
of the correlation coefficient ρ.

• Let VST denote the nodes in ST . Let VTS = V \VST .

• While VTS �= ∅
– Denote by L the set of leaves of ST .

– {i0, l0} = arg min{i∈L,l∈VT S} (d(l, i) + dST (i, S)).

– ST = ST ∪ (i0, l0), VST = VST ∪ {i0}, VTS = VTS\{i0}.
This is actually a suboptimal nearest neighbor approximation of the k − TSP ,

which is easily implementable in a distributed manner.

Square grid network graph: optimal radius for the SPT/TSP algorithm

Since the TSP problem is NP-complete, it is difficult to provide an analytical study of
the dependence of the optimal SPT radius on the correlation structure for a general
connectivity graph. Therefore, we restrict our attention to a square grid graph and
study in detail the structure of our SPT/TSP algorithm in this case. Namely, we
study the dependence of the optimal radius on the correlation coefficient ρ for this
graph.

Consider a square grid network with (2n+1)×(2n+1) nodes (see Figure 2.4). The
SPT is build on the square area of (2m+ 1)× (2m+ 1) nodes around the sink. Note
that the SPT subtree has 8m leaves. For the rest of the graph, equal length TSP
paths are built. Namely, for each leaf of the SPT subtree, a TSP rooted at that leaf
node is constructed, which spans floor

(
(2n+ 1)2 − (2m+ 1)2/(8m)

)
of the nodes

left outside the SPT subtree.
We plot in Figure 2.5 the total cost of the SPT/TSP tree as a function of the cor-

relation coefficient ρ. We note that, as expected, the optimal SPT radius m decreases
with the increase of the correlation coefficient ρ.

Next, we compute analytically the optimal ’radius’ m/n of the SPT subtree as
a function of the correlation coefficient ρ = 1 − r/R. After some computations, we
obtain that the optimal m is a root of the following polynomial: P (Z) = 3rZ4 +(8r−
16R)Z3 + (−r − 4rn + 4R − 4rn2)Z2 + (rn4 + 2rn3 + rn2). This polynomial has 4
roots, but by solving it numerically, we find that only one of them is in the interval
[0, n]. We plot this solution for the optimal radius in Figure 2.6. The discontinuity
at ρ = 0 is due to the properties of the very particular regular grid structure that
is analyzed. A particular interesting abrupt phenomenon is observed asymptotically:
when n is sufficiently large, there is an optimal normalized radius for the SPT , which
does not depend on the correlation coefficient ρ.

2.4.5 Leaves deletion approximation

This algorithm is a simplified version of the TSP/SPT algorithm. Namely, this algo-
rithm constructs first the global SPT , and then uses one-hop TSP paths from the



2.4. Heuristic Approximation Algorithms 27

n

m

Figure 2.4: Square grid network: the SPT (solid lines) is built on the nodes in the m×m
sub-grid around the sink (larger black dot). The rest of the nodes are spanned by TSP s
(dashed lines) rooted in the leaves of the SPT .
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Figure 2.5: Squared grid network: normalized cost of the SPT/TSP tree for a grid
network of size N = 101 × 101 nodes (n = 50) and several values of the correlation
coefficient ρ. Note how the optimum value of the radius m increases from 0 to n as ρ
decreases from 1 (high correlation) to 0 (no correlation).
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Figure 2.6: Square grid network: optimal radius of the SPT (normalized with respect
to the radius of the square grid), as a function of the correlation coefficient ρ, for various
sizes N = (2n+ 1)2 of the network.

outer nodes of the SPT . It is based on the observation that good cost improvements
may be obtained mainly by making the leaf nodes change their parent node to some
other leaf node in their neighborhood. This operation is done only if it reduces the
total cost of the whole tree.

Algorithm 2.5 Leaves deletion algorithm (LD):

• Initialize ST ← SPT . Each node i maintains its parent, number of children,
and total distance dST (i, S) on the current spanning tree to the sink. Let par(i)
denote the parent node of node i.

• While there is a decrease in cost:

– For each leaf node i: Find the leaf node j ∈ N (i) that maximizes R(dST (i, S)+
dST (j, S))− (R(di,j + dST (j, S)) + rdST (j, S))− I(i), where I(i) is an ad-
justment term indicating the cost lost by transforming single parent nodes
into leaves. If the maximizing quantity is positive, then assign par(i) ← j
and update the corresponding distances on the tree to the sink, and number
of children, for all the three nodes involved {i, former par(i), j}.

• Endwhile.

This algorithm involves a small number of iterations after SPT is computed, and is
fully distributed. Note that a known good approximation for the geometric TSP is to
start from the minimum spanning tree (MST) and eliminate the leaves by successively
passing the traveling salesman path through them. Here, we can see that a simplified
similar procedure provides good results in our case as well, which confirms the link
between our problem and the TSP.
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Figure 2.7: Average total cost decrease (100 · ( cSPT

cLD
− 1), in %) of leaves deletion (LD)

over shortest path tree (SPT) for (a) ρ = 0.9 and N = 10, 20, 50, 100, 200, 500, and (b)
N = 200 and ρ = 0, 0.1, . . . , 1.

2.4.6 Numerical Simulations

Our simulations were done in MATLAB for a network of nodes randomly distributed
on a 100×100 grid, with a value α = 2 for the power of the distance. We consider sev-
eral sizes of the network, fromN = 10 up to N = 500 nodes, and various values for the
correlation coefficient ρ among the nodes, within the interval ρ ∈ [0, 1]. As mentioned
before, the algorithm that is used for finding the SPT in a distributed manner is a
distributed version of the Bellman-Ford algorithm, which runs in O(N |E|) steps. The
actual speed of convergence depends on the degree of each node in the graph, which in
turn depends on the range N (i) over which nodes search for neighbors. For the graph
structures we consider, Bellman-Ford runs in an average of 50 steps for a network size
of 500 nodes.

Our experiments show important average improvements of the LD algorithm over
the SPT for nodes randomly distributed on a 100×100 grid (see Figures 2.7–2.10). The
computational load of LD is small, namely at most 4 iteration steps after the SPT
are required for its implementation, while the algorithm is still distributed. It also
outperforms the greedy algorithm (see Figure 2.8). In this experiments, the sink is
located at the center of the grid. Similar performances are obtained when the sink is
situated outside the network area.

It can be seen that some clearly non-optimal patterns appear on the gathering tree
solutions obtained using our heuristic algorithms. This is due to the fact that there
are cases when leaf nodes do not have other close leaves on the graph, unless they
choose leaves for which the corresponding connecting edge crosses over some already
existing edges.

When comparing the various heuristic algorithms with the simulated annealing so-
lution, which is expected to provide results close to optimal, we notice that our simple
heuristic algorithms perform relatively well, while being completely distributed, scal-
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Figure 2.8: Data gathering tree algorithms on a network instance: N = 500, ρ = 0.8:
(a) Shortest path tree (SPT ), (b) Greedy algorithm, (c) Leaves deletion (LD), (d) Total
cost. The total cost of having all the nodes transmitting their data directly to the sink is
one order of magnitude larger.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(a) SPT algorithm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(b) Leaves deletion al-
gorithm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 

(c) Simulated annealing

0

1

2

3

4

5

6
x 10

5

C
o

s
t

SPT LD SA 

(d) Total cost

Figure 2.9: Data gathering tree algorithms on a network instance: N = 100, ρ = 0.5:
(a) Shortest path tree (SPT ), (b) Leaves deletion (LD), (c) Simulated annealing, (d)
Total flow cost. Costs for this instance: SPT : 3.52e+6; LD: 3.36e+6; SA: 3.31e+5.

able and efficient from a complexity point of view (see Figure 2.9). Note that it is
possible that simulated annealing did not provide the optimal solution either, but it
is expected to do so with the right scheduling policy and with a long enough running
time.

We show in Figure 2.10 some simulation results for the SPT/TSP algorithm. For
networks with ρ = 0.2 and N = 200, the improvements are of the order of 10% over
the LD algorithm. As the simulated annealing results suggest, a good tree solution has
a small number of leaves, but at the same time short paths to the sink. Solutions for a
network instance are shown in Figures 2.9–2.10. In Figure 2.10(c) we plot the branches
in the SPT subtree in solid lines, and the branches added in the step involving TSP
paths are shown in dashed lines.

Our experiments show important improvements of the LD and the SPT/TSP algo-
rithms over SPT, in terms of average performance over randomly generated networks
(see Figure 2.11).
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Figure 2.10: Approximated gathering trees on a network instance: N = 200, ρ = 0.2:
(a) Shortest path tree (SPT ), (b) Leaves deletion (LD), (c) SPT/TSP algorithm. Costs
for this instance: SPT: 2.74e+5; LD: 2.36e+5; SPT/TSP: 2.15e+5.
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2.5 Conclusions

In this chapter, we formulated the network correlated data gathering problem with
coding by explicit communication. Namely, we addressed an optimization problem
that jointly considers rate allocation and transmission structure optimization in such
networks. We showed that the two tasks cannot be separated in this case. Moreover,
we proved that the problem is NP-complete even for simplified assumptions. We
proposed approximation algorithms for the transmission structure that provide sig-
nificant gains over the shortest path tree. Moreover, our algorithms provide solutions
close to a provably optimal, but computational hard optimization method, namely
simulated annealing.

Note that the NP-completeness of the problem for a single sink presented in this
chapter generalizes by a straightforward reduction to the case of multiple sinks. How-
ever, the derivation of approximation algorithms for the multiple sinks case is signif-
icantly more difficult. For instance, the generalization of the SPT/TSP structure to
multiple sinks is non-trivial due to the interactions between the approximated struc-
tures derived for each single sink in particular. This is because nodes that are leaves
for a particular structure can be in-tree nodes for other structures, and thus their
corresponding rate allocation cannot be determined. The study of approximation
algorithms for the multiple sink case is a subject of our current research.

Appendix 2.A Proof of Theorem 2.1

Proof:
First, the decision version of our problem is in NP: a nondeterministic algorithm

needs to guess the parent relationship (that is, specify the parent node for each of the
nodes), and then find in polynomial time the nodes that are not parent nodes, assign
to all nodes the number of bits corresponding to either leaf or in-tree node, and test
that its total cost is less than the given value M .

Next, to prove the NP-hardness, we perform a reduction from the set cover problem
[24], whose decision version is defined as follows:

Definition 2.2 Set cover.

• Instance: A collection C of subsets of a finite set P and an integer 0 < K ≤ |C|,
with |C| the cardinality of C.

• Question: Does C contain a subset C′ ⊆ C with |C′| ≤ K, such that every
element of P belongs to at least one of the subsets in C′ (this is called a set
cover for P )?

For any instance of the set cover problem we build an instance of our decision
problem. Figure 2.12(a) illustrates the construction of the graph instance for our
problem. The resulting graph is formed of three layers: a sink node S, a layer corre-
sponding to the subsets Ci ∈ C, and a layer corresponding to the elements {pj} of the
set P . For each element Ci ∈ C we build a structure formed by 4 nodes x1, x2, x3, x4,
as in Figure 2.12(b) (there are four different nodes for each subset Ci, but we drop
the superscript Ci of the nodes x for the sake of simplicity). This structure originates
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Figure 2.12: Reduction from the min-set cover problem.

from our toy example in Section 2.3.1 and has properties linked with the tradeoffs
observed there. The node x3 is linked to the sink S, node x4 is connected only to
node x1, and x1, x2, x3 are all interconnected. Furthermore, we connect each struc-
ture Ci ∈ C (namely the node x1 from that structure) to only the nodes in the P
layer that correspond to elements contained in Ci (example: in the instance in Figure
2.12(a), subset C1 = {p1, p2, p4}, C2 = {p2, p3, p|P |−1} etc.) All the edges connecting
the P layer to the C layer have a weight d > 0; for all Ci, the edges of type (x1, x3)
and (x2, x3) have weight a ≥ 1; the rest of the edges shown in Figure 2.12(a) have all
weight 1. All other edges are assumed of infinite weight and are not plotted. Without
loss of generality, we consider that in-tree nodes use r = 1 bits for coding their data,
while leaf nodes use R > 1 bits.

The goal is to find a spanning tree for this graph, for which the cost in (2.3) is
at most M . We now show that if M = |P |(d + a + 1)R + K(2aR + 3R + a + 2) +
(|C|−K)(aR+3R+2a+4), for the positive integer K ≤ |C|, then finding a spanning
tree with cost at most M is equivalent to finding a set cover of cardinality K or less
for the set P . Notice that the construction of our graph instance from the set cover
instance can be performed in polynomial time.

With a large enough value chosen for d (i.e. d > |C|(2aR+ 3R+ a+ 2)/R), a tree
with cost at most M will contain exactly |P | links between the layers P and C. That
means that no pj node is used as relay, so all pj ∈ P are necessarily leaf nodes. If
some pj node was used as relay, then the cost of the tree would contain R bits passing
through more than |P | such links, which would result in a cost larger than M . This
also implies that the only way the Ci structures can connect to the sink S is via their
corresponding x3 node, so all x3’s must be in-tree nodes. Furthermore, all x4’s nodes
need to be connected to their corresponding x1 node in order to belong to the tree,
so necessarily all x4-s are leaf nodes and all x1’s nodes are in-tree nodes. The only
degrees of freedom are the choices of two out of the three edges interconnecting the
nodes x1, x2, x3, for each structure Ci.

The key idea of our proof is that, for properly chosen values for d and a, finding a
tree with cost at most M means connecting the nodes in layer P to at most K nodes
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Figure 2.13: The three possible gathering patterns for the substructure Ci.

of layer C. If the tree needs to connect the layer P to more than K nodes in layer
C, then the cost of the tree will necessarily be higher than M . The intuition is that
’detours’ via the (x1, x2) edges are worthy from the point of view of cost reduction
only if the flow that goes through node x1 comes exclusively from node x4 and no
flow from the P layer goes through x1. If some flow from the P layer joins as well,
then the optimal path would use the edge (x1, x3) instead. In this latter case, we see
now that for optimality, the edge (x1, x2) should not be used.

We choose a value of a ≥ 1 such that (a + 2)/a < R < (a + 2)/(a − 1). Note
that, for a given R > 1, it is always possible to choose a value for a that fulfills this
condition.

With the given weights on the edges, if no pj node is connected to a Ci structure,
then since R > (a + 2)/a, the optimal pattern (pattern 1, see Figure 2.13) for this
structure contains the links (x4, x1), (x1, x2), (x2, x3), (x3, S), with cost (a+3)R+(a+
2) + (a + 1) + 1. The other possible structures contain either links (x4, x1), (x1, x3),
(x2, x3), (x3, S) (pattern 2) with cost (a + 2)R + (a + 1)R + (a + 1) + 1, or links
(x4, x1), (x1, x3), (x2, x1), (x3, S) (pattern 3) with cost (a+2)R+(a+2)R+(a+1)+
1. They both are sub-optimal if R > (a+ 2)/a (since pattern 2 is always better than
pattern 3, we will consider only pattern 2 for the rest of our proof).

However, when m ≥ 1 nodes {pj}mj=1 from the P layer connect to x1, for any
of Ci’s, the pattern 1 is no longer optimal, because it has a cost m(d + a + 2)R +
(a + 3)R + (a + 2) + (a + 1) + 1. The alternative structure (pattern 2) has cost
m(d+a+1)R+(a+2)R+(a+1)R+(a+1)+1, which is more efficient if m ≥ 1, and
R < (a+2)/(a− 1). We notice that in an optimal tree the cost to transmit data from
each pj to the sink S is the same for all pj’s nodes (and equal to (d+a+1)R). Therefore
the goal is to keep minimal the part of the total cost corresponding to the rest of the
nodes (i.e. nodes in layer C).

That means that to find a tree with cost less or equal to |P |(d+a+1)R+K(2aR+
3R+a+2)+(|C|−K)(aR+3R+2a+4) is equivalent to finding a set of K elements
or less from the C layer to which all nodes in the set P connect. This is actually
achieved by having at most K nodes of type x1 used to connect to the pj’s nodes,
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which turns out to be equivalent to finding a set cover for the set P of size K or less,
that is to solving the set cover problem.

Thus our decision problem is NP-complete and our optimization problem NP-
hard. �





Chapter 3

Networked Slepian-Wolf

3.1 Network Flows with Slepian-Wolf Coding

Consider again the setting of networks that transport supplies among nodes, intro-
duced in the previous chapter. In this chapter, besides the single sink data gathering
scenario, we will also consider the more general case of multiple sinks. An example
is shown in Figure 3.1, where there are N nodes with sources X1, . . . , XN , two of
them being the sinks denoted by S1 and S2, and a graph of connectivity with edges
connecting certain nodes. Sources corresponding to nodes in the sets V 1 and V 2

need to transmit their data, possibly using other nodes as relays, to sinks S1 and S2

respectively.
The source coding approach that takes maximum advantage of the data corre-

lation, at the price of coding complexity, is based on Slepian-Wolf coding [66]. In
that work, it was shown that when nodes measure correlated data, these data can be
coded with a total rate not exceeding the joint entropy, even without nodes explicitly
communicating with each other (under some constraints on the minimal rates given
by the Slepian-Wolf region). Their result provides the whole achievable rate region
for the rate allocation, that is any rate in that region is achievable. We describe in
more detail the Slepian-Wolf coding in Section 3.2.2.

In addition to encoding the data, these data need to be transmitted over the net-
work from the sources to the sinks. As in the previous chapter, we consider a joint
treatment of the rate allocation and the chosen transmission structure, by means
of cost functions that are functions of both. Cost functions usually met in practice
separate in multiplicative terms the rate term from the link weight term (e.g. [func-
tion(rate)] × [link weight] metrics, like for example R · d, R · dα, or eR · d, where r
is the bit rate and d is the distance). We show that if Slepian-Wolf coding is used in
such scenarios, then the optimization separates: first an optimal transmission struc-
ture needs to be determined, and second the optimal rate allocation is found on this
transmission structure. The optimal rate allocation is in general unique, except in
some degenerate cases.

We will again first consider the case of a single sink, to where the data from all the
nodes has to arrive. A rate allocation (R1, . . . , RN ) (bits) has to be assigned at the
nodes so that the quantized measured information samples are described losslessly.

37
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Figure 3.1: An example of a network. Sources transmit their data to the sinks. Data
from the sets V 1 and V 2 need to arrive at sink S1 and S2, respectively. A rate supply
Ri is allocated to each node Xi. In thick solid and dashed lines, a chosen transmission
structure is shown. In thin dashed lines, the other possible links are shown.

The model for a single sink can be extended to the case when there is a number of
sinks to where data from different subsets of nodes have to be sent. Notice that in this
case it is also possible to allocate different rates at each node, depending on which sink
it sends its data to, but this involves important additional coding overhead, which
might not be always feasible. We consider both cases in this work, but for the sake
of simplicity we concentrate our discussion on the unique rate allocation case. The
sink-dependent rate allocation is a straightforward generalization of the unique rate
allocation.

To the best of our knowledge, this is the first research work that addresses jointly
Slepian-Wolf lossless source coding and network flow cost optimization.

The rest of this chapter is organized as follows. In Section 3.2, we state the op-
timization problem and describe the Slepian-Wolf source coding approach and the
optimal region of rate allocations. In Section 3.3, we fully solve an important par-
ticular case, namely the correlated data gathering problem with Slepian-Wolf source
coding, in the single sink case. In Section 3.4 we study the complexity for the case of
a general traffic matrix problem and we prove that finding the optimal transmission
structure is NP-complete. We show that, if centralized algorithms were allowed, find-
ing the optimal rate allocation is simple; however, in our sensor network setting, the
goal is to find distributed algorithms, and we show that in order to have a decentral-
ized algorithm, we need a substantially large communication overhead in the network.
In Section 3.5 we apply the results obtained in Section 3.3 to other particular cases
of interests. In Section 3.6, we study the performance of Slepian-Wolf coding in large
networks, in comparison with opportunistic compression. In Section 3.7 we present
an efficient decentralized algorithm for approximating the optimal rate allocation in
the data gathering case, and discuss how this algorithm can be used in the scenarios
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presented in Section 3.5. Finally, we present some numerical simulations in Section
3.8.

3.2 Problem Formulation

3.2.1 Optimization Problem

Consider a graph G = (V,E), with |V | = N vertices. Each edge e ∈ E is assigned
a weight we. Nodes on the graph are sources of data. Some of the nodes are also
sinks. Data has to be transported over the network from sources to sinks. Denote
by S1, S2, . . . , SM the set of sinks and by V 1, V 2, . . . , V M the set of subsets V j ⊆ V
of sources; data measured at nodes V j have to be sent to sink Sj . Denote by Si

the set of sinks to which data from node i have to be sent. Denote by Ei ⊆ E the
subset of edges used to transmit data from node i to sinks Si, which determines the
transmission structure corresponding to node i.

Definition 3.1 (Traffic matrix) We call the traffic matrix of a graph G the N×N
square matrix T that has elements given by:

Tij = 1, if source i is needed at sink j,
Tij = 0, else.

With this notation, V j = {i : Tij = 1} and Si = {j : Tij = 1}.
The overall task we consider is to assign an optimal rate allocationR∗

i , i = 1, . . . , N
for the N sources and to find the optimal transmission structure on the graph G that
minimizes the total flow cost [F (rate)] × [link weight], where F (·) is a function of the
rate. In most settings, the function F (·) is monotonically increasing, either linearly
or super-linearly. Thus, the optimization problem is:

{R∗
i , d

∗
i }Ni=1 = arg min

{Ri,di}N
i=1

N∑
i=1

F (Ri)di (3.1)

where di is the total weight of the transmission structure chosen to transmit data
from source i to the set of sinks Si:

di =
∑
e∈Ei

we.

Notice that finding the optimal {d∗i }Ni=1 is equivalent to finding the optimal transmis-
sion structure.

In the next subsection we show that, when Slepian-Wolf coding is used, the task
of finding the optimal rate allocation, or {R∗

i }Ni=1, and the task of finding the optimal
transmission structure, or the set {d∗i }Ni=1 can be split into two optimization problems.
That is, one can first find the optimal transmission structure, which can be shown
to always be a tree, and then find the optimal rate allocation. As a consequence,
after finding the optimal transmission structure, the problem (3.1) can be posed as a
Lagrangian optimization problem for finding the optimal rate allocation.
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Figure 3.2: Two correlated sources, and the Slepian-Wolf region for their rate allocation.
(a) Two correlated sources X1, X2 send their data to one sink. (b) The Slepian-Wolf
region for two correlated sources.

3.2.2 Slepian Wolf Coding

Consider the case of two random sources X1 and X2 that are correlated (see Figure
3.2(a)). Intuitively, each of the sources can code their data at a rate greater or equal
to their respective entropies, R1 = H(X1), R2 = H(X2), respectively. If they are able
to communicate, then they could coordinate their coding and use together a total rate
equal to the joint entropy R1 +R2 = H(X1, X2). Slepian and Wolf [66] showed that
two correlated sources can be coded with a total rate H(X1, X2) even if they are
not able to communicate with each other. Figure 3.2(b) shows the Slepian-Wolf rate
region for the case of two sources. This can be generalized to the N -dimensional case.

Consider again the example shown in Figure 3.1. Assume that the set of sources
that send their data to sink j, that is the set of nodes denoted {Xj1, . . . , Xj|V j |} ∈
V j , j = 1, 2, know in advance the correlation structure in that set V j . Then, nodes
in V j can code their data jointly, without communicating with each other, with a
total rate of H(Xj1, Xj2, . . . , Xj|V j |) bits, as long as their individual rates obey the
Slepian-Wolf constraints related to the different conditional entropies [10], [66]. As a
consequence of the possibility of joint source coding without sources communicating
among them, we can state the following [13], [12]:

Proposition 3.1 – Separation of source coding and transmission structure optimiza-
tion:

When the [rate] and [link weight] terms of the joint cost function separate, and
Slepian-Wolf coding is used, then, for any traffic matrix, the transmission structure
optimization separates from the rate allocation optimization, in terms of the overall
minimization of (3.1).

Proof: Once the rate allocation is fixed, the best way to transport any amount of data
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from a given node i to the set of sinks Si does not depend on the value of the rate.
This is true because we consider separable flow cost functions, and the rate supplied
at each node does not depend on the incoming flow at that node. Since this holds for
any rate allocation, it is true for the minimizing rate allocation and the result follows.

�

For each node i, the optimal transmission structure is in fact a Steiner tree with
root at node i spanning the sinks Si to which its data are sent [7]. Thus, the entire
optimization problem can be separated into a spanning tree optimization for each
source, and the rate allocation optimization. Then, after the optimal tree structure is
formed, (3.1) becomes a problem of rate allocation that can be posed as an optimiza-
tion problem under the usual Slepian-Wolf linear constraints. The optimal solution
is therefore:

1. Find the optimal weights {d∗i }Ni=1, which determine uniquely the optimal trans-
mission structure.

2. Given the found weights {d∗i }Ni=1, find the optimal rate allocation {R∗
i }Ni=1 such

that:

{R∗
i }Ni=1 = arg min

{Ri}N
i=1

N∑
i=1

F (Ri)d∗i (3.2)

under constraints:∑
l∈Y

Rl ≥ H(Yj |V j − Yj), (∀)V j ,Yj ⊆ V j . (3.3)

Note that there is one set of constraints for each set V j .

Moreover, note that (3.2) is an optimization problem under linear constraints, so
if the weights {d∗i }Ni=1 can be determined, the optimal allocation {Ri}Ni=1 can be found
easily with a centralized algorithm, by using Lagrange multipliers [46]. However, in
Section 3.4 we will show that for a general traffic matrix T , finding the optimal coeffi-
cients {d∗i }Ni=1 is NP-complete. Moreover, in general, even if the optimal structure is
found, it is hard to decentralize the algorithm that finds the optimal solution {R∗

i }Ni=1

of (3.2), as this requires a substantial amount of global knowledge in the network.
Note that if the rate allocation at a source Xi can take different values Rij de-

pending to which sink j source Xi sends its data, then it is straightforward to find
this multiple rate assignment. The rate allocation for each cluster will be indepen-
dent from the rate allocations in the other clusters (see Section 3.3 for the closed-form
solution for the rate allocation for each set V j , and Section 3.7 for a decentralized
algorithm for finding the optimal solution). However, this involves even more addi-
tional complexity in coding, so in many situations it might be desirable to assign a
unique rate to each node, regardless of which sink the data is sent to. Thus, without
loss of generality, we will restrict our further discussion to the study of the case where
a single rate allocation is done at each node regardless of the number of sinks to where
data measured at that node has to arrive.

In the following sections, for various problem settings, we first show how the
transmission structure can be found (i.e. the values of {d∗i }Ni=1), and then we discuss
the complexity of finding the rate allocation (3.2) in a decentralized manner.
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We begin our analysis with a particular case widely encountered in practice,
namely the data gathering problem. In this case, there is only one sink to which
data from all the other nodes have to arrive. We fully solve this case in Section 3.3,
and this result will provide useful insight into the structure of the general problem.

3.3 Data Gathering

In data gathering, the entire set of N sources (V j = V ) are sent to a single sink S = j.
An example is shown in Figure 2.1.

First, we state the following corollary of Proposition 3.1, valid for data gathering
scenarios.

Corollary 3.1 – Separation of source coding and tree building in data gathering:
When there is a single sink and Slepian-Wolf coding is used, the shortest path tree

(SPT) is optimal, in terms of minimizing (3.2), for any rate allocation.

Proof: Once the rate allocation is fixed, the best way to transport any amount of data
from any node to the sink is to use the shortest path. Minimizing the sum of costs in
(3.2) becomes equivalent to minimizing the cost corresponding to each node in part.
Since the shortest path tree is a superposition of all individual shortest paths, it is
optimal for any rate allocation that does not depend on the transmission structure,
which is the case here. �

We consider two important functions of the rate term in the cost function, that are
widely met in practice. Namely, we study in Section 3.3.1 the case when F (R) = R,
that corresponds to wired networks, and in Section 3.3.2 the case when F (R) = eR,
that corresponds to wireless networks.

3.3.1 Linear Cost Function: Optimal Solution

In the case of a linear cost functional F (R) = R, the expression (3.2) to be minimized
can be rewritten as: ∑

i∈V

RidST (i, S) (3.4)

where dST (i, S) is the total weight of the path connecting node i to S on the spanning
tree ST , and under the constraints:∑

i∈Y
Ri ≥ H(Y|YC) (3.5)

for any of the 2N − 1 subsets Y ⊆ V (see Figure 3.2(b) for the rate region of two
sources).

The minimization of (3.4) becomes now a linear programming (LP) problem:

{R∗
i }Ni=1 = arg min

{Ri}N
i=1

∑
i∈V

RidSPT (i, S) (3.6)

under constraints (3.5).
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Suppose without loss of generality that nodes are numbered in increasing order
of the total weight of their path to the sink on the SPT: (X1, X2, . . . , XN) with
dSPT (X1, S) ≤ dSPT (X2, S) ≤ · · · ≤ dSPT (XN , S). That is, node X1 is the closest
node to the sink and node XN is the furthest one from the sink on the SPT .

Theorem 3.1 (LP solution) The solution of the optimization problem in (3.6) is
[13], [11]:

R∗
1 = H(X1),

R∗
2 = H(X2|X1),

. . . . . . . . . (3.7)
R∗

N = H(XN |XN−1, XN−2, . . . , X1).

In words, the solution of this problem is given by the innermost corner of the
Slepian-Wolf region that is tangent to the cost function (see Figure 3.3 for an example
with two sources). The closest node to the sink is coded with a rate equal to its
unconditioned entropy. Each of the other nodes is coded with a rate equal to its
respective entropy conditioned on all other nodes which are closer to the sink than
itself.
Proof: First, we prove that (3.7) is indeed a feasible solution for (3.6), that is, it
satisfies all the constraints given by (3.5). Consider any constraint from (3.5), for
some subset Y ∈ V . Denote by M = |Y| the number of elements in Y. Order the
indices of Xi ∈ Y as i1, i2, i3, . . . iM , with i1 closest and iM furthest from the sink on
the SPT .

We rewrite the left-hand-side in terms of the solutions we give in the theorem:∑
i∈Y

Ri = H(XiM |XiM−1, . . . , X1) +

H(XiM−1 |XiM−1−1, . . . , X1) +
· · ·+ · · ·+ . . . (3.8)
H(Xi1 |Xi1−1, . . . , X1)

and expand the right-hand-side terms with the chain law for conditional entropies:

H(Y|YC) = H(XiM |YC ∪ {Y − {XiM }}) +
H(XiM−1 |Y C ∪ {Y − {XiM , XiM−1}}) +
· · ·+ · · ·+ . . .

H(Xi1 |YC ∪ {Y − {XiM , . . . , Xi1}})
= H(XiM |V − {XiM }) +

H(XiM−1 |V − {XiM , XiM−1}) +
· · ·+ · · ·+ . . . (3.9)
H(Xi1 |V − {XiM , XiM−1 , . . . , Xi1})

Consider the terms on the right-hand-side in expressions (3.8) and (3.9). It is
clear that for any ik ∈ Y, the term corresponding to Xik

in (3.9) is at most equal
to its counterpart in (3.8). This is because the set of nodes on which the entropy
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Figure 3.3: A simple example with two nodes. The total weights from sources X1, X2 to
the sinks, are respectively dSPT (X1, S), dSPT (X2, S), dSPT (X1, S) < dSPT (X2, S), in
this particular case. In order to achieve the minimization, the cost line R1dSPT (X1, S)+
R2dSPT (X2, S) has to be tangent to the most interior point of the Slepian-Wolf rate
region, given by (R1, R2) = (H(X1), H(X2|X1)).
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conditioning is done for each term in (3.8) is a subset of its counterpart in (3.9).
Since the choice of Y was arbitrary, then any constraint in (3.5) is satisfied by the
assignment (3.7).

On the other hand, note also that the rate allocation in (3.7) satisfies with equality
the constraint on the total sum of rates:∑

i∈V

Ri ≥ H(X1, . . . , XN ). (3.10)

So we have proven that (3.7) is a valid rate allocation. We have to prove now that
the assignment in (3.7) makes the expression to be minimized in (3.6) smaller than
any other valid assignment. Figure 3.3 gives an example involving only two nodes,
showing how the cost function is indeed minimized with such a rate allocation. The
assignment (3.7) corresponds in this case to the point (R1, R2) = (H(X1|X2), H(X2)).

We prove this by recursion. Note first that the rate allocation to node N is
minimal. That is, we cannot allocate to XN less than H(XN |XN−1, XN−2, . . . , X1)
bits, due to the Slepian-Wolf constraint corresponding to Y = {XN}. Assume now
that a solution that assigns H(XN |XN−1, XN−2, . . . , X1) bits to XN is not optimal,
and XN is assigned H(XN |XN−1, . . . , X1) + b bits. Due to (3.10), at most b bits
in total can be extracted from the rates assigned to some of the other nodes. But
since dSPT (XN , S) is the largest coefficient in the optimization problem (3.6), it
is straightforward to see that any such change in rate allocation increases the cost
function in (3.6). Thus assigning RN = H(XN |XN−1, . . . , X1) bits to XN is indeed
optimal.

Consider now the rate assigned to XN−1. From the rate constraint corresponding
to Y = {XN−1, XN}, it follows that:

RN +RN−1 ≥ H(XN , XN−1|XN−2, . . . , X1)
= H(XN |XN−1, XN−2, . . . , X1) +

+H(XN−1|XN−2, . . . , X1)

Since for optimality RN must be given by RN = H(XN |XN−1, XN−2, . . . , X1),
it follows that RN−1 ≥ H(XN−1|XN−2, . . . , X1). Following a similar argument as
for XN , we can show in the same way that the optimal solution allocates RN−1 =
H(XN−1|XN−2, . . . , X1). The rest of the proof follows similarly by considering suc-
cessively the constraints corresponding to the subsets Y = {Xi, Xi+1, . . . , XN}, with
i = N − 2, N − 3, . . . 1. �

Even if the solution can be provided in a closed form as (3.7), a distributed im-
plementation of the optimal algorithm at each node implies knowledge of the overall
structure of the network (distances between nodes and distances to the sink). This
knowledge is needed for:

1. Ordering the distances on the SPT from the nodes to the sink: each node needs
its index in the ordered sequence of nodes so as to determine on which other
nodes to condition when computing its rate assignment. For instance, it may
happen that the distance on the graph between nodes XN and XN−1 is large.
Thus, closeness in the ordering does not mean necessarily closeness in distance.
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2. Computation of the rate assignment:

Ri = H(Xi|Xi−1, . . . , X1)
= H(X1, . . . , Xi)−H(X1, . . . , Xi−1)

Note that all distances among nodes (X1, . . . , Xi) are needed locally at node
Xi for computing this rate assignment.

But this implies that for a distributed algorithm, global knowledge should be
available at nodes, which might not be the case in practical settings.

Therefore, in Section 3.7, we propose a fully distributed approximation algorithm,
which avoids the need for a node to have global knowledge of the network, and which
provides solutions very close to the optimum. The approximation algorithm we pro-
pose is based on the observation that nodes that are outside this neighborhood count
very little, in terms of rate, in the local entropy conditioning, under the assumption
that local correlation is dominant. For instance, in sensor networks, this is a natural
assumption, since usually the correlation decreases with the distance between nodes.

3.3.2 Cost Function with Exponential Rate Term

We consider now the metric exp[rate] × [link weight]. This metric is useful in the case
of wireless networks. Note that the [link weight] in this case is a power k, k ∈ [2, 4]
of the corresponding Euclidean distance.

Then the optimization problem is now:

{R∗
i }Ni=1 = arg min

{Ri}N
i=1

∑
i∈V

eRidSPT (i, S) (3.11)

under the Slepian-Wolf constraints (3.5).
We will make the following change of variables:

Pi = eRi , for all i = 1, . . . , N,

Then (3.11) becomes equivalent to:

{P ∗
i }Ni=1 = arg min

{Pi}N
i=1

∑
i∈V

PidSPT (i, S)

under the constraints: ∑
i∈Y

logPi ≥ H(Y|YC)

for all Y ⊆ V .
Let us study (3.11) for the simple case of two sources. The problem in this case

is:
{P1, P2}∗ = arg min

P1,P2
(P1dSPT (1, S) + P2dSPT (2, S))

under constraints

P1 ≥ eH(X1|X2),

P2 ≥ eH(X2|X1),

P1P2 ≥ eH(X1,X2).
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Figure 3.4: The same example with two nodes. In order to achieve the minimization, the
cost line P1dSPT (X1, S) + P2dSPT (X2, S) has to be tangent to the most interior point
of the transformed Slepian-Wolf rate region.

The solution of this minimization problem is illustrated in Figure 3.4. Note that,
with the change of variables, the cost function remains linear, while the constraints
turn from additive to multiplicative (due to the log-transformation).

We observe that, even in this simple example, the rate allocation depends on the
slope of the cost function (and thus implicitly on the weights dSPT (i, S)). Depending
on these weights, the innermost tangent of the cost function to the rate region curve
can be either on the joint constraint curve, or on one of the corner points. It is
thus difficult in general to provide a direct closed form for the optimal rate allocation.
However, since all the constraints are multiplicative, the solution is given by the point
where, starting from infinite and going towards the origin, the cost function touches
the bottom of the first curve/corner point corresponding to the strongest constraint.
But in order to find this constraint, one essentially has to look over all the possible
subsets of nodes.

We have studied so far the case when there is a single sink. For simplicity, we will
limit our discussion further to the case of linear separable cost function. The case
of non-linear separable cost functions can be solved by using Lagrange multipliers.
Namely, the Slepian-Wolf constraints are linear, and the optimal rate allocation can
be found by putting to zero all partial derivatives of the Lagrangian with respect to
each of the unknowns {Ri}Ni=1, and solving the resulting system.

Let us now discuss in the next section the arbitrary traffic matrix case.
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3.4 Arbitrary Traffic Matrix

We begin the analysis with the most general case, that is when the traffic matrix T
is arbitrary, by showing the following proposition [12]:

Proposition 3.2 – The optimal transmission structure is a superposition of Steiner
trees:

Given an arbitrary traffic matrix T , for any i, the optimal value d∗i in (3.2) is
given by the minimum weight tree rooted in node i and which spans the nodes in Si;
this is exactly the minimum Steiner tree that has node i as root and which spans Si,
which is an NP-complete problem.

Proof: The proof is straightforward: data from node i has to be send over the min-
imum weight structure to the nodes in Si, possibly via nodes in V − {i, Si}. This
is a minimum Steiner tree problem for the graph G with weights we, thus it is NP-
complete. �

The approximation ratio of an algorithm that finds a solution for an optimization
problem is defined as the guaranteed ratio between the cost of the found solution and
the optimal one. If the weights of the graph are the Euclidean distances (we = le
for all e ∈ E), then the problem becomes the Euclidean Steiner tree problem, and it
admits a polynomial time approximation scheme (PTAS) [4] (that is, for any ε > 0,
there is a polynomial time approximation algorithm with an approximation ratio of
1 + ε). However, in general, the link weights are not the Euclidean distances (e.g. if
we = l2e etc.). Then finding the optimal Steiner tree is APX-complete (that is, there
is a hard lower bound on the approximation ratio), and is only approximable (with
polynomial time in the input instance size) within a constant factor (1 + ln 3)/2 [6],
[61].

The approximation ratios of the algorithms for solving the Steiner tree translate
into bounds of approximation for our problem. By using the respective approximation
algorithms for determining the weights di, the cost of the approximated solution for
the joint optimization problem will be within the Steiner approximation ratio away
from the optimal one.

Once the optimal weights {d∗i }Ni=1’s are found (i.e. approximated by some ap-
proximation algorithm for solving the Steiner tree), then, as we mentioned above,
(3.2) becomes a Linear Programming (LP) problem. The solution of this problem is
given by the innermost corner of the Slepian-Wolf region that is tangent to the plane
of the cost function (see Figure 3.3). Consequently, it can be readily solved with a
centralized program. If global knowledge of the network is allowed, then this problem
can be solved computationally in a simple way. However, it is not possible in general
to find in closed-form the optimal solution determined by the corner that minimizes
the cost function. Consequently, the derivation of a decentralized algorithm for the
rate allocation is difficult, as this involves exchange of network knowledge among the
clusters.

Example 3.1 Figure 3.5 shows a simple example (but sufficiently complete) which
illustrates the difficulty of this problem. Suppose that the optimal total weights {d∗i }3i=1
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Figure 3.5: Two sets of sources transmit their correlated data to two sinks.

in (3.2) have been approximated by some algorithm. Then the cost function to be
minimized is:

R1w11 +R2(w21 + w22) +R3w32

with d∗1 = w11, d
∗
2 = w21 + w22, d

∗
3 = w32, and the Slepian-Wolf constraints are given

by:

R1 +R2 ≥ H(X1, X2)
R1 ≥ H(X1|X2), for set V 1 = {X1, X2}
R2 ≥ H(X2|X1)

and respectively,

R2 +R3 ≥ H(X2, X3)
R2 ≥ H(X2|X3), for set V 2 = {X2, X3}
R3 ≥ H(X3|X2).

Suppose the weights are such that w11 < w21 + w22 < w32. A decentralized al-
gorithm has to use only local information, that is, information only available in a
certain local transmission range or cluster neighborhood). We assume that only local
Slepian-Wolf constraints are considered in each set V j for the rate allocation, and no
knowledge about the total weights di from nodes in the other subsets is available. Then,
as we have seen in Section 3.3, it readily follows that the optimal rate allocations in
each of the two subsets are:

R′
1 = H(X1)

R′
2 = H(X2|X1), for set V 1

and respectively,

R′
2 = H(X2)

R′
3 = H(X3|X2), for set V 2.
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Figure 3.6: Data from X1, X2 need to be transmitted to all nodes S1, S2, S3, S4.

We can see from this simple example that we cannot assign the correct unique
optimal rate R2 to source X2, unless node 2 has global knowledge of the whole distance
structure from nodes 1, 2, 3 to the sinks S1 and S2. This rate allocation depends on
all the set of weights w11, w21, w22, w32. It is clear that such global sharing of cluster
information over the network is not scalable, because the amount of necessary global
knowledge grows exponentially.

There are however some other important special cases of interest where the prob-
lem is more tractable, and we treat them in the following section.

3.5 Other Cases of Interest

3.5.1 Broadcast of Correlated Data

This case corresponds to the scenario where some sources are sent to all nodes (Si =
V ). A simple example is shown in Figure 3.6. In this example, the traffic matrix has
Tij = 1, (∀)j, for some arbitrary L nodes {i1, . . . , iL} ⊂ V .

In this case, for any node i, the value d∗i in (3.2) is given by the tree of mini-
mum weight which spans V ; this is the minimum spanning tree (MST), and thus, by
definition, it does not depend on i. Thus, in this case all weights {d∗i }Ni=1 are equal.
Notice that this case trivially includes the typical broadcast scenario where one node
transmits its source to all the nodes in the network.

3.5.2 Multiple Sink Data Gathering

This case corresponds to the scenario where all sources (V j = V ) are sent to some
set Sa of sinks. In this case (see Figure 3.7), finding the optimal weights {d∗i }Ni=1 is
as difficult as in the arbitrary matrix case, presented in Section 3.4. For every i, the
optimal weight d∗i is equal to the weight of the minimum Steiner tree rooted at i and
spanning the nodes in the set Sa.

However, given the optimal transmission structure, the optimal rate allocation can
be easily found in a similar manner as in Section 3.3.1. First, we order the nodes by
increasing distance d∗1 < d∗2 < · · · < d∗N , and then the optimal rate allocation is given
as (3.7).
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Figure 3.7: Data from all nodes has to be transmitted to the set of sinks Sa = {S1, S2}.
Each sink has to receive data from all the sources.

3.5.3 Localized Data Gathering

This case corresponds to the scenario where disjoint sets {V 1, V 2, . . . , V L} are sent
to some sinks {S1, S2, . . . , SL}. In this case, for each i, the solution for the optimal
weight d∗i is again the corresponding Steiner tree rooted at i and that spans Si. If
d∗i can be found, then the rate allocation can be solved for each set {V j}Lj=1, in
the same way as in Section 3.3.1, that is, we solve L LP programs independently
(decentralization up to cluster level).

Algorithm 3.1 Disjoint sets:

• For each set V j, order nodes {i, i ∈ V j} as a function of the total weight di.

• Assign rates in each V jas in (3.7), taking into account this order.

3.6 Scaling Laws: Slepian-Wolf vs. Explicit Communi-
cation

The alternative to Slepian-Wolf coding, namely explicit communication, was presented
in the previous chapter. The advantages that coding by explicit communication has
over Slepian-Wolf coding are (i) no a-priori knowledge of the correlation structure
is needed, and (ii) the compression is trivial at nodes relaying data. However, even
for the simple one dimensional setting presented in this section, our analysis shows
that in large networks, Slepian-Wolf coding can provide very important gains over
opportunistic aggregation, in terms of total flow cost.

Let N nodes be placed uniformly on a line (see Figure 3.8). The distance between
two consecutive nodes is d. The nodes need to send their correlated data to the sink
S.

For this scenario, the SPT is clearly the optimal data gathering structure for both
coding approaches. Thus, the overall optimization problem simplifies, and we can
compare the two different rate allocation strategies in terms of how they influence the
total cost.

Within the one-dimensional model, we consider [14] two important cases of net-
work scalability, namely, the refinement network, where the total distance from node
N to the sink S is kept constant Nd = 1 (that is, nodes are uniformly placed on
an interval of length 1, and hence, by adding nodes, the inter-node distance goes to
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Figure 3.8: A one dimensional example: The rate allocations for Slepian-Wolf (above
the line) and explicit communication (below the line).

zero), and the expanding network, where the inter-node distance is kept constant and
equal to d = 1 (that is, by adding nodes we increase the distance between node N
and the sink S).

In this work, we consider continuous-space processes of different types, includ-
ing regular and singular continuous-space random processes [40]. In particular, we
consider two classes of random processes:

(a) In the first model, we assume that the nodes of the network are sampling a
Gaussian continuous-space non-bandlimited wide-sense-stationary (WSS) ran-
dom process Xc(s), where s denotes the position (this kind of correlation struc-
ture was introduced in Section 3.8.1). Thus, we have a vector of correlated
sources X = (X1, . . . , XN ) where Xi = Xc(id) and where the correlation struc-
ture for the vector X is inherited from the correlation present in the original
process Xc(s). As N goes to infinity, the set of correlated sources represents
a discrete-space random process denoted by Xd(i), with the index set given by
the node positions. Thus the spatial data vector X measured at the nodes has
an N -dimensional multivariate normal distribution GN (µ,K). We consider two
correlation models, namely (a.1): Kij = σ2

ij exp(−c|di,j |), which corresponds
to a regular continuous-space process [40], and (a.2): Kij = σ2

ij exp(−c|di,j |2),
which corresponds to a singular continuous-space process [40], where c > 0.

(b) In the second model, we assume that the nodes are sampling a Gaussian continuous-
space WSS bandlimited process. This process can also be shown to be a singular
continuous-space process.

Let us denote the conditional entropies by ai = H(Xi|Xi−1, . . . , X1). Note that for
any correlation structure, the sequence ai is monotonically decreasing (because con-
ditioning cannot increase entropy), and is bounded from below by zero (because the
entropy cannot be negative). Since the nodes are equally spaced, and the correlation
function of a WSS process is symmetric, it is clear thatH(XI |XI−1, XI−2, . . . , XI−i) =
H(XI |XI+1, XI+2, . . . , XI+i), for any I, 0 ≤ i ≤ I − 1.

Let us denote by γN the ratio between the total cost associated to Slepian-Wolf
coding (costSW (N)) and the total cost corresponding to coding by explicit communi-
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Figure 3.9: Typical behavior of the ratio of the total costs costSW (N)/costEC(N), for
various speeds of decay of the conditional entropy.

cation (costEC(N)), that is:

γN =
costSW (N)
costEC(N)

=
∑N

i=1 iai∑N
i=1(N − i+ 1)ai

(3.12)

Then, the following theorem holds [14], [11]:

Theorem 3.2 (Scaling laws.) When N →∞, we have:

(i) If limi→∞ ai = C > 0, then limN→∞ γN = 1. If limi→∞ ai = 0 and ai decreases
as fast as 1/ip, p ∈ (0, 1), then limN→∞ γN = 1−p. In both cases, costSW (N) =
Θ(costEC(N)).

(ii) If limi→∞ ai = 0 and ai decreases at least as fast as 1/i, then limN→∞ γN =
0, that is, costSW (N) = o(costEC(N)). Moreover, for ai decreasing as fast
as 1/ip, p ≥ 1, we have the following different scaling laws depending on the
value of p: (ii-1) if p = 1, then γN = Θ(1/ logN); (ii-2) if p ∈ (1, 2), then
γN = Θ(1/Np−1); (ii-3) if p = 2, then γN = Θ(logN/N); (ii-4) if p > 2, then
γN = Θ(1/N).

We prove Theorem 3.2 in Appendix 3.A. Note that when limi→∞ iai = 0, the rate
of decay of the ratio γN of costs is determined by the rate of increase with N of the
partial sum sN (q) =

∑N
i=1

1
iq for q ∈ (0, 1]. In Figure 3.9, we show typical behaviors

of the ratio of total flow costs for the two approaches.
We apply now Theorem 3.2 to the correlation models we consider in this work:
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Figure 3.10: We consider a Gaussian random process, where the correlation dependence
on the inter-node distance d is exp(−c|τ |β), β ∈ {1, 2}: (a) The conditional entropy
H(Xi|Xi−1, . . . , X1) decreases faster than 1/i for β = 2, but is constant for β = 1 (after
i ≥ 2); (b) The behavior of the ratio of total costSW (N)/costEC(N) with increasing size
of the network.

• For an expanding network: In cases (a.1) and (a.2), the result of sampling is a
discrete-space regular process [53], thus limi→∞ ai = C > 0, and it follows that
limN→∞ γN = 1. In case (b), if the spatial sampling period d is smaller than the
Nyquist sampling rate of the corresponding original continuous-space process,
then limi→∞ ai = 0. The speed of convergence of ai depends on the sampling
period and the specific (bandlimited) power-spectrum density function of the
process; the exact theoretical analysis of this dependence is a topic of further
research.

• For a refinement network: In case (a.1), we show in Appendix 3.B that ai =
H(Xi|Xi−1, . . . , X1) = H(Xi|Xi−1), for any i ≥ 2. Then for any finite N ,
aN > 0. Since iai does not converge to zero (see Figure 3.10), then it follows
from Theorem 3.2 that in the limit the ratio of total costs is limN→∞ γN = 1.
In case (a.2), a closed-form expression for the conditional entropy is difficult
to derive. However, we show numerically in Figure 3.10(a) that in this case ai

decreases faster1 than 1/i. Thus, from Theorem 3.2, limN→∞ γN = 0. In Figure
3.10(b), we plot also the ratio of total costs for this correlation model. Finally,
in case (b), it is clear that ai goes to zero very fast, as for the case (a.2), because
of the singularity of the original bandlimited process, thus limN→∞ γN = 0.

1Since these two processes are both non-bandlimited, sampling them results in discrete-space
regular processes [53]. However, the sampled model (a.2) inherits a ’superior predictability’ than
(a.1), which makes ai decrease faster than 1/i.
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3.7 Approximation Algorithms

In Section 3.3.1, we found the optimal solution of the linear programming rate as-
signment under Slepian-Wolf constraints. We consider now the problem of designing
a distributed algorithm [13].

Suppose that the correlation in the network depends on the distance between the
nodes. In many practical situations, the correlation between data sources decreases
when the distance between the sources increases. For such a scenario, suppose each
node i has complete information (distances between nodes and distances to the sink)
only about a local vicinity N (i) formed by its closest neighbors. This information
can be computed by running for example a distributed algorithm for finding the SPT
(e.g. Bellman-Ford).

Algorithm 3.2 Approximated Slepian-Wolf coding:

• Find the SPT.

• For each node i:

– Find in the neighborhood N (i) the set Ci of nodes that are closer to the
sink, on the SPT, than node i.

– Transmit at rate R†
i = H(Xi|Ci).

This means that data are coded locally at the node with a rate equal to the
conditional entropy, where the conditioning is performed only on the subset formed
by the neighbor nodes which are closer to the sink than the respective node.

The proposed algorithm needs only local information, so it is completely dis-
tributed. Still, it will give a solution very close to the optimum since the neglected
conditioning is small in terms of rate for a correlation function that is sufficiently
decaying with distance (see Section 3.8).

Similar techniques can be used to derive decentralized approximation algorithms
for the other particular cases of interests that we discussed in Section 3.5.

3.8 Numerical Simulations

3.8.1 Gaussian Random Fields

A model frequently encountered in practice is the Gaussian random field. This model
has also the nice property that the dependence in data at different nodes is fully
expressed by the covariance matrix, which makes it more suitable for analysis. Thus,
we assume a jointly Gaussian model for the spatial data X measured at nodes, with
an N -dimensional multivariate normal distribution GN (µ,K):

f(X) =
1√

2π det(K)1/2
e−( 1

2 (X−µ)T K−1(X−µ))

where K is the covariance matrix (positive definite) of X, and µ the mean vector.
The diagonal elements of K are the variances Kii = σ2

i . The rest of the Kij ’s depend
on the distance between the corresponding nodes (e.g. Kij = σ2 exp(−cd2

i,j)). Then,
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for any index combination I = {i1, . . . , ik} ∈ {1, . . . , N}, k ≤ N , (Xi1 , . . . , Xik
) is k-

dimensional normal distributed. Its covariance matrix is the submatrix K[I] selected
from K, with rows and columns corresponding to {i1, . . . , ik}.

We use here without loss of generality differential entropy instead of entropy, since
we assume that data at all nodes is quantized with the same quantization step, and
differential entropy differs from entropy by a constant for uniformly quantized vari-
ables [10]. The entropy of a k-dimensional multivariate normal distribution Gk(µ,K)
is:

h(Gk(µ,K)) =
1
2

log(2πe)k detK.

The Slepian-Wolf constraints can readily be expressed as:

h(Y|YC) = h(Y,YC)− h(YC)

=
1
2

log
(

(2πe)N−|YC | detK
detK[YC ]

)

where K[YC ] is the selected matrix out of K, with indices corresponding to YC

elements respectively.
This natural correlation model is useful for us because our approximation algo-

rithm can be easily tested. We see that in this case, the correlation decays exponen-
tially with the distance. Then, the performance of our approximation algorithm will
be close to optimal even for small neighborhoods Ci.

3.8.2 Experiments

We present numerical simulations that show the performance of the approximation
algorithm introduced in Section 3.7, for the case of data gathering. We consider the
stochastic data model introduced in Section 3.8.1, given by a multi-variate Gaus-
sian random field, and a correlation model where the inter-node correlation decays
exponentially with the distance between the nodes.

We use an exponential model of the covariance Kij = exp(−cd2
i,j), for varying

neighborhood range radius and several values for the correlation exponent a. The
weight of an edge (i, j) is wi,j = d2

i,j and the total cost is given by the expression
(3.6). Figure 3.11 presents the average ratio between the approximated solution and
the optimal one. As can be seen, for an exponentially decaying correlation structure,
the approximated rate allocation involves only minor increases in terms of general
total flow cost as compared to the optimal solution.

In Figure 3.12, we show a comparison of the rate allocations with our different
approaches for rate allocation, for a typical random network instance, as a function of
the distances from the nodes to the sink. For the explicit communication approach,
we used a first-order correlation model, in which in-tree nodes condition only on the
closest child, and the value of ρ is computed a-priori as an average. Our experi-
ments have shown that either full conditioning on all children, or use of a distance
dependent correlation coefficient between pairs of nodes, do not improve much on the
total cost (2.2). The main reason for which the approximated Slepian-Wolf approach
outperforms the explicit communication approach is that the Slepian-Wolf approach
allocates much smaller values of rates for nodes far from the sink. However, this is
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Figure 3.11: Slepian-Wolf coding: average value of the ratio between the optimal and
the approximated solution, in terms of total cost, vs. the neighborhood range. The
network instances have 50 nodes uniformly distributed on a square area of size 100×100,
and the correlation exponent varies from c = 0.001 (high correlation) to c = 0.01 (low
correlation). The average has been computed over 20 instances for each (c, radius) pair.

achieved at the cost of increased network knowledge. We discuss further this issues
in the next section, for the case of large networks.

In Figure 3.13 we show a comparison in average of our different approaches for
rate allocation, as a function of the distances from the nodes to the sink. Note that
the slight increase in rate allocation for Slepian-Wolf coding is a boundary effect,
namely nodes that are at the extremity of the square grid area have a smaller number
of close neighbors on which to condition as compared to nodes which are situated at
an intermediate distance from the sink.

3.9 Clustered Slepian-Wolf

Performing Slepian-Wolf coding of the data jointly at all nodes in the network is
difficult as it involves complex source coding and global knowledge of the network.
In this section we consider the case where Slepian-Wolf coding is done locally, on
clusters of nodes. This simplifies significantly the coding task, since only knowledge
of the local network structure is needed. However, as we will see, the actual task of
optimal clustering becomes also complex, thus, showing the inherent complexity that
is present in our problem.

Suppose first that a node is part of two clusters. It can use the same random
codes, but it needs to use different binning for the two clusters since two independent
Slepian-Wolf codings have to be performed. Then, it has to transmit the maximum
rate allowable by its local cluster rate allocations. In order to solve the optimizations,
the node needs to locally express the inequalities in (3.5). But this means it knows
all the weights involved in these constraints, so clearly, the rate allocation can be
improved by using the union of the two clusters. This is the reason why we consider
only the case of disjoint Slepian-Wolf clusters for the rest of this section.
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Figure 3.14: Three possible clustering modes for a network of 6 jointly Gaussian nodes
(left). The ratio between the optimal bit allocations between the examples in (a),(b) and
(c) respectively, as function of the distance d.

For a Gaussian random field, the optimization problem can be posed in a closed
form. We allow a maximum cluster size of B. Then the problem is to find an optimal
clustering of V that minimizes the weighted sum of rates

∑
iRidSPT (i, S) (see Figure

3.14, for B = 2). Consider first the particular case when the distances on the SPT
are all unity (e.g. nodes placed on an arc of circle). We show that even in this simple
case, the problem of optimal clustering becomes complex for 3 ≤ B < N . Denote by
I1, . . . , IC the disjoint sets of indices such that

⋃
Ii = {1, . . . , N}, with C ≤ N the

(unknown) total number of clusters, and each cluster can be encoded with H(XIi)
bits using Slepian-Wolf in that cluster. The optimization problem is then to minimize
over C, {Ii}Ci=1:

∑
i

h(G|Ii|(0,K[Ii])) =
∑

i

1
2

log(2πe)|Ii| detK[Ii]

So finally, we need to solve

{I∗i } = arg min
C,{Ii}C

i=1

(
C∏

i=1

detK[Ii]

)
, (3.13)

with |I∗i | ≤ B, i = 1, . . . , C.

Case B = 1

Trivial, data are coded separately.



60 Chapter 3.

Case B = 2

If B = 2, the problem (3.4) is equivalent to finding a minimum weighted perfect
matching, and it can be solved in polynomial time with the Edmonds ‘blossom’ perfect
matching algorithm [19]:

Algorithm 3.3 Rate allocation for B = 2:

• For each edge (i, j):

– assign (Ri, Rj) under local constraints:

∗ if dSPT (i, S) < dSPT (j, S)
∗ then (Ri, Rj) = (H(Xi), H(Xj |Xi)),
∗ else (Ri, Rj) = (H(Xi|Xj), H(Xj))

(see Section 3.3.1).

– let d′(i, j) = RidSPT (i, S) +RjdSPT (j, S).

• Run Edmonds algorithm for d′(i, j).

Case B = N

If B = N , the optimal cluster division is the cluster formed by the whole set of
nodes (1, . . . , N), which follows from the fact that K is positive definite, and applying
Fischer’s inequality [31].

Case 3 ≤ B < N

We show how this becomes very complex, being a particular case of an NP-complete
problem, minimum 3-dimensional (3-D) matching. We conjecture the optimization of
(3.13) is also NP-complete.

Definition 3.2 Minimum 3-D matching.

• Instance: Three sets X, Y , and W and a cost function c : X × Y ×W → N .

• Question: An assignment A, i.e., a subset A ⊆ X × Y ×W such that every
element of X ∪ Y ∪W belongs to exactly one triple in A.

• Measure: The cost of the assignment, i.e.,
∑

(x,y,w)∈A c(x, y, w).

The minimum 3-D matching problem is NP-complete, and this extends to the
B-dimensional problem. The sets X,Y,W are replaced by V , and the cost c(·) is
replaced by the joint entropy of the corresponding nodes.

Suppose there exists a polynomial time algorithm to solve the B-dimensional prob-
lem, for 3 ≤ B < N . Then (3.4) could be solved in polynomial time similarly to the
2-dimensional matching case. Unfortunately, such a polynomial time algorithm is
unlikely to exist.

Denote by CM the set of possible M -tuples of nodes (note that a node may appear
more than once in a tuple; this allows for clusters of size at most M). For each c ∈ CM ,
solve the local Slepian-Wolf optimal rate allocation problem Ri. Assign to the tuple
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c the cost
∑

i∈c dSPT (i, S)Ri. Finally, find in polynomial time the set of tuples that
minimizes the cost.

From Fischer’s inequality, it follows that any refinement2 of a given clustering
increases the total entropy of the cluster set. If global Slepian-Wolf (one cluster of
size N) was allowed, it would be optimal, as expected. However, as discussed, this
requires knowledge of all the network and the binning process is prohibitively complex.

3.10 Conclusions

In this chapter, we studied the problem of network correlated gathering with Slepian-
Wolf coding. In this case, we showed that the two tasks of rate allocation and trans-
mission structure optimization separate. We fully solved the data gathering case by
deriving a closed-form solution for the rate allocation. We used our insights for the
case of arbitrary traffic matrix and multiple sinks, and we showed that in this case
the optimization problem is in general NP-complete. We presented an approximation
algorithm for the rate allocation that relies only on local information, and we showed
numerical simulations for the Gaussian random field.

Further, we compared the ratio of communication costs involved by the two coding
approaches. We provided asymptotic scaling laws for a one-dimensional example.
Our results show that if certain conditions on the correlation structure are fulfilled,
Slepian-Wolf coding is arbitrarily better in the limit than explicit communication.

Finally, we considered the case when Slepian-Wolf coding is performed on clusters
of nodes, namely we showed that the problem of choosing the optimal clustering is a
particular instance of an NP-complete problem. This study is a subject of our current
research.

Appendix 3.A Proof of Proposition 3.3

Denote γ = limN→∞ γN .

3.A.1 Case (a): ai → C, C > 0

Lemma 3.1 If gi → 0, and gi is monotonically decreasing, then:

lim
N→∞

1
N

N∑
i=1

gi = 0

Proof:

2Here by refinement we mean further division of a given clustering into clusters of smaller size.
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Since gi → 0 and gi is monotonically decreasing, it results that for any ε > 0,
there exists an integer Nε such that for any i ≥ Nε, gi < ε. Then, for any ε > 0,

lim
N→∞

1
N

N∑
i=1

gi ≤ lim
N→∞

1
N

[Nεd0 + (N −Nε)ε]

= 0 + lim
N→∞

(N −Nε)ε
N

= ε

Since this happens for any ε > 0, the result follows. �

Lemma 3.2 Let ai → C, C > 0. Then γ = 1:

lim
N→∞

∑N
i=1 iai∑N

i=1(N − i+ 1)ai

= 1 (3.14)

Proof: We can write:

lim
N→∞

∑N
i=1 iai∑N

i=1(N − i+ 1)ai

= lim
N→∞

∑N
i=1 iai

(N + 1)
∑N

i=1 ai −
∑N

i=1 iai

= lim
N→∞

1

(N + 1)
∑

N
i=1 ai∑
N
i=1 iai

− 1
(3.15)

Now, since ai → C, C > 0, then we can write:

ai = gi + C,C > 0,

where gi → 0 and gi is monotonically decreasing.
Then

lim
N→∞

(N + 1)
∑N

i=1 ai∑N
i=1 iai

=

= lim
N→∞

(N + 1)
∑N

i=1(gi + C)∑N
i=1 i(gi + C)

= lim
N→∞

(N + 1)
∑N

i=1 gi +N(N + 1)C∑N
i=1 igi + C N(N+1)

2

= lim
N→∞

1
N

∑N
i=1 gi + C

1
N(N+1)

∑N
i=1 igi + C/2

We can easily prove that 0 ≤ limN→∞ 1
N(N+1)

∑N
i=1 igi ≤ 1

N limN→∞
∑N

i=1 gi,
thus, it is enough to apply Lemma 3.1 and obtain that

γ =
1

2− 1
= 1.

�
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3.A.2 Case (b): ai → 0

Lemma 3.3 Let ai → 0. If ai decreases faster than 1/i, then γ = 0. If ai decreases
as fast as 1/ip, 0 < p < 1, then γ = 1− p.
Proof:

From (3.15), we see that we have that the limit γ = 0 iff the ratio

∑N
i=1 iai

(N + 1)
∑N

i=1 ai

(3.16)

goes to zero as N →∞.

• If ai decreases faster than 1/i, then iai → 0. Then we can use directly Lemma
3.1 for iai:

lim
N→∞

N∑
i=1

iai

N + 1
= 0

Since
∑N

i=1 ai is monotonically increasing, the result γ = 0 follows.

If ai decreases as fast as 1/i, then, without loss of generality, take ai = 1/i.
Then

γ = lim
N→∞

1

(N + 1)
∑N

i=1 1/i

N − 1

But, since
∑N

i=1 1/i is divergent, it follows again γ = 0.

• If ai decreases slower than 1/i, suppose without loss of generality that ai = 1/ip,
with p ∈ (0, 1).

Then, by using the integral test, we obtain

lim
N→∞

∑N
i=1 i

1−p

(N + 1)
∑N

i=1 i
p

= lim
T→∞

∫ T

0 t1−pdt

(T + 1)
∫ T

0 tpdt

= lim
T→∞

t2−p

2−p |t=T
t=0

(T + 1) t1−p

1−p |t=T
t=0

= lim
T→∞

T 2−p

2−p

(T + 1)T 1−p

1−p

=
1− p
2− p.

This means that the sought limit in the case p ∈ (0, 1) is:

γ =
1

2−p
1−p − 1

= 1− p.
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So far, we have seen that

γN =
1

(N + 1)
∑

N
i=1 ai∑
N
i=1 iai

− 1

converges to zero if iai goes to zero in the limit i → ∞. Suppose without loss of
generality ai = 1/ip, so the condition for limN→∞ γN = 0 is p ≥ 1.

We note that the rate of decay of the ratio of costs is directly related with the
rate of increase with N of the partial sum sN (q) =

∑N
i=1

1
iq for q > 0, namely:

• sN (q) = Θ(N1−q), if q ∈ (0, 1);

• sN (q) = Θ(logN), if q = 1;

• sN (q) = Θ(1), if q > 1.

We thus obtain:

Case p = 1:

In this case, γN = Θ( 1

N log N
N −1

) = Θ( 1
log N ).

Case p ∈ (1, 2):

In this case, γN = Θ( 1
N 1

N2−p −1
) = Θ( 1

Np−1 ).

Case p = 2:

In this case, γN = Θ( 1
N 1

log N −1
) = Θ( log N

N ).

Case p > 2:

In this case, γN = Θ( 1
N−1 ) = Θ( 1

N ).
�

Appendix 3.B Conditional Entropy for Correlation Law
exp(−cτ)

Consider the one-dimensional example in Figure 3.8. For the sake of simplicity, assume
that the variance σ2 = 1. The correlation between nodes l and j is thus Klj =
exp(−c|l − j|d). Denote by ρ = exp(−cd). Then we can write the covariance matrix
of any i consecutive nodes on the line as:

Ki =

⎛
⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρi−1

ρ 1 ρ . . . ρi−2

. . . . . . . . . . . . . . .
ρi−2 ρi−1 . . . 1 ρ
ρi−1 . . . ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠
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and thus their joint differential entropy is:

h(X1, . . . , Xi) = log(2πe)i detKi = log(2πe)i(1 − ρ2)i−1

It follows that we can write the conditional differential entropy as:

h(Xi|Xi−1, . . . , X1) = h(Xi, Xi−1, . . . , X1)− h(Xi−1, . . . , X1)
= log(2πe)i(1 − ρ2)i−1 − log(2πe)i−1(1− ρ2)i−2

= log
(2πe)i(1− ρ2)i−1

(2πe)i−1(1− ρ2)i−2

= log(2πe)(1− ρ2)
= h(Xi|Xi−1)

which depends on the inter-node distance d, but not on the number of nodes i.
Since the conditional entropy ai = H(Xi|Xi−1, . . . , X1) differs in approximation by

only a constant from the conditional differential entropy, it follows ai ≈ H(Xi|Xi−1),
for any i.





Chapter 4

Flow Control for Multiple
Access Queues

4.1 Preliminaries

4.1.1 Bits Through Multiple Access Queues

Let S(1)...S(N) denote N information sources. Each S(i) can be in one of two possible
states: when in the on state, symbols (drawn from a finite alphabet) are generated
according to some unspecified distribution; when in the off state, no symbols at all
are generated. Source state transitions between on/off states are independent over
time. The symbols generated by each S(i) are placed in the buffer of a single-server
queue, which serves them using some predetermined scheduling algorithm (typically,
first-in first-out). In this proposed scenario, two important questions arise:

• What is a fair split of the service rate of the queue among the different sources?
This is essentially equivalent to the classical problem of control in networks. In
a network with several users and interconnecting nodes, the need for control
(i.e., for controlling the amount of data that each source is allowed to inject
into the network) arises because of the limited available network resources. The
purpose of flow control is to allocate these resources efficiently, while keeping
this allocation fair among users. Classical papers on this subject are [22, 33],
among others.

• What is the Shannon capacity of the channel available to each source? In [3],
this question is answered in a special case of the above described setup: a single
source (i.e., N = 1), always in an on state.

In this work we formulate and present some first steps towards solving a multiuser
version of the Bits Through Queues problem of [3], which we refer to as the Bits
Through Multiple-Access Queues problem. Note that although certainly related, our
problem is significantly more complex than that considered in [3]. To start with,
under the assumptions of [3] the first question is meaningless, since there is only one
source. In the general case, the mechanism used to split the queue resources among

67
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information sources will essentially determine the channel available to each one of
them, and hence its capacity. Further complications arise from the fact that, in the
general case, the number of active sources changes over time. A study of flow control
techniques suitable for use in the context of the multiuser version of the problem
considered in [3] is the main focus of this work.

4.1.2 The Shannon Capacity of Queuing Models

An important result of [3] is that, assuming 1-bit packets, the Shannon capacity of a
single-server queue with exponential service is 2

e log2(e)µ ≈ 1.0615µ, where µ is the
average service rate. Note that loading the queue at a rate λ > µ will clearly not
achieve this goal, since this results in the system becoming unstable, and still, the
output rate would be not more than µ. The answer to this apparent paradox stands
in the timing information.

Consider the following simple example. Assume a queue as illustrated in Figure
4.1, with service times s having an arbitrary mean µ. Assume first that the variance
of s is zero. Choose a real number S > µ, inject one packet at time 0, another at time
S. Then, the first packet departs at time µ, the second at time µ+S, and the receiver
can recover S exactly, by subtracting the first departure time from the second. But
since S is a real number that was communicated without distortion, we immediately
see that this queue has infinite capacity, even if packets are of finite size and serving
them requires nonzero time.

µ
λ

Figure 4.1: The queueing model considered in Bits Through Queues [3]: an infinite
buffer, a process of arrivals with mean λ, service times with mean µ, and packets of fixed
length.

In the example above, when s > µ and if the zero variance condition is fulfilled,
then the receiver can recover s without distortion. However, in realistic scenarios,
departures are random, meaning that the variance of µ is different from zero. Thus,
the rate at which information can flow through the system will be lower. This uncer-
tainty is the source of noise for communication based on timing codes. Therefore, we
can formulate the basic tradeoff between transmission of information based on timing
codes and based on classical data codes:

• Communication via packet contents resulting in a heavily loaded queue, and no
packet information, vs.

• Communication via idle periods resulting in frequent idle periods, and no timing
information.

From [3], it follows that in the context of queueing models, a system that is efficient
in an information theoretic sense must be operated in an ’almost’ unstable regime (in
the sense of stochastic stability, in this case corresponding to λ ≈ µ).
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4.1.3 Bits Through Shared Queues

There is a “natural” multiuser generalization of the setup considered in [3], consisting
of multiple sources sharing the same queue, as illustrated in Figure 4.2, which shows
N sources sharing a single finite buffer. When each source can observe the state of the
entire network, this problem degenerates to the single source case. The interesting
case however occurs when sources only have partial information about the state of
the system. In this case, they must base decisions about when to access the channel
only on that partial data.

µ

N

2

1

Figure 4.2: The problem of N sources sharing a single finite buffer.

New interesting questions arise in this setup, questions that make no sense in the
original formulation of [3]. For example: how do sources gain access to the shared
queue? What information do sources have available to make these decisions? What
are relevant performance bounds, taking multiple users into account? To provide
answers to some of these questions, we must deal with a number of questions which
are not only relevant and interesting, but also difficult:

• The problem of how different sources gain access to the shared queue is an ab-
straction of the thoroughly studied congestion problem in networks. Many prac-
tical and well debugged algorithms have been developed over the years [22, 33],
and more recently formulations of this problem have taken more analytical
approaches, based on game theoretic, optimization, and flows-as-fluids con-
cepts [36, 39, 44, 45]. Queueing models however have not found application
yet in this context, and we believe valuable insights could be obtained from
taking a queueing and stochastic control view of this problem.

• Even if centrally designed (in the sense that all nodes are assumed to execute the
same control algorithm), decentralized control problems are much less under-
stood than their centralized counterpart. These are problems deemed in general
both relevant and difficult.

Given all these considerations, our main goal in this work is to set up a “toy”
problem, which is analytically tractable, and which captures in a clean manner some
of these issues.
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To the best of our knowledge, the literature on controlled queues is limited. The
main problem in analyzing the behavior of queueing models incorporating control
is that the feedback loop results in the introduction of dependencies in the arrivals
and/or service processes. However, most queueing models that have been successfully
analyzed to date involve processes with independent increments, an assumption clearly
violated in the presence of feedback control: decisions made about current packets
affect decisions to be made about future packets. Our main contribution presented
in this work lies in having been able to formulate, analyze, and simulate a queueing
model which explicitly accounts for the type of dependencies introduced by feedback
control.

In this chapter we set up a model of a queueing system in which multiple sources
compete for access to a shared buffer. We describe its dynamics, and we formulate and
solve an appropriate stochastic control problem. We also present results obtained in
numerical simulations, to illustrate with concrete examples properties of these control
boxes.

Then, in Chapter 5, we study ergodic properties of the queueing model that results
from operating the system described in this chapter under closed-loop control. There,
we show how long-term averages are described in terms of a suitable invariant mea-
sure. We first prove the existence of that measure, and then show how to effectively
construct it.

4.2 The Control Problem

4.2.1 Distributed Flow Control with Partial Information

In the design of the desired control modules, there is a wide range of options in terms
of information available to the controller, to the sources, to the queue itself, etc. Two
extreme examples correspond to cases when (a) there is a unique, global, central
controller which can observe exactly the state of the queue and of all the sources at
any point in time; and (b) a decentralized, local controller which can only see the
state of the individual source it controls, as well as some feedback information that it
obtains about the state of the queue. This situation is illustrated in Figure 4.3.

Centralized Controller

.

.

.

.

.

.

Distributed Controller

Figure 4.3: Two extreme cases in which control may be necessary. Left: a unique
centralized global controller; right: local decentralized controllers. In general, global
controllers are desirable since they will give the best network performance. The problem is
that their communication complexity often renders them prohibitively complex in practice,
thus there is interest in local decentralized control devices.
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We see in Figure 4.3 that, for the centralized controller, the solution to any rea-
sonable formulation of the flow control problem is trivial: knowing all the information
about the state of individual sources and of the buffer state, it is enough to allocate to
each user a service share equal to the ratio between the service rate and the number
of sources active at a given moment. The second type of controller, more realistic but
harder to implement, is what we focus on in this work. Our goal is to design a flow
control mechanism, simple enough to yield to mathematical analysis in the context of
the Bits Through Multiple-Access Queues problem, yet also rich enough to be a good
model for real-life situations.

4.2.2 System Model and Dynamics

Consider the following discrete time model [15], [17]:

• N sources feed data into the network, switching between on/off states in time.
While on, source S(i) generates a symbol at time k with probability u(i)

k , and
remains silent with probability 1 − u(i)

k ; while off, the source remains silent
with probability 1. Given the intensity value u, the switch between states is
independent of everything else.

• The queue has a finite buffer. When a source generates a symbol to put in this
buffer, if the buffer is full then the symbol is dropped and the source is notified
of this event; if there is room left in the buffer the symbol is accepted, and the
source is notified of this event as well. Note: feedback is sent only to the source
that generates a symbol, and not to all of them.

• The control task consists of choosing values for all u(i)’s, at all times. A basic
assumption we make is that sources are not allowed to coordinate their efforts
in order to choose an appropriate set of control actions u(i) (i = 1...N): instead,
the only cooperation we allow is in the form of having all sources implement the
same control technique, based on feedback they receive from the queue.

• The service rate of the queue is deterministic. Note however that, unlike in the
motivating example from [3] presented in Section 4.1.2, in our model this does
not lead to a system with infinite capacity. Interference from other users (in
the form of random numbers of packets in the queue in between consecutive
packets of any individual source) leads to uncertainty in the departure times,
and therefore to finite capacity.

An illustration of this proposed model is shown in Figure 4.4.
The dynamics of this system are modeled as follows:

• xk ∈ S = {1, . . . , N}: number of on-sources at time k, modeled as a finite
state Markov chain with known matrix of transition probabilities Pij given by
Pr(xk = j|xk−1 = i) (independent of the source intensities u(i)

k and of the time
index k), and known Pr(x0) (the initial distribution over states).

• r(i)k ∈ O = {−1, 0, 1}: ternary feedback from the queue to the source. The
convention we use is that −1 denotes losses, 0 denotes idle periods, and 1 denotes
positive acknowledgments.
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1

2

N

.

.

.

c

deterministic
service rate

finite buffer

1

2

N

B(u )

B(u )

B(u )

Figure 4.4: The proposed model. N sources switch between on/off states, and generate

symbols with a (controllable) probability u
(i)
k . The only information a source has about

the network is a sequence of 3-valued observations: acknowledgments, if the symbol was
accepted by the buffer, losses if it is rejected due to overflow, and nothing if the decision
was not to transmit at the current moment (denoted 1, -1, 0, respectively).

• u(i)
k ∈ U , where U = (0, 1] source intensities, controllable (as defined above).

• p(r|x, u): the probability of occurrence of an observation r ∈ O, when x sources
are active, and when symbols are generated by all active sources at an average
rate u.

These dynamics are illustrated in Figure 4.5.

i-1 i i+1 N-1 N...... ......

Loss Ack N Loss Ack N.......... .......... .......... ..........

Transitions
p(i|i)p(i-1|i-1)

p(i|i-1)

pNpL pA pA pNpL

Hidden Markov Chain 

p(i+1|i+1)

1

p(-1|i,u)

States

Observations p(1|i,u) p(0|i,u)

p(i-1|i)

Figure 4.5: An illustration of the model from the point of view of a single source, based
on a simple birth-and-death chain for the evolution of the number of active sources.

There are two important observations to make about how we have chosen to set up
our model. Describing the probabilities of observations p(r|x, u) only in terms of the
number of active sources x and the average injection rate u of all the active sources
does require some justification: how can we assume that all sources inject the same
amount of data, when the data based on which these decisions are made (feedback
from the queue) is not shared, that is each source gets its own private feedback?
Although this might seem unjustified, that is not the case. Once we study in some
detail the control problem we are setting up here, we will find that the optimal control
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action uk at time k is given by a memoryless function uk = g(πk) of a random vector π
that has the same distribution for all sources, and with well defined ergodic properties.
The study of these ergodic properties is the subject of Chapter 5. Therefore, even
though at any point in time there will likely be some sources getting more and some
other sources getting less than their fair share, on average all sources get the same.
This issue is further discussed below, both analytically (in Chapter 5) and in terms
of numerical results (in Figure 4.10).

Another important point to note is that there are strong similarities between our
model and the formalization of multiaccess communication that led to the develop-
ment of the Aloha protocol [8]. However, the fact that feedback is not broadcast to
all active sources in our model is a major difference between our formulation and
that one. In fact, we conceived our model as an analytically tractable “hybrid” be-
tween Aloha and the standard Transport Control Protocol (TCP). Like in slotted
Aloha, time is discrete, feedback is instantaneous, and the state follows a Markovian
evolution; but like in TCP, feedback is private only to the source that generated a
transmitted packet, and the buffer is finite.

As an application for some of the results and proof techniques developed in this
work, we are looking in Section 5.5 at their implementation in the context of Aloha
with private feedback and random arrivals. Hajek [29] reviews a series of results for
the two usual models for Aloha (finite user, one packet at a time, and infinite number
of users [8]). Decentralized policies for the injection probabilities, that maintain
stability in the case of private acknowledgment feedback, are hard to be derived for
the infinite nodes case with Poisson arrivals. There is however important work [29]
about stability in the finite nodes study of Aloha. The theory in [29] is applied,
as an example, to finding conditions of stability for multiplicative policies for sources
that are supplied with Poisson arrivals. The theory we develop in this work provides a
useful background for an Aloha model with random arrivals (not necessarily Poisson),
with a finite number of backlogged packets, and its extension to the infinite user model.

4.2.3 Formal Problem Statement

Intuitively, what we would like to do is maximize the rate at which information flows
across this queue, subject to the constraint of not losing too many packets. Since each
time we attempt to put a packet into the shared buffer there is a chance that this
packet may be lost, it seems intuitively clear that without accepting the possibility of
losing packets, the throughput that can be achieved will be low. At the same time,
we do not want a high packet loss rate, as this would correspond to a highly unstable
mode of operation for our system.

This intuition is formalized as follows. Our goal is to find a policy g that solves

max
g

lim sup
K→∞

1
K

K∑
k=1

Pr(rk = 1|xk, uk) (4.1)

subject to: Pr(rk = −1|xk, uk) ≤ T, ∀k,
where T ∈ (0, 1] is a parameter that specifies the maximum acceptable rate of packet
losses, and K is the time horizon. If there was no loss threshold T , then all sources
could inject packets with probability one, get on average their fair share, but in the
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same time this would involve a very large amount of losses (losses will happen with
probability p(r = −1|x, u = 1) = 1−1/x).In Figure 4.9, on numerical simulations, we
illustrate how this parameter affects the behavior of the controller. Note that we use
a lim sup in the definition of our utility function (instead of a regular limit) because
we don’t know yet that the limit actually exists. This limit does exist, as we will show
in Chapter 5.

4.2.4 Finite Horizon and Observed State

We start with the solution to an easier version of our control problem: one in which
the state of the chain (i.e., the number of active sources at any time) is known to all
the sources. Although this is not a reasonable assumption to make (it does trivialize
the problem), we find that looking at the solution to the general problem in this
specific case is actually quite instructive. We start here as a step towards the solution
of the case of true interest (hidden state).

The problem formulated above is a textbook example of a problem of optimal
control for controlled Markov chains, and its solution is given by an appropriate set
of Dynamic Programming equations [38]. Define c(u) = [Pr(1|i, u)...Pr(1|N, u)]�, and
then:

VK(i) = 0 (4.2)
Vk(i) = sup

u : Pr(−1|i,u)≤T

{c(u) + P (i, u)Vk+1}

= sup
u : Pr(−1|i,u)≤T

{c(u) + C} (C independent of u). (4.3)

Equation (4.2) is set to 0 because this is only a finite horizon approximation, but we
are interested in the infinite horizon case, and in this case the boundary condition
given by VK = 0 has a vanishing effect as we let K →∞.

What is more interesting is that from (4.3) it follows that a greedy controller is
optimal: this is not at all unexpected, since in our model the transition probabilities
P are not affected by control, only observations are. The interplay among control
and the different probabilities of observations is illustrated in Figure 4.6 (see also
Appendix 4.A). Consider a fixed (observed) state i, and for simplicity assume a large
shared buffer (these curves can be replaced by curves derived from large deviations
estimates such as given by the Chernoff bound). Then, our assumptions are as follows.
The probability of a packet loss is zero until the injection rate hits the fairness point
1/i, beyond which it increases linearly. The probability of a packet finding available
space in the shared buffer increases linearly up until the fairness point 1/i, beyond
which it remains constant. Note that u∗ > 1

i is the largest u ∈ (0, 1] such that
Pr(−1|i, u) ≤ T . The gap between 1/i and u∗ is the “margin of freedom” we will have
to risk the loss of packets, in the case when i cannot be observed.

4.2.5 Partial Information

The case of partial information (i.e., when the underlying Markov chain cannot be
observed directly) poses new challenges. The problem in this case is that Markovian
control policies based on state estimates are not necessarily optimal. Instead, opti-
mal policies satisfy a “separation” property, illustrated in Figure 4.7 and extensively
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Figure 4.6: Probabilities of observation as a function of the control and the number of
states.

discussed in [38]. Suppose we have a controlled system, which produces certain ob-
servable quantities related to its unobserved state. Based on these observations, we
compute an information state. The information state is a quantity that somehow
must capture all inference about the state of the system, given all the information we
have seen so far (this concept will be made rigorous later). This information state
is fed into a control law, that uses it to make a decision of what control action to
choose, and this action is fed back into the system.

System

Control Law

Estimation
Observation

Control action Information state

Figure 4.7: The separation of estimation and control.

Formally, an information state πk is a function of the entire history of observations
and controls r0...rk−1u0...uk−1, with the extra requirement that πk+1 can be computed
from πk, rk, uk. Note that this is a reasonable requirement to make about a quantity
that captures some notion of state for our system. A typical choice is to let πk be
Pr(xk|rk−1, uk−1), the conditional probability of xk given all the past observations
and applied controls.

Definition 4.1 Denote the simplex of N -dimensional probability vectors by Π =
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{(p1, . . . , pN) ∈ RN : pi ≥ 0,
∑N

i=1 pi = 1}.
Then, an optimal controller for partially observed Markov chains also satisfies a

set of Dynamic Programming equations, but instead of this set of equations being over
the states of the chain (a finite number), these equations are defined over information
states [38] (i.e., over all points in the simplex of Π probabilities over N points):

VK(π) = 0
Vk(π) = sup

u : EπPr(−1|i,u)≤T

Eπ {c(i, u) + Vk+1(F [π, u, r])} , (4.4)

where F denotes the recursive updates of π, and where the notation Eπ denotes expec-
tation relative to the measure π. A straightforward derivation gives the information
state transition function F (see Appendix 4.B):

πk+1 = F [πk, uk, rk]
= Cπk

· πk ·D(uk, rk) · P

with Cπk
a normalizing constant, P the transition probability matrix of the under-

lying chain, and D(u, r) = diag [Pr(r|1, u) . . . Pr(r|N, u)] a diagonal matrix. This is
essentially the same set of Dynamic Programming equations as before, but where de-
pendence on states is removed by averaging with respect to the current information
state πk. As before, the optimal controller is chosen by recording for each π the value
of u that achieves the supremum in the right hand side of eqn. (4.4). The optimal
control will thus be a function of only the information state, u = g(π).

4.2.6 Infinite Horizon

In the previous subsections we derived the solution for the optimal control in the
case of partial observations when the time horizon is finite. We can get back now to
the infinite horizon problem stated in (4.1). The dynamic programming algorithm
becomes a fixed-point system of equations with the unknowns spanning the simplex
Π. Indeed, let us start from the finite horizon case:

VK(π) = sup
u : EπPr(−1|i,u)≤T

Eπ [c(i, u) + VK−1(F [π, u, rk])] (4.5)

We rewrite (4.5) as [38]:

VK(π)
K

= sup
u : EπPr(−1|i,u)≤T

Eπ

[
c(i, u) + VK−1(F [π, u, rk])− VK(π) +

VK(π)
K

]
(4.6)

Assume the following limits exist for all π ∈ Π and some J∗:

lim
K→∞

(VK(π) −KJ∗) = V∞(π)

Then by taking the limit K →∞ in (4.6) we finally get[38]:

J∗ + V∞(π) = sup
u : EπPr(−1|i,u)≤T

Eπ [c(i, u) + V∞(F [π, u, rk])] (4.7)
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The DP equation in (4.7) holds actually under more general conditions that are
easy to verify for our model [38]. The transition probability matrix P does not depend
in our model on the control policy. Further, the Markov chain given by the number of
active sources is irreducible in normal circumstances. Then it is shown in [38] that if
these conditions are fulfilled, then the dynamic programming equation system for the
average cost criterion is as in (4.7) and there exists V (π), π ∈ Π and J∗ that solves
it. Also, J∗ is the minimum average cost and a policy g is optimal if g(π) attains the
minimum in (4.7).

One might attempt to solve the fixed-point system in (4.7) with an iterated algo-
rithm on a discretized version of the equations system. However, there are practical
difficulties to implement and simulate the optimal controller in the partial information
case as defined above, having to do with the fact that our state space is the whole
simplex of probability distributions Π. Our approach to find an approximate solution
for the optimization problem (4.1) is to solve the dynamic programming system for
the finite horizon case (finite K), and study the properties of the obtained control
policy by numerical simulations.

4.3 Numerical Simulations

To help develop some intuition for what kind of properties result from the optimal
control laws developed in previous sections, in this section we present results obtained
in numerical simulations. Our approximation consists in choosing the maximum con-
trol at time k that still obeys the loss constraint, since this will also maximize the
throughput.

In Figure 4.8 we present a typical evolution over time of the information state.
This plot corresponds to a symmetric birth-and-death chain as shown in Figure 4.5,
with probability of switching to a different state p = 0.001, N = 10 sources, and
loss threshold T = 0.04. At time 0, the initial π0 is taken to be πs(i) = 1

N , the
stationary distribution of the underlying birth-and-death chain. While there are no
communication attempts (up until time k = 6), πk remains at πs. Then at time 6
a packet is injected into the network and it is accepted, and as a result, there is a
shift in the probability mass towards the region in which there is a small number
of active sources. Then at time 19 another communication attempt takes place but
this time the packet is rejected, and as a result, now the probability mass shifts
to the region of a large number of active sources. This type of oscillations have
been observed repeatedly, and gives a pleasing intuitive interpretation of what the
optimal controller does: keep pushing the probability mass to the left (because that
is the region where more frequent communication attempts occur, and thus leads
to maximization of throughput), but dealing with the fact that losses push the mass
back to the right. Similar oscillations are also typical of linear-increase multiplicative-
decrease flow control algorithms such as the one used in TCP.

In Figure 4.9, we illustrate how different values of the threshold T influence the
behavior of the controller. In this case we consider the same birth-and-death model
considered in Figure 4.8, with three different values for T : top, T = 0.1; center,
T = 0.02; bottom, T = 0.05. In all plots, the horizontal axis is time, the vertical axis
is control intensity, and two controllers are shown: the thick black line corresponds to
our optimal control law, the thin dotted line corresponds to a genie-aided controller
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that can observe the hidden state. And we observe a number of interesting properties:
(a) when T is large (top plot), our optimal control stays most of the time above the
fair share point determined by the actions of the genie-aided controller; (b) also when
T is large, we see that sudden increases in bandwidth are quickly discovered by our
optimal law; (c) when T (middle plot) is small, the gap between the control actions
of our optimal law and the genie-aided law is smaller, but our law has a hard time
tracking a sudden increase in available bandwidth; (d) for intermediate values of T
(bottom plot), both the size of the gap and the speed with which changes in available
bandwidth can be tracked is in between the previous two cases. These plots also
suggest another intuitively pleasing interpretation: T is a measure of how “aggressive”
our optimal control law is.

In Figure 4.10 we address the fairness issue raised at the end of Section 4.2.2. In
this case we also consider a birth-and-death chain model as in previous examples, but
now with only two sources (N = 2). In the top figure, we show the maximum and the
minimum control value chosen by either one of the sources over time: thick black line
shows the minimum, thin solid lines shows the maximum (for reference, the genie-
aided controller is also shown); in the bottom figure, the thick line corresponds to the
control actions of only one of the sources, all the time. Observe how, around time
steps 150-250, the source shown at the bottom is the one that achieves the maximum
at the top; but around time steps 500-600, the same source achieves the minimum
of those injection rates. This is yet another intuitively pleasing pattern that we have
observed repeatedly in many simulations: the control law is essentially fair in the
sense that, whereas we do not have enough information to make sure that at any time
instant all controllers will use the same injection rate, at least over time the different
controllers “take turns” to go above and below each other.

4.4 Conclusions

In this chapter we studied an optimal controller that can be used by multiple sources
to gain access to a shared queue. The sources are independent and cannot com-
municate with each other. We provided the structure of an optimal controller that
determines the injection rate of each source. Our controller relies only on the sequence
of private actions and feedback obtained from the router; this information is gathered
in the information state, namely the vector of probabilities of the system being in a
certain state given the sequence of all past controls and observations. We showed how
the information state can be computed recursively using only the instantaneous pair
(control, observation). Our extensive numerical simulations show that our control
policy achieves also fairness for the sharing of the bandwidth among the sources.

Appendix 4.A Probabilities of Observation

We consider a simplified model for the probability of observation: we suppose the
buffer is sufficiently large so that losses appear only when the source attempts to
transmit with a rate above the fair share, and not because of occasional collisions
with other sources transmitting also below the fair share, due to the random behavior
of the controller. Numerical experiments showed that a finite buffer size is enough
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Figure 4.8: Typical dynamics of π. There are N = 10 sources, and this plot illustrates the
evolution of the information state vector, as being updated by the source of interest. At
time k = 6 a packet is sent by the source and accepted in the buffer, thus the result of the
positive acknowledgment is a shift in probability mass towards the region corresponding
to a small number of active sources. The reverse effect is observed at time k = 19, when
a loss happens.
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Figure 4.9: Illustration of how the value of the loss threshold T affects the optimal
control law. A large value of the loss threshold T = 0.1 (up) results in quick reaction of
the control to changes in the environment conditions, at the expense of a large number
of losses, due to the operation above the fair share. A small value of the loss threshold
T = 0.02 (middle) results in slow response to positive environment conditions, but in the
same time the control operates close to the fair share. The plot (down) illustrates the
behavior of the control for a medium threshold value T = 0.05.
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Figure 4.10: The fairness issue raised at the end of Section 4.2.2: maximum and min-
imum value of the two controls (up); the control implemented by the source of interest
(down). We notice that both sources take turns in using a larger bandwidth than the
other.
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for this condition to be met approximately. For instance, for a maximum number of
N = 10 active sources, a buffer size B = 2 gives numerical results which are close to
the ideal case.

In the ideal case, we would have:

p(1|x, u) =
{
u, u < 1/x
1/x, u ≥ 1/x

p(0|x, u) = 1− u,
and

p(−1|x, u) =
{

0, u < 1/x
u− 1/x, u ≥ 1/x

Exact formulae for the observation probabilities can be derived using the Chernoff
bound or by numerical simulations, for the finite buffer case, or even in the case of a
more general network topology.

Appendix 4.B Information State Recurrence

Denote uk = (u0, u1, . . . , uk), rk = (r0, r1, . . . , rk). In this section we derive a recursive
expression for p(xk|rk−1, uk−1).

First, we apply the total probability law:

p(xk|rk−1, uk−1)

=
∑
xk−1

p(xk|xk−1, r
k−1, uk−1)p(xk−1|rk−1, uk−1)

=
∑
xk−1

p(xk|xk−1)p(xk−1|rk−1, uk−1).

Now we express p(xk−1|rk−1, uk−1) as a function of p(xk−1|rk−2, uk−2). By Bayes
rule, and noting that (rk−1, uk−1) = (rk−2, uk−2, uk−1, rk−1), it results:

p(xk−1|rk−1, uk−1)

=
p(xk−1, r

k−1, uk−1)
p(rk−1, uk−1)

=
p(xk−1, uk−1, rk−1, r

k−2, uk−2)
p(rk−1, uk−1)

=
p(rk−1|xk−1, uk−1, r

k−2, uk−2)p(xk−1, uk−1, r
k−2, uk−2)

p(rk−1, uk−1)

=
p(rk−1|xk−1, uk−1)p(xk−1, uk−1, r

k−2, uk−2)
p(rk−1, uk−1)

, (4.8)

where the last equality holds because the present observation depends only on the
previous state and control.
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Now we express the denominator by using again the law of total probability:

p(rk−1, uk−1)

=
∑
xk−1

p(xk−1, r
k−1, uk−1)

=
∑
xk−1

p(rk−1|xk−1, uk−1, r
k−2, uk−2)p(xk−1, uk−1, r

k−2, uk−2)

But

p(xk−1, uk−1, r
k−2, uk−2)

= p(xk−1|uk−1, r
k−2, uk−2)p(uk−1, r

k−2, uk−2)
= p(xk−1|rk−2, uk−2)p(uk−1, r

k−2, uk−2),

since xk−1 does not depend on uk−1. So we can rewrite equation (4.8) as:

p(xk−1|rk−1, uk−1) =
p(rk−1|xk−1, uk−1)p(xk−1|rk−2, uk−2)∑

xk−1
p(rk−1|xk−1, uk−1)p(xk−1|rk−2, uk−2)

.

As a result, we modeled the time/state dependence of the information state by
the following equations:

p(xk|rk−1, uk−1) =
∑
xk−1

p(xk|xk−1)p(xk−1|rk−1, uk−1) (4.9)

p(xk−1|rk−1, uk−1) =
p(rk−1|xk−1, uk−1)p(xk−1|rk−2, uk−2)∑

xk−1
p(rk−1|xk−1, uk−1)p(xk−1|rk−2, uk−2)

, (4.10)

with the initial condition/notation

p(x0|r−1, u−1) = p(x0). (4.11)

The denominator in equation (4.10) is just a normalizing factor to guarantee that
p(xk−1|rk−1, uk−1) is a probability mass function. If this factor is omitted, then we
can combine equations (4.9), (4.10) and obtain

p(xk|rk−1, uk−1) =
∑
xk−1

p(xk|xk−1)p(rk−1|xk−1, uk−1)p(xk−1|rk−2, uk−2).

In words, this means that:

• Up to time k − 1, we know the initial condition p(x0) and

(u0, . . . , uk−2, r0, . . . , rk−2)→ p(xk−1|u0, . . . , uk−2, r0, . . . , rk−2)

• Given the extra-knowledge uk−1, rk−1, we can update:

p(xk|r0, . . . , rk−1, u0, . . . , uk−1) =

=
∑
xk−1

p(xk|xk−1)p(rk−1|xk−1, uk−1)p(xk−1|r0, . . . , rk−2, u0, . . . , uk−2)
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• summarizing,

p(xk|rk−1, uk−1) = F [rk−1, uk−1, p(xk−1|rk−2, uk−2)]

that is, we have proven that πk is an information state (πk is a function of
rk−1, uk−1 and it can be computed if πk−1, rk−1, uk−1 are obtained).

Now, define the N ×N diagonal matrix

D(rk, uk) =

⎛
⎝ p(rk|xk = 1, uk) 0 . . . 0

. . .
0 . . . 0 p(rk|xk = N, uk)

⎞
⎠

Remember that the row vector of the state variable is the information state:

πk(rk−1, uk−1) = Pr(xk|rk−1, uk−1)

Then equation (4.12) may be written in compact form

πk(rk−1, uk−1) =
πk−1(rk−2, uk−2)D(rk−1, uk−1)P

C
, (4.12)

where C is a normalization constant. The transition matrix P is known and constant,
for any k:

P = [p(xk = i|xk−1 = j)]ji.

If the constant C is neglected then the system is linear in the state variable πk.
To conclude, we see that we did obtain an information state that can be computed
by a linear recursion.



Chapter 5

Weak Convergence of Feedback
Control for Multiple Access
Queues

5.1 Overview

5.1.1 Problem Formulation

In Chapter 4, we introduced a model for a multiple access system, we described its
dynamics, and we derived an optimal control policy for the shared access in this
system. Now, once we have that optimal control algorithm, each source gets to
operate the queue based on its local controller, thus resulting in a “decoupling” of the
problem, as illustrated in Figure 5.1. Since all the nodes execute exactly the same
control algorithm, the distribution of π is the same for all nodes. But other than
through this statistical constraint, all decisions are taken locally by each node, based
on private data that is not available to any other node, and therefore completely
independent.

πB(g(  ))

πB(g(  ))

πB(g(  ))N

2

1

c

B(uN)

B(u1)

B(u2)
turned

into

1 c(  )π

2 c(  )π

N c(  )π

Figure 5.1: The original problem is broken into N independent identical subproblems.

85
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Perhaps the first question that comes to mind once we formulate the picture
shown in Figure 5.1 is about ergodic properties of the resulting controlled queues.
Specifically, we will be interested in two quantities:

• Average throughput:

J(g) = lim
K→∞

1
K

K∑
k=1

Pr(1|xk, g(πk)) ?=
∫
{x,π}

Pr(1|x, g(π)) dν(x, π).

• Average loss rate:

lim
K→∞

1
K

K∑
k=1

Pr(−1|xk, g(πk)) ?=
∫
{x,π}

Pr(−1|x, g(π)) dν(x, π).

Therefore we see that, in both cases, the questions of interest are formulated in terms
of a suitable invariant measure. Since we have assumed the underlying finite state
Markov chain to be irreducible and aperiodic, this chain does admit a stationary
distribution. Therefore, a sufficient condition for the existence of the sought measure
ν is the weak convergence of the sequence of information states πk to some limit
distribution over the simplex Π of probability distributions on N points. And to
start developing some intuition on what to expect in terms of the sought convergence
result, it is quite instructive to look at typical trajectories of the information state, as
shown in Figure 5.2. For a system with three sources, π is a point in the 2D simplex
as shown in this picture. And after letting the system run for some time, we find that
there are regions of space visited fairly often (bottom right), regions visited less often
(bottom left), and regions never visited (top right). Yet each point on this simplex
determines a choice of an injection rate, and therefore the frequency with which each
point is visited is clearly a fundamental performance analysis tool.

In view of the previous results, a seemingly feasible approach to establishing the
sought convergence for our system would have been considering the control action
u ∈ U to play the role of a channel input in the setup of [35], [27], [65], while the
observations r ∈ O could have played the role of a channel output (thus making
the control u and the observation r the available partial observations). However,
this approach does not yield the sought result: in our system, the control u is a
function of the information state, i.e., it depends on the state of the system, whereas
in those previous works, inputs are independent of the state of the system. So it is
this dependence due to feedback-control that makes the main difference between our
setup and previous work.

5.1.2 Weak Convergence of the Information State: Steps of the
Proof

The proof of weak convergence [16], [17] of π involves five steps:

1. First, we show that the sequence of information states πk has the Markov prop-
erty itself. This is a Markov chain taking values in an uncountable space (the
simplex Π).
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Figure 5.2: The evolution in time of the information state.

2. Then we discretize the simplex Π. We show that for all “small enough” dis-
cretizations, there is at least one observation taking πk out of any cell with
positive probability. With this we make sure that there are no absorbing cells,
namely we prove that once the chain hits that cell it does not get stuck there
forever.

3. Then we show that the stationary distribution πs of the underlying (finite state)
Markov chain is a point reachable from anywhere in the simplex. With this we
make sure that there is at least one cell which can be reached from any initial
point in Π, and hence that the set of recurrent cells is not empty.

4. Consider next any “small enough” discretization of the space, and define a new
process whose values are the cells of this discretization, based on whether πk hits
a particular cell. Then, this new process is (finite state) Markov, and positive
recurrent on a non-empty subset of the cells, and therefore it admits an invariant
measure itself.

5. Finally we construct a measure as the limit of the “simple” measures from step
4 (as we let the size of the discretization vanish), and we show that this limit is
invariant over Π. This requires some further steps, largely based on the elegant
framework of [49]:

5.1. We show that the limit exists and is well defined (it is independent of the



88 Chapter 5.

particular sequence of discretizations considered).

5.2. We construct a simple ϕ-irreducibility measure on Π, and from there we
conclude the existence of a unique maximal ψ-irreducibility measure.

5.3. We construct a family of accessible atoms in Π, and show that πk is positive
recurrent. From this and from 5.2, using a theorem from [49], we conclude
that there exists a unique invariant measure on Π.

5.4. We show that the limit measure of 5.1 is indeed invariant, and therefore
conclude that it must be the unique measure of 5.3.

Although steps 2-4 can be dealt with using classical finite state Markov chain
theory, steps 1 and 5 cannot: this is because πk is a Markov chain defined on an
(uncountable) metric space, and therefore to analyze its properties we need to resort
to a more general theory of Markov processes. Meyn and Tweedie provide an excellent
coverage of the problem of Markov chains on general spaces [49], which we found to
be an invaluable tool in our work.

We continue now with the formal proofs for the steps of the proof above.

5.2 Weak Convergence—Steps 1-4

5.2.1 Step 1: π is Markov

Although involving a chain defined over a metric space, this proof is elementary, since
all we need to invoke is the standard definition of the Markov property and the total
probability law:

p(πk+1|πk, . . . , π0)
(a)
=

∑
rk

p(πk+1|πk, . . . , π0, rk)p(rk|πk, . . . , π0)

(b)
=

∑
rk

p(πk+1|πk, rk, uk)

∑
xk

p(rk|xk, πk, . . . , π0)p(xk|πk, . . . , π0)

(c)
=

∑
rk

p(πk+1|πk, g(πk), rk)
∑
xk

p(rk|xk, g(πk))πk(xk)

= p(πk+1|πk),

where (a) results from the total probability law, (b) is because when conditioning on
πk, we can add in the conditioning uk, since uk = g(πk), and the total probability
law, and (c) because conditioned on anything else, rk depends only on xk, uk, and πk

contains all information about xk given the past. So we see that when conditioning
on the past values, πk+1 depends only on πk, and hence π is Markov.

An interesting observation to make here—which gives some insight into structural
properties of our model that will allow us to prove the sought weak convergence
result—is that the intensity of the arrivals process is a memoryless function of π.
Although we have not attempted to prove this, it seems at least intuitively clear to us
that if instead of the optimal controller we used a suboptimal one (typically based on
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the formation of an estimate of the current state), then the optimal decision would
not be a memoryless function of the state estimate, but would actually require past
state estimates as well.

5.2.2 Step 2: Non-Absorbing Small Discretization Cells

The next step is to show that there is a constant C > 0 such that, for any information
state π ∈ Π, there exists an observation r ∈ O for which the distance between πk and
the next-step information state πk+1 corresponding to r is larger than C. This allows
us to quantize the simplex Π and make sure that, provided the size of a quantization
cell is small enough, at least one observation will take the current information state
to a different cell.

Lemma 5.1 There exists a constant C such that for any π ∈ Π, there is an obser-
vation r for which ||π − F [π, g(π), r]|| ≥ ε, for all 0 < ε ≤ C, and for any norm
|| · ||.

Proof: This basically means that for any state there is at least one observation that
moves the chain at a finite non-zero distance away from that given state. We prove
this by contradiction: we show that if all jumps are infinitesimally small, then the
only information state that can satisfy this condition is the stationary distribution
πs of the original chain. But for this particular information state, any observation
different from r = 0 does allow jumps of finite size away from πs.

Suppose that for any C > 0, there exists a point π ∈ Π such that for any observa-
tion r ∈ O, ||π − F [π, g(π), r]|| < C. Denote by QC the set of points π verifying the
above condition for a given C. Note that if C1 > C2, then QC2 ⊆ QC1 . Denote by
Q0 the intersection of all QC sets. Then the supposition that we want to contradict
is equivalent to Q0 �= ∅.

Consider now any π ∈ Q0. Then for any C arbitrarily close to 0, and for any
observation r, ||π − F [π, g(π), r]|| < C (all jumps are arbitrarily close to zero).

In what follows k(·) are normalizing constants. If r = 0, it results π is arbitrarily
close to πP . This means π is arbitrarily close to πs (the stationary distribution of
P ). Also, for r = −1, or r = 1, consider the respective D(g(π), r) diagonal matrices:
it results π is arbitrarily close to 1/kπ,rπD(g(π), r)P . But π is arbitrarily close to
πs as well, so it results πs arbitrarily close to 1/kπs,rπ

sD(g(πs), r)P . In the limit,
πs = 1/kπs,rπ

sD(g(πs), r)P . But this cannot be true because D is not the iden-
tity matrix. Actually, D is a diagonal matrix with increasing or decreasing diagonal
elements (d1, . . . , dN ), for r = 1 respectively r = −1. If, e.g., r = 1, then πs =
1/kπs,1π

sD(g(πs), 1)P . This would mean that there exists π1 = 1/kπs,1π
sD(g(πs), 1)

with πs = π1P . We know that πs = πsP , so if the chain admits only one stationary
distribution, it results π1 = πs. However this is not possible, since πsD(g(πs), 1)
moves towards (1, 0, . . . , 0) the mass function of the new probability vector away from
πs. �
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5.2.3 Step 3: πs is Reachable from Anywhere

Lemma 5.2 For any π ∈ Π, there is a non-zero probability that in the limit the chain
gets arbitrarily close to the state πs, when starting in state π.

Proof: We illustrate in Figure 5.3 the intuition on which we base our proof. The
proof relies on the observation that finite length sequences of r = 0 observations
move the state arbitrarily closer to πs. If the observation at time k is rk = 0, then
the matrix D(uk, rk) becomes diagonal with elements dii = 1 − uk, so it equals the
identity matrix multiplied with a constant; then the recursion for the information
state, whenever the source decides not to transmit, can be expressed as πk+1 = πkP .
This vector equation has as solution the stationary distribution πs. It follows that for
any π ∈ Π as initial state of the chain, there is a path by which the chain reaches in
the limit the stationary distribution state πs, via for example a sequence of successive
rk = 0 observations. But any arbitrary length finite sequence of rk = 0 observations
may happen with non-zero probability, so for any εs > 0, there is a finite time K with
rk = 0, k ≤ K in which the chain can reach with non-zero probability a state πεs

such
that ‖πεs − πs‖ ≤ εs. �

ε − cell

πs

π
0

π
1

k−1
π

π
k

π
k+1

(0 , 0, ..., 0, 1)

(1, 0, 0, ..., 0)

Π−spacethe 

0
0

0
0

1
1

1

1

−1

−1
−1

−1

Figure 5.3: A sequence of r = 0 observations leads the chain arbitrarily close to πs.

5.2.4 Step 4: Positive Recurrent Discretization on a Non-Empty
Subset

We consider now quantizations of the Markov chain formed by the sequence of infor-
mation states, with quantization cells of size ε ≤ C. If the cell size is small enough,
then from Lemma 5.1 it follows that for any π inside a discretization cell, there is at
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least one observation happening with non-zero probability for which the chain jumps
outside the cell. This ensures that there is no state of the chain in which the system
stays forever, so the recurrent irreducible subset of discretized cells has more than
one element. With this procedure we define a family of quantizations of Π, with
members of the family of the form qε = {qε

1, . . . , q
ε
Nε
}, where qε

i are the Nε compact
sets contained in qε and

⋃
i q

ε
i = Π,

⋂
i q

ε
i = ∅. For simplicity we will denote qε(π) the

cell to which the instantaneous information state π belongs. We note that

p(qε
k+1|qε

k, q
ε
k−1, . . . ) =

∫
πk+1∈qε

k+1,πk∈qε
k,πk−1∈qε

k−1,...

×

×p(πk+1|πk, πk−1, . . . )dπk+1dπkdπk−1 . . .

=
∫

πk+1∈qε
k+1,πk∈qε

k

p(πk+1|πk)dπk+1dπk

= p(qε
k+1|qε

k)

since the process πk is Markov. The measure with respect to which we are integrating
is Lebegue measure over the Π space: we just count how often the continuous chain
falls in a given cell. Thus the process qε(πk) forms a finite-state chain, also having
the Markov property (inherited from the continuous chain).

Lemma 5.3 For any ε ≤ C, there is a subset Pε ⊆ Π, which contains the stationary
distribution πs of the xk original chain, and on which the discretized chain qε(πk) is
positive recurrent.

Proof: We show in Figure 5.4 a typical behavior of the chain, that shows the existence
of a recursive subset Pε ⊆ Π. We base our proof on the fact that πs is recurrent so
its properties will be induced on a recurrent closure of the discretized version of the
simplex Π. As we showed in Lemma 5.2, the information state πs can be reached in
the limit with non zero probability from any π0 initial state of the Markov chain. For
any initial π0 there is a sequence π0, . . . , πk, . . . such that πk → πs when k → ∞,
and the size of the quantization cell is strictly positive. Then the time in which the
discretized chain qε(πk) reaches the cell containing state πs is finite, so without loss of
generality we may consider our limit results with πs as initial value for the information
state.

Denote by Pε the set of reachable quantization cells qε(π) if the chain starts in
πs. We already proved that the cell containing πs is accessible in a finite number of
steps from any other information state π, so implicitly from any cell qε

i ∈ Pε as well.
Moreover, by construction, any cell qε

i ∈ Pε is reachable from qε(πs). Since ε ≤ C,
then for any qε(πk) there is at least one observation r for which the transition from
πk to πk+1 leads to qε(πk+1) �= qε(πk). It follows that the chain with states in Pε is
irreducible (and aperiodic as well, since the cell containing πs is one-step reachable
from itself, via a r = 0 observation). The state space is finite, so the chain is positive
recurrent, and thus it has a stationary distribution. �

Denote by pε this limit distribution over the Pε state space. If qε
i /∈ Pε, then

pε(qε
i ) = 0. We will prove now that there is a limit probability measure on Π to which

pε converges in the limit ε→ 0, and study the properties of that measure.
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Figure 5.4: After passing through a sequence of transient states, the chain reaches a
recursive subset of the discretized simplex Π.

5.3 Weak Convergence—Step 5

There exists a unique limit invariant measure over Π, νε → ν, when ε→ 0.

5.3.1 Step 5.1: Existence of the limit measure

We will show that the limit measure exists by considering, for any subset A of Π, se-
quences of measures on subsets of the discretized simplex that cover, and respectively
intersect A. We show that they converge to the same limit.

Definition 5.1 Define the inner and outer sequences of measures over the simplex
Π, corresponding to the set of ε-discretizations:

νI
ε (A) =

∑
S∈Pε:S⊆A

pε(S) (5.1)

νO
ε (A) =

∑
S∈Pε:S∩A 
=∅

pε(S), (5.2)

where A is any subset in the σ-algebra of Π.

We want to prove that, for any given A, both νI
ε (A) and νI

ε (A) converge to the
same limit, as ε→ 0. That limit will be our limit invariant measure ν(A).

We will prove first convergence of each of the limits. Consider νI
ε ; we will prove that

the sequence is Cauchy for any set A, and it trivially has a convergent subsequence,
which will mean the whole sequence is convergent.

For a given set A, denote An = {∪S ∈ Pεn : S ⊆ A} the inner cover of the set
A corresponding to discretization step εn. We will prove first that the normalized
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volume of the difference set between two inner covers of the set A tends to the empty
set, and consequently the probability measure over that difference set tends to zero.
Define the metric d(X,Y ) = µLeb((X −Y )∪ (Y −X))/µLeb(Π), on the σ-algebra B of
Π, X,Y ∈ B (this represents the normalized volume of the set where the two subsets
X,Y differ from each other—µLeb is Lebesgue measure). It is easy to verify that d(·, ·)
is indeed a valid metric.

Let εn be a decreasing sequence of discretization steps, with limn→∞ εn = 0. Then
due to the fact that Pεn is a sequence of subsequent discretizations of the space Π
when n → ∞, it follows limn→∞An = A. Since An is convergent, it is also Cauchy
in the metric space (B, d). This means that for any δ > 0, there exists nδ such
that d(An, Am) < δ, for any m > n ≥ nδ. So the normalized volume of the set
difference between two set elements of the sequence becomes arbitrarily small. That
also means that if εn, εm → 0, then νI

εnεm
d(An, Am)) → 0, as νεnεm is a stationary

distribution over finite spaces with decreasing cell size. Then for any δν > 0, there is
nδν such that νI

εnεm
((An −Am) ∪ (Am −An)) < δν , for any m > n ≥ nδν . Note that

νI
εnεm

((An −Am) ∪ (Am −An)) ≥ |νI
εnεm

(An)− νI
εnεm

(Am)|.
Finally, we note that |νI

εnεm
(An) − νI

εnεm
(Am)| = |νI

εn
(An) − νI

εm
(Am)|, due to

the property of inclusion for the sequence of measures (sum of probabilities of ε′-
discretization cells that cover exactly a ε-discretization cell is equal to the probability
of that ε-discretization cell), and the way An, Am are constructed (cells corresponding
to multiples of ε are all included in the cells corresponding to ε).

We conclude that for any δν > 0, there is nδν such that |νI
εn

(An)−νI
εm

(Am)| < δν ,
for any m > n ≥ nδν . This means that the sequence νI

εn
(An) is Cauchy as well.

It is trivial to show that there is a convergent subsequence of νI
εn

(An): pick, e.g.,
εn = ε0/2n, then the corresponding subsequence is bounded from above by 1, and
monotonically increasing; it follows the subsequence is convergent. But a Cauchy
sequence with a convergent subsequence is convergent, which proves that νI

ε (A) is
convergent for any set A.

The proof for convergence of νO
ε is similar and we will omit it. Both limits exist,

and it is obvious that they fulfill the inequality:

lim
ε→0

νI
ε (A) ≤ lim

ε→0
νO

ε (A), for any A ⊂ Π.

We want to prove that the inequation above holds in fact with equality. Assume
that the inequality is strict; then let δ = νO

0 (A) − νI
0 (A) > 0. But this would mean

that there exists at least a cell in any partition Pε of size δ > 0, for all εn → 0.
However, in the limit the two sets of sumation become equal (with union A), so a
contradiction results.

Definition 5.2 Define the measure ν over the simplex Π as the common limit of the
two sequences of measures:

ν(A) = lim
ε→0

νI
ε (A) = lim

ε→0
νO

ε (A) (5.3)

for a given A ⊆ Π.

For the proofs in the next two sections we will use definitions and notations also
found in [49].
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5.3.2 Step 5.2: Existence of a unique maximal ψ-irreducibility mea-
sure

Definition 5.3 Denote by B(π0, δ) = {π ∈ Π : ‖π − π0‖ < δ} the open ball, with
δ > 0.

Definition 5.4 Denote by B(Π) the σ-field generated by the open balls in Π.

Definition 5.5 Denote, for any state π ∈ Π and subset A ∈ B(Π), the probability
that, when starting in state π, the chain ever reaches subset A:

L(π,A) = Pπ(τA <∞)

Lemma 5.4 Let πn ∈ Π, n = 0, 1, . . . be a sequence of information states. Then πn

is φ-irreducible on B(Π).

Proof: Let πs be the stationary distribution of the underlying chain. Define the
measure φ on B(Π) as:

φ(B(πs, δ)) = µLeb(B(πs, δ))
φ(A) = 0, otherwise (5.4)

In the step 3 of the proof, we proved πs is reachable from anywhere. Hence, for all
π ∈ Π, we have L(π,B(πs, δ)) > 0, and φ is an irreducibility measure. �

Note: If a φ-irreducibility measure exists, then there is a part of the space reach-
able from anywhere, so one might expect independence of the chain from the initial
conditions, by analogy with finite chains.

Proposition 5.1 If πn is φ-irreducible, then there exists a unique ’maximal’ measure
ψ on B(Π) such that πn is ψ-irreducible and φ ≤ ψ. We denote by B+(Π) the σ-algebra
of Π with sets on which ψ is positive.

Proof: The proof is standard for chains fulfilling the previous conditions, and it can
be found in [49]. �

5.3.3 Step 5.3: Uniqueness of the invariant measure on Π

Definition 5.6 We call α ∈ B(Π) an atom for a sequence πn if there exists a measure
µ on B(Π), such that, for any π ∈ α, P (π,A) = µ(A) (for any A ∈ B(Π)).

Definition 5.7 We call α an accessible atom for a sequence πn, if πn is ψ-irreducible
and ψ(α) > 0.

Note: Atoms behave like states in finite chains. From the development in [49], it
turns out that the reason why so many results about finite chains carry over to more
general settings is precisely the fact that it is always possible to construct atoms.
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Proposition 5.2 All balls B(πs, δ), with δ > 0, are accessible atoms for any sequence
πn.

Proof: Let α be a set in B(Π), and let π ∈ α. Then, depending on the current
observation r, there are three possible transitions from π, via the recursion function
F [π, g(π), r]. Then for any A ∈ Π we can consider the measure:

µ(A) = p(r), if F [π, g(π), r] ∈ A
µ(A) = 0, otherwise.

Then any α = B(πs, δ) is an accessible atom. �

Definition 5.8 Denote by Eπ [ηA] the expected number of returns of the chain to
subset A ∈ Π when starting in state π.

Definition 5.9 A set A ∈ B(Π) is called recurrent if Eπ [ηA] = ∞ for all π ∈ A
(when starting in A, the expected number of returns to A is infinite).

Lemma 5.5 If πn is ψ-irreducible and admits a recurrent atom α, then every set in
B+(Π) is recurrent.

Proof: If A ∈ B+(Π) then for any π, there exist r, s such that P r(π, α) > 0,
P s(α,A) > 0 and we can write, by considering the paths of the chain that go from π
to A via the atom α:∑

n

P r+s+n(π,A) ≥ P r(π, α)[
∑

n

Pn(α, α)]P s(α,A) =∞.

since α being an atom implies that
∑

n P
n(α, α) diverges. �

Note: Observe again the analogy between atoms and states of a finite chain.

Definition 5.10 A sequence πn is called recurrent if and only if it is ψ-irreducible,
and Eπ[ηA] =∞ for any π ∈ Π and A ∈ B+(Π).

Lemma 5.6 Any sequence of information states drawn from the Markov chain πn is
recurrent.

Proof: From Lemma 5.4 and Proposition 5.1 it results that πn is ψ-irreducible. Fur-
thermore, from step 3 of the proof it results that all the balls B(πs, δ), with δ > 0,
are recurrent atoms. Then every A ∈ B+(Π) is recurrent, and from Definition 5.9, it
results that Eπ [ηA] =∞ for all π ∈ A. We still need to prove that even if π /∈ A, we
still have L(π,A) = 1. By definition, L(π,

⋃B+(Π)) = 1. Suppose the sequence πn

hits at some time a set B ∈ B+(Π). If A = B, then the sought result follows. Other-
wise, we will have L(y,A) > 0 for all y ∈ B, because of the ψ-irreducibility over B+.
But B ∈ B+(Π) and Ey[ηB] = ∞, so it results L(y,A) = 1. So finally L(π,A) = 1
and this case is reduced to the previous one (where π ∈ A). Hence, πn is recurrent. �
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Definition 5.11 A sequence πn is called positive if and only if it is ψ-irreducible
and admits an invariant measure γ.

Lemma 5.7 (Kac’s theorem) If a sequence πn is recurrent and admits an atom
α ∈ B+(Π), then πn is positive if and only if Eα[τα] <∞.

Proof: If Eα[τα] < ∞ then obviously L(α, α) = 1, so it results πn is recurrent. It
also results from the structure of γ (see [49]) that γ is finite, so positive as well. The
converse results from the structure of γ as well. �

Lemma 5.8 The sequence of information states πn is positive.

Proof: From Lemma 5.6 it results that πn is recurrent. Also, from step 3 of the proof
it results that every ball α = B(πs) ∈ B+(Π) is an atom, and Eα(τα) < ∞. Then it
results πn is positive. �

Theorem 5.1 There exists an unique invariant probability measure of πn.

Proof: The proof for this theorem is valid for chains having the properties we have
analyzed until now, and can be found in [49]. �

5.3.4 Step 5.4: Invariance of ν

We will state now the main theorem of this chapter.

Theorem 5.2 The measure ν (as constructed in step 5.1) is the unique invariant
probability measure on Π.

Proof: For invariance of ν, we need to prove that

ν(A) =
∫

Π

ν(dy)P (y,A). (5.5)

From the definition of ν we have that for any ε > 0,

νI
ε (A) ≤ ν(A) ≤ νO

ε . (5.6)



5.4. Numerical Simulations 97

If we denote by Pε(·, ·) the transition probability kernel for the ε-discretization,
then we can rewrite the rightmost term of the inequality (5.6) as:

νI
ε (A) =

∑
S∈Pε:S⊆A

pε(S)

=
∑

S∈Pε:S⊆A

∑
T∈Pε

pε(T )Pε(T, S)

=
∑

T∈Pε

∑
S∈Pε:S⊆A

pε(T )Pε(T, S)

=
∑

T∈Pε

pε(T )Pε(T,∪{S ∈ Pε : S ⊆ A})

In a similar manner we can rewrite the expression for νO
ε (A):

νO
ε (A) =

∑
T∈Pε

pε(T )Pε(T,∪{S ∈ Pε : S ∩A �= ∅})

By taking now the limit in expression (5.6), we know that both left and right
limits exist and are equal, so it results

ν(A) = lim
ε→0

∑
T∈Pε

pε(T )Pε(T,∪{S ∈ Pε : S ⊆ A})

= lim
ε→0

∑
T∈Pε

pε(T )Pε(T,∪{S ∈ Pε : S ∩A �= ∅})

(a)
=

∫
Π

ν(dy)P (y,A), (5.7)

where equality (a) holds because, under some continuity conditions, in the limit ε→ 0:
the sum becomes integral; the probability limit ν exists ; the quantization cell T ∈ Pε

becomes the infinitesimal integration variable T → dy; the transition probability
kernel Pε(·, ·) → P (·, ·); both the reunions of cells included in A and respectively
intersecting A cover whole set A.

From (5.7), it results that ν is invariant, and thus it is the unique invariant mea-
sure on Π. �

5.4 Numerical Simulations

In this section, we show results of numerically evaluating the integrals above. We
simulated a system with N = 2, N = 4, and N = 8 sources, and with different values
for the loss threshold T = 0.02, T = 0.05, and T = 0.1. The chain is birth-and-
death with probability p. We let the system run for t = 100000 time steps. We plot
the average throughput and loss as a function of the transition probability p. The
resulting plots are shown in Figures 5.5, 5.6. We see that the plots do not depend
significantly on p: the dependence is essentially on the stationary probability πs of
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the original chain P , which is the same for any symmetric birth-and-death chain. As
expected, large values for T imply larger throughput, as the controller is allowed to
probe more often the environment; this is on the expense of increased losses.

5.5 Example: Slotted Aloha

There have been important research efforts recently focused on access protocols for
sensor networks. Algorithms designed for classical networks do not always work in
this context, due to the special properties of the wireless access medium. Randomized
access protocols have emerged to be the most appropriate in this setting (e.g. IEEE
802.11), because they cope well with the randomness of the access medium and with
the changing of environment conditions.

We focus on slotted Aloha as MAC protocol [8]. In the model we have studied
in the previous two chapters, each source has feedback only from the router, about
the successful transmission of its own packets. On the contrary, in Aloha, feedback
is shared, so all information sources know at each time moment whether the router
successfully sent a packet. In this section, our goal is to design an algorithm for
slotted Aloha to estimate in the best possible manner the instantaneous number of
backlogged packets and the corresponding optimal injection probability.

Consider a number of sources accessing a bottleneck router. The overall pro-
cess formed by the number of packets that arrives from all the information sources
together is modeled with an arbitrary arrival distribution: a new packets arrive at
time k with probability p(a = ak) at the bottleneck. We focus on the infinite set of
nodes approach [8]. That is, each new packet newly arrived is regarded as a separate
node, no matter which source it belongs to. The packet is either transmitted with
probability qk, or backlogged. We further assume that if two or more nodes try to
transmit at the same time instant, then a collision occurs, and consequently they are
all backlogged. A correct transmission does happen only if exactly one of the nodes
attempts transmission in a given time slot.

Our goal is to design a policy for controlling the injection attempt probability qk
that the sources need to use at time k, in order to maximize their throughput. We
know from the slotted Aloha theory [8] that this happens when qk = 1/bk, where bk is
the number of backlogged packets. However, the problem is that no source knows the
overall number of backlogged packets, so the best it can do is to make an estimation of
it. It is crucial to have a good estimation of this number to ensure good performance
and stability of the system [8]. We propose an algorithm based on a hidden Markov
chain model for this system, and derive a control for the transmission probability
based only on feedback information from the router.

5.5.1 System Model and Dynamics

We consider a number of sources accessing a single shared bottleneck router. The ac-
tual number of sources is not essential in the ’infinite set of nodes’ approach. Only the
overall number of backlogged packets is important, no matter from which particular
source they originated.

The system parameters we consider for our model are:
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Figure 5.5: The plots of average throughput from top to bottom: N = 2, 4, 8 sources.
Legend: dotted plot, T = 0.1; dashed plot, T = 0.05; solid plot, T = 0.01.
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Figure 5.6: The plots of average loss from top to bottom: N = 2, 4, 8 sources. Legend:
dotted plot, T = 0.1; dashed plot, T = 0.05; solid plot, T = 0.01.
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Figure 5.7: A Slotted Aloha access medium.

• The arrival process, which is determined by the probability distribution of the
random process ak of newly arrived packets at time k, p(ak). This is considered
as a ’constant’ of the system, and assumed to be known.

• The unknown state of the system, which is given by the total number of back-
logged nodes, bk ∈ {0, . . . , Bmax}.

• The number of backlogged nodes, which increases by one unit for each new
arrival, and decreases by one unit for each successful sending.

• The injection probability qk (the parameter to be controlled). The optimal value
[8] for qk in order to maximize the throughput is 1/bk.

• The three-valued feedback rk ∈ {−1, 0, 1} for collision/no packet sent/successful
transmission, observed at the router is available to all the backlogged nodes.

The Aloha model assumes that unsuccessfully sent packets are again backlogged.
Backlogged packets behave like separate nodes. That is, even if a source has more than
one packet backlogged, it will try to transmit each of them separately with probability
qk. This also insures some sort of fairness, that is sources that have many packets
backlogged will have more chances to transmit one of them than other sources that
have few packets backlogged. We will show that the number of backlogged packets
bk forms a partially observed (hidden) controlled Markov process, that is, given all
past states and controls, bk+1 depends only on bk and qk. The partial observation
is the feedback rk resulted by applying the control qk. We denote the corresponding
transition matrix of the controlled chain by Pqk

(see below). For a complete theory
of partially observed control Markov chains, see [38].

The probability of getting a certain value for the observation rk depends only on
the number of backlogged packets bk and on the applied control/ injection probability
qk. A packet is accepted if only one of the backlogged nodes decides to transmit. No
packet is sent when none of the nodes attempts transmission. This can be expressed
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with the following equations:

p(rk = 1|qk, bk) = bkqk(1− qk)bk−1

p(rk = 0|qk, bk) = (1− qk)bk

p(rk = −1|qk, bk) = 1− (bkqk(1 − qk)bk−1 + (1− qk)bk)

All the information available about the number of backlogged packets bk can
be gathered the information state. As information state, we will use, again, the
conditional probability vector πk+1 = [p(bk+1 = 0|qk, rk), . . . , p(bk+1 = Bmax|qk, rk)]
where, for a random variable v, we denote vk = {v0, . . . , vk}.

This quantity can be computed recursively. We first state the formula for updating
the information state when the new information rk, qk is available [38]:

πk+1 = πkPqk
D(rk, qk)

where Pqk
is the transition matrix of the controlled Markov chain when the con-

trol is qk, and D(rk, qk) is a diagonal matrix having as elements p(rk|qk, b), for
b = 0, . . . , Bmax.

If the injection rate is q, then the corresponding elements of the matrix Pq can be
computed as:

Pq(n, n+ i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(ak = 0) + p(ak = 1)q,
if n = 0, i = 0
p(ak = i)(1− (1i)q(1 − q)i−1+
+p(ak = i+ 1)

(
1

i+1

)
q(1− q)i),

if n = 0, i �= 0
p(ak = 0)

(
1
n

)
q(1− q)n−1,

if n > 0, i = −1
p(ak = i)(1− ( 1

n+i

)
q(1− q)n+i−1)+

+p(ak = i+ 1)
(

1
n+i+1

)
q(1− q)n+i,

if n > 0, i ≥ 0
0 otherwise

So far, we have described the main ingredients of our system. We proceed now with
a description of the dynamics of the system. At each step k, the transmitting sources
keep track of the information state πk and compute πk+1 using the new available
information, control qk and observation rk. Then the optimal injection rate that
each backlogged node should employ can be derived using a dynamic programming
algorithm [38], to maximize on the long term cost function. A suboptimal yet very
simple and intuitive algorithm is to just compute the estimated number of backlogged
packets best

k+1 = ceil(Eπk+1bk+1), and then use at time k + 1 an injection probability
qk+1 = 1/best

k+1. Thus, at time k + 1, with probability p(ak+1) a total of ak+1 new
packets arrive, each backlogged or newly arrived packet attempts to get through with
probability qk+1, and an observation rk+1 is consequently generated by the router.
The process repeats for every time slot k.
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Figure 5.8: An illustration of our algorithm for Aloha access: the estimated number of
backlog packets keeps track of the real value.

5.5.2 Numerical Results

We use as arrival process an i.i.d. process with p(ak) = (0.76, 0.16, 0.05, 0.02, 0.01)
where ak = 0, 1, . . . , Amax is the number of newly arrived packets. As an example1:
probability of 0 new arrivals is p(ak = 0) = 0.76, probability of 1 new arrival is
p(ak = 1) = 0.16 etc. Any arrival process can be considered (though it has to be
estimated beforehand and assumed stationary along the experiment), as long as it
fulfills the stability condition E(ak) < 1/e = 0.3679 [8], for the case of constant
service capacity 1.

Our performance evaluation is to see how close the estimation of the number of
backlogged packets is to the real value, and of course the ultimate goal would be to
keep it as close to zero as possible. Figure 5.8 shows a T = 1000 plot. We see that the
estimated value of the number of backlogged packets does indeed keep a reasonably
good track of the real value. A complete analysis of this algorithms is a subject of
our further research.

5.6 Conclusions

In this chapter we have proved that the information state introduced in Chapter 4
converges in the limit. This shows that our system is provably stable. Since the opti-
mal control is a function of the information state, it follows that various performance
metrics of interest, like for example the average throughput and loss, converge weakly
too.

Our proof is based on the theory of Markov chains over general spaces. We first

1This example is chosen so as to ensure the stability of the queue. We considered this particular
distribution because its mean is 0.36, or very close to the ’saturation’ threshold. Note that an
obvious choice would be a Poisson arrival process, however we argue that our algorithm is valid also
for arbitrary arrival distributions.
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showed that the limit measure exists, and then we showed a method to construct it by
using successive discretizations over the information state spaces. Finally, we applied
our results to derive a provably stable estimation of the injection probability in the
Aloha protocol.



Chapter 6

Conclusions and Future Work

6.1 Summary

6.1.1 Network Correlated Data Gathering

The first part of this thesis was concerned with the optimization of the total flow cost
in networks measuring correlated data. We showed that, in general, the flow opti-
mization problems for networks with correlated data at nodes involve both the task
of supply allocation at nodes, and the task of finding good transmission structures.
We showed how a separate treatment of these tasks can lead to highly sub-optimal
solutions. Thus, an important goal is to solve the joint problem of rate allocation and
transmission structure optimization for such networks. Our setting led to original
rate allocation problems and original tree building problems, depending on the source
coding model.

We considered a family of cost functions that is widely met in various practical
scenarios, namely the class of separable metrics [F (rate)] × [link weight]. We studied
the two possible coding paradigms that are met in such problems, namely coding by
using explicit communication, and Slepian-Wolf coding. The main analyzed scenario
was the data gathering problem, namely the case when there is a single sink to which
data from all the other nodes needs to arrive. We also studied generalizations of our
results to arbitrary traffic matrix problems.

For the explicit communication approach, we showed that rate allocation is easy
to be done, since the compression at a node is directly dependent on the data from
nodes that use it as a relay. However, we proved that the rate allocation and the
chosen transmission structure are inter-related, so the two tasks cannot be separated.
Moreover, we proved that finding an optimal transmission structure is NP-complete
even for very simplifying assumptions. Our main result for the coding by explicit
communication case states that there is no polynomial time algorithm that solves
the network data gathering tree cost problem, unless P=NP. Our proof is a non-
trivial reduction from the min-set cover problem, that is a problem known to be
NP-complete.

We also proposed distributed approximation algorithms that are expected to per-
form well for arbitrary settings. Namely, we propose an original tree structure for

105
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the case when single hop opportunistic aggregation coding is performed, namely the
SPT/TSP tree (shortest path tree/traveling salesman path), which builds the SPT
for nodes in a certain radius away from the sink, and TSP s for the rest of the network.
Our algorithm is inspired from insights obtained by using simulated annealing to find
structures close to the optimal one, for our computational-hard problem.

The second approach is to allow nodes to use joint coding of correlated data
without explicit communication, by using Slepian-Wolf coding. With this approach,
finding a good routing structure turns out to be easy, because routing and coding
are separated (decoupled); however data coding becomes complex and global network
knowledge is needed for an optimal solution. In the second approach, namely coding
by explicit communication, nodes can exploit the data correlation only by receiving
explicit side information from other nodes (for example, when other nodes use a node
as relay, their data is locally available at that relaying node). Thus, the correlation
structure is exploited through communication and joint aggregate coding/decoding
locally at each node. In this case, data coding is easy and relies only on locally
available data as side information. However, optimizing the routing structure becomes
complex.

For the Slepian-Wolf approach, we proved that a well-studied transmission struc-
ture, namely the shortest path tree, is optimal for any rate allocation. Thus, the tasks
of rate allocation and transmission structure optimization separate in this case. We
showed how the rate allocation problem can be solved numerically with the help of
Lagrange multipliers, for the case of a general separable cost function. We focused
our study further on linear cost functions, for which the optimization problem reduces
to a linear programming (LP) problem. We assessed the difficulty of the problem in
the multiple sink case, and studied in more detail the data gathering problem with
a single sink. Namely, we found the rate allocation solution of this LP problem in a
closed form.

Next, we have shown a comparison in terms of scaling laws between the two coding
approaches. For a one-dimensional network, we provided scaling laws for asymptotic
behavior and limits of the ratio of total costs associated to the two coding approaches.
In particular, we showed that for some conditions on the correlation structure, the
use of Slepian-Wolf coding techniques can result in unbounded gains in terms of total
flow cost over simple coding by explicit communication. We also provided examples to
support our results with two widely used correlation models for the Gaussian random
field.

Furthermore, we presented a decentralized approximation algorithm for the rate
allocation in the single sink case, that is based only on local information available
at nodes from their neighborhood. This algorithm gives a solution very close to the
optimum since the neglected conditioning is small in terms of rate for a correlation
function that is sufficiently decaying with distance.

We also presented numerical results for a particular widely used data model,
namely the Gaussian random field; our simulations show the possible benefits, in
terms of total flow cost optimization, that can be obtained from a practical imple-
mentation of the algorithms we propose.

Summarizing, the main tradeoff between the two settings for rate allocation and
transmission of correlated data across a network is

• If nodes are assumed to know the correlation structure (or equivalently, the



6.1. Summary 107

dependence on the distance), then they can employ Slepian-Wolf coding. In
this case, source coding is complex while the transmission structure can be
found with classical polynomial time network flow algorithms.

• If the correlation structure is not known a-priori, then side information is needed
to reduce the entropy. In other words, the correlation structure is learned (ex-
plicitly) in a distributed manner through explicit communication. This leads to
a simple source coding, but the transmission structure optimization is hard.

Further, we analyzed the complexity of the scenario when a combination of the
the two coding approaches is used, namely Slepian-Wolf coding is done on clusters
of nodes, and coding by explicit communication is done between clusters; namely, we
conjecture that the problem of optimal clustering is NP-complete.

6.1.2 Queues Under Feedback Control

In the second part of this thesis we considered the modeling and analysis of the control
of multiple access queues with partial information. We formulated a queueing problem
in which the process of arrivals is not independent of the (partially observed) state of
the queue. We studied the structure, properties, and long term behavior of control
devices for accessing such queuing systems. We were inspired by the mechanism of
TCP’s flow control in our attempt to model the general problem of controlling systems
for which the state is approximated locally in the transmitters by means of control
actions and respective observations obtained about the state of the system. These
control actions affect the state of the commonly shared resource.

In particular, we considered a bottleneck router with finite buffer and constant
service rate, accessed by a variable number of sources that turn between on/off trans-
mitting states independently of each other. The injection rates (control actions) are
modeled as Bernoulli random variables: an active source decides between transmit-
ting a packet or staying idle with a certain probability. The goal was to find the
optimal control strategy a source should use, under the assumption that the only
locally available information is the instantaneous feedback received from the router
about the successful acceptance of the respective packet by the buffer.

First, we solved the corresponding optimal control problem. We have found an
optimal control policy for our setting, based on the classical theory of control op-
timization by dynamic programming for partially observed Markov systems. Under
this framework, the optimal value for the control is uniquely determined by a quantity
that characterizes the system, based on the previous evolution, and which contains
all the information about the state of the network that is available locally at the
source, namely an information state. We showed how a good choice for this quantity
is the conditional probability of the true state of the chain of active sources, given
the history of controls and corresponding observations available to the source until
the current time; the information state can be easily computed locally by means of
a recursion formula. Our algorithm essentially provides a memoryless function that
provides the optimal control as a function of the instantaneous value of the informa-
tion state. This function depends on the performance criterion set for the algorithm.
In our case, we chose as relevant cost function the expected throughput of the source,
under constraints on the losses.



108 Chapter 6.

Our simulations showed that if the speed of variation of the number of active
sources is inside some limits, and given an appropriate level for the loss threshold, then
the control algorithm we propose is able to sense in an adaptive manner variations in
the available bandwidth, and thus to use the channel efficiently, while still maintaining
fairness with respect to the other users.

Our study focused next on performance criteria for our system, namely average
throughput and average loss. We argued that an important tool to give analytical
expressions (even if not in a closed form) for such performance criteria is the limit
distribution of the information state. Thus, we further studied the existence, con-
struction and properties of this invariant measure. We proved what we believe is an
important theorem regarding the ergodic behavior of our system, namely the exis-
tence of a suitable invariant measure. Our main insight to tackle these problems was
that by conditioning on information states, the arrivals process does become a process
with independent increments. Since this conditioning term is Markov itself, this is
how the model is rendered analytically tractable.

In short, we proved the theorem on the convergence in distribution as follows. We
showed that the information state process forms a Markov chain over the simplex of
N -dimensional probability vectors. For this chain, jumps outside cells of size smaller
than a fixed constant happen with non-zero probability, no matter what is the state.
This helps constructing a family of discretizations for the chain, which induces finite
state Markov chains with recurrent classes. The corresponding recurrent restrictions
have in the limit stationary distributions. Next, we proved that when the size of
the cell becomes infinitely small, there exists an invariant probability measure over
the simplex that is positive on the recurrent subset of the simplex, and null outside,
which is the limit probability distribution we are looking for. For this last step of the
proof we used results on the theory of Markov chains over uncountable metric spaces
(Meyn and Tweedie provide an excellent coverage of the problem of Markov chains
on general spaces [49]).

An interesting conclusion we draw from our results is that to make a system effi-
cient in an information theoretic sense requires driving the system very close to the
instability point. Consistent with this observation, for our model to be efficient the
queue needs to be driven past the stability point and into the instability region. This
is because, without being able to observe the state of the system but being able to
observe when the system becomes unstable, this instability is the only indication we
have that we are operating at peak efficiency. Note that this is a key idea behind
the implementation of TCP (increase window size while packets get acknowledged,
decrease when packets get lost). Also in our model, without forcing “TCP compati-
bility”, we observe the exact same type of behavior (small increases in rate at positive
ACKs, and drastic reductions at NACKs), thus providing some analytical evidence
(on top of the unquestionable abundant empirical evidence) of the soundness of TCP’s
design.
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6.2 Future Research

6.2.1 Rate Allocation and Transmission Structure Optimization in
Networks with Correlated Data

The main direction of future work is the study of the combined approach of the two
coding techniques. We have seen that Slepian-Wolf coding may provide important
gains in terms of flow cost optimization, however it is more complex to perform than
coding by explicit communication. It makes sense then to combine Slepian-Wolf cod-
ing and explicit communication, namely clusters of nodes to code data jointly with
a Slepian-Wolf procedure, while the further reduction in data size due to communi-
cation between clusters to be based on explicit communication. For instance, since
nodes that are close to the base station relay data from the rest of the network, they
will have an important amount of side information available and thus, they do not
need to employ Slepian-Wolf coding, reducing the complexity in terms of coding.

One other interesting issue is the power consumption equalization across the net-
work in the case of sensor networks. The cost considered in this thesis seeks to
minimize the total power consumption, however another interesting metric is the life-
time of the network. The lifetime of the network is usually measured in terms of the
time of the first node failure (or depletion). The goal of this direction of research
is the derivation of algorithms for evenly distributing the power load among loads.
In the current approach, nodes close to the base station have to relay data from the
whole network, and thus are more prone to quick depletion of resources.

A complete characterization of our problem would also have to include constraints
concerning the maximum rate that can be supported by links. These constraints are
given for example by the capacity of those links. We expect however the constraint
problem to be significantly more difficult than the current setting.

6.2.2 Multiple Access Control with Partial Information

There are some more issues that still need to be dealt with about our queuing model.
One of them is related to the existence of alternative characterizations of the optimal
control law (other than the standard one given by Dynamic Programming, which is
what we used so far). Namely, our conjecture is that if a controller forces average
losses = T , then it is optimal. Note that in the case of complete state observations,
this condition is sufficient for optimality. This problem is relevant because it may
allow us to derive control laws—optimal and/or (theoretically sound) heuristics—of
far lower complexity than the DP law, especially for the case of partial information.

Knowing that there exist ergodic limits for the behavior of our model raises the
question of rates of convergence. How long does it take for the system to reach the
ergodic regime, over what time scales is the system well described by its ergodic
properties? Thus, it appears necessary to give some kind of analytical expression for
the integral

∫
pdµ, as a function of parameters the underlying Markov chain. We have

explored this issue to some extent by means of numerical simulations, in Section 5.4.
A direction of further research is the analytical study of this integral.

The concern about the complexity of the optimal DP control law is a recurrent
one for us, as can be seen from the work that we express interest in above. The
question of rates of convergence to ergodic limits is certainly interesting in its own
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right, not only from a purely theoretical point of view. Knowing the exact conditions
under which we can approximate the dynamics of our model with its ergodic behavior
would enable us to develop greatly simplified control laws that still would have a sound
theoretical basis. We believe both (a) that there is enough structure in this problem
to develop remarkably simpler control algorithms than that based on implementing
the DP equations, and (b) that this is a meaningful thing to do, since the benefit for
applications would be substantial.
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[20.] Lebrun, Jérôme. Balancing MultiWavelets. EPFL 2192(2000), May 2000.

[21.] Weidmann, Claudio. Oligoquantization in Low-Rate Lossy Source Coding. EPFL
2234(2000), July 2000.

[22.] Balmelli, Laurent. Rate-Distortion Optimal Mesh Simplification for Communi-
cation. EPFL 2260(2000), September 2000.

[23.] Marziliano, Pina. Sampling Innovations. EPFL 2369(2001), April 2001.

[24.] Horbelt, Stefan. Splines and Wavelets for Image Warping and Projection.
EPFL 2397(2001), May 2001.

[25.] Hasler, David. Perspectives on Panoramic Photography. EPFL 2419(2001),
July 2001.

[26.] Do, Minh N. Directional Multiresolution Image Representations. EPFL 2500(2001),
November 2001.

[27.] Dragotti, Pier Luigi. Wavelet Footprints and Frames for Signal Processing and
Communications. EPFL 2559(2002), April 2002.

[28.] Pecenovic, Zoran. Integrating Visual and Semantic Descriptions for Effective,
Flexible and User-Friendly Image Retrieval. EPFL 2679(2002), October 2002.

[29.] Hu, Xiao-Yu. Low-Delay Low-Complexity Error-Correcting Codes on Sparse
Graphs. EPFL 2681(2002), November 2002.

[30.] Gastpar, Michael. To Code Or Not To Code. EPFL 2687(2002), December
2002.




