110 research outputs found

    Decentralized Robust Control of Robot Manipulators with Harmonic Drive Transmission and Application to Modular and Reconfigurable Serial Arms

    Get PDF
    In this paper, we propose a decentralized robust control algorithm for modular and reconfigurable robots (MRRs) based on Lyapunov’s stability analysis and backstepping techniques. In using decentralized control schemes with robot manipulators, each joint is considered as an independent subsystem, and the dynamical effects from the other links and joints are treated as disturbance. However, there exist many uncertainties due to unmodeled dynamics, varying payloads, harmonic drive (HD) compliance, HD complex gear meshing mechanisms, etc. Also, while the reconfigurability of MRRs is advantageous, modifying the configuration will result in changes to the robot dynamics parameters, thereby making it challenging to tune the control system. All the above mentioned disturbances in addition to reconfigurability present a challenge in controlling MRRs. The proposed controller is well-suited for MRR applications because of its simple structure that does not require the exact knowledge of the dynamic parameters of the configurations. Desired tracking performance can be achieved via tuning a limited set of parameters of the robust controller. If the numbers of degrees of freedom are held constant, these parameters are shown to be relatively independent of the configuration, and can be held constant between changes in configuration. This strategy is novel compared to existing MRR control methods. In order to validate the controller performance, experimental setup and results are also presented

    Hierarchical Adaptive Control of Modular and Reconfigurable Robot Manipulator Platforms

    Get PDF
    Within the rapidly growing interest in today's robotics industry, modular and reconfigurable robots (MRRs) are among the most auspicious systems to expand the adaptability of robotic applications. They are adaptable to multiple industrial field applications but they also have additional advantages such as versatile hardware, easier maintenance, and transportability. However, such features render the controller design that manages a variety of robot configurations with reliable performance more complex since their system dynamics involve not only nonlinearities and uncertainties but also changing dynamics parameters after the reconfiguration. In this thesis, the motion control problem of MRR manipulators is addressed and hierarchical adaptive control architecture is developed for MRRs. This hierarchical structure allows the adjustment of the nominal parameters of an MRR system for system parameter identification and control design purposes after the robot is reconfigured. This architecture simplifies the design of adaptive control for MRRs which is effective in the presence of dynamic parameter uncertainty, unmodeled dynamics, and disturbance. The proposed architecture provides flexibility in choosing adaptive algorithms applicable to MRRs. The developed architecture consists of high-level and low-level modules. The high-level module handles the dynamic parameters changes and reconstructs the parametric model used for on-line parameter identification after the modules are reassembled. The low-level structure consists of an adaptive algorithm updated by an on-line parameter estimation to handle the dynamic parameter uncertainties. Furthermore, a robust adaptive term is added into this low-level controller to compensate for the unmodeled dynamics and disturbances. The proposed adaptive control algorithms guarantee uniformly ultimate boundedness (UUB) of the MRR trajectories in terms of robust stability despite the dynamic parameter uncertainty, unmodeled dynamics, changes in the system dynamics, and disturbance

    On the effects of strain wave gear kinematic errors on the behaviour of an electro-mechanical flight control actuator for eVTOL aircrafts

    Get PDF
    In recent years, the increasingly growing overcrowding of urban environments and the resulting road traffic congestion have pushed toward the search for alternative mobility solutions, among which there are novel Urban Air Mobility (UAM) technologies. The UAM, together with the development of electric actuation systems, would allow decongesting the streets by exploiting the sky using electric Vertical Take-Off and Landing (eVTOL) aircrafts. Urban air mobility vehicles are primarily based on fully electrical flight control systems with rotary output. Since such technology is relatively new and unproven, Prognostic and Health Management (PHM) algorithms, able to continuously monitor the health status of such systems, are of particular interest. The diffusion of these systems strongly depends on the general confidence of possible customers. The present paper proposes a preliminary study on the effects of the kinematic error of a Strain Wave Gear (SWG), the most used reducer for this kind of applications, on the behaviour of an Electro-Mechanical Actuator (EMA) used as a flight control actuator for an eVTOL aircraft. The simulation results show how the unavoidable kinematic error affects the EMA performances and how its presence can be detected and quantified in strain wave gears

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design and Development of a Planetary Gearbox for Electromechanical Actuator Test Bench through Additive Manufacturing

    Get PDF
    The development and validation of prognostic algorithms and digital twins for Electromechanical Actuators (EMAs) requires datasets of operating parameters that are not commonly available. In this context, we are assembling a test bench able to simulate different operating scenarios and environmental conditions for an EMA in order to collect the operating parameters of the actuator both in nominal conditions and under the effect of incipient progressive faults. This paper presents the design and manufacturing of a planetary gearbox for the EMA test bench. Mechanical components were conceived making extensive use of Fused Deposition Modelling (FDM) additive manufacturing and off-the-shelf hardware in order to limit the costs and time involved in prototyping. Given the poor mechanical properties of the materials commonly employed for FDM, the gears were not sized for the maximum torque of the electric motor, and a secondary torque path was placed in parallel of the planetary gearbox to load the motor through a disc brake. The architecture of the gearbox allowed a high gear ratio within a small form factor, and a bearingless construction with a very low number of moving parts

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Systematic Design of Type-2 Fuzzy Logic Systems for Modeling and Control with Applications to Modular and Reconfigurable Robots

    Get PDF
    Fuzzy logic systems (FLSs) are well known in the literature for their ability to model linguistics and system uncertainties. Due to this ability, FLSs have been successfully used in modeling and control applications such as medicine, finance, communications, and operations research. Moreover, the ability of higher order fuzzy systems to handle system uncertainty has become an interesting topic of research in the field. In particular, type-2 FLSs (T2 FLSs), systems consisting of fuzzy sets with fuzzy grades of membership, a feature that type-1 (T1) does not offer, are most well-known for this capability. The structure of T2 FLSs allows for the incorporation of uncertainty in the input membership grades, a common situation in reasoning with physical systems. General T2 FLSs have a complex structure, thus making them difficult to adopt on a large scale. As a result, interval T2 FLSs (IT2 FLSs), a special class of T2 FLSs, have recently shown great potential in various applications with input-output (I/O) system uncertainties. Due to the sophisticated mathematical structure of IT2 FLSs, little to no systematic analysis has been reported in the literature to use such systems in control design. Moreover, to date, designers have distanced themselves from adopting such systems on a wide scale because of their design complexity. Furthermore, the very few existing control methods utilizing IT2 fuzzy logic control systems (IT2 FLCSs) do not guarantee the stability of their system. Therefore, this thesis presents a systematic method for designing stable IT2 Takagi-Sugeno-Kang (IT2 TSK) fuzzy systems when antecedents are T2 fuzzy sets and consequents are crisp numbers (A2-C0). Five new inference mechanisms are proposed that have closed-form I/O mappings, making them more feasible for FLCS stability analysis. The thesis focuses on control applications for when (a) both plant and controller use A2-C0 TSK models, and (b) the plant uses T1 Takagi-Sugeno (T1 TS) and the controller uses IT2 TS models. In both cases, sufficient stability conditions for the stability of the closed-loop system are derived. Furthermore, novel linear matrix inequality-based algorithms are developed for satisfying the stability conditions. Numerical analyses are included to validate the effectiveness of the new inference methods. Case studies reveal that a well-tuned IT2 TS FLCS using the proposed inference engine can potentially outperform its T1 TSK counterpart, a result of IT2 having greater structural flexibility than T1. Moreover, due to the simple nature of the proposed inference engine, it is easy to implement in real-time control systems. In addition, a novel design methodology is proposed for IT2 TSK FLC for modular and reconfigurable robot (MRR) manipulators with uncertain dynamic parameters. A mathematical framework for the design of IT2 TSK FLCs is developed for tracking purposes that can be effectively used in real-time applications. To verify the effectiveness of the proposed controller, experiments are performed on an MRR with two degrees of freedom which exhibits dynamic coupling behavior. Results show that the developed controller can outperform some well-known linear and nonlinear controllers for different configurations. Therefore, the proposed structure can be adopted for the position control of MRRs with unknown dynamic parameters in trajectory-tracking applications. Finally, a rigorous mathematical analysis of the robustness of FLSs (both T1 and IT2) is presented in the thesis and entails a formulation of the robustness of FLSs as a constraint multi-objective optimization problem. Consequently, a procedure is proposed for the design of robust IT2 FLSs. Several examples are presented to demonstrate the effectiveness of the proposed methodologies. It was concluded that both T1 and IT2 FLSs can be designed to achieve robust behavior in various applications. IT2 FLSs, having a more flexible structure than T1 FLSs, exhibited relatively small approximation errors in the several examples investigated. The rigorous methodologies presented in this thesis lay the mathematical foundations for analyzing the stability and facilitating the design of stabilizing IT2 FLCSs. In addition, the proposed control technique for tracking purposes of MRRs will provide control engineers with tools to control dynamic systems with uncertainty and changing parameters. Finally, the systematic approach developed for the analysis and design of robust T1 and IT2 FLSs is of great practical value in various modeling and control applications

    Contact force and torque estimation for collaborative manipulators based on an adaptive Kalman filter with variable time period.

    Get PDF
    Contact force and torque sensing approaches enable manipulators to cooperate with humans and to interact appropriately with unexpected collisions. In this thesis, various moving averages are investigated and Weighted Moving Averages and Hull Moving Average are employed to generate a mode-switching moving average to support force sensing. The proposed moving averages with variable time period were used to reduce the effects of measured motor current noise and thus provide improved confidence in joint output torque estimation. The time period of the filter adapts continuously to achieve an optimal trade-off between response time and precision of estimation in real-time. An adaptive Kalman filter that consists of the proposed moving averages and the conventional Kalman filter is proposed. Calibration routines for the adaptive Kalman filter interpret the measured motor current noise and errors in the speed data from the individual joints into. The combination of the proposed adaptive Kalman filter with variable time period and its calibration method facilitates force and torque estimation without direct measurement via force/torque sensors. Contact force/torque sensing and response time assessments from the proposed approach are performed on both the single Universal Robot 5 manipulator and the collaborative UR5 arrangement (dual-arm robot) with differing unexpected end effector loads. The combined force and torque sensing method leads to a reduction of the estimation errors and response time in comparison with the pioneering method (55.2% and 20.8 %, respectively), and the positive performance of the proposed approach is further improved as the payload rises. The proposed method can potentially be applied to any robotic manipulators as long as the motor information (current, joint position, and joint velocities) are available. Consequently the cost of implementation will be significantly lower than methods that require load cells

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore