7,966 research outputs found

    Accepting Hybrid Networks of Evolutionary Processors with Special Topologies and Small Communication

    Full text link
    Starting from the fact that complete Accepting Hybrid Networks of Evolutionary Processors allow much communication between the nodes and are far from network structures used in practice, we propose in this paper three network topologies that restrict the communication: star networks, ring networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag systems, thus we deduce the existence of a universal ring-AHNEP. For star networks or grid networks, we show a more general result; that is, each recursively enumerable language can be accepted efficiently by a star- or grid-AHNEP. We also present bounds for the size of these star and grid networks. As a consequence we get that each recursively enumerable can be accepted by networks with at most 13 communication channels and by networks where each node communicates with at most three other nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Full text link
    In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations) how ANEPFCs with 16 nodes can simulate in O(f(n)) time any nondeterministic Turing machine of time complexity f(n). Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16

    Networks of picture processors

    Get PDF
    Abstract The goal of this work is to survey in a systematic and uniform way the main results regarding different computational aspects of networks of picture processors viewed as rectangular picture accepting devices. We first consider networks with evolutionary picture processors only and discuss their computational power as well as a partial solution to the picture matching problem. Two variants of these networks, which are differentiated by the protocol of communication, are also surveyed: networks with filtered connections and networks with polarized processors. Then we consider networks having both types of processors, i.e., evolutionary processors and hiding processors, and provide a complete solution to the picture matching problem. Several results which follow from this solution are then presented. Finally we discuss some possible directions for further research

    A New Characterization of NP, P, and PSPACE with Accepting Hybrid Networks of Evolutionary Processors

    Get PDF
    We consider three complexity classes defined on Accepting Hybrid Networks of Evolutionary Processors (AHNEP) and compare them with the classical complexity classes defined on the standard computing model of Turing machine. By definition, AHNEPs are deterministic. We prove that the classical complexity class NP equals the family of languages decided by AHNEPs in polynomial time. A language is in P if and only if it is decided by an AHNEP in polynomial time and space. We also show that PSPACE equals the family of languages decided by AHNEPs in polynomial length

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    The Future Evolution of Consciousness

    Get PDF
    ABSTRACT. What potential exists for improvements in the functioning of consciousness? The paper addresses this issue using global workspace theory. According to this model, the prime function of consciousness is to develop novel adaptive responses. Consciousness does this by putting together new combinations of knowledge, skills and other disparate resources that are recruited from throughout the brain. The paper’s search for potential improvements in the functioning of consciousness draws on studies of the shift during human development from the use of implicit knowledge to the use of explicit (declarative) knowledge. These studies show that the ability of consciousness to adapt a particular domain improves significantly as the transition to the use of declarative knowledge occurs in that domain. However, this potential for consciousness to enhance adaptability has not yet been realised to any extent in relation to consciousness itself. The paper assesses the potential for adaptability to be improved by the conscious adaptation of key processes that constitute consciousness. A number of sources (including the practices of religious and contemplative traditions) are drawn on to investigate how this potential might be realised

    Networks of Evolutionary Processors: A Survey

    Get PDF

    Playing Smart - Another Look at Artificial Intelligence in Computer Games

    Get PDF
    • 

    corecore