
Binary Reachability of Timed Pushdown Automata
via Quantifier Elimination and Cyclic Order Atoms
Lorenzo Clemente1

University of Warsaw
clementelorenzo@gmail.com

https://orcid.org/0000-0003-0578-9103

Sławomir Lasota2

University of Warsaw
sl@mimuw.edu.pl

https://orcid.org/0000-0001-8674-4470

Abstract
We study an expressive model of timed pushdown automata extended with modular and fractional
clock constraints. We show that the binary reachability relation is effectively expressible in hybrid
linear arithmetic with a rational and an integer sort. This subsumes analogous expressibility
results previously known for finite and pushdown timed automata with untimed stack. As key
technical tools, we use quantifier elimination for a fragment of hybrid linear arithmetic and for
cyclic order atoms, and a reduction to register pushdown automata over cyclic order atoms.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models, The-
ory of computation → Logic and verification, Theory of computation → Formal languages and
automata theory

Keywords and phrases timed automata, reachability relation, timed pushdown automata, linear
arithmetic

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.118

1 Introduction

Timed automata (ta) are one of the most studied models of reactive timed systems. The fun-
damental result that paved the way to automatic verification of timed systems is decidability
(and PSPACE-completeness) of the reachability problem for ta [2]. However, in certain
applications, such as in parametric verification, deciding reachability is insufficient, and one
needs to construct the more general binary reachability relation, i.e., the entire (possibly
infinite) set of of pairs of configurations (ci, cf) s.t. there is an execution from ci to cf . The
reachability relation for ta has been shown to be effectively expressible in hybrid linear
arithmetic with rational and integer sorts [11, 13, 15, 18]. Since hybrid logic is decidable,
this yields an alternative proof of decidability of the reachability problem.

In this paper, we compute the reachability relation for timed automata extended with a
stack. An early model of pushdown timed automata (ptda) extending ta with a (classical,
untimed) stack has been considered by Bouajjani et al. [5]. More recently, dense-timed
pushdown automata (dtpda) have been proposed by Abdulla et al. [1] as an extension of
ptda. In dtpda, stack symbols are equipped with rational ages, which initially are 0 and
increase with the elapse of time at the same rate as global clocks; when a symbol is popped,

1 Partially supported by Polish NCN grant 2017/26/D/ST6/00201.
2 Partially supported by Polish NCN grant 2016/21/B/ST6/01505.

EA
T

C
S

© Lorenzo Clemente and Sławomir Lasota;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 118; pp. 118:1–118:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:clementelorenzo@gmail.com
https://orcid.org/0000-0003-0578-9103
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.118
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118:2 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

its age is tested for membership in an interval. While dtpda syntactically extend ptda by
considering a timed stack, timed constraints can in fact be removed while preserving the
timed language recognised by the dtpda, and thus they semantically collapse to ptda [8].
This motivates the quest for a strictly more expressive generalisation of ptda and dtpda
with a truly timed stack. It has been observed in [21] that adding fractional stack constraints
prevents the stack from being untimed, and thus strictly enriches the expressive power3.

We embrace this observation and propose the model of timed pushdown automata (tpda),
which extends timed automata with a timed stack and integer, fractional, and modulo
diagonal/non-diagonal constraints. The model features local clocks and stack clocks. As
time elapses, all clocks increase their values, and they do so at the same rate. Local clocks
can be reset and compared according to the generalised constraints above. At the time
of a push operation, new stack clocks are created whose values are initialised, possibly
non-deterministically, as to satisfy a given push constraint between stack clocks and local
clocks; similarly, a pop operation requires that stack clocks to be popped satisfy a given
pop constraint of analogous form. Stack push/pop constraints are also of the form of
diagonal/non-diagonal integer, modulo, and fractional constraints.

Contributions. We compute the binary reachability relation of tpda, i.e., the family of
binary relations { `r} ⊆ QX≥0 × QX≥0 for control locations `, r s.t. from the initial clock
valuation µ ∈ QX≥0 and control location ` we can reach the final clock valuation ν ∈ QX≥0 and
control location r, written µ `r ν. The stack is empty at the beginning and at the end of
the computation. The main contribution of the paper is the effective computation of the
tpda reachability relation in the existential fragment of linear arithmetic LZ,Q, a two-sorted
logic combining Presburger arithmetic (Z,≤, (≡m)m∈N,+, 0) and linear rational arithmetic
(Q,≤,+, 0). As a byproduct of our constructions, we actually characterise the more general
ternary reachability relation µ π

 `r ν, where µ, ν are as above and π : NΣ additionally counts
the number of occurrences of input letters over a finite alphabet Σ, i.e., the Parikh image of
the run. To our knowledge, the ternary reachability relation was not previously considered.
As an application of ternary reachability, we can model, for instance, letter counts of initial
and final, possibly non-empty, stack contents. Thus, ternary reachability is an expressive
extension of binary reachability.

The computation of the ternary reachability relation is achieved by two consecutive
translations. First, we transform a tpda into a fractional tpda, which uses only fractional
constraints. In this step we exploit quantifier elimination for a fragment of linear arithmetic
corresponding to clock constraints. Quantifier elimination is a pivotal tool in this work, and
to our knowledge its use in the study of timed models is novel. The final integer value of
clocks is reconstructed by letting the automaton input special tick symbol Xx every time clock
x reaches an integer value (provided it is not reset anymore later); it is here that ternary
reachability is more suitable than binary reachability.

Secondly, a fractional tpda is transformed into a pda with registers (rpda) over the so
called cyclic order atoms (Q ∩ [0, 1),K) [7], where K is the ternary cyclic order relation

K(a, b, c) ≡ a < b < c ∨ b < c < a ∨ c < a < b, for a, b, c ∈ Q ∩ [0, 1). (1)

In other words, K(a, b, c) holds if, distributing a, b, c on the unit circle and going clockwise
from a, then we fist visit b and afterwards c. Since fractional values are wrapped around 0
when time increases, K is invariant under time elapse. We use registers to store the fractional

3 For ta, fractional constraints can be handled by the original region construction and do not make the
model harder to analyse [2].

L. Clemente and S. Lasota 118:3

parts of absolute times of last clock resets; fractional constraints on clocks are simulated
by constraints on registers using K. In order to compute the reachability relation for rpda
we use again quantifier elimination, this time over cyclic order atoms. The latter property
holds since cyclic order atoms constitute a homogeneous structure [16]. Therefore, another
contribution of this work is the solution of a nontrivial problem such as computing the
reachability relation for tpda, which is a clock model, as an application of rpda, which
is a register model. The analysis of rpda is substantially easier than a direct analysis of
(fractional) tpda.

From the complexity standpoint, the formula characterising the reachability relation of a
tpda is computable in double exponential time. However, when cast down to ta or tpda
with timeless stack (which subsume ptda and, a posteriori, dtpda), the complexity drops
to singly exponential, matching the previously known complexity for ta [18]. For ptda, no
complexity was previously given in [12], and thus the result is new. For tpda, the binary
reachability problem has not been studied before. Since the existential fragment of LZ,Q
is decidable in NP (because so is existential linear rational arithmetic [19] and existential
Presburger arithmetic [23]), we can solve the reachability problem of tpda in 2NEXP by
reduction to satisfiability for LZ,Q. Since our constructions preserve the languages of all the
models involved, untimed tpda languages are context-free.

Discussion. From a syntactic point of view, tpda significantly lifts the restrictions of
dtpda– which allow only classical non-diagonal constraints, i.e., interval tests, and thus has
neither diagonal, nor modulo, nor fractional constraints – and of the model of [21] – which
additionally allows diagonal/non-diagonal fractional tests, and thus does not have modulo
constraints. Since classical diagonal constraints reduce to classical non-diagonal constraints,
and, in the presence of fractional constraints, integer and modulo constraints can be removed
altogether (cf. Sec. 4), tpda are expressively equivalent to [21]. However, while [21] solves
the control state reachability problem, we solve the more general problem of computing the
binary reachability relation. Our reduction technique not only preserves reachability, like
[21], but additionally enables the reconstruction of the reachability relation.

Our expressivity result generalises analogous results for ta [11, 13, 15, 18] and ptda
[12]. The proof of [11] for ta has high technical difficulty and does not yield complexity
bounds. The proof of [13] for ta uses an automata representation for sets of clock valuations;
the idea of reset-point semantics employed in [13] is analogous to using registers instead
of clocks. The paper [15] elegantly expresses the reachability relation for ta with clock
difference relations (CDR) over the fractional values of clocks. It is remarkable that the
formulas expressing the reachability relations that we obtain are of the same shape as CDR.
The recent paper [18] shows that the ta binary reachability relation can be expressed in
the same fragment of hybrid linear arithmetic that we use for tpda, which we find very
intriguing. Their proof converts the integer value of clocks into counters, and then observes
that, thanks to the specific reset policy of clocks, these counter machines have a semilinear
reachability relation; the latter is proved by encoding the value of counters into the language.
In our proof, we bring the encoding of the integer value of clocks into the language to the
forefront, via the introduction of the ternary reachability relation. The proof of [12] for ptda
also separates clocks into their integer and fractional part. It is not clear how any of the
previous approaches could handle a timed stack.

Another approach for computing the reachability relation for tpda would be to reduce
it directly to a more expressive register model, such as timed register pushdown automata
(trpda) [8, 9], which considers both integer (Z,≤,+1) and rational registers (Q≥0,≤). While

ICALP 2018

118:4 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

such a reduction for the reachability problem is possible since (the integer part of) large clock
values can be “forgotten”, e.g., along the lines of [8], this does not hold anymore if we want
to preserve the reachability relation. For this reason, in the present work we first remove the
integer part of clocks (by encoding it in the untimed language) and then we reduce to rpda,
which have only fractional registers and no integer register, and are thus easier to analyse
than trpda4. The method of quantifier elimination was recently applied to the analysis of
another timed model, namely timed communicating automata [6].

Finally, another expressive extension of ta, called recursive timed automata (rta), has
been proposed [20, 3]. rta use a timed stack to store the current clock valuation, which does
not evolve as time elapses and can be restored at the time of pop. This facility makes rta
expressively incomparable to all models previously mentioned.

Missing proofs can be found in the technical report [10].

Notations. Let Q, Q≥0, Z, and N denote the rationals, the non-negative rationals, the
integers, and the natural numbers; let I = Q≥0 ∩ [0, 1) be the unit rational interval. Let ≡m
denote the congruence modulo m ∈ N \ {0} in Z. For a ∈ Q, let bac ∈ Z denote the largest
integer k s.t. k ≤ a, and let {a} = a−bac denote its fractional part. Let 1C?, for a condition
C, be 1 if C holds, and 0 otherwise.

2 Linear arithmetic and quantifier elimination

Consider the two-sorted structure A = AZ]AQ, where AZ = (Z,≤, (≡m)m∈N,+, (k)k∈Z) and
AQ = (Q,≤,+, (k)k∈Q). We consider “+” as a binary function, and we have a constant k for
every integer/rational number. By linear arithmetic, denoted LZ,Q, we mean the two-sorted
first-order language in the vocabulary of A. Restriction to the integer sort yields Presburger
arithmetic LZ (integer formulas), and restriction to the rational sort yields linear rational
arithmetic LQ (rational formulas). We assume constants are encoded in binary.

Two formulas are equivalent if they are satisfied by the same valuations. It is well-known
that the theories of AZ [17] and AQ [14] admit effective elimination of quantifiers: Every
formula can effectively be transformed in an equivalent quantifier-free one. Therefore, the
theory of A also admits quantifier elimination, by the virtue of the following general fact
(when speaking of a structure admitting quantifier elimination, we have in mind its theory).

I Lemma 1. If the structures A1 and A2 admit (effective) elimination of quantifiers, then
the two-sorted structure A1] A2 also does so. For conjunctive formulas, the complexity is
the maximum of the two complexities.

For clock constraints, we will use the first-order language over the two sorted structure
Ac = Ac

N] Ac
I , where the integer sort is restricted to Ac

N = (N,≤, (≡m)m∈N,+1, 0) – the
domain is now N and full addition “+” is replaced by the unary successor operation “+1”)
– and the rational sort to Ac

I = (I,≤, 0) – the domain is now the unit interval, there is no
addition, and the only constant is 0. Let Lc

N,I be such a sub-logic. (As syntactic sugar
we allow to use addition of arbitrary, even negative, integer constants in integer formulas,
e.g. x− 4 ≤ y + 2.) As before, Lc

N and Lc
I are the restrictions to the respective sorts. All the

sub-logics above admit effective elimination of quantifiers.

4 trpda are more general than rpda– cyclic order atoms can be interpreted into (Q≥0, ≤). The binary
reachability relation for trpda can be computed by refining the reductions of [9] used for deciding
the reachability problem. However, we do not know how to use the reachability relation of trpda to
compute that of tpda.

L. Clemente and S. Lasota 118:5

I Lemma 2. The structures Ac
N and Ac

I admit effective elimination of quantifiers. For Ac
N

the complexity is singly exponential for conjunctive formulas, while for Ac
I is quadratic.

Notice that since Lc
N is a fragment of Presburger arithmetic LZ, we could apply the quantifier

elimination for LZ to get a quantifier-free LZ formula. Our result is stronger since we get a
quantifier-free formula of the more restrictive fragment Lc

N.

I Corollary 3. The structure Ac admits effective quantifier elimination. The complexity is
exponential for conjunctive formulas.

3 Timed pushdown automata

Clock constraints. Let X be a finite set of clocks. We consider constraints which can
separately speak about the integer bxc and fractional value {x} of a clock x ∈ X. A clock
constraint over X is a boolean combination of atomic clock constraints of one of the forms

(integer) (modular) (fractional)

(non-diagonal) bxc ≤ k bxc ≡m k {x} = 0
(diagonal) bxc − byc ≤ k bxc − byc ≡m k {x} ≤ {y}

where x, y ∈ X, m ∈ N,a and k ∈ Z. Since we allow arbitrary boolean combinations,
we consider also the constraint true, which is always satisfied, and variants with any
∼ ∈ {≤, <,≥, >} in place of ≤. A clock valuation is a mapping µ ∈ QX≥0 assigning a
non-negative rational number to every clock in X; we write bµc for the valuation in NX
s.t. bµc(x) := bµ(x)c and {µ} for the valuation in IX s.t. {µ} (x) := {µ(x)}. For a valuation
µ and a clock constraint ϕ we say that µ satisfies ϕ if ϕ is satisfied when integer clock values
bxc are evaluated according to bµc and fractional values {x} according to {µ}.
I Remark (Clock constraints as quantifier-free Lc

N,I formulas). Up to syntactic sugar, a
clock constraint over clocks {x1, . . . , xn} is the same as a quantifier-free Lc

N,I formula
ϕ(bx1c, . . . , bxnc, {x1} , . . . , {xn}) over n integer and n rationals variables.
I Remark (Classical clock constraints). Integer and fractional constraints subsume classical
ones. For clocks x, y, since x = bxc+ {x} (and similarly for y)5, x− y ≤ k for an integer k is
equivalent to (bxc − byc ≤ k ∧ {x} ≤ {y}) ∨ bxc − byc ≤ k − 1, and similarly for x ≤ k. On
the other hand, the fractional constraint {x} = 0 is not expressible as a classical constraint.
I Remark (bxc − byc versus bx− yc). In the presence of fractional constraints, the expressive
power would not change if, instead of atomic constraints bxc − byc ≡m k and bxc − byc ≤ k
speaking of the difference of the integer parts, we would choose bx−yc ≡m k and bx−yc ≤ k
speaking of the integer part of the difference, since the two are inter-expressible:

bx− yc = bxc − byc − 1{x}<{y}? and {x− y} = {x} − {y}+ 1{x}<{y}?. (2)

The model. A timed pushdown automaton (tpda) is a tuple P = 〈Σ,Γ, L,X,Z,∆〉 where
Σ is a finite input alphabet, Γ is a finite stack alphabet, L is a finite set of control locations,
X is a finite set of global clocks, and Z is a finite set of stack clocks disjoint from X. The
last item ∆ is a set of transition rules 〈`, op, r〉 with `, r ∈ L control locations, where op
determines the type of transition:

5 We often identify a clock x with its value for simplicity of notation.

ICALP 2018

118:6 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

time elapse op = elapse,
input op = a ∈ Σε := Σ ∪ {ε} an input letter,
test op = ϕ a transition constraint over clocks X,
reset op = reset(Y) with Y ⊆ X a set of clocks to be reset,
push op = push(α : ψ) with α ∈ Γ a stack symbol to be pushed on the stack under the
stack constraint ψ over clocks X ∪ Z, or
pop op = pop(α : ψ) similarly as push.

We assume that every atomic constraint in a stack constraint contains some stack variable
from Z. Throughout the paper, let x0 be a global clock that is never reset (and thus measures
the total elapsed time), and let z0 be a stack clock that is 0 when pushed. A tpda has
untimed stack if the only stack constraint is true. Without push/pop operations, we obtain
nondeterministic timed automata (ta).
I Remark (Complexity). For complexity estimations, we assume that constraints are con-
junctions of atomic constraints, that constants therein are encoded in binary, that M is the
maximal constant, and that all modular constraints use the same modulus M .
I Remark (Time elapse). The standard semantics of timed automata where time can elapse
freely in every control location is simulated by adding explicit time elapse transitions
〈`, elapse, `〉 for suitable locations `. Our explicit modelling of the elapse of time will simplify
the constructions in Sec. 4.
I Remark (Comparison with dtpda). The dtpda model [1] allows only one stack clock Z = {z}
and stack constraints of the form z ∼ k. As shown in [8], this model is equivalent to tpda
with untimed stack. Our extension is two-fold. First, our definition of stack constraint is
more liberal, since we allow more general diagonal stack constraints of the form z − x ∼ k.
Second, we also allow modular byc − bxc ≡m k and fractional constraints {x} ∼ {y}, where
clocks x, y can be either global or stack clocks. As demonstrated in Example 4 below, this
model is not reducible to untimed stack, and thus tpda are more expressive than dtpda.

Semantics. Every stack symbol is equipped with a fresh copy of clocks from Z. At the time
of push(α : ψ), the push constraint ψ specifies possibly nondeterministically the initial value
of all clocks in Z w.r.t. global clocks in X. Both global and stack clocks evolve at the same
rate when a time elapse transition is executed. At the time of pop(α : ψ), the pop constraint
ψ specifies the final value of all clocks in Z w.r.t. global clocks in X. A timed stack is a
sequence w ∈ (Γ×QZ≥0)∗ of pairs (γ, µ), where γ is a stack symbol and µ is a valuation for
stack clocks in Z. For a clock valuation µ and a set of clocks Y , let µ[Y 7→ 0] be the same as
µ except that clocks in Y are mapped to 0. For δ ∈ Q≥0, let µ+ δ be the clock valuation
which adds δ to the value of every clock, i.e., (µ+ δ)(x) := µ(x) + δ, and for a timed stack
w = (γ1, µ1) · · · (γk, µk), let w + δ be (γ1, µ1 + δ) · · · (γk, µk + δ). A configuration is a triple
〈`, µ, w〉 ∈ L×QX≥0 × (Γ×QZ≥0)∗ where ` is a control location, µ is a clock valuation over
the global clocks X, and w is a timed stack. Let 〈`, µ, u〉 , 〈r, ν, v〉 be two configurations. For
every input symbol or time increment a ∈ (Σε∪Q≥0) we have a transition 〈`, µ, u〉 a−→ 〈r, ν, v〉
whenever there exists a rule 〈`, op, r〉 ∈ ∆ s.t. one of the following holds:

op = elapse, a ∈ Q≥0, ν = µ+ a, v = u+ a.
op = a ∈ Σε, ν = µ, u = v.
op = ϕ, a = ε, µ |= ϕ, ν = µ, u = v.
op = reset(Y), a = ε, ν = µ[Y 7→ 0], v = u.
op = push(γ : ψ), a = ε, µ = ν, v = u · 〈γ, µ1〉 if µ1 ∈ QZ≥0 satisfies (µ, µ1) |= ψ, where
(µ, µ1) ∈ QX∪Z≥0 is the unique clock valuation that agrees with µ on X and with µ1 on Z.
op = pop(γ : ψ), a = ε, µ = ν, u = v · 〈γ, µ1〉 provided that µ1 ∈ QZ≥0 satisfies (µ, µ1) |= ψ.

L. Clemente and S. Lasota 118:7

A timed word is a sequence w = δ1a1 · · · δnan ∈ (Q≥0Σε)∗ of alternating time elapses and
input symbols; the one-step transition relation 〈`, µ, u〉 a−→ 〈r, ν, v〉 is extended on timed
words w as 〈`, µ, u〉 w−→ 〈r, ν, v〉 in the natural way. The timed language from location ` to r is
L(`, r) :=

{
πε(w) ∈ (Q≥0Σ)∗

∣∣∣ 〈`, µ0, ε〉
w−→ 〈r, µ0, ε〉

}
where πε(w) removes the ε’s from w

and µ0 is the valuation that assigns µ0(x) = 0 to every clock x. The corresponding untimed
language Lun(`, r) is obtained by removing the time elapses from L(`, r).

I Example 4. Let L be the timed language of even length palindromes s.t. the time distance
between every pair of matching symbols is an integer:

L = {δ1a1 · · · δ2na2n | ∀(1 ≤ i ≤ n) · ai = a2n−i+1 ∧ δi+1 + · · ·+ δ2n−i+1 ∈ N} .

L can be recognised by a tpda over input and stack alphabet Σ = Γ = {a, b}, with locations
`, r, no global clock, one stack clock Z = {z}, and the following transition rules (omitting
some intermediate states), where α ranges over {a, b}:

〈`, α; push(α : {z} = 0), `〉 〈`, ε, r〉
〈r, α; pop(α : {z} = 0), r〉 〈`, elapse, `〉, 〈r, elapse, r〉

We have L = L(`, r). Since L cannot be recognised by tpda with untimed stack (cf. [21]),
fractional stack constraints strictly increase the expressive power of the model.

The reachability relation. The Parikh image of a timed word w is the mapping piw ∈ NΣ

s.t. piw(a) is the number of a’s in w, ignoring the elapse of time and ε’s. For two control
locations `, r, clock valuations µ, ν ∈ QX≥0, and a timed word w ∈ (Q≥0Σε)∗, we write
µ

w
 `r ν if 〈`, µ, ε〉 w−→ 〈r, ν, ε〉. We overload the notation and, for π ∈ NΣ, we write µ π

 `r ν

if there exists a timed word w s.t. µ w
 `r ν and π = piw. We see { `r}`,r∈L as a family of

subsets of QX≥0 × NΣ ×QX≥0 and we call it the ternary reachability relation.
Let

{
ψ`r(bxc, {x} , f , byc, {y})

}
`,r∈L be a family of LZ,Q formulas, where bxc, byc repre-

sent the integer values of initial and final clocks, {x} , {y} their fractional values, and f letter
counts. The reachability relation { `r}`,r∈L is expressed by the family of formulas {ψ`r}`,r∈L
if the following holds: For every control locations `, r ∈ L, clock valuations µ, ν ∈ QX≥0 and
π ∈ NΣ, µ π

 `r ν holds, if, and only if, (bµc, {µ} , π, bνc, {ν}) |= ψ`r holds.

Main results. As the main result of the paper we show that the reachability relation of
tpda and ta is expressible in linear arithmetic LZ,Q.

I Theorem 5. The reachability relation of a tpda is expressed by a family of existential
LZ,Q formulas computable in double exponential time. For ta, the complexity is exponential.

This is a strengthening of analogous results for ta [11, 18] since our model, even without
stack, is more expressive than classical ta due to fractional constraints. As a side effect of
the proofs we get:

I Theorem 6. Untimed tpda languages Lun(`, r) are effectively context-free.

The following two sections are devoted to proving the two theorem above.

ICALP 2018

118:8 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

4 Fractional TPDA

A tpda is fractional if it contains only fractional constraints. We show that computing the
reachability relation reduces to the same problem for fractional tpda. Our transformation is
done in three steps, each one further restricting the set of allowed constraints.
A The tpda is push-copy, that is, push operations can only copy global clocks into stack

clocks. There is one stack clock zx for each global clock x, and the only push constraint is

ψcopy(x, zx) ≡
∧
x∈X
bzxc = bxc ∧ {zx} = {x} . (3)

By pushing copies of global clocks into the stack, we can postpone checking all non-trivial
stack constraints to the time of pop. This steps uses quantifier elimination. The blowup
of the number of pop constraints and stack alphabet is exponential.

B The tpda is pop-integer-free, that is, pop transitions do not contain integer constraints.
The construction is similar to a construction from [8] and is presented in the technical
report [10]. Removing pop integer constraints is crucial towards removing all integer
clocks (modulo constraints will be removed by the next step). This step strongly relies
on the fact that stack clocks are copies of global clocks, which allows one to remove
integer pop constraints by reasoning about analogous constraints between global clocks
at the time of push and their future values at the time of pop, thus bypassing the stack
altogether. We introduce one global clock for each integer pop constraint, exponentially
many locations in the number of clocks and pop constraints, and exponentially many
stack symbols in the number of pop constraints. When combined with the previous step,
altogether exponentially many new clocks are introduced, and doubly exponentially many
locations/stack symbols. It is remarkable that pop integer constraints can be removed by
translating them into finitely many transition constraints on global clocks.

C The tpda is fractional. All integer clocks are removed. In order to recover their values
(which are needed to express the reachability relation), a special symbol Xx is produced
when an integer clock elapses one time unit. This step introduces a further exponential
blowup of control locations w.r.t. global clocks and polynomial in the maximal constant
M . The overall complexity of control locations thus stays double exponential.

By A+B+C (in this order, since the latter properties are ensured assuming the previous
ones), we get the following theorem.

I Theorem 7. A tpda P can be effectively transformed into a fractional tpda Q s.t. a
family of LZ,Q formulas {ϕ`r} expressing the reachability relation of P can effectively be
computed from a family of LZ,Q formulas {ϕ′`′r′} expressing the reachability relation of Q. The
number of control locations and the size of the stack alphabet in Q have a double exponential
blowup, and the number of clocks has an exponential blowup.

If there is no stack, then we do not need the first two steps, and we can do directly C.

I Corollary 8. The reachability relation of push-copy tpda/ta effectively reduces to the
reachability relation of fractional tpda/ta with an exponential blowup in control locations.

(A) The TPDA is push-copy
Let K≤ be the non-strict variant of the ternary cyclic order K from (1), defined as
K≤(a, b, c) ≡ K(a, b, c)∨a = b∨ b = c for a, b, c ∈ I. Let ψpush(x, z) be a push constraint, and
let ψpop(x′, z′) be the corresponding pop constraint. Since stack clock z0 is 0 when pushed

L. Clemente and S. Lasota 118:9

on the stack, z′0 is the total time elapsed between push and pop; let z′0 = (z′0, . . . , z′0) (the
length of which depends on the context). Let z′x be a vector of stack variables representing
the value of global clocks at the time of pop, provided they were not reset since the matching
push. Since all clocks evolve at the same rate, for every global clock x and stack clock z, we
have

x = z′x − z′0 and z = z′ − z′0. (4)

If at the time of push, instead of pushing z, we push on the stack a copy of global clocks x,
then at the time of pop it suffices to check that the following formula holds

ψ′pop(x′, z′x) ≡ ∃z′ ≥ 0 · ψpush(z′x − z′0, z′ − z′0) ∧ ψpop(x′, z′). (5)

Note that the assumption that z0 = 0 at the time of push makes the existential quan-
tification satisfiable by exactly one value of z′0, namely the total time elapsed between
push and pop. However, ψpush(z′x − z′0, z′ − z′0) is not a constraint anymore, since vari-
ables are replaced by differences of variables. We resolve this issue by showing that
the latter is in fact equivalent to a clock constraint. Thanks to (4), for every clock x

we have bxc = bz′x − z′0c, {x} = {z′x − z′0}, and bzc = bz′ − z′0c, {z} = {z′ − z′0}. Thus, a
fractional constraint {y} ≤ {z} in ψpush is equivalent to

{
z′y − z′0

}
≤ {z′ − z′0}, which

is in turn equivalent to C = K≤({z′0} ,
{
z′y
}
, {z′}), which is definable from ≤. More-

over, byc − bzc = bz′y − z′0c − bz′ − z′0c = (z′y − z′0 −
{
z′y − z′0

}
) − (z′ − z′0 − {z′ − z′0}) =

(z′y − z′) −
{
z′y − z′0

}
+ {z′ − z′0} = (z′y − z′) −

{
z′y − z′

}
+ 1D? = bz′y − z′c + 1D?, with

D = C∧
{
z′y
}
6= {z′}. (Notice that bz′0c disappears in this process: This is not a coincidence,

since diagonal integer/modular/fractional constraints are invariant under the elapse of an
integer amount of time.) Thus by (2) we obtain a constraint ψ′push(z′x, z′) logically equivalent
to ψpush(z′x − z′0, z′ − z′0), and, by separating the fractional and integer constraints (cf. Re-
mark 3), ψ′pop(x′, z′x) ≡ ∃bz′c, {z′} · ψ′push(bz′xc, {z′x} , bz′c, {z′})∧ ψpop(bx′c, {x′} , bz′c, {z′}).
By Corollary 3, we can perform quantifier elimination and we obtain a logically equivalent
clock constraint of exponential size (in DNF) ξψpush,ψpop(bx′c, {x′} , bz′xc, {z′x}), where the
subscript indicates that this formula depends on the pair (ψpush, ψpop) of push and pop
constraints. The construction of P ′ consists in checking ξψpush,ψpop in place of ψpop, assuming
that the push constraint was ψpush. The latter is replaced by ψcopy. Control states are the
same in the two automata; we can break down the ξψpush,ψpop in DNF and record each conjunct
in the stack, yielding a new stack alphabet of exponential size.

I Lemma 9. Let { `r}`,r∈L,
{
 ′`r

}
`,r∈L be the reachability relations of P, resp., P ′. Then,

 `r= ′`r for every `, r ∈ L, and P ′ has stack alphabet exponential in the size of P.

(C) The TPDA is fractional
Assume that the tpda P is both push-copy (A) and pop-integer-free (B). We remove diagonal
integer byc − bxc ∼ k and modulo byc − bxc ≡m k constraints on global clocks x, y as in ta
[2]. In the rest of the section, transition and stack constraints of P are of the form

(trans.) bxc ≤ k, bxc ≡m k, {x} = 0, {x} ≤ {y} , (6)
(push) bzxc = bxc, {zx} = {x} , (7)
(pop) byc − bzxc ≡m k, {zx} = 0, {y} ≤ {zx} , (8)

bzyc − bzxc ≡m k, {zy} ≤ {zx} .

ICALP 2018

118:10 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

Unary abstraction. We replace the integer value of clocks by their unary abstraction:
Valuations µ, ν ∈ QX≥0 are M-unary equivalent, written µ ≈M ν, if, for every clock x ∈ X,
bµ(x)c ≡M bν(x)c and bµ(x)c ≤M ⇔ bν(x)c ≤M . Let ΛM be the (finite) set of M -unary
equivalence classes of clock valuations. For λ ∈ ΛM we abuse notation and write λ(x)
to indicate µ(x) for some µ ∈ λ, where the choice of representative µ does not matter.
We write λ[Y 7→ 0] for the equivalence class of ν[Y 7→ 0] and we write λ[x 7→ x + 1]
for the equivalence class of ν[x 7→ ν(x) + 1], for some ν ∈ λ (whose choice is irrelevant).
Let ϕλ(x) ≡

∧
x∈Xbxc ≡M λ(x) ∧ (bxc < M ⇔ λ(x) < M) say that clocks belong to

λ. For ϕ containing transition constraints of the form (6), ϕ|λ is ϕ where every integer
bxc ≤ k or modulo constraint bxc ≡M k is uniquely resolved to be true or false by
replacing every occurrence of bxc with λ(x). Similarly, for ψ a pop constraint of the
form (8), ψ|λpush,λpop

is obtained by resolving modulo constraints byc − bzxc ≡M k and
bzyc− bzxc ≡M k to be true or false by replacing every occurrence of byc by its abstraction
at the time of pop λpop(y), and every occurrence of bzxc by λpush(x) + ∆(λpush, λpop), i.e.,
the initial value of clock x plus the total integer time elapsed until the pop, defined as
∆(λpush, λpop) = λpop(x0)− λpush(x0)− 1{z0}>{x0}?, i.e., we take the difference of x0 (which
is never reset) between push and pop, possibly corrected by “−1” if the last time unit only
partially elapsed; the substitution for bzyc is analogous. Fractional constraints are unchanged.

Sketch of the construction. Given a push-copy and pop-integer-free tpda P, we build
a fractional tpda Q over the extended alphabet Σ′ = Σ ∪ {Xx | x ∈ X} as follows. We
eliminate integer bxc ≤ k and modulo constraints bxc ≡M k by storing in the control
the M -unary abstraction λ. To reconstruct the reachability relation of P, we store the
set of clocks Y which will not be reset anymore in the future. Thus, control locations
L′ of Q are of the form 〈`, λ, Y 〉. In order to properly update the M -unary abstraction
λ, the automaton checks how much time elapses by looking at the fractional values of
clocks. When λ is updated to λ[x 7→ x + 1], a symbol Xx is optionally produced if x ∈ Y
was guessed not to be reset anymore in the future. A test transition 〈`, ϕ, r〉 is simulated
by 〈〈`, λ, Y 〉 , ϕ|λ , 〈r, λ, Y 〉〉. A push-copy transition 〈`, push(α : ψcopy), r〉 is simulated by
〈〈`, λ, Y 〉 , push(〈α, λ〉 :

∧
x∈X {z0} = 0 ∧ {zx} = {x}), 〈r, λ, Y 〉〉 copying only the fractional

parts and the unary class of global clocks. A pop-integer-free transition 〈`, pop(α : ψ), r〉 is
simulated by 〈〈`, λpop, Y 〉 , pop(〈α, λpush〉 : ψ|λpush,λpop

), 〈r, λpop, Y 〉〉. The reachability formula
ϕ`r for P can be expressed by guessing the initial and final abstractions λ, µ, and the set
of clocks Y which is never reset in the run. For clocks x ∈ Y , we must observe precisely
bx′c − bxc ticks Xx, and for the others, bx′c, where x is the initial and x′ the final value. Let
gYx = bx′c − bxc if x ∈ Y , and bx′c otherwise.

I Lemma 10. Let
{
ψ`′r′({x} , (f, g), {x′})

}
`′,r′∈L′ express the reachability relation of the

fractional Q where {x} , {x′} are the fractional values of clocks (we ignore integer values), f
is the Parikh image of the original input letters from Σ, and g of the new input letters Xx’s.
The reachability relation of P is expressed by ϕ`r(bxc, {x} , f , bx′c, {x′}) ≡

∨
λ,Y,µ ϕλ(bxc) ∧

ψ〈`,λ,Y 〉〈r,µ,X〉({x} , (f, gY), {x′}).

5 From fractional TPDA to register PDA

The aim of this section is to prove the following result which, together with Theorem 7,
completes the proof of our main result Theorem 5.

L. Clemente and S. Lasota 118:11

(a) •0•a •b

•c

(b) •0•a
•b

Figure 1 (a) Relation K. (b) The cyclic difference b 	 a.

I Theorem 11. The fractional reachability relation of a fractional tpda P is expressed
by existential LZ,Q formulas, computable in time exponential in the number of clocks and
polynomial in the number of control locations and stack alphabet.

Cyclic atoms. We model fractional clock values by the cyclic atoms structure (I,K) with
universe I = Q ∩ [0, 1), where K is the ternary cyclic order (1). Since K is invariant under
cyclic shift, it is convenient to think of elements of I as placed clockwise on a circle of unit
perimeter; cf. Fig. 1(a). An automorphism is a bijection α that preserves and reflects K,
i.e., K(a, b, c) iff K(α(a), α(b), α(c)); automorphisms are extended to tuples In point-wise.
Cyclic atoms are homogeneous [16] and thus In splits into exponentially many orbits Orb(In),
where u, v ∈ In are in the same orbit if some automorphism maps u to v. An orbit is an
equivalence class of indistinguishable tuples, similarly as regions for clock valuations, but
in a different logical structure: For instance (0.2, 0.3, 0.7), (0.7, 0.2, 0.3), and (0.8, 0.2, 0.3)
belong to the same orbit, while (0.2, 0.3, 0.3) belongs to a different orbit.

Register PDA. We extend classical pushdown automata with additional I-valued registers,
both in the finite control (i.e., global registers) and in the stack. Registers can be compared
by quantifier-free formulas with equality and K, called K-constraints. For simplicity, we
assume that there are the same number of global and stack registers. A register pushdown
automaton (rpda) is a tuple Q = 〈Σ,Γ, L,X,Z,∆〉 where Σ is a finite input alphabet, Γ is a
finite stack alphabet, L is a finite set of control locations, X is a finite set of global registers,
Z is a finite set of stack registers, and the last item ∆ is a set of transition rules 〈`, op, r〉
with `, r ∈ L control locations, where op is either: 1) an input letter a ∈ Σε, 2) a 2k-ary
K-constraint ψ(x, x′) relating pre- and post-values of global registers, 3) a push operation
push(α : ψ(x, z)) with α ∈ Γ a stack symbol to be pushed on the stack under the 2k-ary
K-constraint ψ relating global x and stack z registers, or 4) a pop operation pop(α : ψ(x, z)),
similarly as push. We consider rpda as symbolic representations of classical pda with infinite
sets of control states L̃ = L× IX and infinite stack alphabet Γ̃ = Γ× IZ . A configuration
is thus a tuple 〈`, µ, w〉 ∈ L × IX × Γ̃∗ where ` is a control location, µ is a valuation of
the global registers, and w is the current content of the stack. Let 〈`, µ, u〉 , 〈r, ν, v〉 be two
configurations. For every input symbol a ∈ Σε we have a transition 〈`, µ, u〉 a−→ 〈r, ν, v〉
whenever there exists a rule 〈`, op, r〉 ∈ ∆ s.t. one of the following holds: 1) op = a ∈ Σε,
µ = ν, u = v, or 2) op = ϕ, a = ε, (µ, ν) |= ϕ, u = v, or 3) op = push(γ : ψ), a = ε,
µ = ν, v = u · 〈γ, µ1〉 if µ1 ∈ IZ satisfies (µ, µ1) |= ψ, or 4) op = pop(γ : ψ), a = ε, µ = ν,
u = v · 〈γ, µ1〉 if µ1 ∈ IZ satisfies (µ, µ1) |= ψ.

Reachability relation. The reachability relations µ w
 `r ν and µ f

 `r ν are defined as for
tpda by extending one-step transitions 〈`, µ, u〉 a−→ 〈r, ν, v〉 to words w ∈ Σ∗ and their Parikh
images f = piw ∈ NΣ. Thus, µ f

 `r ν is a subset of IX × NΣ × IX , which is furthermore

ICALP 2018

118:12 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

invariant under orbits. In the following let X ′ be a copy of global clocks. An initial valuation
µ belongs to IX , a final valuation ν to IX′ , and the joint valuation (µ, ν) belongs to IX×X′ .
The following two lemmas hold for rpda with homogeneous atoms; cf. [7], or Sec. 9 in [4].

I Lemma 12. If (µ, ν), (µ′, ν′) belong to the same orbit of IX×X′ , then µ f
 `r ν iff µ′ f `r ν

′.

I Lemma 13. Given a rpda Q one can construct a context-free grammar G of exponential
size with nonterminals of the form X`ro, for control locations `, r and an orbit o ∈ Orb(IX×X′),
recognising the language L(X`ro) =

{
πΣ(w) ∈ Σ∗

∣∣∣ ∃(µ, ν) ∈ o · µ w
 `r ν

}
, where πΣ(w) is

w without the ε’s. Consequently, rpda recognise context-free languages.

I Lemma 14 (Theorem 4 of [22]). The Parikh image of L(X`ro) is expressed by an existential
Presburger formula ϕZ

`ro computable in time linear in the size of the grammar.

I Corollary 15. Let ϕI
o be the characteristic K-constraint of the orbit o ∈ Orb(IX×X′). The

reachability relation `r of an rpda Q is expressed by ϕ`r(x, f, x′) ≡∨
o∈Orb(IX×X′) ϕ

Z
`ro(f) ∧ ϕI

o(x, x′). The size of ϕ`r is exponential in the size of Q.

Proof of Theorem 11. Define cyclic sum and difference of a, b ∈ Q to be a⊕ b = {a+ b},
resp., a	 b := {a− b}. For a set of clocks X, let Xx0 = X ∪ {x0} be its extension with an
extra clock x0 /∈ X which is never reset, and let X̂x0 = {x̂ | x ∈ Xx0} be a corresponding set
of registers. The special register x̂0 stores the (fractional part of the) current timestamp, and
register x̂ stores the (fractional part of the) timestamp of the last reset of x. In this way we
can recover the fractional value of x as the cyclic difference {x} = x̂0 	 x̂. Let (cf. Fig. 1(b))

ϕ	(x, x̂) ≡
∧
x∈X
{x} = x̂0 	 x̂. (9)

Resetting clocks in Y ⊆ X is simulated by ϕreset(Y) ≡ x̂′0 = x̂0∧
∧
x∈Y x̂

′ = x̂0∧
∧
x∈X\Y x̂

′ = x̂

and time elapse by ϕelapse ≡
∧
x∈X x̂

′ = x̂. The equality x̂′0 = x̂0 in ϕreset(Y) says that time
does not elapse, and the absence of constraints on x̂0, x̂

′
0 in ϕelapse allows for an arbitrary elapse

of time. A clock constraint ϕ is converted into a K-constraint ϕ̂ by replacing {x} = 0 with
x̂ = x̂0 and {x} ≤ {y} by K≤(ŷ, x̂, x̂0), for x, y ∈ X ∪ Z. For a tpda P = 〈Σ,Γ, L,X,Z,∆〉,
we define the following rpdaQ =

〈
Σ,Γ, L, X̂x0 , Ẑ, ∆̂

〉
. The input rules are preserved. A reset

rule 〈`, reset(Y), r〉 ∈ ∆, is simulated by 〈`, ϕreset(Y), r〉 ∈ ∆̂, a time elapse rule 〈`, elapse, r〉 ∈
∆ is simulated by 〈`, ϕelapse, r〉 ∈ ∆̂, a push rule 〈`, push(γ : ϕ), r〉 ∈ ∆ is simulated by
〈`, push(γ : ϕ̂), r〉 ∈ ∆̂, and similarly for pop rules. By Corollary 15, let ϕ`r(x̂, f , x̂′) express
the reachability relation of Q, and define ξIo(x, x′) ≡ ∃x̂, x̂′ · ϕI

o(x̂, x̂′)∧ϕ	(x, x̂)∧ϕ	(x′, x̂′).
The reachability relation of P is recovered as

ψ`r(x, f, x′) ≡
∨
{ϕZ

`ro(f) ∧ ξIo(x, x′)|o ∈ Orb(IX×X
′
)}. (10)

Intuitively, we guess the value for registers x̂, x̂′ and we check that they correctly describe
the fractional values of global clocks as prescribed by ϕ	. We now remove the quantifiers
from ξIo to uncover the structure of fractional value comparisons. Introduce a new variable
δ = x̂0 	 x̂′0, and perform the following substitutions in ϕI

o (c.f. the definition of ϕ	 in (9)):
x̂ 7→ x̂0 	 {x}, x̂′ 7→ (x̂0 	 δ) 	 {x′}, and x̂′0 7→ x̂0 	 δ. By writing (x̂0 	 δ) 	 {x′} as
x̂0 	 (δ ⊕ {x′}), we have only atomic constraints of the forms K(x̂0 	 u, x̂0 	 v, x̂0 	 t) and
x̂0 	 u = x̂0 	 v, where terms u, v, t are of one of the forms 0, {x}, δ ⊕ {x′}, δ. These
constraints are equivalent, respectively, to K(t, v, u) and u = v. By expanding the definition
of K (cf. (1)), we obtain only constraints of the form u - v with -∈ {<,≤}. Since δ appears

L. Clemente and S. Lasota 118:13

at most once on either side, it can either be eliminated if it appears on both u, v, or otherwise
exactly one of u, v is of the form δ or δ⊕{x′}, and the other of the form 0 or {x}. By moving
{x′} on the other side of the inequality in constraints containing δ ⊕ {x′}, ξIo is equivalent
to
∧
i si - ti ∧ ∃0 ≤ δ < 1 ·

∧
j uj - δ ∧

∧
k δ - vk, where the terms si, ti, uj , vk’s are of

the form 0, {x}, or {x} 	 {y′}. We can now eliminate the quantification on δ and get a
constraint of the form

∧
h sh - th. Finally, by expanding b	 a as b− a+ 1 if b < a and b− a

otherwise (since a, b ∈ I) we have ξIo(x, x′) ≡
∧
h s
′
h - t′h, where the s′h, t′h’s are of one of

the forms: 0, {x}, {x} − {y′}, or {x} − {y′}+ 1. J

References
1 P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In Proc.

LICS’12, pages 35–44. IEEE, 2012. doi:10.1109/LICS.2012.15.
2 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183–

235, 1994.
3 M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed recursive state machines. In

Proc. TIME’10, pages 61–68. IEEE, sept. 2010. doi:10.1109/TIME.2010.10.
4 Mikołaj Bojańczyk. Slightly infinite sets. URL: https://www.mimuw.edu.pl/~bojan/

paper/atom-book.
5 Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic verification of

systems with continuous variables and unbounded discrete data structures. In Proc. Hybrid
Systems ’94, volume 999 of LNCS, pages 64–85. Springer, 1995.

6 Lorenzo Clemente. Decidability of timed communicating automata. ArXiv e-prints, 04
2018. arXiv:1804.07815.

7 Lorenzo Clemente and Slawomir Lasota. Reachability analysis of first-order definable push-
down systems. In Proc. of CSL’15, volume 41 of LIPIcs, pages 244–259. Dagstuhl, 2015.

8 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In Proc.
LICS’15, pages 738–749. IEEE, July 2015.

9 Lorenzo Clemente, Sławomir Lasota, Ranko Lazić, and Filip Mazowiecki. Timed pushdown
automata and branching vector addition systems. In Proc. of LICS’17, 2017.

10 Lorenzo Clemente and Sławomir Lasota. Binary reachability of timed pushdown automata
via quantifier elimination and cyclic order atoms. ArXiv e-prints, 04 2018. arXiv:1804.
10772.

11 Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers. In Proc.
of CONCUR’99, CONCUR ’99, pages 242–257, London, UK, UK, 1999. Springer-Verlag.

12 Zhe Dang. Pushdown timed automata: a binary reachability characterization and safety
verification. Theor. Comput. Sci., 302(1–3):93–121, 2003. doi:10.1016/S0304-3975(02)
00743-0.

13 C. Dima. Computing reachability relations in timed automata. In In Proc. of LICS’02,
pages 177–186, 2002.

14 Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

15 Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems. In Sundar
Sarukkai and Sandeep Sen, editors, In Proc. of FSTTCS’05, volume 3821 of LNCS, pages
310–321. Springer, 2005.

16 Dugald Macpherson. A survey of homogeneous structures. Discrete Mathematics,
311(15):1599–1634, 2011.

17 Mojżesz Presburger. Über der vollständigkeit eines gewissen systems der arithmetik ganzer
zahlen, in welchen die addition als einzige operation hervortritt. Comptes Rendus Premier
Congrès des Mathématicienes des Pays Slaves, 395:92–101, 1930.

ICALP 2018

http://dx.doi.org/10.1109/LICS.2012.15
http://dx.doi.org/10.1109/TIME.2010.10
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
http://arxiv.org/abs/1804.07815
http://arxiv.org/abs/1804.10772
http://arxiv.org/abs/1804.10772
http://dx.doi.org/10.1016/S0304-3975(02)00743-0
http://dx.doi.org/10.1016/S0304-3975(02)00743-0

118:14 Binary Reachability of TPDA via Quantifier Elimination and Cyclic Order Atoms

18 K. Quaas, M. Shirmohammadi, and J. Worrell. Revisiting reachability in timed automata.
In Proc. of LICS’17, pages 1–12, June 2017. doi:10.1109/LICS.2017.8005098.

19 Eduardo D. Sontag. Real addition and the polynomial hierarchy. Information Processing
Letters, 20(3):115–120, 1985.

20 Ashutosh Trivedi and Dominik Wojtczak. Recursive timed automata. In Proc. ATVA’10,
volume 6252 of LNCS, pages 306–324. Springer, 2010.

21 Yuya Uezato and Yasuhiko Minamide. Synchronized recursive timed automata. In Proc. of
LPAR’15, 2015.

22 Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of
equational Horn clauses. In Proc. CADE-20, 2005, pages 337–352, 2005. doi:10.1007/
11532231_25.

23 Volker Weispfenning. The complexity of linear problems in fields. Journal of Symbolic
Computation, 5(1):3–27, 1988.

http://dx.doi.org/10.1109/LICS.2017.8005098
http://dx.doi.org/10.1007/11532231_25
http://dx.doi.org/10.1007/11532231_25

	Introduction
	Linear arithmetic and quantifier elimination
	Timed pushdown automata
	Fractional TPDA
	From fractional TPDA to register PDA

