
N E T W O R K S OF P I C T U R E PROCESSORS

Víctor Mitraría

Abstract
The goal of this vjork is to survey in a systematic and uniform way the main results regarding
different computational aspects of netvjorks of picture processors viewed as rectangular picture
accepting devices. We first consider netvjorks with evolutionary picture processors only and
discuss their computational power as well as a partial solution to the picture matching problem.
TVJO variants of these netvjorks, which are differentiated by the protocol of communication, are
also surveyed: netvjorks with filtered connections and netvjorks with polarized processors. Then
we consider netvjorks having both types of processors, i.e., evolutionary processors and hiding
processors, and provide a complete solution to the picture matching problem. Several results
which follovj from this solution are then presented. Finally we discuss some possible directions
for further research.

1. Introduction

A picture (2-dimensional word) is a rectangular array of symbols over an alphabet. Picture
languages defined by different mechanisms have been studied extensively in the literature. Two-
dimensional matrix and array models describing pictures have been proposed in [18, f9, 2f, 20].
On the other hand, models defining pictures that are connected arrays, but not necessarily
rectangular, have been proposed as early as 70's [17] and a hierarchy of grammars for such
languages was considered in [22]. A new model of recognizable picture languages, extending
to two dimensions the characterization of the one-dimensional recognizable languages in terms
of alphabetic morphisms of local languages, was introduced in [8]. Similar to the string case,
characterizations of recognizable picture series were proposed, see, e.g. [6, 14]. An early survey
on autómata recognizing rectangular picture languages is [10], a bit more recent one considering
different mechanisms defining picture languages, not necessarily rectangular, is [17] and an even
more recent and concise one is [9].

The main idea of the seminal work [5] in this área was to extend the investigation started
in [12], where data is organized in the form of linear strings, to rectangular pictures. In [5],
networks of evolutionary picture processors (ANEPP) where each node is either a row/column

substitution node or a row/column deletion node are considered. The action of each node on
the data it contains is precisely defined. For instance, if a node is a row substitution node, then
it can substitute a letter by another letter in either the top row only, the bottom row only, or
an arbitrary row. Moreover, if there are more occurrences of the letter to be substituted in the
row on which the substitution rule acts, then each such occurrence is substituted in different
copies of that picture. An implicit assumption is that arbitrarily many copies of every picture
are available. A similar informal explanation concerns the column substitution and deletion
nodes. Local data is then transmitted over the network following a well defined protocol. Data
can be communicated only if they pass a filtering process regulated by input and output filters
(defined by some very simple context conditions) associated with each node. All the nodes
simultaneously send their data to, and receive data from, the nodes they are connected to. In
[5] we showed that these networks can accept the complement of any local language, as well as
languages that are not recognizable.

In [3] one simplifies the ANEPP model considered in [5] by moving the filters from the nodes
to the edges. A similar investigation for ANEPs has been initiated in [7] and continued in
[2], where it was shown that both devices equal the computational power of Turing machines.
Each edge of a network of evolutionary picture processors with filtered connections (ANEPPFC
for short) is viewed as a two-way channel such that the input and output filters, respectively,
of the two nodes connected by the edge coincide. Clearly, the possibility of controlling the
computation in such networks seems to be diminished. For instance, there is no possibility to
lose data during the communication steps. In spite of this fact all the results reported in [5]
have been extended to these new devices. Moreover, in all cases the ANEPPFCs have a smaller
size (number of processors).

A continuation of the aforementioned works is [1], where one considers the pattern matching
problem, which is largely motivated by different aspects in low-level image processing [16],
and tries to solve it in a parallel and distributed way with networks of picture processors.
The network solving the problem can be informally described as follows: it consists of two
subnetworks, one of them extracts at each step, simultaneously, all subpictures of identical
(progressively decreasing) size from the input picture and sends them to the other subnetwork.
In turn, this subnetwork consists of two subnetworks; one of them checks whether any of the
received pictures is identical to the pattern, while the other one halts the computation if none
of the received pictures is identical to the pattern. If the pattern is of size (k, /) , with 1 < k < 3,
and l > 1, we present an efficient solution running in 0(n + m + l) computational (processing
and communication) steps, provided that the input picture is of size (n,m). Moreover, this
solution can be extended at no further cost w.r.t. the number of computational steps to any
finite set of patterns, all of the same size. From the proofs of these results we infer that any
(k, /)-local language with 1 < k < 3 can be decided in 0(n + m + l) computational steps
by networks with evolutionary processors. Particularly, every local language ca be decided in
0(n + m) computational steps.

A new operation together with its inverse, that can convert a visible row/column into an
invisible one and vice versa is also introduced in [1]. The two operations are called mask and
unmask, respectively. We show how this variant of networks of picture processors is able to
solve efficiently (in 0(n + m + kl) computational steps) the problem of pattern matching of an

arbitrary pattern of size (k, l) in a given rectangular picture of size (n,m). Again, the solution
can be extended at no further cost w.r.t. the number of computational steps to any finite set
of patterns all of them of the same size. From the proofs of these results we infer that any
(fc,/)-local language with arbitrary k,l can be decided in 0(n + m + kl) computational steps
by networks containing both evolutionary and hiding processors.

It is worth mentioning here that the complexity results mentioned above are to be interpreted
at a very high level, as we only count the number of evolutionary and communication steps
without taking into consideration the inherent time of these steps. For instance, each processing
step of a single processor makes all possible transformations in parallel, producing all possible
results in one step. This involves the duplication and modification of all pictures currently in
that processor, which means that such a step may involve an exponential amount of infernal
work.

2. Basic Definitions

The basic terminology and notations concerning two-dimensional languages are taken from [9].
The set of natural numbers from 1 to n is denoted by [n]. The set of all finite subsets of a set A
is denoted by 2A. The cardinality of a finite set A is denoted by card(A). We shall often omit
the braces for singleton sets. Let V be an alphabet, V* the set of one-dimensional strings over
V and e the empty string. A picture (or a two-dimensional string) over the alphabet V is a
two-dimensional array of elements from V. We denote the set of all pictures over the alphabet
V by V*, while the empty picture will be still denoted by e. A two-dimensional language over
V is a subset of V*.

Let 7r be a picture in V̂ *; we denote the number of rows and the number of columns of ir by
W and \TT\, respectively. The pair (W, \ir\) is called the size of the picture ir. The size of the
empty picture e is obviously (n,m) with nm = 0. Note that the empty picture is actually the
(equivalence) class of all pictures of size (n,m) with nm = 0. The set of all pictures of size
(m,n) over the alphabet V, where m,n > 1, is denoted by V™. The symbol placed at the
intersection of the zth row with the j t h column of the picture ir, is denoted by ir(i,j).

Let ir be a picture of size (m, n) over V; for any 1 < i < k < m and 1 < j < l < n we denote
by ^'^it[k,i] the subpicture of ir having its leftmost upper córner in n{i,j) and rightmost lower
córner in ir(k,l) (it starts and ends at (i,j) and (k,l) in ir, respectively). For any i > k or
j > l, we set ^'^iV[k,i] = €. Furthermore, we simply write ir instead of ^'^[m^]-

We recall now some definitions from [1]. For any alphabet V and a symbol a E V, we denote
by m the invisible copy of a; furthermore, we set lé := {m\ a E V}. We say that a picture
ir E (V U ¥)m is well defined if there exist 1 < i < k < m and 1 < j < l < n such that all
elements of ^'^iv[k,i] are from V and all the other elements of ir are from M. In this case, we
say that ^'^iv[k,i] is the maximal visible subpicture of ir. A rather intuitive way to understand
a well defined picture ir is to consider that some rows and/or columns on the border of ir are
hidden but not deleted. Note that any picture over V is a well defined picture. For the rest of

this paper, we deal with well defined pictures only. The minimal alphabet containing all visible
symbols appearing in a picture ir is denoted by alph(ir).

We now define the evolutionary operations on pictures. These definitions appear in [5, 3, 1],
but we prefer to follow [1], where they are given in a more general setting.

Let V be an alphabet; a rule of the form a —>• b, with a,b E V U {e} is called an evolutionary
rule. We say that a rule a —> b is: a) a substitution rule if neither a ñor b is e; b) a deletion
rule if a ^ e, b = e; c) an insertion rule if a = e, b ^ e. In this paper we shall ignore insertion
rules because we want to process every given picture in a space bounded by the size of that
picture. We denote the sets of substitution and deletion rules by Subv = {a —> b \ a,b E V}
and Delv = {a —> e \ a E V}, respectively. Given a rule a as above and a picture ir E (VUM)^,
we define the following actions of a on ir following [5].

If a = a —> b E Suby, then cr^(ir) is the set of all pictures ir' such that the following conditions
are satisfied:

(1.) There exist 1 < u < v < m and 1 < s < t < n such that ^ v r ^] is the maximal
visible subpicture of ir.

(2.a.) There exists u < i < v such that ir (i, s) = a; then ir'(i, s) = b, and ir'(j, l) = ir(j, l)
forall (j,l) E ([m] x [n]) \{ (¿ , s)} .

(2.b.) If the leftmost column of ^71"^ t\ does not contain any occurrence of a, then cr^(ir) =

w-
Informally, cr^(ir) is the set of all pictures that can be obtained from ir by replacing an oc
currence of a by b in the leftmost column of the maximal visible subpicture of ir. Note that
a is applied to all occurrences of the letter a in the leftmost column of the maximal visible
subpicture of ir in different copies of the picture ir. We say that the rule a is applied to the
leftmost column of the maximal visible subpicture of ir.

In an analogous way, we define a^(ir), cr^(ir), cr^(ir), and a+(ir) as the sets of all pictures
obtained by applying a to the rightmost column, to the first row, to the last row, and to any
column/row of the maximal visible subpicture of ir, respectively.

If a = a —> e E Dely, then cr^(ir) is the picture obtained from ir by deleting the i — th column
of ir provided that the maximal visible subpicture of ir starts at the position (i,j) in ir, for
some j , and the i — th column of 7r contains an occurrence of a. If the leftmost column of the
maximal visible subpicture of ir does not contain any occurrence of a, then cr^(ir) = ir. We say
that the deletion rule a is applied to the leftmost column of the maximal visible subpicture of
7T.

Analogously, a^(ir), cr^(ir), and a^(ir) are the pictures obtained from ir by applying a to the
rightmost column, to the first row, and to the last row of the maximal visible subpicture of ir,
respectively. Furthermore, a\ir) (a~(ir)) is the set of pictures obtained from ir by deleting an
arbitrary column (row) containing an occurrence of a from ir. If more than one column (row) of
ir contains a, then for each such column (row), there is a copy of ir in a\ir) (a~(ir)) having this
column (row) deleted. If ir does not contain any occurrence of a, then a\ir) = {7r}(<7~(7r) =

W).
For every rule a, symbol a E {̂ —, —>-,t>4-> |> ~~ > +}> a n d ¿ C (y U 3^)*, we define the a-action

of a on L by aa(L) = \\aa(7r). Given a finite set of rules M, we define the a-action of M on
7r€L

the picture 7r and the language L by:

M a (7 r) = |J í7 a(7r) and Ma(L) = | j M a (7 r) ,

respectively. In what follows, we shall refer to the rewriting operations defined above as evolu-
tionary picture operations since they may be viewed as the 2-dimensional linguistic formulations
of local gene mutations.

We now define a new operation on pictures and its inverse, namely mask and unmask that
was introduced in [1]. Let ir be a picture of size (m, n) over F U í and a E V.

• mask^~'(ir) returns the picture obtained from n by transforming all visible symbols from
the leftmost column of the maximal visible subpicture of n into their invisible copies.
Analogously, one defines the mappings mask~^, mask?, and mask^.

• unmask^'(ir) returns the picture obtained from ir as follows. If ^ir[k,i] is the maximal
visible subpicture of ir, then all invisible symbols ir(s,j — 1), i < s < k, become visible.
If j = 1, then unmask^(ir) = ir. Analogously, one defines the mappings unmask^,
unmask?, and unmask^.

For every a E {-^,—>,?,?} and L C (V U M)*, we define maska(L) = {maska(ir) \ ir E L}.
Analogously, unmask" (L) = {unmaska (ir) \ ir E L}.

For two disjoint subsets P and F of an alphabet V and a picture ir over V, we consider the
following two predicates which we will later use to define two types of filters:

rcs(n; P,F) = PC alph(n) A F n alph(n) = 0

rcw(n; P, F) = alph(ir) n F / l A F í l alph(n) = 0.

The construction of these predicates is based on context conditions defined by the two sets P
(permitting contexts/symbols) and F (forbidding contexts/symbols). Informally, both conditions
require that no forbidding symbol is present in 7r; furtherniore the first condition requires all
permitting symbols to appear in ir, while the second one requires that at least one permitting
symbol appears in ir.

For every picture language L C V* and /5 E {s,w}, we define:

rcfi(L, P,F) = {ir E L\ rcfi(it; P, F) = t r u e } .

An evolutionary picture processor with filters over V U lé is a 5-tuple (M,PI,FI,PO,FO),
where:

• Either M C Subv or M C Dely. The set M represents the set of evolutionary rules of
the processor. As one can see, a processor is "specialized" into one type of evolutionary
operation, only.

• PI, FI C V are the input sets of permitting and forbidding symbols (contexts) of the
processor, while PO, FO C V are the output sets of permitting and forbidding symbols of
the processor (with Plr\FI = % and POC\FO = 0).

An evolutionary picture processor without filters over y U ^ is just a set of evolutionary rules.

A hiding picture processor over 1 / U t ([1]) is a 5-tuple (M, PI, FI, PO, FO), where M is
either mask or unmask, while the other parameters are identical to those defined above for
evolutionary processors.

3. Networks of Evolutionary Picture Processors

We give here the definition of an ANEPP following [1], which slightly differs from the definitions
in [5] in the sense that the nodes Halt and Accept coincide. This definition is more suitable for
ANEPP used as problem solvers.

An accepting netvjork of evolutionary picture processors (ANEPP) is a 9-tuple
T = (V, U, G, N, a, 0, In, Halt, Accept),

where:

• V and U are the input and network alphabet, respectively, V C U.

• G = (XG,EG) is an undirected graph without loops with the set of vértices XG and the
set of edges EQ. G is called the underlying graph of the network. Although in network
theory, several types of graphs are common like complete, rings, stars, grids, we focus here
on complete underlying graphs (every two vértices are connected by an edge), so that we
can replace the graph G by the set of its nodes.

• N is a mapping which associates with each node x E XG the evolutionary picture processor

with filters

N(x) = (Mx, PIX, FIX, POx, FOx).

• o¡ : XG —> {̂ —, —>, t) ^ I; — > + } ; OL(X) gives the action mode of the rules of node x on the
pictures existing in that node.

• 0 : XG —> {s, w} defines the type of the input and output filters of a node. More precisely,
for every node, x E XG, the following filters are defined:

input filter: px(-) = rc^x)(-; PIX, FIX),

output filter: rx(-) = rcp(x) (•;POx,FOx).

That is, Pxijr) (resp. TX(TT)) indicates whether or not the picture ir can pass the input
(resp. output) filter of x. More generally, px(L) (resp. rx(L)) is the set of pictures of L
that can pass the input (resp. output) filter of x.

• In,Halt, Accept E XG are the ínput node, the halting node, and the acceptíng node of T,
respectively. Of course, it is not obligatory that the three nodes are different from each
other.

We then say that card(XG) is the size of T. A configuration of an ANPP T as above is a
mapping C : XG —> 2U* which associates a finite set of pictures with every node of the graph.
A configuration may be understood as the sets of pictures which are present in any node at
a given moment. Given a picture TT E V*, the initial configuration of T on ir is defined by
C{o\ln) = {TT} and C^\x) = 0 for all XEXG\ {In}.

A configuration can change via either a processing step or a communication step. When changing
via a processing step, each component C(x) of the configuration C is changed in accordance
with the set of rules Mx associated with the node x and the way of applying these rules, namely
a(x). Formally, we say that the configuration C is obtained in one processing step from the
configuration C, written as C =>- C, iff

C'(x) = Mfx)(C(x)) for all x E XG.

When changing via a communication step, each node processor x E XG sends one copy of each
picture it has, which is able to pass the output filter of x, to all the node processors connected
to x (under our assumption, all nodes in XG) and receives all the pictures sent by any node
processor connected with x provided that they can pass its input filter.

Formally, we say that the configuration C is obtained in one communication step from config
uration C, written as C h C, iff

C'(X) = (C(X)\TX(C(X))) U

| J (Ty(C(y)) n Px{C{y))) for all x E XG.
{x,y}eEG

Note that pictures that cannot pass the output filter of a node remain in that node and can be
further modified in the subsequent evolutionary steps, while pictures that can pass the output
filter of a node are expelled. Further, all the expelled pictures that cannot pass the input filter
of any node are lost.

Let T be an ANPP; the computation of T on an input picture ir E V* is a sequence of configu-

rations C¿ , CJ , C£ > • • • > where C¿ is the initial configuration of Y on TI, C^ =^- C^i and

^2Í+I ^ C2Í+2) f° r a lH > 0. Note that configurations are changed by alternative steps. By the

previ ous definitions, each configuration Q is uniquely determined by C¡_v A computation

as above halts if there exists a configuration such that the set of pictures existing in the halting

node is non-empty. The picture language decided by Y is

L{Y) = {TT E V* I the computation of Y on TT halts

with a non-empty accepting node}

As we consider here ANPPs as problem solvers, the halting condition is a bit different than that
from [5], where there is no deciding condition. Furthermore, for the rest of this paper we only

deal with ANPPs that halt on every input. These halting and deciding conditions are among
several ways in which networks of evolutionary processors can be used as deciding machines in
[11].

Theorem 3.1 ([5])
1. There exist non-recognizable languages which can be accepted by ANEPPs.
2. The complement of every local language can be accepted by an ANEPP.

As a consequence of the results proved in [1] (and mentioned later), we can give the complexity
of the membership problem for local languages.

Theorem 3.2 Every local language can be decided by ANEPPs in 0(n + ni) computational
(processing and communication) steps.

Theorem 3.3 ([5]) The class of languages accepted by ANEPP is closed under rotation, boolean
unión, projection, inverse projection.

A natural problem is to find a pattern (a fixed picture) in a given picture. This problem
is widely known as the two-dimensional pattern matching problem and is largely motivated
by different aspects in low-level image processing [16]. The more general problem of picture
matching (where it is not obligatory for the picture to be a two-dimensional array) is widely
known in the Pattern Recognition field and is connected with Image Analysis and Artificial
Vision [13, 23].

A key step in our solution is to construct a network able to decide the singleton language formed
by a given picture.

Theorem 3.4 Let TT be a picture of size (k,n) for sorne 1 < k < 3 and n > 1. The language
{TT} can be decided by an ANEPP.

We give now a solution to the picture matching based on ANEPP, for patterns of size (k, n) or
(n, k) for any 1 < k < 3 and n > 1.

Theorem 3.5 Let TT be a picture of size (k, l) for sorne 1 < k < 3 and / > 1. The language

{9 | 7r is a subpicture of 9}

can be decided by an ANEPP.

It is worth mentioning that the construction used in the proof of the previously result (see [1])
can be easily extended to an ANEPP able to detect, in the same number of computational
steps, any pattern from a finite set of pictures of the same size. It suffices to construct an
independent subnetwork of the type just discussed for each pattern.

Theorem 3.6 Given a finite set F of patterns of size (k,l) and (l,k) for all 1 < k < 3
and l > 1, the pattern matching problem with patterns from F can be solved by ANEPPs in
0(n + m + l) computational (processing and communication) steps.

However, this approach is not suitable for detecting patterns of a different size than those
considered above. We give a complete solution to this problem in the section devoted to
ANPP.

4. Networks of Evolutionary Picture Processors With
Filtered Connections

It is clear that filters associated with each node allow a strong control of the computation.
Indeed, every node has an input and output filter; two nodes can exchange data if it passes the
output filter of the sender and the input filter of the receiver. Moreover, if some data is sent
out by some node and not able to enter any node, then it is lost. In [3] the filters are moved
from the nodes, as they are in [5], to the edges.

An accepting netvjork of evolutionary picture processors with filtered connections (ANEPPFC)
is a 10-tuple

T = (V, U, G, N, a, R, 0, In, Halt, Accept),
where V, U, G, and a have the same meaning as in an ANEPP, while N is a. mapping which
associates with each node x E XG the evolutionary picture processor without filters N(x) =
(Mx). Furthermore, R : EG —> 2U x 2U is a mapping which associates with each edge e E EG

the disjoint sets R(e) = (Pe, Fe), and 0 : EG —> {s, w} defines the filter type of an edge.

As for an ANEPP, a configuration can change via either a processing step, which is defined
exactly as the processing step in an ANEPP, or a communication step, which is defined as
follows. Formally, we say that the configuration C is obtained in one communication step from
configuration C, written as C h C, iff

C'(x) = (C(x)\(| J rcp({x,y})(C(x)M{x,y}))))

U(|J rc^{Xty})(C(y),X({x,y})))
{x,y}eEG

for all x E XG. The computation of T on an input word, the halting and accepting conditions
are the same to ANEPP.

The main results in [3] are:

Theorem 4.1
1. There exist non-recognizable languages which can be accepted by ANEPPFCs.
2. The complement of every local language can be accepted by an ANEPPFC.

In spite of the possible weakness of ANEPPFC, all the results reported in [5] have been extended
to these new devices. Moreover, in all cases the ANEPPFCs have a smaller size (number of
processors). This suggests that moving the filters from the nodes to the edges does not decrease
the computational power of the model. It is worth mentioning that a direct proof showing that

ANEPs and ANEPs with filtered connections are computationally equivalent was proposed in
[4]. However, that construction from [4] essentially need an operation, namely insertion, that
has not a corresponding one in ANEPPs or ANEPPFCs, therefore we do not know a proof for
a direct simulation of one model by the other.

5. Networks of Picture Processors

An accepting netvjork of picture processors (ANPP) is defined as an ANEPPin which some
nodes may be hiding picture processors. The computation, halting and accepting conditions
are the same to those for ANEPP.

In the sequel, we show how the picture pattern matching can be completely solved with ANPP,
that is with networks having both types of nodes: evolutionary processors and hiding proces
sors. The idea is the same as in the case of ANEPP, namely the network solving the problem
consists of two subnetworks, one of them extracts at each step, simultaneously, all subpictures
of identical (progressively decreasing) size from the input picture and sends them to the other
subnetwork. In turn, this subnetwork consists of two subnetworks; one of them checks whether
any of the received pictures is identical to the pattern, while the other one halts the computa
tion if none of the received pictures is identical to the pattern. Therefore, it suffices to construct
an ANPP able to decide the singleton language formed by a given picture.

Theorem 5.1 Let n be a picture of size (k,l), for some k,l > 1 over an alphabet V. The
language {n} can be decided by an ANPP.

We are now able to give the complete solution based on ANPPs to the problem of picture
matching:

Theorem 5.2 Given a finite set F of patterns of size (k,l) and (l,k) for any k,l > 1, the
pattern matching problem with patterns from F can be solved by ANPPs in 0(n + m + kl)
computational (processing and communication) steps.

The solutions of picture matching with ANPP have several consequences (see [1]).

Theorem 5.3 Let n be a picture of size (k, n) for some 1 < k < 3 and n > 1. The cornplernent
of the language {ir} can be decided by an ANEPP.

Theorem 5.4 Let (k,l) be two positive integers, 1 < k < 3 and l > 1. Every (k,l)-local
language or (l,k)-local language can be decided by ANEPPs in 0(n + m + l) computational
(processing and communication) steps.

Theorem 5.5 Let (k,l) be two positive integers. Every (k,l)-local language can be decided by
ANPPs in 0(n + m + kl) computational (processing and communication) steps.

The last results lead to a similar solution to the following problem. Let k, l be two positive
integers and F be a finite set of pictures of size (k, l). The picture language F* is the minimal
set of pictures such that:

i *

* > (¿) FCF:

(ii) If 7r,p E F*, then ir®p E F* (provided that ir(

exists) and ir©p G F* (provided that ir©p exists.)

Theorem 5.6 Let k,l be two positive integers and F be a finite set of pictures of size (k,l).
The language F* can be decided by ANPPs in 0(n + m + kl) computational (processing and
communication) steps.

The networks including both evolutionary and hiding processors seem to be more powerful than
ANEPPs considered in [5]. A natural further step is to investigate the computational power
and other computational properties of ANPPs. For instance, the relationships between ANPPs
and tiling systems are still unknown.

6. Networks of Polarized Evolutionary Picture Proces
sors

The material presented here essentially follows [15]. A valuation is a mapping ip : V —> Z that
associates to every symbol from V an integer valué. The valué ip(a) is also called the polarity
of the symbol a. The polarity of a picture is denoted by the function § : V* —>• {—,0,+}4

which associates a symbol from { — ,0 ,+} to the top, bottom, leftmost and rightmost column,
respectively. Informally we say that the polarity of a row or a column as being the sign of the
sum of the polarities of every symbol in that row or column. The polarity of a picture can be
seen as a 4-tuple over the set { — ,0, +} and represents the polarities, in this order, of the first
row, the last column, the last row and the first column. More formally, we define the polarity
of a picture ir, of size (m, n) as:

$(vr) = (sign(^2 ¥>(7r(l, i))),sign(^2 <p(ir(i, n))),signi^ ^{m, i))),sign(^2 <p(n(i, 1))))-
i=\ i=\ i=\ i=\

A polarized evolutionary picture processor (ANPEPP) over V is a 3-tuple (M,AV,a) where:
-Either M C Suby or M C Dely and represents the set of evolutionary rules associated with
the processor.
-AV £ { —, 0, +} 4 is a 4-tuple representing the picture polarity compatible with the processor
-a E {̂—, —>, t , i} denotes the action mode of the rules of pictures associated with the processor.
We say a picture ir and a processor are compatible if and only if the picture's polarity, $(7r),
is identical to the AV element associated with the processor. We will denote the set of all
polarized picture processors over the alphabet V by EPPV.

An accepting network of polarized evolutionary picture processors (ANPEPP for short) is like
an ANEPP with all its processors being polarized picture processors.

As for an ANEPP, a configuration can change via either a processing step, which is defined
exactly as the processing step in an ANEPP, or a communication step, which is defined as
follows. Formally, we say that the configuration C is obtained in one communication step from
configuration C, written as C h C, iff

C'{x) = (C(x)\{ir E C(X)|$(TT) ¿ AVX}) U

U ({neC(y)mn) = AVx}).

{x,y}eEG

The computation of T on an input word, the halting and accepting conditions are the same to
ANEPP.

As it was expected, the results from [5] are also obtained for this model:

Theorem 6.1
1. There exist non-recognizable languages which can be accepted by ANPEP.
2. The complement of every local language can be accepted by an ANPEP.

Theorem 6.2 Given a finite set F of patterns of size (k,l) and (l,k) for all 1 < k < 3 and
l > 1, the pattern matching problem with patterns from F can be solved by ANPEP.

7. Final Remarks

The networks including both evolutionary and hiding processors seem to be more powerful than
ANEPPs considered in [5]. A natural further step is to investígate the computational power
and other computational properties of ANPPs. For instance, the relationships between ANPPs
and tiling systems are still unknown.

Another direction of further research concerns the relationship between ANEPP and ANEPPFC.
Remember that for the string case the two variants have initially been shown to be equivalent
via simulations of Turing machines, and later on direct mutual simulations have been reported
in [4]. Moreover, these simulations were shown to preserve the complexity. Are there possible
similar simulations in the picture case?

The investigation started in [15] is just a first step in this direction. The communication
protocol considered there seems very powerful. A natural step is to investígate more deeply
the computational power of these networks. It would also be of interest if these networks can
completely solve the picture pattern matching.

References

[1] H. BORDIHN, P. BOTTONI, A. LABELLA, V. MITRANA, Networks of Picture Processors
as Problem Solvers. Soft Computing (2016), DOI 10.1007/s00500-016-2206-y.

[2] P. BOTTONI, ET AL., Filter Position in Networks of Evolutionary Processors Does Not Matter.
In: DNA Based Computers. LNCS 5877, Springer-Verlag, Berlin, 2009, 1-11.

[3] P. BOTTONI, ET AL., Networks of Evolutionary Picture Processors With Filtered Connections.
In: Unconventional Computation. LNCS 5715, Springer-Verlag, Berlin, 2009, 70-84.

[4] P. BOTTONI, ET AL., Complexity-preserving Simulations Among Three Variants of Accepting
Networks of Evolutionary Processors. Natural Computing 10 (2011), 429-445.

[5] P. BOTTONI, A. LABELLA, V. MITRANA, Networks of Evolutionary Picture Processors.
Fundamenta Informaticae 131 (2014), 337-349.

[6] S. BOZAPALIDIS, A. GRAMMATIKOPOULOU, Recognizable Picture Series. J. of Autómata,
Languages and Combinatorics 10 (2005), 159-183.

[7] C. DRAGOI, F. MANEA, V. MITRANA, Accepting Networks of Evolutionary Processors With
Filtered Connections. J. UCS 13 (2007), 1598-1614.

[8] D. GIAMMARRESI, A. RESTIVO, Recognizable Picture Languages. Int. J. Pattern Recognition
and Artificial Intelligence 6 (1992), 241-256.

[9] D. GIAMMARRESI, A. RESTIVO, Two-dimensional Languages. In: G. ROZENBERG, A. SA-
LOMAA (eds.), Handbook of Formal Languages. LNCS, Springer-Verlag, Berlin, 1997, 215-267.

[10] I. INOUE, I. TAKANAMI, A Survey of Two-dimensional Autómata Theory. In: Proc. 5th Int.
Meeting of Young Computer Scientists. LNCS 381, Springer-Verlag, Berlin, 1990, 72-91.

[11] F. MANEA, Complexity Results for Deciding Networks of Evolutionary Processors. Theor. Com-
put. Sci. 456 (2012), 65-79.

[12] M. MARGENSTERN, V. MITRANA, M. PÉREZ-JIMÉNEZ, Accepting Hybrid Networks of
Evolutionary Processors. In: DNA Based Computers. LNCS 3384, Springer-Verlag, Berlin, 2005,
235-246.

[13] K. MARRIOTT, B. E. MEYER, Visual Language Theory. Springer-Verlag Berlin, 1998.

[14] I. MAURER, Characterizations of Recognizable Picture Series. Theor. Comput. Sci. 374 (2007),
214-228.

[15] S. POPESCU, Networks of Polarized Evolutionary Picture Processors. Romanian Journal of
Information, Science and Technology 18 (2015), 3-17.

[16] A. ROSENFELD, A. KAK, Digital Picture Processing. Academic Press, NY, 1982.

[17] A. ROSENFELD, R. SIROMONEY, Picture Languages - A Survey. Languages of design 1
(1993), 229-245.

[18] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Abstract Families of Matrices and
Picture Languages. Computer Graphics and Image Processing 1 (1972), 284-307.

[19] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Picture Languages With Array
Rewriting Rules. Information and Control 22 (1973), 447-470.

[20] K. SUBRAMANIAN, R. SIROMONEY, On Array Grammars and Languages. Cyberneücs and
Systems 18 (1987), 77-98.

[21] P. WANG, Sequential/Parallel Matrix Array Languages. Journal of Cyberneücs 5 (1975), 19-36.

[22] P. WANG, Hierarchical Structure and Complexities of Parallel Isometric Patterns. IEEE Trans.
PAM I 5 (1983), 92-99.

[23] P. WANG, H. B. (EDS.), Handbook on Opücal Character Recogniüon and Document Image
Analysis. World Scientific, 1996.

