3 research outputs found

    Binary Reachability of Timed Pushdown Automata via Quantifier Elimination and Cyclic Order Atoms

    Get PDF
    We study an expressive model of timed pushdown automata extended with modular and fractional clock constraints. We show that the binary reachability relation is effectively expressible in hybrid linear arithmetic with a rational and an integer sort. This subsumes analogous expressibility results previously known for finite and pushdown timed automata with untimed stack. As key technical tools, we use quantifier elimination for a fragment of hybrid linear arithmetic and for cyclic order atoms, and a reduction to register pushdown automata over cyclic order atoms

    Timed Basic Parallel Processes

    Get PDF
    Timed basic parallel processes (TBPP) extend communication-free Petri nets (aka. BPP or commutative context-free grammars) by a global notion of time. TBPP can be seen as an extension of timed automata (TA) with context-free branching rules, and as such may be used to model networks of independent timed automata with process creation. We show that the coverability and reachability problems (with unary encoded target multiplicities) are PSPACE-complete and EXPTIME-complete, respectively. For the special case of 1-clock TBPP, both are NP-complete and hence not more complex than for untimed BPP. This contrasts with known super-Ackermannian-completeness and undecidability results for general timed Petri nets. As a result of independent interest, and basis for our NP upper bounds, we show that the reachability relation of 1-clock TA can be expressed by a formula of polynomial size in the existential fragment of linear arithmetic, which improves on recent results from the literature
    corecore