1,642 research outputs found

    A multi-hypothesis approach for range-only simultaneous localization and mapping with aerial robots

    Get PDF
    Los sistemas de Range-only SLAM (o RO-SLAM) tienen como objetivo la construcción de un mapa formado por la posición de un conjunto de sensores de distancia y la localización simultánea del robot con respecto a dicho mapa, utilizando únicamente para ello medidas de distancia. Los sensores de distancia son dispositivos capaces de medir la distancia relativa entre cada par de dispositivos. Estos sensores son especialmente interesantes para su applicación a vehículos aéreos debido a su reducido tamaño y peso. Además, estos dispositivos son capaces de operar en interiores o zonas con carencia de señal GPS y no requieren de una línea de visión directa entre cada par de dispositivos a diferencia de otros sensores como cámaras o sensores laser, permitiendo así obtener una lectura de datos continuada sin oclusiones. Sin embargo, estos sensores presentan un modelo de observación no lineal con una deficiencia de rango debido a la carencia de información de orientación relativa entre cada par de sensores. Además, cuando se incrementa la dimensionalidad del problema de 2D a 3D para su aplicación a vehículos aéreos, el número de variables ocultas del modelo aumenta haciendo el problema más costoso computacionalmente especialmente ante implementaciones multi-hipótesis. Esta tesis estudia y propone diferentes métodos que permitan la aplicación eficiente de estos sistemas RO-SLAM con vehículos terrestres o aéreos en entornos reales. Para ello se estudia la escalabilidad del sistema en relación al número de variables ocultas y el número de dispositivos a posicionar en el mapa. A diferencia de otros métodos descritos en la literatura de RO-SLAM, los algoritmos propuestos en esta tesis tienen en cuenta las correlaciones existentes entre cada par de dispositivos especialmente para la integración de medidas estÃa˛ticas entre pares de sensores del mapa. Además, esta tesis estudia el ruido y las medidas espúreas que puedan generar los sensores de distancia para mejorar la robustez de los algoritmos propuestos con técnicas de detección y filtración. También se proponen métodos de integración de medidas de otros sensores como cámaras, altímetros o GPS para refinar las estimaciones realizadas por el sistema RO-SLAM. Otros capítulos estudian y proponen técnicas para la integración de los algoritmos RO-SLAM presentados a sistemas con múltiples robots, así como el uso de técnicas de percepción activa que permitan reducir la incertidumbre del sistema ante trayectorias con carencia de trilateración entre el robot y los sensores de destancia estáticos del mapa. Todos los métodos propuestos han sido validados mediante simulaciones y experimentos con sistemas reales detallados en esta tesis. Además, todos los sistemas software implementados, así como los conjuntos de datos registrados durante la experimentación han sido publicados y documentados para su uso en la comunidad científica

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Cooperative localization for mobile agents: a recursive decentralized algorithm based on Kalman filter decoupling

    Full text link
    We consider cooperative localization technique for mobile agents with communication and computation capabilities. We start by provide and overview of different decentralization strategies in the literature, with special focus on how these algorithms maintain an account of intrinsic correlations between state estimate of team members. Then, we present a novel decentralized cooperative localization algorithm that is a decentralized implementation of a centralized Extended Kalman Filter for cooperative localization. In this algorithm, instead of propagating cross-covariance terms, each agent propagates new intermediate local variables that can be used in an update stage to create the required propagated cross-covariance terms. Whenever there is a relative measurement in the network, the algorithm declares the agent making this measurement as the interim master. By acquiring information from the interim landmark, the agent the relative measurement is taken from, the interim master can calculate and broadcast a set of intermediate variables which each robot can then use to update its estimates to match that of a centralized Extended Kalman Filter for cooperative localization. Once an update is done, no further communication is needed until the next relative measurement

    Collaborative Monocular Visual SLAM for Multi-Robot

    Get PDF
    Collaborative SLAM is an amazing extension of single robot locations where multiple robots with monocular cameras work together in a dynamic environment to build one global map. The global map is later used by the multiple moving robots to localize themselves on the map. The application of collaborative SLAM can be used in various fields that include collaborative military tasks, search and rescue, agricultural planting, multi-robots working together to improve efficiency, and many others.  Generally, every existing collaborative SLAM method uses an offline technique to process the collected data in the indoor environment. The indoor environment has limited space and lacks GPS connectivity. In this paper, we aim to give a step toward the usage of two drones equipped with monocular cameras and a standard laptop as the server for monitoring indoor workplaces. We worked on Simultaneous localization and mapping standard architecture with building the centralized global SLAM by the micro aerial vehicles such as Tello in our case. We investigated the method and localization of the drone on the global map

    A decentralized framework for multi-agent robotic systems

    Get PDF
    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles

    Ten years of cooperation between mobile robots and sensor networks

    Get PDF
    This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC) at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper

    Present and Future of SLAM in Extreme Underground Environments

    Full text link
    This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on lidar-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the dirty details behind the different SubT SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.Comment: 21 pages including references. This survey paper is submitted to IEEE Transactions on Robotics for pre-approva
    corecore