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Abstract 
The goal of this vjork is to survey in a systematic and uniform way the main results regarding 
different computational aspects of netvjorks of picture processors viewed as rectangular picture 
accepting devices. We first consider netvjorks with evolutionary picture processors only and 
discuss their computational power as well as a partial solution to the picture matching problem. 
TVJO variants of these netvjorks, which are differentiated by the protocol of communication, are 
also surveyed: netvjorks with filtered connections and netvjorks with polarized processors. Then 
we consider netvjorks having both types of processors, i.e., evolutionary processors and hiding 
processors, and provide a complete solution to the picture matching problem. Several results 
which follovj from this solution are then presented. Finally we discuss some possible directions 
for further research. 

1. Introduction 

A picture (2-dimensional word) is a rectangular array of symbols over an alphabet. Picture 
languages defined by different mechanisms have been studied extensively in the literature. Two-
dimensional matrix and array models describing pictures have been proposed in [18, f9, 2f, 20]. 
On the other hand, models defining pictures that are connected arrays, but not necessarily 
rectangular, have been proposed as early as 70's [17] and a hierarchy of grammars for such 
languages was considered in [22]. A new model of recognizable picture languages, extending 
to two dimensions the characterization of the one-dimensional recognizable languages in terms 
of alphabetic morphisms of local languages, was introduced in [8]. Similar to the string case, 
characterizations of recognizable picture series were proposed, see, e.g. [6, 14]. An early survey 
on autómata recognizing rectangular picture languages is [10], a bit more recent one considering 
different mechanisms defining picture languages, not necessarily rectangular, is [17] and an even 
more recent and concise one is [9]. 

The main idea of the seminal work [5] in this área was to extend the investigation started 
in [12], where data is organized in the form of linear strings, to rectangular pictures. In [5], 
networks of evolutionary picture processors (ANEPP) where each node is either a row/column 



substitution node or a row/column deletion node are considered. The action of each node on 
the data it contains is precisely defined. For instance, if a node is a row substitution node, then 
it can substitute a letter by another letter in either the top row only, the bottom row only, or 
an arbitrary row. Moreover, if there are more occurrences of the letter to be substituted in the 
row on which the substitution rule acts, then each such occurrence is substituted in different 
copies of that picture. An implicit assumption is that arbitrarily many copies of every picture 
are available. A similar informal explanation concerns the column substitution and deletion 
nodes. Local data is then transmitted over the network following a well defined protocol. Data 
can be communicated only if they pass a filtering process regulated by input and output filters 
(defined by some very simple context conditions) associated with each node. All the nodes 
simultaneously send their data to, and receive data from, the nodes they are connected to. In 
[5] we showed that these networks can accept the complement of any local language, as well as 
languages that are not recognizable. 

In [3] one simplifies the ANEPP model considered in [5] by moving the filters from the nodes 
to the edges. A similar investigation for ANEPs has been initiated in [7] and continued in 
[2], where it was shown that both devices equal the computational power of Turing machines. 
Each edge of a network of evolutionary picture processors with filtered connections (ANEPPFC 
for short) is viewed as a two-way channel such that the input and output filters, respectively, 
of the two nodes connected by the edge coincide. Clearly, the possibility of controlling the 
computation in such networks seems to be diminished. For instance, there is no possibility to 
lose data during the communication steps. In spite of this fact all the results reported in [5] 
have been extended to these new devices. Moreover, in all cases the ANEPPFCs have a smaller 
size (number of processors). 

A continuation of the aforementioned works is [1], where one considers the pattern matching 
problem, which is largely motivated by different aspects in low-level image processing [16], 
and tries to solve it in a parallel and distributed way with networks of picture processors. 
The network solving the problem can be informally described as follows: it consists of two 
subnetworks, one of them extracts at each step, simultaneously, all subpictures of identical 
(progressively decreasing) size from the input picture and sends them to the other subnetwork. 
In turn, this subnetwork consists of two subnetworks; one of them checks whether any of the 
received pictures is identical to the pattern, while the other one halts the computation if none 
of the received pictures is identical to the pattern. If the pattern is of size (k, /) , with 1 < k < 3, 
and l > 1, we present an efficient solution running in 0(n + m + l) computational (processing 
and communication) steps, provided that the input picture is of size (n,m). Moreover, this 
solution can be extended at no further cost w.r.t. the number of computational steps to any 
finite set of patterns, all of the same size. From the proofs of these results we infer that any 
(k, /)-local language with 1 < k < 3 can be decided in 0(n + m + l) computational steps 
by networks with evolutionary processors. Particularly, every local language ca be decided in 
0(n + m) computational steps. 

A new operation together with its inverse, that can convert a visible row/column into an 
invisible one and vice versa is also introduced in [1]. The two operations are called mask and 
unmask, respectively. We show how this variant of networks of picture processors is able to 
solve efficiently (in 0(n + m + kl) computational steps) the problem of pattern matching of an 



arbitrary pattern of size (k, l) in a given rectangular picture of size (n,m). Again, the solution 
can be extended at no further cost w.r.t. the number of computational steps to any finite set 
of patterns all of them of the same size. From the proofs of these results we infer that any 
(fc,/)-local language with arbitrary k,l can be decided in 0(n + m + kl) computational steps 
by networks containing both evolutionary and hiding processors. 

It is worth mentioning here that the complexity results mentioned above are to be interpreted 
at a very high level, as we only count the number of evolutionary and communication steps 
without taking into consideration the inherent time of these steps. For instance, each processing 
step of a single processor makes all possible transformations in parallel, producing all possible 
results in one step. This involves the duplication and modification of all pictures currently in 
that processor, which means that such a step may involve an exponential amount of infernal 
work. 

2. Basic Definitions 

The basic terminology and notations concerning two-dimensional languages are taken from [9]. 
The set of natural numbers from 1 to n is denoted by [n]. The set of all finite subsets of a set A 
is denoted by 2A. The cardinality of a finite set A is denoted by card(A). We shall often omit 
the braces for singleton sets. Let V be an alphabet, V* the set of one-dimensional strings over 
V and e the empty string. A picture (or a two-dimensional string) over the alphabet V is a 
two-dimensional array of elements from V. We denote the set of all pictures over the alphabet 
V by V*, while the empty picture will be still denoted by e. A two-dimensional language over 
V is a subset of V*. 

Let 7r be a picture in V̂ *; we denote the number of rows and the number of columns of ir by 
W and \TT\, respectively. The pair (W, \ir\) is called the size of the picture ir. The size of the 
empty picture e is obviously (n,m) with nm = 0. Note that the empty picture is actually the 
(equivalence) class of all pictures of size (n,m) with nm = 0. The set of all pictures of size 
(m,n) over the alphabet V, where m,n > 1, is denoted by V™. The symbol placed at the 
intersection of the zth row with the j t h column of the picture ir, is denoted by ir(i,j). 

Let ir be a picture of size (m, n) over V; for any 1 < i < k < m and 1 < j < l < n we denote 
by ^'^it[k,i] the subpicture of ir having its leftmost upper córner in n{i,j) and rightmost lower 
córner in ir(k,l) (it starts and ends at (i,j) and (k,l) in ir, respectively). For any i > k or 
j > l, we set ^'^iV[k,i] = €. Furthermore, we simply write ir instead of ^'^[m^]-

We recall now some definitions from [1]. For any alphabet V and a symbol a E V, we denote 
by m the invisible copy of a; furthermore, we set lé := {m\ a E V}. We say that a picture 
ir E (V U ¥)m is well defined if there exist 1 < i < k < m and 1 < j < l < n such that all 
elements of ^'^iv[k,i] are from V and all the other elements of ir are from M. In this case, we 
say that ^'^iv[k,i] is the maximal visible subpicture of ir. A rather intuitive way to understand 
a well defined picture ir is to consider that some rows and/or columns on the border of ir are 
hidden but not deleted. Note that any picture over V is a well defined picture. For the rest of 



this paper, we deal with well defined pictures only. The minimal alphabet containing all visible 
symbols appearing in a picture ir is denoted by alph(ir). 

We now define the evolutionary operations on pictures. These definitions appear in [5, 3, 1], 
but we prefer to follow [1], where they are given in a more general setting. 

Let V be an alphabet; a rule of the form a —>• b, with a,b E V U {e} is called an evolutionary 
rule. We say that a rule a —> b is: a) a substitution rule if neither a ñor b is e; b) a deletion 
rule if a ^ e, b = e; c) an insertion rule if a = e, b ^ e. In this paper we shall ignore insertion 
rules because we want to process every given picture in a space bounded by the size of that 
picture. We denote the sets of substitution and deletion rules by Subv = {a —> b \ a,b E V} 
and Delv = {a —> e \ a E V}, respectively. Given a rule a as above and a picture ir E (VUM)^, 
we define the following actions of a on ir following [5]. 

If a = a —> b E Suby, then cr^(ir) is the set of all pictures ir' such that the following conditions 
are satisfied: 

(1.) There exist 1 < u < v < m and 1 < s < t < n such that ^ v r ^ ] is the maximal 
visible subpicture of ir. 

(2.a.) There exists u < i < v such that ir (i, s) = a; then ir'(i, s) = b, and ir'(j, l) = ir(j, l) 
forall (j,l) E ([m] x [n ] ) \{ (¿ , s )} . 

(2.b.) If the leftmost column of ^71"^ t\ does not contain any occurrence of a, then cr^(ir) = 

w-
Informally, cr^(ir) is the set of all pictures that can be obtained from ir by replacing an oc­
currence of a by b in the leftmost column of the maximal visible subpicture of ir. Note that 
a is applied to all occurrences of the letter a in the leftmost column of the maximal visible 
subpicture of ir in different copies of the picture ir. We say that the rule a is applied to the 
leftmost column of the maximal visible subpicture of ir. 

In an analogous way, we define a^(ir), cr^(ir), cr^(ir), and a+(ir) as the sets of all pictures 
obtained by applying a to the rightmost column, to the first row, to the last row, and to any 
column/row of the maximal visible subpicture of ir, respectively. 

If a = a —> e E Dely, then cr^(ir) is the picture obtained from ir by deleting the i — th column 
of ir provided that the maximal visible subpicture of ir starts at the position (i,j) in ir, for 
some j , and the i — th column of 7r contains an occurrence of a. If the leftmost column of the 
maximal visible subpicture of ir does not contain any occurrence of a, then cr^(ir) = ir. We say 
that the deletion rule a is applied to the leftmost column of the maximal visible subpicture of 
7T. 

Analogously, a^(ir), cr^(ir), and a^(ir) are the pictures obtained from ir by applying a to the 
rightmost column, to the first row, and to the last row of the maximal visible subpicture of ir, 
respectively. Furthermore, a\ir) (a~(ir)) is the set of pictures obtained from ir by deleting an 
arbitrary column (row) containing an occurrence of a from ir. If more than one column (row) of 
ir contains a, then for each such column (row), there is a copy of ir in a\ir) (a~(ir)) having this 
column (row) deleted. If ir does not contain any occurrence of a, then a\ir) = {7r}(<7~(7r) = 



W). 
For every rule a, symbol a E {̂ —, —>-,t>4-> |> ~~ > +}> a n d ¿ C ( y U 3^)*, we define the a-action 

of a on L by aa(L) = \\aa(7r). Given a finite set of rules M, we define the a-action of M on 
7r€L 

the picture 7r and the language L by: 

M a ( 7 r ) = |J í7 a(7r) and Ma(L) = | j M a ( 7 r ) , 

respectively. In what follows, we shall refer to the rewriting operations defined above as evolu-
tionary picture operations since they may be viewed as the 2-dimensional linguistic formulations 
of local gene mutations. 

We now define a new operation on pictures and its inverse, namely mask and unmask that 
was introduced in [1]. Let ir be a picture of size (m, n) over F U í and a E V. 

• mask^~'(ir) returns the picture obtained from n by transforming all visible symbols from 
the leftmost column of the maximal visible subpicture of n into their invisible copies. 
Analogously, one defines the mappings mask~^, mask?, and mask^. 

• unmask^'(ir) returns the picture obtained from ir as follows. If ^ir[k,i] is the maximal 
visible subpicture of ir, then all invisible symbols ir(s,j — 1), i < s < k, become visible. 
If j = 1, then unmask^(ir) = ir. Analogously, one defines the mappings unmask^, 
unmask?, and unmask^. 

For every a E {-^,—>,?,?} and L C (V U M)*, we define maska(L) = {maska(ir) \ ir E L}. 
Analogously, unmask" (L) = {unmaska (ir) \ ir E L}. 

For two disjoint subsets P and F of an alphabet V and a picture ir over V, we consider the 
following two predicates which we will later use to define two types of filters: 

rcs(n; P,F) = PC alph(n) A F n alph(n) = 0 

rcw(n; P, F) = alph(ir) n F / l A F í l alph(n) = 0. 

The construction of these predicates is based on context conditions defined by the two sets P 
(permitting contexts/symbols) and F (forbidding contexts/symbols). Informally, both conditions 
require that no forbidding symbol is present in 7r; furtherniore the first condition requires all 
permitting symbols to appear in ir, while the second one requires that at least one permitting 
symbol appears in ir. 

For every picture language L C V* and /5 E {s,w}, we define: 

rcfi(L, P,F) = {ir E L\ rcfi(it; P, F) = t r u e } . 

An evolutionary picture processor with filters over V U lé is a 5-tuple (M,PI,FI,PO,FO), 
where: 



• Either M C Subv or M C Dely. The set M represents the set of evolutionary rules of 
the processor. As one can see, a processor is "specialized" into one type of evolutionary 
operation, only. 

• PI, FI C V are the input sets of permitting and forbidding symbols (contexts) of the 
processor, while PO, FO C V are the output sets of permitting and forbidding symbols of 
the processor (with Plr\FI = % and POC\FO = 0). 

An evolutionary picture processor without filters over y U ^ is just a set of evolutionary rules. 

A hiding picture processor over 1 / U t ([1]) is a 5-tuple (M, PI, FI, PO, FO), where M is 
either mask or unmask, while the other parameters are identical to those defined above for 
evolutionary processors. 

3. Networks of Evolutionary Picture Processors 

We give here the definition of an ANEPP following [1], which slightly differs from the definitions 
in [5] in the sense that the nodes Halt and Accept coincide. This definition is more suitable for 
ANEPP used as problem solvers. 

An accepting netvjork of evolutionary picture processors (ANEPP) is a 9-tuple 
T = (V, U, G, N, a, 0, In, Halt, Accept), 

where: 

• V and U are the input and network alphabet, respectively, V C U. 

• G = (XG,EG) is an undirected graph without loops with the set of vértices XG and the 
set of edges EQ. G is called the underlying graph of the network. Although in network 
theory, several types of graphs are common like complete, rings, stars, grids, we focus here 
on complete underlying graphs (every two vértices are connected by an edge), so that we 
can replace the graph G by the set of its nodes. 

• N is a mapping which associates with each node x E XG the evolutionary picture processor 

with filters 

N(x) = (Mx, PIX, FIX, POx, FOx). 

• o¡ : XG —> {̂ —, —>, t ) ^ I; — > + } ; OL(X) gives the action mode of the rules of node x on the 
pictures existing in that node. 

• 0 : XG —> {s, w} defines the type of the input and output filters of a node. More precisely, 
for every node, x E XG, the following filters are defined: 

input filter: px(-) = rc^x)(-; PIX, FIX), 

output filter: rx(-) = rcp(x) (•;POx,FOx). 

That is, Pxijr) (resp. TX(TT)) indicates whether or not the picture ir can pass the input 
(resp. output) filter of x. More generally, px(L) (resp. rx(L)) is the set of pictures of L 
that can pass the input (resp. output) filter of x. 



• In,Halt, Accept E XG are the ínput node, the halting node, and the acceptíng node of T, 
respectively. Of course, it is not obligatory that the three nodes are different from each 
other. 

We then say that card(XG) is the size of T. A configuration of an ANPP T as above is a 
mapping C : XG —> 2U* which associates a finite set of pictures with every node of the graph. 
A configuration may be understood as the sets of pictures which are present in any node at 
a given moment. Given a picture TT E V*, the initial configuration of T on ir is defined by 
C{o\ln) = {TT} and C^\x) = 0 for all XEXG\ {In}. 

A configuration can change via either a processing step or a communication step. When changing 
via a processing step, each component C(x) of the configuration C is changed in accordance 
with the set of rules Mx associated with the node x and the way of applying these rules, namely 
a(x). Formally, we say that the configuration C is obtained in one processing step from the 
configuration C, written as C =>- C, iff 

C'(x) = Mfx)(C(x)) for all x E XG. 

When changing via a communication step, each node processor x E XG sends one copy of each 
picture it has, which is able to pass the output filter of x, to all the node processors connected 
to x (under our assumption, all nodes in XG) and receives all the pictures sent by any node 
processor connected with x provided that they can pass its input filter. 

Formally, we say that the configuration C is obtained in one communication step from config­
uration C, written as C h C, iff 

C'(X) = (C(X)\TX(C(X))) U 

| J (Ty(C(y)) n Px{C{y))) for all x E XG. 
{x,y}eEG 

Note that pictures that cannot pass the output filter of a node remain in that node and can be 
further modified in the subsequent evolutionary steps, while pictures that can pass the output 
filter of a node are expelled. Further, all the expelled pictures that cannot pass the input filter 
of any node are lost. 

Let T be an ANPP; the computation of T on an input picture ir E V* is a sequence of configu-

rations C¿ , CJ , C£ > • • • > where C¿ is the initial configuration of Y on TI, C^ =^- C^i and 

^2Í+I ^ C2Í+2) f° r a lH > 0. Note that configurations are changed by alternative steps. By the 

previ ous definitions, each configuration Q is uniquely determined by C¡_v A computation 

as above halts if there exists a configuration such that the set of pictures existing in the halting 

node is non-empty. The picture language decided by Y is 

L{Y) = {TT E V* I the computation of Y on TT halts 

with a non-empty accepting node} 

As we consider here ANPPs as problem solvers, the halting condition is a bit different than that 
from [5], where there is no deciding condition. Furthermore, for the rest of this paper we only 



deal with ANPPs that halt on every input. These halting and deciding conditions are among 
several ways in which networks of evolutionary processors can be used as deciding machines in 
[11]. 

Theorem 3.1 ([5]) 
1. There exist non-recognizable languages which can be accepted by ANEPPs. 
2. The complement of every local language can be accepted by an ANEPP. 

As a consequence of the results proved in [1] (and mentioned later), we can give the complexity 
of the membership problem for local languages. 

Theorem 3.2 Every local language can be decided by ANEPPs in 0(n + ni) computational 
(processing and communication) steps. 

Theorem 3.3 ([5]) The class of languages accepted by ANEPP is closed under rotation, boolean 
unión, projection, inverse projection. 

A natural problem is to find a pattern (a fixed picture) in a given picture. This problem 
is widely known as the two-dimensional pattern matching problem and is largely motivated 
by different aspects in low-level image processing [16]. The more general problem of picture 
matching (where it is not obligatory for the picture to be a two-dimensional array) is widely 
known in the Pattern Recognition field and is connected with Image Analysis and Artificial 
Vision [13, 23]. 

A key step in our solution is to construct a network able to decide the singleton language formed 
by a given picture. 

Theorem 3.4 Let TT be a picture of size (k,n) for sorne 1 < k < 3 and n > 1. The language 
{TT} can be decided by an ANEPP. 

We give now a solution to the picture matching based on ANEPP, for patterns of size (k, n) or 
(n, k) for any 1 < k < 3 and n > 1. 

Theorem 3.5 Let TT be a picture of size (k, l) for sorne 1 < k < 3 and / > 1. The language 

{9 | 7r is a subpicture of 9} 

can be decided by an ANEPP. 

It is worth mentioning that the construction used in the proof of the previously result (see [1]) 
can be easily extended to an ANEPP able to detect, in the same number of computational 
steps, any pattern from a finite set of pictures of the same size. It suffices to construct an 
independent subnetwork of the type just discussed for each pattern. 

Theorem 3.6 Given a finite set F of patterns of size (k,l) and (l,k) for all 1 < k < 3 
and l > 1, the pattern matching problem with patterns from F can be solved by ANEPPs in 
0(n + m + l) computational (processing and communication) steps. 



However, this approach is not suitable for detecting patterns of a different size than those 
considered above. We give a complete solution to this problem in the section devoted to 
ANPP. 

4. Networks of Evolutionary Picture Processors With 
Filtered Connections 

It is clear that filters associated with each node allow a strong control of the computation. 
Indeed, every node has an input and output filter; two nodes can exchange data if it passes the 
output filter of the sender and the input filter of the receiver. Moreover, if some data is sent 
out by some node and not able to enter any node, then it is lost. In [3] the filters are moved 
from the nodes, as they are in [5], to the edges. 

An accepting netvjork of evolutionary picture processors with filtered connections (ANEPPFC) 
is a 10-tuple 

T = (V, U, G, N, a, R, 0, In, Halt, Accept), 
where V, U, G, and a have the same meaning as in an ANEPP, while N is a. mapping which 
associates with each node x E XG the evolutionary picture processor without filters N(x) = 
(Mx). Furthermore, R : EG —> 2U x 2U is a mapping which associates with each edge e E EG 

the disjoint sets R(e) = (Pe, Fe), and 0 : EG —> {s, w} defines the filter type of an edge. 

As for an ANEPP, a configuration can change via either a processing step, which is defined 
exactly as the processing step in an ANEPP, or a communication step, which is defined as 
follows. Formally, we say that the configuration C is obtained in one communication step from 
configuration C, written as C h C, iff 

C'(x) = (C(x)\( | J rcp({x,y})(C(x)M{x,y})))) 

U( |J rc^{Xty})(C(y),X({x,y}))) 
{x,y}eEG 

for all x E XG. The computation of T on an input word, the halting and accepting conditions 
are the same to ANEPP. 

The main results in [3] are: 

Theorem 4.1 
1. There exist non-recognizable languages which can be accepted by ANEPPFCs. 
2. The complement of every local language can be accepted by an ANEPPFC. 

In spite of the possible weakness of ANEPPFC, all the results reported in [5] have been extended 
to these new devices. Moreover, in all cases the ANEPPFCs have a smaller size (number of 
processors). This suggests that moving the filters from the nodes to the edges does not decrease 
the computational power of the model. It is worth mentioning that a direct proof showing that 



ANEPs and ANEPs with filtered connections are computationally equivalent was proposed in 
[4]. However, that construction from [4] essentially need an operation, namely insertion, that 
has not a corresponding one in ANEPPs or ANEPPFCs, therefore we do not know a proof for 
a direct simulation of one model by the other. 

5. Networks of Picture Processors 

An accepting netvjork of picture processors (ANPP) is defined as an ANEPPin which some 
nodes may be hiding picture processors. The computation, halting and accepting conditions 
are the same to those for ANEPP. 

In the sequel, we show how the picture pattern matching can be completely solved with ANPP, 
that is with networks having both types of nodes: evolutionary processors and hiding proces­
sors. The idea is the same as in the case of ANEPP, namely the network solving the problem 
consists of two subnetworks, one of them extracts at each step, simultaneously, all subpictures 
of identical (progressively decreasing) size from the input picture and sends them to the other 
subnetwork. In turn, this subnetwork consists of two subnetworks; one of them checks whether 
any of the received pictures is identical to the pattern, while the other one halts the computa­
tion if none of the received pictures is identical to the pattern. Therefore, it suffices to construct 
an ANPP able to decide the singleton language formed by a given picture. 

Theorem 5.1 Let n be a picture of size (k,l), for some k,l > 1 over an alphabet V. The 
language {n} can be decided by an ANPP. 

We are now able to give the complete solution based on ANPPs to the problem of picture 
matching: 

Theorem 5.2 Given a finite set F of patterns of size (k,l) and (l,k) for any k,l > 1, the 
pattern matching problem with patterns from F can be solved by ANPPs in 0(n + m + kl) 
computational (processing and communication) steps. 

The solutions of picture matching with ANPP have several consequences (see [1]). 

Theorem 5.3 Let n be a picture of size (k, n) for some 1 < k < 3 and n > 1. The cornplernent 
of the language {ir} can be decided by an ANEPP. 

Theorem 5.4 Let (k,l) be two positive integers, 1 < k < 3 and l > 1. Every (k,l)-local 
language or (l,k)-local language can be decided by ANEPPs in 0(n + m + l) computational 
(processing and communication) steps. 

Theorem 5.5 Let (k,l) be two positive integers. Every (k,l)-local language can be decided by 
ANPPs in 0(n + m + kl) computational (processing and communication) steps. 



The last results lead to a similar solution to the following problem. Let k, l be two positive 
integers and F be a finite set of pictures of size (k, l). The picture language F* is the minimal 
set of pictures such that: 

i * 

* > (¿) FCF: 

(ii) If 7r,p E F*, then ir®p E F* (provided that ir( 

exists) and ir©p G F* (provided that ir©p exists.) 

Theorem 5.6 Let k,l be two positive integers and F be a finite set of pictures of size (k,l). 
The language F* can be decided by ANPPs in 0(n + m + kl) computational (processing and 
communication) steps. 

The networks including both evolutionary and hiding processors seem to be more powerful than 
ANEPPs considered in [5]. A natural further step is to investigate the computational power 
and other computational properties of ANPPs. For instance, the relationships between ANPPs 
and tiling systems are still unknown. 

6. Networks of Polarized Evolutionary Picture Proces­
sors 

The material presented here essentially follows [15]. A valuation is a mapping ip : V —> Z that 
associates to every symbol from V an integer valué. The valué ip(a) is also called the polarity 
of the symbol a. The polarity of a picture is denoted by the function § : V* —>• {—,0,+}4 

which associates a symbol from { — ,0 ,+} to the top, bottom, leftmost and rightmost column, 
respectively. Informally we say that the polarity of a row or a column as being the sign of the 
sum of the polarities of every symbol in that row or column. The polarity of a picture can be 
seen as a 4-tuple over the set { — ,0, +} and represents the polarities, in this order, of the first 
row, the last column, the last row and the first column. More formally, we define the polarity 
of a picture ir, of size (m, n) as: 

$(vr) = (sign(^2 ¥>(7r(l, i))),sign(^2 <p(ir(i, n))),signi^ ^{m, i))),sign(^2 <p(n(i, 1))))-
i=\ i=\ i=\ i=\ 

A polarized evolutionary picture processor (ANPEPP) over V is a 3-tuple (M,AV,a) where: 
-Either M C Suby or M C Dely and represents the set of evolutionary rules associated with 
the processor. 
-AV £ { —, 0, +} 4 is a 4-tuple representing the picture polarity compatible with the processor 
-a E {̂—, —>, t , i} denotes the action mode of the rules of pictures associated with the processor. 
We say a picture ir and a processor are compatible if and only if the picture's polarity, $(7r), 
is identical to the AV element associated with the processor. We will denote the set of all 
polarized picture processors over the alphabet V by EPPV. 



An accepting network of polarized evolutionary picture processors (ANPEPP for short) is like 
an ANEPP with all its processors being polarized picture processors. 

As for an ANEPP, a configuration can change via either a processing step, which is defined 
exactly as the processing step in an ANEPP, or a communication step, which is defined as 
follows. Formally, we say that the configuration C is obtained in one communication step from 
configuration C, written as C h C, iff 

C'{x) = (C(x)\{ir E C(X)|$(TT) ¿ AVX}) U 

U ({neC(y)mn) = AVx}). 

{x,y}eEG 

The computation of T on an input word, the halting and accepting conditions are the same to 
ANEPP. 

As it was expected, the results from [5] are also obtained for this model: 

Theorem 6.1 
1. There exist non-recognizable languages which can be accepted by ANPEP. 
2. The complement of every local language can be accepted by an ANPEP. 

Theorem 6.2 Given a finite set F of patterns of size (k,l) and (l,k) for all 1 < k < 3 and 
l > 1, the pattern matching problem with patterns from F can be solved by ANPEP. 

7. Final Remarks 

The networks including both evolutionary and hiding processors seem to be more powerful than 
ANEPPs considered in [5]. A natural further step is to investígate the computational power 
and other computational properties of ANPPs. For instance, the relationships between ANPPs 
and tiling systems are still unknown. 

Another direction of further research concerns the relationship between ANEPP and ANEPPFC. 
Remember that for the string case the two variants have initially been shown to be equivalent 
via simulations of Turing machines, and later on direct mutual simulations have been reported 
in [4]. Moreover, these simulations were shown to preserve the complexity. Are there possible 
similar simulations in the picture case? 

The investigation started in [15] is just a first step in this direction. The communication 
protocol considered there seems very powerful. A natural step is to investígate more deeply 
the computational power of these networks. It would also be of interest if these networks can 
completely solve the picture pattern matching. 
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