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Multiple description coding (MDC) with side information (SI) at the receiver is particularly relevant for robust transmission in
sensor networks where correlated data is being transmitted to a common receiver, as well as for robust video compression. The
rate-distortion region for this problem has been established in (Vaishampayan 1993). Here, we focus on the design of a practical
MDC scheme with SI at the receiver. It builds upon both MDC principles and Slepian-Wolf (SW) coding principles. The input
source is first quantized with a multiple description scalar quantizer (MDSQ) which introduces redundancy or correlation in the
transmitted streams in order to take advantage of the path diversity. The resulting sequences of indexes are SW encoded, that is,
separately encoded and jointly decoded. While the first step (MDSQ) plays the role of a channel code the second one (SW coding)
plays the role of a source code, compressing the sequences of quantized indexes. In a second step, the cross-decoding of the two
descriptions is proposed. This allows us to account for both the correlation with the SI as well as the correlation between the two
descriptions.
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1. Introduction

Multiple description coding (MDC) has been introduced as a
generalization of source coding subject to a fidelity criterion
for communication systems that use diversity to overcome
channel impairments. Several correlated representations of
the signal are created and transmitted on different channels.
The design goals are therefore to achieve the best average
rate-distortion (RD) performance when all the channels
work, subject to constraints on the average distortion
when only a subset of the channels is received correctly.
Practical approaches to MDC include scalar quantization
[1], polyphase decompositions [2–5], correlating transforms
[6, 7], and frame expansions [8]. In the sequel, we consider
multiple description scalar quantization (MDSQ) which
allows a very easy tuning of the redundancy as well as a
simple coding and decoding.

MDC is an interesting tool for robust communication
over lossy networks such as the Internet, peer-to-peer,
diversity wireless networks, and sensor networks. MDC

avoids the cliff effect of classical forward error correction
techniques. A resilient peer-to-peer streaming approach is
proposed in [9] based on the transmission of multiple
descriptions on distribution trees which introduce diversity
in network paths. Jointly optimized multipath routing and
MDC is also shown in [10] to improve the end-to-end quality
of service in dense mesh networks.

This paper goes one step further and considers the
case where correlated side information (SI) about the
transmitted source is available at the receiver. Since MDC
introduces redundancy in the transmitted data, the overall
rate increases. We will show that the use of SI at the
decoder allows decreasing the overall coding rate while
preserving the robustness inherent to the MDC structure.
The RD region for MDC when SI about a correlated random
process is only known at the decoder has been established
in [11]. Analytical expressions of the RD bounds are derived
for Gaussian sources and a Gaussian correlation model,
assuming the SI to be common to the two descriptions. Here,
we focus on the design of a practical MDC scheme with
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Figure 1: Two-description source coding with common decoder-
only SI.

SI at the receiver. It builds upon both MDC principles and
Slepian-Wolf (SW) coding principles. The input source is
first quantized with a multiple description scalar quantizer
(MDSQ). After quantizing the source on a given alphabet,
two indexes are assigned to the resulting discrete source
symbols. This index assignment can be seen as a lossless
MDC step which introduces redundancy or correlation in the
transmitted streams in order to take advantage of network
path diversity. The resulting sequences of indexes are SW
encoded, that is, separately encoded and jointly decoded.
Indeed, in the lossless case, the SW theorem [12] yields the
surprising result that one can compress correlated sources
in a distributed manner as efficiently as if they were jointly
compressed. While the first step (MDSQ) plays the role of
a channel code, the second one (SW coding) plays the role
of a source code compressing the sequences of quantized
indexes.

Recently, in [13], a deterministic annealing [14] app-
roach was described for optimal design of multiple descrip-
tion vector quantizer with SI available at the decoder. The
performance of the quantizer over channels subject to noise
and packet loss was investigated and compared with the
RD bound. However, it was assumed that each description
is compressed and decompressed independently using an
ideal SW encoder and decoder, respectively. In this paper,
we present a complete MDC scheme with SI where channel
codes are used as SW codes. The design of good quantizers
for this problem is not considered. Instead, we study the
influence of the amount of redundancy on SW decoding
as well as the impact of using the SI during reconstruction
and describe a way to perform a joint decoding of multiple
descriptions with SI.

The first use of channel codes—based on trellis codes—
as SW codes was proposed in [15]. Later, the first capacity
approaching channel codes to be proposed as SW codes were
turbo codes in [16, 17]. In [18], turbo codes were employed
for asymmetric distributed source coding. In [19], it was
shown that low-density parity check (LDPC) codes can also
be used in a source coding with SI setup to compress close to
the SW limit for memoryless correlated binary sources and
in [20] for memory correlated binary sources. More recently
[21], arithmetic codes were proposed as an alternative to
turbo codes and LDPC codes for small and medium block
lengths. A rate-compatible system was also provided in [22].
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Figure 2: Achievable rate region for the two-description coding
problem with SI.

In this paper, we thus first consider common SI to
be available for the decoding of the two descriptions.
Focusing on the particular case of two descriptions, the
approach results in a balanced two-description coding
scheme with decoder-only common SI (see Figure 1). In a
second step, cross-decoding of the two descriptions which
allows accounting for both the correlation with the SI as well
as the correlation between the two descriptions is considered.
Assuming on-off channels (description received or lost), it
has been observed that for a certain amount of correlation
between the input source X and the SI Y , increasing the
redundancy in the MDSQ does not necessarily increase as
much the transmission rate. As the correlation of the two
descriptions with the SI increases, the rate of the SW code
decreases. In that case, the extra robustness brought by
increasing the redundancy in the MDSQ comes at a moderate
rate cost.

The paper is organized as follows. In Section 2, we briefly
review the theoretical background of MDC with SI. We
then describe our proposed practical MDC scheme with
SI in Section 3. The latter is further improved in Section 4
with the introduction of iterative cross-decoding of multiple
descriptions with SI. Simulation results are presented in
Section 6. Finally, conclusions and future work in video
coding are provided in Section 7.

2. Theoretical Background

2.1. Lossless Coding. The duality between lossless MDC and
SW coding has been discussed in [23], in the particular
case where one description D1 (resp., D2) is transmitted at
full rate and used as SI to decode the second description
D2 (resp., D1). The corner points of the SW and the MDC
rate regions are shown to overlap. In the balanced setup
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considered here where both descriptions are SW encoded
and decoded with the help of extra SI Y correlated with
the input source, the two regions overlap. For the central
decoder, in which both descriptions are jointly decoded, all
rate points of the SW region can be reached (see Figure 2).
In the lossless case, the SW theorem [12] shows that the
minimum rate (R = R1 + R2) to compress the two sources
is the joint entropy H(D1,D2 | Y) with

R1 ≥ H(D1D2,Y),

R2 ≥ H(D2D1,Y),

R1 + R2 ≥ H(D1,D2Y).

(1)

2.2. Lossy Coding. The problem of MDC with SI has already
been studied in [11]. The authors have determined the RD
region for the general case when the decoders have different
SIs or when they have common SI, and when both the
encoder and decoder have access to the SI or when it is only
available at the decoder. Additionally, they have established
the two-description RD region for the Gaussian case through
the following theorem.

Theorem 1 (from [11]). Let (X(1),Y(1)), (X(2),Y(2)) . . .
be a sequence of independent and identically-distributed
(i.i.d.) jointly Gaussian random variables. Let Z(k) model the
correlation via a virtual AWGN channel between the random
variables Y(k) and X(k). Then, we can write that Y(k) =
X(k) + Z(k), where E[X2] = σ2

X and E[Z2] = σ2
Z . Only the

decoder has access to the SI {Y(k)}. For a quadratic distortion
measure, the set of all achievable tuples (R1,R2,D1,D2,D12) is
given by

Di > σ2
F e
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(3)

This theorem states that, similarly to the Wyner-Ziv coding
(WZC) case [24], the RD region in the two-description
Gaussian case when the SI is only known at the decoder is the
same as the one obtained when the SI is also known at the
encoder.

This problem has also been studied in [25, 26] where
the authors focus on the case when the decoders use two
different SIs Y1 and Y2. In [25], the RD region was defined
for Gaussian sources when the SIs are known at both encoder

and decoder and it was compared with the region obtained
in [26] when the SIs are not available at the encoder. It was
shown that the latter region is included in the former and
that they coincide if and only if Y1 = Y2.

In this paper, we focus on the scenario when the SI
is common and only known at the decoder (see Figure 1).
A practical two-description scheme with decoder-only SI is
described in the next section.

3. Multiple Description Scalar Quantization
with Side Information

Multiple description coding (MDC) consists in creating a
number of distinct correlated representations of a source.
Those representations are called descriptions. The reception
of only one description should permit the reconstruction of
the source with an acceptable quality level. Every description,
that is, received should increase the quality of the reconstruc-
tion. The particular case of coding with two descriptions
has been studied extensively, in theory and in practice
[27]. MDC is well adapted to the transmission of data
on multiple independent channels or on a fading channel
without memory.

MDSQ consists in generating two coarse side descrip-
tions of a scalar source using two (or more) independent
scalar quantizers. The quantizers refine each other in a way
that guarantees a central description of lower distortion,
when both side descriptions are available at the decoder. This
can be achieved by partitioning the real line and assigning
ordered pairs of indexes to the partition cells. The choice of
the index assignment entails the definition of the partitions
of the side decoders and thus allows for a systematic tradeoff
between the central distortion and the side distortions.
Practical approaches to build index assignment matrices are
presented in [1].

As an example, consider the matrices shown in Figure 3.
The indexes q ∈ {1, 2, . . . ,Q} belonging to the partition
cells of the central quantizer occupy distinct positions within
the matrices and are thus assigned as pair of indexes,
namely, the row index i ∈ {1, 2, . . . ,M}, and the column
index j ∈ {1, 2, . . . ,M}. Each of these indexes represents
a side description, which is sent over a separate channel.
If both channels are available to the receiver, decoding can
be performed by simple matrix lookup. With access to
only one description the decoder knows that the correct
value is among the indexes in a certain row or column.
The redundancy is controlled by choosing the number of
diagonals covered by the index assignment. In the following,
the matrices will be identified by their d value where 2d + 1
is the number of diagonals covered by the index assignment.

The proposed multiple description Wyner-Ziv coding
(MD-WZC) scheme is described in Figure 4. A source sample
Xn, n = 1, 2, ...,N is mapped to an index q by a quantizer
which is then mapped to a pair of indexes (i, j) by the
index assignment. Then, the two bitstreams of indexes are
separately encoded by a channel encoder. Only the parity
bits are being sent in the descriptions to the decoder. The
decoder begins by separately decoding the indexes using Y as
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Figure 3: MDSQ index assignment for a central codebook of dimension Q = 32, with (a) 1 diagonal (d = 0), (b) 3 diagonals (d = 1), and
(c) 5 diagonals (d = 2), where 2d + 1 is the number of diagonals covered by the index assignment.

SI. The channel probabilities are calculated from the parity
bits sent by the encoder and the virtual channel output Y .
The dependencies between Y and the indexes, P(I | Y) and
P(J | Y), are obtained from the index assignment matrix and
P(X | Y). Then, depending on the number of descriptions
received, a certain quality is achieved for the reconstructed
version of X . If only one description, that is one sequence of
indexes is received, then the decoder only has access to either
I or J . The corresponding quantization intervals and the SI
Y are used by the side decoders to compute X̂1 or X̂2, the
reconstructed versions of X :

X̂1 = E[XI ,Y],

X̂2 = E[X | J ,Y].
(4)

Their quality depends on the amount of redundancy intro-
duced by the MDSQ and by the correlation between X
and Y . In the case the two descriptions, that is, the two
sequences of indexes are received, the indexes are combined
to obtain the quantization intervals where X belongs. The
central decoder uses these intervals and the SI Y to compute
X̂12, the reconstructed version of X :

X̂12 = E[X | J ,Y]. (5)

Note that MD-WZC schemes could be implemented
using other MDC techniques, for example, relying on signal
polyphase decompositions [2–5], on pairwise correlating
transforms [6, 7] or on frame expansions [8]. The derivation
of the conditional pdf of each description given the SI
Y , from the given conditional pdf of the input signal X
given Y , will need to be adapted, since it depends on the
transformation or mapping of the input signal X into its
multiple descriptions. A specific design will also be required

to further exploit the SI in the decoding steps which follow
the SW decoder.

4. Cross-Decoding of Multiple Descriptions
with Side Information

To further improve the performance of the scheme, we
can exploit the redundancy between the descriptions at the
central decoder. This was first suggested for turbo codes in
[28] by performing cross-decoding between the descriptions
and further studied in [29, 30] for wireless communications
systems. We propose to generalize this approach to the case
where instead of channel outputs, an extra SI is available
at the decoder. Moreover, in our approach, the bitrate is
controlled by the decoder, which means that if the decoding
does not succeed, more parity bits may be requested to the
encoder. The correlation between the descriptions is given
by the index assignment matrix. For example, if we consider
the matrix in Figure 3(c), we get P(i = 1 | j = 1) = 1/3,
P(i = 1 | j = 2) = 1/4, P(i = 1 | j = 3) = 1/5, and
so forth. This correlation information can be used as an a
priori knowledge about i by the channel decoder of i, the
same applies for j. The overall decoder must combine the
extrinsic information Lout,(1) (resp., Lout,(2)) at the output of
the decoder of i (resp., j) with the conditional probability
distribution P( j | i) (resp., P(i | j)) and send the results as a
priori information to the channel decoder of j (resp., i) (see
Figure 5). The improved scheme is given in Figure 6, where
the channel cross-decoder block is represented in Figure 5.

Let {Xn,n = 1, 2, ...,N} denote the samples of a
memoryless i.i.d. source. This source is encoded at an
average rate of r bits per sample (bps) per channel using a
multiple description encoder (the bitrates used in the results
section VI-B are 5, 4, and 3 bps), producing two correlated
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bitstreams, u(s) = {u(s)
1 , . . . ,u(s)

rN}, s = 1, 2. We first consider
each bitstream to be separately encoded by a turbo encoder.
At the receivers, a bitstream of information bits is obtained
from the SI, y = {y1, . . . , yN}. Each of the decoders generates
an extrinsic log-likelihood ratio (LLR)

Lout,(s)
(k−1)r+t = log

P
(
u(s)

(k−1)r+t = 1 | yk
)

P
(
u(s)

(k−1)r+t = 0 | yk
)

− log
P
(
u(s)

(k−1)r+t = 1
)

P
(
u(s)

(k−1)r+t = 0
) , s = 1, 2,

(6)

where k = 1, . . . ,N , t = 1, . . . , r. It is calculated as the
difference between the a posteriori LLR and the a priori LLR.
We only describe the transfer of information from the first
decoder to the second decoder. The probability distribution
for the bits that constitute the second description can be
calculated from the extrinsic LLR of the first description:

P
(
u(2)

(k−1)r+t = 1
)

= P
(
u(2)

(k−1)r+t = 1 | u(1)
(k−1)r+t = 1

)
× P

(
u(1)

(k−1)r+t = 1
)

+ P
(
u(2)

(k−1)r+t = 1 | u(1)
(k−1)r+t = 0

)
× P

(
u(1)

(k−1)r+t = 0
)
.

(7)

The samples being i.i.d., the conditional probabilities do not
depend on k. Therefore, we can write,∀k ∈ {1, . . . ,N},

P
(
u(2)

(k−1)r+t = 1 | u(1)
(k−1)r+t = 1

)
=

∑
l:bt(l)=1

m:bt(m)=1

P
(
j = mi = l

)
,

(8)

P
(
u(2)

(k−1)r+t = 1 | u(1)
(k−1)r+t = 0

)
=

∑
l:bt(l)=0

m:bt(m)=1

P
(
j = m | i = l

)
,

(9)

where l ∈ {1, . . . ,M}, m ∈ {1, . . . ,M}, and {bt(l), t =
1, . . . , r} are the binary representations for the quantizer
index l. i and j are the row and column indexes in

the index assignment matrix. The conditional probabilities
are obtained from the index assignment matrix and the
distribution model of the source. Knowing (8) and (9), (7)
can be expressed as

P
(
u(2)

(k−1)r+t = 1
)

=
∑

l:bt(l)=1
m:bt(m)=1

P
(
j = m | i = l

)× P
(
u(1)

(k−1)r+t = 1
)

+
∑

l:bt(l)=0
m:bt(m)=1

P
(
j = m | i = l

)× P
(
u(1)

(k−1)r+t = 0
)

,

(10)

P
(
u(2)

(k−1)r+t = 0
)
= 1− P

(
u(2)

(k−1)r+t = 1
)
. (11)

Finally, the LLRs for the second description are obtained
from (10) and (11):

Lin,(2)
(k−1)r+t = log

P
(
u(2)

(k−1)r+t = 1
)

P
(
u(2)

(k−1)r+t = 0
) . (12)

These LLRs are used as a priori information for the second
decoder which, in turn, generates extrinsic log-likelihoods
for the first decoder. The transfer of information back to
the first decoder is carried out in a similar fashion. For a
given bitrate for the parity bits, this cross-decoding, where an
MAP decoding is performed at each step for each decoder is
carried out until the probability of having a bit error does not
change anymore or the number of iterations reaches a certain
threshold (the results shown in section VI-B were obtained
for a threshold set to 18), in which case more parity bits are
requested by the decoder. An interleaver before the encoding
of one of the descriptions is necessary to make sure that the
information contained in one description is not correlated
with the information contained in the other description for
a given bitrate. Similarly, the same procedure can be applied
to other near-capacity channel codes like LDPC accumulate
codes [31] (see [32] for more details).
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5. Optimal Inverse Quantization

After the indexes are perfectly decoded, they have to be
combined to recover the coefficients. We now derive the
equations to perform an optimal inverse quantization in the
presence of an SI. We consider the case of two correlated
memoryless Gaussian sources X and Y . The correlation
model is defined as X = Y + Z where Z is a Gaussian
noise with zero mean and variance σ2

Z . Let Q be the number
of quantization intervals and z0 < z1 < . . . < zQ
the quantization intervals of the source x. Since we are
minimizing the mean-square error, the optimal estimate x̂opt
of the source x (both at the central and side receivers) is given
by

x̂opt = E

⎡
⎣x | x ∈

K⋃
k=1

[
zki , zki+1

)
, y

⎤
⎦

=
∑K

k=1

∫ zki+1

zki
x fX|Y (x)dx

∑K
k=1

∫ zki+1

zki
fX|Y (x)dx

=
∑K

k=1

∫ zki+1

zki
xpZ

(
x − y

)
dx

∑K
k=1

∫ zki+1

zki
pZ
(
x − y

)
dx

,

(13)

where pZ(·) is the probability density function (pdf ) of
Z. The number K of quantization intervals for a given x
depends on the number of descriptions received and the
number of diagonals in the index assignment matrix. At the

central decoder, K = 1. At the side decoders, K is the number
of nonempty cells in the line or column pointed out by the
received indexes in the index assignment matrix. Given the
expression of the correlation noise pdf between X and Y , we
finally get

x̂opt = y +

(
σZ
√

2/
√
π
)∑K

k=1

(
e−b

2 − e−a
2
)

∑K
k=1(erf(a)− erf(b))

(14)

where a = zki+1 − y/σZ
√

2 and b = zki − y/σZ
√

2.

6. Experimental Results

The results were obtained for 100 sequences of 1584 input
samples of a zero-mean Gaussian source of unit variance for
Y . X is defined as X = Y + Z, where Z has a Gaussian
distribution with pdf pZ(n) ∼ N (0, σ2

Z). The samples of
X are first processed by an MDSQ encoder, which consists
of a Lloyd-Max quantizer that generates 32, quantization
intervals, followed by an index assignment performed with
the matrices shown in Figure 3, with 1, 3, and 5 diagonals,
corresponding , respectively, to 5, 4 and, 3 bits per output
symbol i and j. The index assignment matrices were built
using an embedded index assignment strategy [33] that
provides improved RD performances when not all the
bitplanes are received. Some symbols were removed by
hand to keep a fixed number of quantization levels, which
means that the matrices are slightly suboptimal. However,
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the nonoptimality of the MDSQ does not deflect from the
central focus of this paper.

Each description was coded using a turbo encoder that
consists of two 1/2 convolutional codes, implemented in
a recursive systematic form. The code is the same as the
one used in [34]. 18 iterations of the MAP algorithm are
performed by each decoder. The parity bits stored in two
buffers are transmitted in small amounts upon the decoders
request via the feedback channel. When the estimated bit
error rate (BER) at the output of the decoders exceeds a
given threshold, extra parity bits are requested. This amounts
to controlling the rate of the codes by selecting different
puncturing patterns at the output of the turbo codes. The
BER is estimated from the LLR on the output bits of the
turbo decoders [35]. This a posteriori LLR is defined as

L
app,(s)
(k−1)r+t = log

P
(
u(s)

(k−1)r+t = 1 | yk
)

P
(
u(s)

(k−1)r+t = 0 | yk
) , s = 1, 2, (15)

where u(k−1)r+t is the tth bitplane of the kth index in the
description s currently being decoded and yk is the SI. For
each k, if the absolute value of this a posteriori information
is lower than a certain threshold (fixed at 4.6), then the
bit u(k−1)r+t is considered erroneous. When all the bits in
a bitplane have been decoded, the BER is estimated by the
number of bits incorrectly decoded divided by the total
number of bits. If the BER is greater than a threshold
(fixed at 10−3), the decoding is considered to be a failure
and more parity bits are requested from the encoder. The
performance can be considered to be the same at both side
decoders (balanced MDC scheme). In the following, the side
performance will be represented by the average performances
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Figure 8: SNR comparison of the WZC and MD-WZC schemes.

obtained for both side decoders. The WZC scheme is a single
description coding scheme where the sequence of quantized
values of X is directly encoded by a turbo code.

6.1. MDSQ with Side Information. Figures 7 and 8 show
the performance obtained by the WZC and the MD-
WZC schemes for 10 Correlation Signal-to-Noise Ratio
(CSNR = 10 log10(σ2

Y /σ
2
Z)) (CSNR) values. An SNR value

identified by a point on a curve in Figure 8 is achieved by
sending parity bits at a rate provided by the same point
on the corresponding curve in Figure 7. Solid and dotted
curves correspond to schemes that use the SI during the
reconstruction step, whereas dashed curves were obtained
with schemes that do not use the SI at this step. As one can
see in Figure 8, when the SI is taken into account during the
reconstruction, the SNR values remain the same for WZC, all
MDC-WZC techniques at the central decoder, and for MD-
WZC with d = 0 at the side decoders. Note that here the
quantizer is a Lloyd-Max quantizer adapted to the pdf of the
distribution of X and not optimized for pZ . The SI is only
taken into account in the inverse quantization step (see (13)).
This explains the fact that when the CSNR is low, the SNR
performance of the side decoder without the SI for d = 0 is
slightly better than the SNR with SI, but gets worse when the
CSNR increases. The CSNR has a much greater impact on the
performance at the side decoders for d = {1, 2}, especially for
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Figure 9: Achievable SNR of the WZC and MD-WZC schemes.

d = 2 where the SNR can gain up to 12 dB when going from
a CSNR value of 4.5 dB to 18 dB.

From [12], we know that the minimum number of bits
per symbol one can achieve when compressing a source X
when only the decoder has access to a correlated source Y is
RX ≥ H(X|Y). For the WZC scheme, this limit is given by
RX ≥ H(XQ | Y) where XQ is the quantized version of X ;
for the MD-WZC schemes, it corresponds to RX ≥ H(I |
Y) + H(J | Y) when the descriptions are decoded separately.
Figure 7 shows the rates obtained by the various schemes. For
all the three index assignments considered, we plotted the
corresponding minimum number of bits per symbol for the
case when the decoding of the descriptions is done separately.
As expected, when we increase the number of diagonals, the
redundancy introduced by the MDSQ becomes smaller and
the bitrate becomes closer to the one we get with the WZC
scheme. Note that the impact of the CSNR values on the
bitrate diminishes when the number of diagonals becomes
larger. This is due to the fact that the correlation between Y
and the descriptions I , J not only depends on the CSNR but
also on the number of diagonals. This effect is clearly visible
in Figure 7 when the two curves that correspond to the MD-
WZC schemes for d = 1 and d = 2 cross each other at the
highest CSNR values. The same effect is observed with the
proposed scheme: when d becomes larger, the rate becomes
smaller, except for d = 2 and CSNR values greater than 15
dB, where the MD-WZC scheme with d = 1 performs better.

Figure 9 displays the theoretically achievable SNR given
by the Theorem 1 for the MD-WZC and WZC cases using
the rates in Figure 7. The theoretical limit is the same for
the WZC scheme and the side decoder of the MD-WZC
scheme with d = 0. One can see that for the WZC scheme
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Figure 10: Central rate comparison of the MD-WZC schemes with
and without turbo cross-decoding for different values of d.

and the MD-WZC scheme with d = 0, the achievable SNR
decreases when the CSNR increases, whereas the achievable
SNR remains almost stable for d = 1 and increases for d = 2.
Knowing from Figure 8 that the SNR at the central decoders
of all schemes is almost stable with the increase of the CSNR,
this shows that the SI is more useful with lower values of d.
Observe as well that for the central decoder of the MD-WZC
scheme with d = 2, the SNR reaches its theoretical bound
but only for the lowest CSNR values.

6.2. Cross-Decoding of Multiple Descriptions with SI. We now
study the influence of using turbo cross-decoding at the
central decoder. Figure 10 compares the WZC and MD-
WZC with turbo cross-decoding schemes for different values
of d. These results show that the benefit of using cross-
decoding improves as d decreases. For d = 0, the cross-
decoding can offer a bitrate saving up to 2 bps at the lowest
CSNR values, whereas for d = 1 and d = 2, the saving
is at most 0.65 and 0.13 bps, respectively. This is consistent
with the fact that the more correlated the descriptions are,
the more important will be the impact of circulating the
information across the decoders. Note that for d = 0, the
bitrate becomes lower than the theoretical bitrate for the case
without crossdecoding given in Figure 7. This shows that by
exploiting the correlation between I and J at the decoder, the
central bitrate can get lower than H(I | Y) + H(J | Y).

Figures 11 and 12 show the RD curves at the central
and side decoders for a CSNR value of 10 dB. Each point on
the curves was obtained for a different number of bitplanes



EURASIP Journal on Advances in Signal Processing 9

0

5

10

15

20

25

30

SN
R

(d
B

)

0 1 2 3 4 5 6 7 8 9

Bitrate (bps)

WZC
MD-WZC, d = 0
MD-WZC, d = 1
MD-WZC, d = 2
MD-WZC, d = 0, with cross-decoding
MD-WZC, d = 1, with cross-decoding
MD-WZC, d = 2, with cross-decoding

Figure 11: Central rate-distortion comparison of the MD-WZC
schemes for a CSNR value of 10 dB.

perfectly decoded, that is, the first point corresponds to the
most significant bit (MSB) perfectly decoded, the second
to the MSB and the second bitplane, and so forth. The
bitrates were calculated from the number of parity bits that
were received by the decoder to decode the bitplanes. The
bitplanes that were not decoded were replaced with the
corresponding bitplanes of the SI on which we applied the
same MDSQ. Since the transmitted descriptions are decoded
bit-by-bit, the central decoder may generate invalid indexes
corresponding to the empty cells of index assignment. When
that happens, all the quantization intervals in the row and
column indicated by the two indexes are used in (13). The
number of points on each curve corresponds to the number
of bits needed to represent the indexes (5 for WZC and d = 0,
4 for d = 1, 3 for d = 2). The central and side curves for
the MD-WZC scheme with d = 0 are exactly the same. For
low bitrates, when not all the bitplanes are perfectly decoded,
the central decoders can become inferior in RD performance
to the side decoders. Due to the cross-decoding, the central
RD performance increases and the amount of redundancy
has less influence on the RD performance, especially at very
low bitrates. We made the decision to use the same number
of quantization intervals for the quantization of X such that
the correlation between X and Y remains the same for all
schemes. This explains why, in the results, the scheme that
introduces the least redundancy usually performs better at all
decoders whereas, in a real case scenario, this scheme would
be less efficient at the side decoders.
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Figure 12: Side rate-distortion comparison of the MD-WZC
schemes for a CSNR value of 10 dB.

7. Discussion and FutureWork

In this paper, we presented a balanced two-description
coding scheme with decoder-only SI where the SI is the same
for all decoders. Simulation results show that the proposed
approach can be used to improve the RD performance of
MDC schemes, without sacrifying their robustness. Indeed, it
has been shown that when the correlation with the SI is high,
the quality of the signal reconstructed by the side decoders
can be improved while not proportionally increasing the
overall rate. Furthermore, by using channel cross-decoding,
one can exploit the correlation between the descriptions and
reduce the bitrate at the central decoder. The approach is
currently being applied to robust video coding. The side
information is in this case extracted by interpolation or
extrapolation of previously decoded frames. Contrary to
predictive video coding, where the application of MDC can
result in prediction mismatch between encoder and decoder
or the so called drift effect when there are packet losses, the
proposed MDC technique with side information offers an
inbuilt robustness to drift.
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