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Abstract: Over the past few years, decentralization of multi-agent robotic systems has become an
important research area. These systems do not depend on a central control unit, which enables
the control and assignment of distributed, asynchronous and robust tasks. However, in some
cases, the network communication process between robotic agents is overlooked, and this creates a
dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its
goals. This article describes a communication framework, where each agent in the system can leave
the network or accept new connections, sending its information based on the transfer history of all
nodes in the network. To this end, each agent needs to comply with four processes to participate in
the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal
Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic
agents and a monitoring agent to generate a topological map of an environment with the presence of
obstacles.

Keywords: communication; decentralization; distributed systems; multi-agent robotic systems

1. Introduction

Single robots are made to solve problems over a unique domain, preventing the expansion of their
use beyond its original purpose. The cost of their development usually is expensive and does not have
strategies to solve failure problems by itself [1]. Furthermore, a single robotic agent needs complex
algorithms to solve some navigation task, which implies a powerful unit to process all the information.
In contrast, a Multi-Agent Robotic System (MARS) is characterized by its fault-tolerant strategies,
where, if an agent of the system crashes, another can occupy its place. Another remarkable characteristic
of MARS is the ability to adapt and process easily a complicated geographical environment. As each
agent processes different places, they reduce the time to cover the scenario and the workload of the
system compared by the time than a single unit can achieve [2,3].

It has been proven that a MARS is capable of performing search and rescue tasks of people in
difficult to access environments [4], building monitoring and surveillance [5], sensor deployment and
measurement in unknown environments in a way that is more efficient than using a single robotic
agent, for map generation and capture [6,7]. For these tasks, MARS requires a distributed control
structure for its individual agents, so each of them works autonomously (does not require a human
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operator to function). This is possible because agents cooperate with each other by sharing information
in a network.

The distributed control network can be centralized or decentralized. In the centralized model,
the system depends on a central unit, which requires all the information to make decisions. In a
decentralized structure, each agent of the MARS processes its information locally [8,9]. Furno et al. [10]
compare these two types of structures by using a system of three robotic submarine agents tasked with
equipment transportation. While the centralized version of the system requires less time to correct
errors in the actuators to update direction and speed, the decentralized system presents the advantages
of being fault tolerant in the event of system failure of one robotic agent and having a smaller packet
size in transmissions between agents, which is desirable given the bandwidth limitations of the
communications channel. However, information exchange between the three units must be constant in
both the centralized and decentralized models.

The fault tolerance in decentralized distributed control systems is leveraged in various areas.
Schwager et al. [11] propose sensor deployment through a MARS where each agent shares information
only with the nearest neighbor within a convex area. This means that this implementation does not
take into account discontinuity in the environment, be that in the form of holes or other obstacles in the
environment or work area. Cheng et al. [12] implements a robust system for survey and information
capture through sensors in a predetermined area, keeping uninterrupted communication as a means
to avoid errors in speed and direction for each mobile robot.

Another type of application is formations of mobile robots using roles and network topologies
specific for network communication optimization. This is a decentralized multi-agent model because
it only transmits information between neighboring nodes, but centralizes operations by depending on
a leader within the formation or, in adaptive systems, by sharing a cost-reward function to modify
the system [13–15]. Another salient characteristic of MARS is their capacity for being heterogeneous,
as they can be comprised of different types of units. Tanner’s work [16] proves that MARS’s can be
heterogeneous and decentralized by including Unmanned Aerial Vehicles (UAV) and Unmanned
Ground Vehicles (UGV), pointing out that the resulting system is decentralized by not depending of a
central unit, but it is dependent on permanent communication with a specific topology.

The issue of dependency on a specific topology has been investigated by Shang [17,18];
he established that mobile agents in a discrete environment can reach state consensus, i.e., exchange
and sharing of information over all the agents performing random walks on a network, where the
state of consensus is done when each random walk is an ergodic Markov chain. Furthermore, Shang
shows that, if the agents are independent, they can be added to the network and share information if
they occupy the same site with other agent simultaneously, but to achieve the synchronization of the
system they only can be disconnected for a small time.

On the other hand, the requirement of a permanent communication between agents or with a
central unit can be avoided by using ad hoc networks. Ming et al. [19] propose a MARS-based
autonomous exploration system, proving that the agents in the system can be connected or
disconnected from the network at any given moment, making it free from the requirement of having a
permanent connection between agents. However, their work does not provide a study to avoid packet
loss and the possibility of connecting with additional agents to complement the system.

This paper presents a framework for communication between multiple agents that eliminates
the requirement of having a permanent link between robotic agents, based on the model presented in
our previous works [20], improving the functionality by removing the time dependency to share the
information between the agents, and enabling the connection of external units as backup, either for
monitoring or to complete the assigned task in a decentralized manner by using ad hoc networks.
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This framework is evaluated in a non-convex environment that includes discontinuities in
the form of obstacles (walls), using differential mobile robotic agents to independently generate
a topological map through odometry, which they share using the framework to complete the map in a
decentralized way.

The present article is organized as follows. Section 2 presents the existing works that motivated the
design of this framework. Section 3 describes each process of the framework and their implementation.
Section 4 develops the experiment through the V-Rep simulator to model the robotic agents and the
environment, using Python scripts to emulate the instructions used in the physical MARS agents.
Finally, Section 5 presents the conclusions with consideration to future works.

2. Related Works

In Multi-Agent Robotic Systems, information distribution and processing are autonomous and
have a high level of fault-tolerance, due to their modularity and distributed architecture [21,22].
System modularity allows the system to be robust because it can detect and easily replace agents or
parts of them that are not working. Additionally, if the system needs to be partially updated, only the
necessary agents need to be changed, reducing maintenance costs [23,24]. Being a distributed system
results in the ability to perform multiple tasks simultaneously and asynchronously, without depending
on a global control [25].

The approach to communication between agents is through a Wireless Sensor Network (WSN),
as they are comprised of nodes with independent processing units, wireless communication modules,
and sensors. The nodes in a WSN can be static or mobile, as is the case of robotic agents [26,27]. The use
of this technology allowed to expand the applications of MARS. Garcia et al. [28] use WSNs to receive
information from multiple agents to increase resource use efficiency in the administration of a freight
airport. In this particular case, the robotic agents are static actuators that, although sharing information
locally, depend on a single control system for information processing.

In emergency environments, WSNs enable MARS’s to interact within the environment by using
this type of communications infrastructure, while enabling locating robotic agents through the use of
Received Signal Strength Indicator (RSSI). This system is decentralized, as it only has one central unit
for monitoring, but it requires WSN nodes to be pre-installed in the environment [29–31]. To remove
this dependency on pre-installed sensors, techniques have been proposed to deploy MARS in tasks of
Simultaneous Localization and Mapping (SLAM), in which a central unit is tasked to generate the map
transmitted by the robotic agents [6,32–34].

Several decentralized control strategies have been proposed to eliminate the dependency on
a central unit in MARSs, based on sharing information with the nearest neighbor in the system.
For sensor deployment, Schwager et al. [11] assigned each agent in the MARS a sensor to be deployed
in an area, using consensus algorithms to determine their final positions, and limiting the study to
a convex environment—not in a real environment. In tasks of deployment, mapping, surveillance,
and formation correction, control strategies haven proven system decentralization in non-convex
environments but do not estimate interaction with other agents heterogeneous to the system, that is,
they do not allow the incorporation of different agents [12–14,35].

Other approaches show the interaction with different types of robotic agents in heterogeneous
systems comprised of UAV and UGV [16], in which decentralization was based on a control system
with permanent communication between ground units using a unidirectional communication scheme
between ground and aerial units. This scheme did not allow information exchange between the
different groups of agents as a strategy to increase the level of fault tolerance.

To solve the problem of information exchange, previous works developed a decentralized
communication model for MARS [20], in which each robotic agent starts with a list of all the nodes in
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the wireless network from the Service Set Identifier (SSID). For this reason, the agent cannot accept
new connections after the system starts. Once the list is initialized, every agent begins their assigned
navigation task individually, consisting in planning [36,37], localization [33,38], or mapping [7,39].
During the navigation phase, agents scan the network to see which other nodes are in range and select
the node with the highest RSSI to establish a direct communication to transfer information. To avoid
redundant information transmission, the data packet header includes the name of the agent and a
key indicating a unique, transmission identifier that depends on the time of the last package sent.
If the agent attempts to transfer a new package, but the current ID matches the last package sent
in its transfer history, no information is sent. To avoid the loss of information, the model with the
Transmission Control Protocol/Internet Protocol (TCP/IP) was implemented. If the system gets stuck
trying to recover a package, the model includes a time-out flag to end the transmission.

The present article continues and improve the work of Jimenez et al. [20], proposing a
decentralized framework for tasks that enables the connection of heterogeneous agents to the
MARS without requiring a permanent connection to work. This is possible through the use of
non-infrastructure networks like ad hoc networks [19], which do not depend on a central unit for data
processing.

3. Framework Design

The framework design presented in this article has two important aspects. First, by using a
heterogeneous system, it enables connecting new units, be them or not robotic agents. Second, it sets a
decentralized ad hoc network for communications between agents, avoiding the need for permanent
communications by creating a record history based on the last information transfer and the RSSI
indicator. To achieve this, it is important to describe the required characteristics for agents in the
MARS, along with a description of framework processes.

3.1. Agent Description of the MARS

Since the proposed system is heterogeneous, two types of agents are possible, derived from
the principle of WSN nodes. The first type of node is a robotic agent, which can be UAVs or UGVs.
They need to include a sensor unit to capture information from the environment, a control unit for
actuators to enable their movement or making changes in the environment, a unit to process the
information captured or transmitted by another agent, and finally, a wireless unit that accepts ad
hoc infrastructure, to send and receive information from other agents in the system, as shown in
Figure 1. These agents also need to have a description of the dynamic model to represent their
own behavior in the system. This allows the design of controllers for formation or localization [40].
Equation (1) represents the dynamic model of the differential non-holonomic robot used in the
experiments in this article (see Figure 2). Non-holonomic agents cannot displace directly in the
axes (x, y), and their spin and displacements are represented by Instantaneous Center of Curvature
(ICC), where they depend on the radius R, and the position (x, y) depends on the robotic agent so that
ICC = [x− R sin θ, y− R cos θ].ẋ

ẏ
θ̇

 =

cos (ωδt) − sin (ωδt) 0
sin (ωδt) cos (ωδt) 0

0 0 1


x− ICCx

y− ICCy

θ

+

 x
y

ωδt

 , (1)

where:
ẋ = New position x-axis,
ẏ = New position y-axis,
θ̇ = New orientation,
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θ = Angle of orientation,
ω = Angle respect the ICC.

Figure 1. Robotic agent diagram.

Figure 2. Dynamic model of a two-wheeled differential robot.

The second type of agent describes monitoring units and wireless sensors, which are static agents
characterized by having a wireless communication unit that accepts ad hoc infrastructure mode to
establish the communication with the system, a processing unit to manipulate the acquire data, and
either a sensor unit or a Graphical User Interface (GUI) to interact with the environment or a user,
depending on if it is a WSN node or a monitor agent. The diagram for the monitor agent used in this
article is shown in Figure 3.

It is important to highlight that the robot and monitor agents must have an Wi-Fi adapter that
support an ad hoc infrastructure with the 802.11n protocol. In the case of the chips as the ESP8266 [41]
that are cheap and have an embedded Wi-fi adapter, does not have the possibility to configure or
connect an external unit to support an ad hoc infrastructure. The agents in Figures 2 and 3 uses
a Raspberry Pi 3, and this has embedded a BCM43143 [42]. A Wi-Fi chip adapter that does not
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support an ad hoc infrastructure. To solve this, it is mandatory to connect a wireless adapter as the
TL-WN823N [43] that support the ad hoc infrastructure mode and can be used by the Raspberry Pi 3.

Figure 3. Monitor or sensing unit diagram.

3.2. Framework Description

The framework presented in this article is a procedure for decentralized communication between
agents for monitoring or navigation purposes. The framework has five modular processes that can be
modified at any moment on a system or level agent. However, when the system is first started, they
must be executed sequentially.

The first process is the characterization of the agents’ components and their relationship with the
environment; the second is the analysis of transmissions between agents; the third is initializing agents
for their connection to the ad hoc network; the fourth process is the generation of the activity history
in each agent in the system. Finally, the fifth process describes information transmission through a
header to be included in the information packet. These five processes are explained as follows.

3.2.1. Characterization of System Agents

Each of the elements in the environment needs to be classified. This includes knowledge about
the components of each agent, the environment, and establishing the initial location points for new
agents if the environment is unknown or knowing the location of wireless nodes pre-installed in the
area. To establish the initial location of mobile agents in an unknown environment with a surface
area of D =

[
Dx, Dy

]
, a number of agents An is considered as the initial members of the MARS so

that n is a numeric identifier; each agent with an odometer module capable of processing the traveled
distance by pulses per rotation (ppr) and the radius r of its wheels, calculating the distance per pulse
(dpp) through Equation (2):

dppn =
2πrn

pprn
. (2)

To generate a dot matrix pg = xg × yg of location in the environment, a lower value of pg equal
to [0, 0] is selected and an upper value calculated by the Equation (3)—in this case,

[
Dx, Dy

]
is the

environment area (see Figure 4). By generating this grid, it is possible to locate agents in known points,
simplifying navigation tasks [19]:
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pg(sup) =

[
Dx

max (dppn)
,

Dy

max (dppn)

]
. (3)

Figure 4. Odometry point generation.

3.2.2. Data Transmission Analysis

Information exchange of MARS in real environments represents a challenge, where, to increase
agent autonomy, it is indispensable to avoid information loss, increase fault tolerance, and reduce
energy consumption [24,44,45]. The Point-to-Point (PTP) transmission model provides a high level
of fault tolerance by not requiring maintaining communication with the whole system, which does
not need a central unit reducing the bottlenecks in the communication system, which is ideal for
MARS [46]. This model must be complemented by a communication protocol for information transfer.
The two most common protocols used are User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP).

UDP sends information packets without needing to validate their correct reception, allowing
for higher transference rates but at the same time increasing error rates. Alternatively, TCP prevents
information loss by validating each packet sent between agents, but, in cases where agents have a
weak link, this is reflected in a higher packet loss rate, increasing energy usage and time when there is
an undefined confirmation loop between agents [47].

To reduce energy usage, information transmission delay, and confirmation loop in TCP
connections, this framework proposes a process to analyze the wireless modules used in MARS
agents before deploying them in the environment. Figure 5 shows the characterization of wireless
adapter TL-WN823N in an environment with a concrete wall as an obstacle. In this process, the source
behind the wall is located at an initial distance from the wall of 1 m. The distance is subsequently
increased in steps of 1 m, and, at each location change of the wireless nodes, the network is flooded
with packets of different sizes. This allows for analyzing RSSI, the amount of data lost, and information
transmission delay problems, where the last one can impact dramatically the behavior of the system [48].
This node separation is performed until there the data transmission shows information loss, which in
this particular case was at 8 m.
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(a)

(b)

Figure 5. Wireless data transmission analysis (a) information transmission delay; (b) RSSI power
level indicator.

3.2.3. Agent Initialization

For agents to be able to enter the network, it is important that they comply with the OSI-based
four-layer communication model. The first layer is the physical layer, where each agent in the
heterogeneous system needs to have a wireless communication model. The second layer is the link
layer, in this case, the 802.11n standard, which is in charge of initializing the client name in the wireless
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network. It is obligatory that all agents use the same name, as any agents that do not use the same name
will not be able to share information in the network. The third layer is the network layer, and it uses
the IP protocol. Every agent in charge of initializing agents being initialized into the network needs to
assign them a unique address and be capable of adding new agents to the network by assigning them
an address through the Dynamic Host Configuration Protocol (DHCP) . To avoid address collisions,
Equation (4) is implemented in the assignment of addresses to initial agents and Equation (5) to assign
their address range, where A is the number of addresses available, N is the number of initial agents in
the system, and i is the agent indicator with values from 0 to N − 1. The last and fourth layer is the
transport layer, using the TCP protocol to ensure packet transmission without information loss:

address(i=0) = round
(

A + 2
N

i + 2
)

; address(i>0) = round
(

A + 2
N

i
)

, (4)

DHCPi =

[
addressi + 1 .. round

((
A + 2

N
(i + 1)

)
+ 1
)]

. (5)

3.2.4. History Generation

The history of each of the agents in the system is represented by a dynamic array (Ahxi) of
four positions without including the index, user as a title in the array to identify the information
transfer of the agent with the system, on Table 1. The first position in the history contains the ID of
the agent that transferred the information, where the range is equivalent to the subnet mask selected
in the link layer during agent initialization. The second position is the ID of the agent receiving
the information, which is also in a range that depends on the subnet mask, as in the first position.
The third position stores the packets pending transmission between both agents identified in the first
and second position. Finally, the fourth position defines the packets pending transmission between
both agents. The range of the last two positions will depend on the agent’s available memory for
storing information. The update of the history between two agents (A and B) can occur according to
the following three rules:

1. In agent A, the identifier on the array Ad is not contained in the first slot of the history Ah.
2. In agent A, the identifier on the array Ad is in the first slot, but the second slot does not contain

the ID of agent B.
3. In agent A, the identifier on the array Ad is in the first slot, and the second slot contains the ID of

agent B, but the fourth slot has a value greater than zero.

Table 1. Dynamic array for the Data and the History.

Array-Data Array-History
Index ID Data Index From To Send Pending

To create the history in an agent, the dynamic array with the four positions mentioned has to be
created with an initial length of zero. Besides this, another empty unidimensional dynamic array must
be initialized to store the IDs from which information has been received (Adxi). To understand how
the information stored in the history is handled, we propose an environment with three robotic agents
with the following IDs: Ro1 (192.268.1.2), Ro2 (192.268.1.85), and Ro3 (192.268.1.170). Each of these
agents has an array of stored data (Adxi), as shown in Table 2.
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Table 2. History initialization with three agents.

192.168.1.2 192.168.1.85 192.168.1.170
Ad Ah Ad Ah Ad Ah

Index ID D Index F T S P Index ID D Index F T S P Index ID D Index F T S P
0 1 x0 0 2 y0 0 3 z0

1 x1 2 y1 3 z1
1 x2 3 z2

3 z3

The three agents belong to the same network, with a subnet mask 255.255.255.0, and the last value
of the IP address establishes the identifier for each agent. The first information transfer occurs between
agents Ro1 and Ro2. As this is the first time information will be transferred between these two agents,
the first rule for history update applies (see Table 3).

Table 3. Data transference between Ro1 and Ro2.

192.168.1.2 192.168.1.85
Ad Ah Ad Ah

Index ID D Index F T S P Index ID D Index F T S P
0 1 x0 0 1 2 3 0 0 2 y0 0 2 1 2 0

1 x1 1 2 1 2 0 2 y1 1 1 2 3 0
1 x2 1 1 x0

1 2 y0 1 x1
2 y1 1 x2

The second transfer occurs between agents Ro2 and Ro3. In this case, agents Ro2 and Ro3 fulfill
the first rule for history updates, but, additionally, agent Ro2 fulfills the second rule because it has
already transferred information to agent Ro1 (see Table 4). Finally, as agent Ro2 has new information,
it will update its history when it sends the new information to agent Ro1 (Table 5).

Table 4. Data transference between Ro2 and Ro3.

192.168.1.85 192.168.1.170
Ad Ah Ad Ah

Index ID D Index F T S P Index ID D Index F T S P
0 2 y0 0 2 1 2 0 0 3 z0 0 3 2 4 0

2 y1 1 1 2 3 0 3 z1 1 2 3 2 0
1 1 x0 2 1 3 3 0 3 z2 2 1 3 3 0

1 x1 3 2 3 2 0 3 z3
1 x2 4 3 2 4 0 1 2 y0

2 3 z0 2 y1
3 z1 2 1 x0
3 z2 1 x1
3 z3 1 x2
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Table 5. Data transfer between Ro2 and Ro1, sending data from Ro3.

192.168.1.85 192.168.1.2
Ad Ah Ad Ah

Index ID D Index F T S P Index ID D Index F T S P
0 2 y0 0 2 1 2 0 0 1 x0 0 1 2 3 0

2 y1 1 1 2 3 0 1 x1 1 2 1 2 0
1 1 x0 2 1 3 3 0 1 x2 2 3 1 4 0

1 x1 3 2 3 2 0 1 2 y0
1 x2 4 3 2 4 0 2 y1

2 3 z0 5 3 1 4 0 2 3 z0
3 z1 3 z1
3 z2 3 z2
3 z3 3 z3

3.2.5. Data Package Header

The header for packet transmissions has three parts. The first part is code, the second is the value
requested by the code (optional), and the third part is the information requested by the agent. The code
is the identifier that corresponds to the type of transmission that will occur between the robotic agents.
This code can have a value between 0 and 3, where code 0 is used to query the number of packets
pending in a robotic agent, code 1 is used to request a determined number of packets, code 2 is used to
begin packet transmission, and code 3 is used to transfer a packet immediately.

According to the code included at the beginning of the packet header, the data transfer protocol
can generate an information request or an immediate delivery. Figure 6a shows a data transfer through
an information request between two agents. Agent A sends agent B the code 0, followed by the data
source ID, and finally the amount of data it has about the source to agent B. Then, agent B replies to
agent A with code 1 and the amount of data it requires from the source previously sent to agent A.
Finally, agent A sends code 2, so it can then send the data packet requested. This will only happen
if and only if the agent A history includes information from agent B. If it does not, the transmission
will occur immediately, as shown in Figure 6b. In that case, code 2 is used, followed by the complete
packet from agent A to B.

(a) (b)

Figure 6. Wireless data transmission analysis. (a)data transfer through an information request , (b)data
transfer through an immediately request.

The information transfer between two agents will occur when they are within the configured RSSI
range, and, at the time, one of them has new information in its history in the column that stores data
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pending to be sent. The latter condition will be fulfilled when the agent captures new data from the
environment or when it has received information from another agent. In this case, the data transfer by
information request will be used. In any other case, if the source agent does not have in its history
information to be transmitted to another agent and is within range, it will send immediately all the
information packet stored. This process is shown in Algorithm 1.

Algorithm 1 Data transfer between agents.

1: history← internalHistory
2: for each agent ∈ agentsInCoverture do
3: for each e ∈ history. f rom.id do
4: for each id ∈ e.to.id do
5: f lagSend← true
6: if id = agent.id then
7: f lagSend← f alse
8: pending← history[e][id].pending
9: if pending > 0 then

10: sended← history[e][id].sended
11: quanty← sendDataRequest(sended)
12: if quanty > 0 then
13: send(package)
14: history[e][id].sended← sended + pending
15: history[e][id].sended← sended + pending
16: history[e][id].pending← 0
17: else
18: if f lagSend = true then
19: sendDataDirect(agent)

4. Decentralized Framework in MARS

To create the non-convex environment and the dynamic model of the robotic agents, we used the
V-Rep simulator, with the goal of validation the decentralized framework [49]. This simulator allows
the creation of obstacles and robotic agents, which can be controlled directly from Python and wireless
adapters can be created from the Sockets library [50]. The environment is configured in an area of
25 m2, generating in its interior area a maze with cells separated by a minimum of 50 cm that allows
enough space for mobile robots to navigate.

Robotic agents in this environment need to be capable of detecting the walls and tracing
topographic maps independently. These must be shared with all the agents in the system, guaranteeing
that each agent will contain the complete topological map of the environment through the use of
this framework.

Initially, the system will be comprised of two mobile robotic agents. Another mobile robotic agent
will be subsequently added to the system. In a final stage, a monitor agent will be added to the system
to validate the heterogeneousness of the framework to accept different types of agents in real time.

4.1. Experiment with Two Robotic Agents in the System

As this is the first time that the agents will be inserted in the environment, they must follow the
five steps of the framework in an organized way. The first process is the characterization of the agents
in the system. Each simulated robotic agent is constructed under the physical model shown in Figure 1
and is placed in an opposite end of the environment in such a way that they follow an independent
path. These agents are equipped with encoders that allow to read odometry directly from the motor
axis and independently. By using Equation (2), a value of dpp = 0.7853 mm is obtained, generating a
dot matrix in the environment through Equation (3). This locates robot1 at the position (0.25 m, 0.25 m)
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or in the matrix pg(318, 318). The second robotic agent is located at the position (4.75 m, 4.75 m) or in
the matrix pg(6048, 6048), as shown in Figure 7.

Figure 7. Experiment with two robotic agents.

The second process is the analysis of information transmission. As the agents are equipped with
a Wi-Fi adapter TL-WN823N (TP-Link, Shenzhen, China), a maximum transmission distance of 2 m
is selected. This is when the network is recognized with an RSSI greater than −63.4375 dB. In this
case, each data stored in the dynamic array will include one byte to store the vertices of the graph
with two 16− bit floats to represent the position of vertices (x, y) of the topological map created by the
robotic agents.

The third process is agent initialization, with an access mask of 255.255.255.0 and a gateway
with the IP address 192.168.1.1, which allows assigning 253 agents to the system. IP assignment uses
Equations (4) and (5), where the agent robot1 is assigned an IP address 192.168.1.2 from a DHCP address
pool that goes from 192.168.1.3 to 192.168.1.127. Agent robot2 is assigned an IP address 192.168.1.128
from a DHCP address pool that goes from 192.168.1.9 to 192.168.1.254.

The fourth process is assigning the history to each agent. This process consists of creating a
dynamic array of [x] × [4] positions, where x is the dynamic index that will increment after each
transmission or reception of information from other agent in the environment. The last process is
performed in the application layer of the agent.

Once the five processes have been completed in the environment, the system starts the
implementation of the task, which is the generation of a topological map of the environment, in which
the vertices are shared by the communication model of the fifth process of the framework.

The experiment is performed by comparing a centralized system and a decentralized system and
measuring the distance, time used, and the number of bytes sent to obtain the complete topological
map of the environment (Figure 8). The results of both experiments can be seen in Table 6. A centralized
system using the communications model of this framework shows a 15.87% reduction in the time to
send the map to the agents, compared to the decentralized system. However, the decentralized system
using full use of the framework shows a 50% reduction of data traffic to generate the map, reducing
energy use of robotic agents [51].



Sensors 2018, 18, 417 14 of 20

Figure 8. Topological map processed by two robotic agents.

Table 6. Results from the experiment with two robotic agents.

Type Robot IP Distance (m) Time (s) Bytes Send

Centralized
192.168.1.2 30.5 472.46 60

192.168.1.128 23.84 457.29 60
192.168.1.129 – – 120

Decentralized 192.168.1.2 34.90 561.58 60
192.168.1.128 28.97 535.97 60

4.2. Experiment with Three Robotic Agents in the System

By characterizing the robotic agents and their transmission, we continue with the implementations
of processes 3 and 4 of the proposed framework, taking into account that the new robotic agent will be
located at the position (0.25 m, 4.75 m) or in the matrix pg(318, 6048), and the two existing agents will be
located in their initial positions, as shown in Figure 9. By adding a new agent to the system, we continue
with process 3 to initialize the agents, again using Equations (4) and (5). Agent robot1 is assigned an IP
address 192.168.1.2 from a DHCP address pool that goes from 192.168.1.3 to 192.168.1.84. Agent robot2

is assigned an IP address 192.168.1.85 from a DHCP address pool that goes from 192.168.1.86 to
192.168.1.169. Finally, agent robot3 is assigned an IP address 192.168.1.170 from a DHCP address pool
that goes from 192.168.1.171 to 192.168.1.254.

The fourth process only adds the dynamic array of [x]× [4] positions to agent robot3, and agents
robot1 and robot2 have their histories created in the previous experiment erased. Again, by doing these
processes, the continue with the generation of the topological map, as shown in Figure 10, comparing
distance, time, and the quantity of bytes sent to obtain the full topological map of the environment,
both in a centralized and a decentralized system. The results of both experiments can be seen on
Table 7. As in the experiment with two robotic agents, the centralized system shows a time reduction
of 14.55% in information transmission to the complete system, while the decentralized system reduced
the quantity of bytes sent in the system.
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Figure 9. Experiment with three robotic agents.

Figure 10. Topological map processed by three robotic agents.

Table 7. Results from the experiment with three robotic agents.

Type Robot IP Distance (m) Time (s) Bytes Send

Centralized

192.168.1.2 18.63 289.09 36
192.168.1.85 23.85 447.69 60

192.168.1.170 7.94 133.56 24
192.168.1.86 – – 240

Decentralized
192.168.1.2 18.63 297.14 132
192.168.1.85 29.20 523.93 75

192.168.1.170 9.63 169.96 75

The experiment was repeated but making the central system fail in the centralized system, and, in
the decentralized system, the agent robot3 was caused to fail, as shown in Table 8. In the first test, the
system could not complete the full map because it did not have a unit that received the information
and relayed it to the rest of the agents, so each agent obtained a partial map of the environment. In the
decentralized test, although the agent robot3 failed at the 110 s mark after the test start, the remaining
agents were able to complete the topological map of the environment. The results taken from the agent
that failed are shown in Figure 11, where the points without a connection are the missing vertices.
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Figure 11. Topological map processed by the robot3 agent after its failure, with the information sent
from the robot1 and robot2 agents.

Table 8. Results from the experiment with three robotic agents after the failure of the robot3 agent.

Type Robot IP Distance (m) Time (s) Bytes Send

Centralized

192.168.1.2 30.5 472.46 –
192.168.1.85 23.85 447.69 –
192.168.1.170 33.3 484.35 –
192.168.1.86 – – –

Decentralized
192.168.1.2 18.63 297.14 48

192.168.1.85 29.20 523.93 81
192.168.1.170 6.67 109.70 69

Additionally, to overcome the mechanical failure of robot3, a monitoring agent was added to
seize the capacity of the system to be heterogeneous. Monitoring agents need to comply with the
characteristics shown in Section 3.1. This monitoring agent was implemented with the same model of
wireless adapter used in the rest of the robotic agents, so only the fourth process of the framework
was applied to be able to establish communication with the agents already deployed. The monitoring
agent monitor1 is placed at the coordinates (1.75 m, 3.25 m) as shown in Figure 12, which allows it to be
within range of agents robot3 and robot1. As it had better coverage with agent robot1, the monitoring
agent connects directly with robot1 and is assigned the IP address 192.168.1.3. Once the IP address
was assigned, the process of communication and data transfer from robot1 to monitor1 is initiated.
After this, monitor1 sends the data to the agent robot3. The quantity of bytes transmitted in this new
transfer is shown in Table 9.

Table 9. Experiment with three robotic agents and one monitor agent.

Agent Robot IP Bytes Send

Robot1 192.168.1.85 168
Robot2 192.168.1.85 81
Robot3 192.168.1.170 69

Monitor1 192.168.1.3 96
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Figure 12. Experiment with three robotic agents and a monitor agent.

5. Conclusions

MARS decentralization has become a very important area of cooperative robotics. By not
depending on a central unit for processing or traffic control between agents, it allows increasing
the autonomy and fault tolerance of the whole system. The biggest contribution of this article is the
development of a framework for communications between multiple agents in a decentralized system.

The difference with the existing communication models is that this framework does not depend
on a central unit for data processing or collection. It also does not require permanent communications
between agents in the system, allowing for real-time connection of different agents, robotic or
monitoring, at any moment, as long as they are within the number of assignable addresses defined in
this framework’s third initialization process.

The results of different simulations in a non-convex environment are shown, assessing the
communication in the system in the creation of a topological map of the environment. The results
show the framework’s improved performance compared to traditional centralized systems, in the
reduction of the amount of data transmitted between agents, the fault tolerance in the case of failure of
an agent, and the capacity to accept new agents in the system. However, centralized systems require
less time to share the information with the whole system.

Although none of the agents modeled in the system had a module for SLAM tasks, it was possible
to generate a topological map through processing odometry data and obstacle assessment through
distance sensors.

Future works will use this framework to evaluate its functionality in MARSs in emergency
response situations, specifically in search and rescue operations of people, using different metrics to
facilitate the detection of malicious or problematic agents to improve the performance of the network
as is shown by Gutiérrez et al. [52]. Additionally, as this is a modular framework, its implementation
in a sensor network will be studied, incrementing the number of agents that can participate in the
system, for data analysis purposes in different environments to control the temperature, humidity and
water level in crops as is shown in Anzola et al. [53].

We are also researching the process for integrating this framework in real-time vehicular traffic
analysis, with consideration that not only will the data be distributed within the system, but also
will need to be sent to a remote database through an Internet of Things (IoT) concept, as shown in
Jiménez et al. [54]. Furthermore, we are studying the possibility of integrating other rules into our
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framework to recover the communication when an agent suffers a failure, as the work presented by
Shang [55].
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