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ABSTRACT 

Contact force and torque sensing approaches enable manipulators to cooperate with humans and to interact appropriately 

with unexpected collisions. In this thesis, various moving averages are investigated and Weighted Moving Averages and 

Hull Moving Average are employed to generate a mode-switching moving average to support force sensing. The proposed 

moving averages with variable time period were used to reduce the effects of measured motor current noise and thus 

provide improved confidence in joint output torque estimation. The time period of the filter adapts continuously to achieve 

an optimal trade-off between response time and precision of estimation in real-time. An adaptive Kalman filter that consists 

of the proposed moving averages and the conventional Kalman filter is proposed. Calibration routines for the adaptive 

Kalman filter interpret the measured motor current noise and errors in the speed data from the individual joints into. The 

combination of the proposed adaptive Kalman filter with variable time period and its calibration method facilitates force 

and torque estimation without direct measurement via force/torque sensors.  

Contact force/torque sensing and response time assessments from the proposed approach are performed on both the 

single Universal Robot 5 manipulator and the collaborative UR5 arrangement (dual-arm robot) with differing unexpected 

end effector loads. The combined force and torque sensing method leads to a reduction  of the estimation errors and 

response time in comparison with the pioneering method (55.2% and 20.8 %, respectively), and the positive performance 

of the proposed approach is further improved as the payload rises. The proposed method can potentially be applied to any 

robotic manipulators as long as the motor information (current, joint position, and joint velocities) are available. 

Consequently the cost of implementation will be significantly lower than methods that require load cells. 
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1. INTRODUCTION 

With the development of artificial intelligence, advanced manufacturing, and new sensor technology, research expanding 

the capabilities of robots is becoming more prevalent. The robotic ability to integrate with human resources will be 

important for ongoing improvement in efficiency, and commercial competition. In industry, robots of human size are 

expected to replace human workers without major redesigns of the workplace [1]. In high-risk environments, such as 

nuclear, deep-sea, or aerospace, robots are expected to undertake welding, assembly, rescue tasks and similar. (Fig. 1) 

  

(a) Collecting marine samples [2] 

 

(b) Welding [3] 

 

(c) Assembling [4] 

 

(d) Palletizing [5] 

Fig. 1.1.  Robotic manipulators.  

    Recently, the focus of some robotic research has been shifting from single-arm manipulators to cooperative dual-arm 

manipulators [6]-[10]. The very early dual-arm system, originally used for handling radioactive goods, was developed in 

the 1940’s [11]. The system worked in pairs and the operator controlled one robot with each hand. In recent years, the 

challenge inherent in the dual-arm manipulation has caught researchers’ attention, which in return led to various dual-arm 

robots. The most common examples are SDA 10 [12], PR2 [13], Baxter [14], and Yumi (Fig. 1.2). 
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(a) SDA 10 

 

(b) PR2 

 

(c) Baxter 

 

(d) Yumi 

Fig. 1.2.  Dual-arm robots. 

    Compared to their single-arm counterpart, the dual-arm robots demonstrate the following advantages: 

a. The traditional single-arm robot failed in grinding precision because of its poor rigidity [15], usually lower than 1N/μm. 

In contrast, the dual-arm robot can enhance the rigidity dramatically with two arms holding the workpiece in a ‘loop’ 

structure. 

b. Humans typically perform complex or precise tasks with two arms. A robot with two arms facilitates the transfer of 

human grinding skills and knowledge to the robot [16]. For example, the gear clearance and friction between the joints 

lead to the low kinematic accuracy of the robot, and its repeatability of positioning is usually 0.02mm-0.08mm [17]. 

Although the repeated positioning precision of the robot is better than that of the craftsmen, trained humans can perform 

machining tasks with higher precision than robots. It is mainly because humans are able to integrate the information of 

position and the feedback of force, which will offset the position error. In other words, a dual-arm robot can potentially 

work in a dexterous human-like manner if it has sufficient positional feedback.  

c. Dual-arm robots are expected to work in environments originally intended for humans. In other words, the dual-arm 

robots carry the potential of replacing human workers without redesigning the workspace.  

d. Dual-arm systems occupy less space and have lower cost, as compared to two single arm units that provide equivalent 

tasks [18]. 
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1.1. Background on external wrench estimation for manipulators  

Robotic manipulators play an important role in various manufacturing tasks. However, robotic control strategies can fail 

to take environmental and operator interaction into account. Thus, the robots can cause hazardous or unexpected situations. 

Therefore, force-control techniques are widely applied in cooperating manipulators [19]-[21], assembly [22], haptics [23], 

grinding [24]-[31], physical human-robot interaction [31]-[33], exoskeleton robots [34], [35] , and collision detection [36].  

 

Fig. 1.3.  A grinding system based on the manipulator with force sensor [24]. 

 

Fig. 1.4.  Exoskeleton robots [37]. 

The dual-arm robotic systems possess pronounced advantages in employing human bimanual working skills compared 

with their single-arm counterparts [38]. Dual-arm configuration can facilitate more complicated and challenging tasks, 
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such as farming [39], underwater operations [40], and surgery [41]. In order to achieve successful cooperation between the 

two interactive rigid manipulators, force-based coordinated control must be implemented in the robotic system to achieve 

successful motion performance. Furthermore, dual-arm manufacturing missions, like assembly [42] and grinding [43], 

require contact force between the end effectors and the environment to be regulated within a certain range.  

 

Fig. 1.5.  A dual-arm polishing robot developed by the author [44]. 

 

Fig. 1.6.  Collaborative robots from JAKA making coffee [45]. 

Furthermore, manipulators based on force control play an important role in on-orbit missions, such as spacecraft capture 

[46], [47], non-cooperative target grasping[48], [49], assembly and repair [50], [51], multi-arm cooperation[52], and 

experimental research[53]-[55]. With the detection techniques of the external wrench, the force-control manipulators can 

regulate the contact force and torque within a certain range and thus perform more challenging tasks compared to their 
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position-controlled counterparts. However, the common methods to measure the contact information for the ground-based 

robotic manipulators, which utilize the 6-axis force/torque sensors or torque sensors that are mounted between the link side 

and the motor side of the robot, may result in extra cost or poor performance if employed in on-orbit missions. For example, 

the severe environment such as extreme cold and vacuum can affect the performance of these exposed sensors. 

Furthermore, the sensors are prone to damage since the end effector of the manipulator often performs rigid-contact 

missions with the environment. Finally, the difficulty in transporting and maintaining these sensors in outer space makes 

implementation significantly more expensive than on the earth. Consequently, research of sensorless external wrench 

estimation has been conducted and various contact force and torque estimation methods have been proposed.  

 

Fig. 1.7.  The international space station's Canadarm2 [56]. 

1.2. Motivation of sensorless contact force/torque estimation 

The force-control techniques require information regarding the force exerted and torque exerted on the robot in order to 

regulate the robotic motion within appropriate bounds. Historically, the most common method to measure the contact force 

and torque is to utilize 6-axis force/torque sensors which are mounted on the end of the robotic manipulator (as shown in 

Fig. 1.8), or torque sensors that are mounted between the link side and the motor side of the robot (as shown in Fig. 1.9). 

More recently, various force/torque sensors for manipulators were developed [57]-[61]. Techniques like deep-learning 

were employed to calibrate these sensors [62]. With these sensitive sensors, hybrid force/position control [63] and 

impedance control [64] are well developed and have been introduced into various areas. However, the extension of these 

sensors is limited due to their cost. Furthermore, the sensors may become worn or damaged as the end effector usually 
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conducts rigid contact with the environment [65]. Finally, both the varying temperature and humidity, and the narrow 

bandwidth caused by the sensors inevitable susceptibility to measurement noise affect the performance of these sensors, 

and resultant motion control. 

 

Fig. 1.8.  ATI force/torque sensor mounted on the end of UR5 [66]. 

 

Fig. 1.9.  Torque sensor mounted between the link side and motor side [67]. 

To enable sensorless force/torque contact estimation, various observers for estimating an external wrench have been 

proposed. An early disturbance observer developed by Kiyoshi et al. [68] has been widely used as a basis for force/torque 

sensing research and development. When the manipulator unexpectedly interacts with the environment, sensorless 

force/torque contact estimation methods detect the external wrench as a disturbance by comparing the actual motor output 

to the motor output estimated by a nominal model. Further disturbance observer force/torque sensing research is presented 
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in [69], [70]. More recently, Chen et al. improved the disturbance observer and applied it to nonlinear robotic systems [71], 

[72]. The nonlinear disturbance observer has also been extensively used [73], [74]. In order to utilize the disturbance 

observer, a real-time inverse inertia matrix of the robot must be continuously calculated leading to notable computational 

burden. 

Due to the development of compliant elements in robotics, various flexible robotic systems, such as rehabilitation robots, 

have been proposed and thus the safety and back-drivability of physical Human-Robot Interaction systems have been 

improved. In particular, the exerted force/torque on the manipulator can be estimated with kinematic measurement. In these 

methods, sensorless torque estimation of the stiff and sensitive joint is implemented by understanding the structural 

elasticity of the robotic joints with harmonic drive transmission in [75]-[77] and only motor-side and link-side position 

measurements are required. However, this method is difficult to conduct since a prior model of the harmonic drive is 

required and it is very complicated to develop and validate. Furthermore, compliant elements ultimately have high 

implementation costs. Thus, there is a preference for direct force measurement. Other sensorless external wrench sensing 

approaches, such as time delay estimation and virtual springs, can be found in [78] and [22], respectively. 

1.3. Thesis objectives and research question 

In order to realize sensorless external wrench estimation, a dynamic model of the robotic system with low computational 

burden must be built. More specifically, large repetitive inversion calculation of dynamic equations is to be avoided. 

Furthermore, designing an adaptive Kalman filter that employs the information of dynamic uncertainty is required. 

Moreover, calibration of the adaptive Kalman filter using the potential knowledge of the systematic dynamics is conducted. 

Finally, the proposed adaptive Kalman filter and the calibrating methods needs to be validated on the both the single-arm 

and dual-arm systems. 
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1.4. Organization of thesis 

The thesis is structured as follows: 

Chapter 1 presents background of external wrench estimation for manipulator, motivation and objective of the 

sensorless contact force/torque estimation. 

Chapter 2 presents kinematic models of robotic systems. Relevant Jacobians of the systems are calculated. With the 

kinematic models and Jacobians, the dynamic models of both the single-arm and the dual-arm systems are built based on 

the generalized momentum principals. The system dynamics is then discretized. 

Chapter 3 gives details of how to identify the system dynamics without extra force/torque sensors. First, the joint driving 

torques are modelled. Secondly the joint frictions are determined. Thirdly, the covariance matrix of the predicted state 

noise is calculated based on the joint driving torques. At last, the covariance matrix of the measurement noise is determined 

using the joint velocity errors. 

Chapter 4 proposes two kinds of pre-filters, the Weighted Moving Average (WMA) with variable time period and the 

Mode-switching Moving Average (MSMA) with time period. With these pre-filters, two different adaptive Kalman filters 

are designed. Calibration of the Adaptive Kalman filter (AKF), and its pre-filters are presented.   

Chapter 5 presents CFTE experiments with an AKF based on the WMA with variable time period. The experimental 

tests are conducted on the single-arm robot and the results are also shown in this chapter. Effects of the proposed AKF are 

discussed. 

Chapter 6 presents experiments of validating an adaptive Kalman filters based on the proposed MSMA with variable 

span. The proposed CFTE method is tested on the single-arm robot. The results are also shown in this chapter and effects 

of the proposed AKF are discussed. 

Chapter 7 presents experiments of validating the adaptive Kalman filters based on the MSMA with variable span on 

the dual-arm robot. The CFTE results are shown and effects of the proposed AKF are discussed. 

Chapter 8 presents experiments of validating two adaptive Kalman filters on the dual-arm robot. The results are also 

shown in this chapter and effects of the proposed AKF are discussed. 

Chapter 9 concludes and reiterates the novel contributions of this thesis. 

Chapter 10 considers potential avenues for future work. 
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2. KINEMATIC AND DYNAMIC MODELS OF THE ROBOTIC SYSTEMS 

In this thesis, the Universal Robot 5 (as shown in Fig. 2.1) is employed to validate the proposed contact force and torque 

estimation (CFTE) method. In order to conduct experimental tests on both the single-arm and the dual-arm robotic systems, 

kinematics of both systems are analysed and kinematic models are built based on the Denavit-Hartenberg convention in 

section 2.2. With the kinematic models, Jacobians of the robots are deducted in section 2.3. Based on the manipulator 

Kinematics and Jacobians, dynamics of the robotic systems are expressed by the Euler-Lagrange equations in section 2.4 

and then modified into the format of the generalized momentum. The generalized-momentum-based model is discretized 

as state space equations in section 2.6, which can be applied to the conventional Kalman filter.  

 

Fig. 2.1.  Universal Robot 5 

2.1. Background and motivation  

Generally, the Euler-Lagrange equations are employed to model a serial manipulator [1], [80]. However, inversion of 

the dynamics must be calculated in real time which causes extra calculation burden. Consequently, De Luca et al. [81] - 

[83] present a novel method, in which the robot dynamics are expressed in the format of the generalized momentum. This 

approach is originally proposed for collision detection and hybrid force/position control, but recent researchers have 

exploited its further application to lead-through programming [84]. With the motor current and Moore-Penrose generalized 

inverse matrix, the exerted force/torque on the end of the manipulator is estimated and applied to a combined control mode 

by Yuan et al.[85]. Similarly, Yen et al. [86] monitor the motor current and transform it to joint torques, which is then used 
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to estimate the external wrench. Another collision detection method that depends on virtual power indices is proposed in 

[87]. At a fundamental level, [85] - [89] all have characteristics of De Luca’s generalized momentum dynamic model due 

to the model’s independence from joint acceleration measurements and inversion of the manipulator inertia matrix. 

However, the research arising from De Luca’s model is limited to collision detection or low-precision force/torque control 

since the noise in the measured current can trigger false positive collision recognition or insufficient force estimation 

precision.  

2.2. Kinematics of the robotic system  

Typically, industrial manipulators consist of adjacent links connected by joints. These connections include rotate, 

prismatic, ball, and spherical joints. In this research, only rotation joints are considered as the UR5 has six rotating joints. 

Each joint has one degree of freedom and can rotate like a hinge. With the above assumption, rotation of each joint can be 

represented by a single angle. Before building dynamic models of the robot, system kinematics must be explored.  

For the serial manipulator, every connection between two links has one rotational joint. Thus, the UR5 with 6 joints has 

7 links ( Fig. 2.2). The joints are numbered from 1 to 6. The links are numbered from 0 to 6, from the base being 0 to the 

end effector 6. Under this assumption, link 𝑖 − 1 and link 𝑖 are connected by the joint 𝑖. Joint 𝑖 is technically considered 

rigidly connected to link 𝑖. Therefore, link 𝑖 moves as joint 𝑖 rotates. In this model, link 0 is fixed to a rigid platform in the 

laboratory and represented by the manipulator base ( Fig. 2.2). 𝑞𝑖 describes the angle of rotation of joint 𝑖.  
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 Fig. 2.2.  Sketch of the UR5 

To explore the kinematic relationship between each link, link 𝑖 is represented by a coordinate frame 𝑜𝑖 , which is fixed to 

link 𝑖. It is worth noting the coordinates of each part of link 𝑖 stay constant during motion of the manipulator since it is 

expressed in the coordinated frame 𝑜𝑖 . The base coordinate frame is express by 𝑜0 and attached to the manipulator base. 

To describe the transformation of position and orientation of frame 𝑜𝑖  with respect to frame 𝑜𝑖−1 , the homogeneous 

transformation matrix 𝑨𝑖 is introduced. The characteristics of the UR5 are all constant except for joint angle, thus 𝑨𝑖 is a 

function of 𝒒𝑖 and expressed as 𝑨𝑖(𝒒𝑖) and obtained by: 

 
𝑨𝑖 = [

𝑹𝑖
𝑖−1 𝒐𝑖

𝑖−1

0 1
] 2-1 

The position and orientation of the coordinate frame 𝑜𝑖  with respect to coordinate frame 𝑜𝑖−1 are expressed by 𝒐𝑖
𝑖−1 ∈ 𝓡3×1 

and 𝑹𝑖
𝑖−1 ∈ 𝓡3×3 respectively. With this definition, the position and orientation of frame 𝑜𝑗 with respect to frame 𝑜𝑖  is 

presented by 𝑻𝑗
𝑖 and calculated by:  

 𝑻𝑗
𝑖 = 𝑨𝑖+1𝑨𝑖+2⋯𝑨𝑗−1𝑨𝑗 2-2 

2.2.1.  Kinematics of the single-arm system 

In order to identify 𝑹𝑖
𝑖−1 and 𝑜𝑖

𝑖−1, the Denavit-Hartenberg (DH) convention is employed to describe kinematics of the 

UR5 manipulator. Since the dynamic models are described in the format of generalized momentum, inversion of the 
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kinematics is not required. Hence, only the forward kinematics are discussed. The purpose of researching the forward 

kinematics is to find the relationship between individual manipulator joints and the orientation and position of the tool 

centre point. To be more specific, the orientation and position of the tool centre point are calculated by considering all joint 

variables. In this convention, the homogeneous transformation 𝑨𝑖 is calculated by 4 basic transformations: 

 𝑨𝑖 = Trans𝑧,𝑑𝑖 ∙ Rot𝑧,𝜃𝑖 ∙ Trans𝑥,𝑎𝑖−1 ∙ Rot𝑥,𝛼𝑖−1  2-3 

The four transformations are obtained by: 

 

Trans𝑧,𝑑𝑖 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 𝑑𝑖
0 1

] 2-4 

 

Rot𝑧,𝜃𝑖 = [

cos 𝜃𝑖 −sin 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖

0 0
0 0

0 0
0 0

1 0
0 1

] 2-5 

 

Trans𝑥,𝑎𝑖−1 = [

1 0
0 1

0 𝑎𝑖−1
0 0

0 0
0 0

1 0
0 1

] 2-6 

 

Rot𝑧,𝛼𝑖−1 = [

1 0
0 cos 𝛼𝑖−1

0 0
− sin 𝛼𝑖−1 0

0 sin 𝛼𝑖−1
0 0

    cos 𝛼𝑖−1 0
0 1

] 2-7 

where four quantities of 𝜃𝑖, 𝑎𝑖−1, 𝑑𝑖, 𝛼𝑖−1 represent the parameters related to the link i and joint i and represent joint angle, 

link length, link offset, and link twist, respectively. In this research, Z𝑖 is assigned along the axis of joint 𝑖. For the UR5, 

the axes of adjacent joints are perpendicular or parallel to each other. Under the former condition, there must be a unique 

line segment perpendicular to both Z𝑖 and Z𝑖+1, which connects both axes and has the minimum length. X𝑖+1 is defined 

along this line and the point where X𝑖+1 intersects Z𝑖+1 defines 𝑜𝑖+1. For the UR5, Z𝑖 and Z𝑖+1 are all coplanar and the 

positive direction of X𝑖  is from Z𝑖 to Z𝑖+1. With Z𝑖+1 and X𝑖+1, Y𝑖+1 is chosen according to the right-handed rule and the 

frame 𝒐𝑖+1 is then determined. Under the latter condition, there are innumerable normals between Z𝑖 and Z𝑖+1. In this case, 

any point along Z𝑖+1  can be regarded as 𝑜𝑖+1  as long as it can simplify the transformation equations. X𝑖+1  is then 

determined along the line from 𝑜𝑖+1 to Z𝑖 or, it can be set as the opposite of this direction. Similarly, Y𝑖+1 is determined in 

this right-handed frame. For the sixth frame, 𝑜6 is placed in the center of the surface of link 6 (as shown in  Fig. 2.2). X6 is 

parallel to X5. Consequently, the DH coordinate frame assignment for the UR5 manipulator is shown in Fig. 2.3(b). The 

corresponding physical UR5 with individual joints at position 0 is displayed in Fig. 2.3(a). 
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(a)  UR5 manipulator. 

 

(b)  DH coordinate frame assignment for the UR5 manipulator. 

Fig. 2.3.  The UR5 manipulator and the related DH coordinate frame. 
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With the set-up coordinate frames, DH transformation from  frame 𝑜𝑖−1  to frame 𝑜𝑖  is conducted and the four DH 

parameters of each transformation can be obtained by the following 4 steps:  

1. The frame 𝑜𝑖−1 rotates about axis X𝑖−1 for the angle of 𝛼𝑖−1 and thus Z𝑖−1 is parallel to Z𝑖. 

2. The frame 𝑜𝑖−1 moves along X𝑖−1 for the distance of 𝑎𝑖−1 and thus Z𝑖−1 and Z𝑖 are collinear. 

3. The frame 𝑜𝑖−1 rotates about axis Z𝑖 for the angle of 𝜃𝑖 and thus X𝑖−1 is parallel to X𝑖. 

4. The frame 𝑜𝑖−1 moves along Z𝑖 for the distance of 𝑑𝑖 and thus X𝑖−1 and X𝑖  are collinear. 

    The above four steps correspond to the four basic transformations in Eq. 2-3 successively. Therefore, the physical and 

mathematic transformations from frame 𝑜𝑖−1  to frame 𝑜𝑖  are obtained and the related parameters in individual DH 

transformations are summarized in Table 2-1. 

Table 2-1 The DH parameters of UR5 

Parameters  

Joint 
𝜃𝑖 [rad] 𝑎𝑖−1 [m] 𝑑𝑖 [m] 𝛼𝑖−1 [rad] 

1 0 0 0.089159 0 

2 0 0 0 π/2 

3 0 -0.425 0 0 

4 0 -0.39225 0.10915 0 

5 0 0 0.09465 π/2 

6 0 0 0.0823 -π/2 

 

Following Eq. 2-2 to Eq. 2-7, the position and orientation of frame 𝑜6 with respect to frame 𝑜0 is presented by 𝑻6
0 and 

calculated by: 

 𝑻6
0 = 𝑨1𝑨2𝑨3𝑨4𝑨5𝑨6 2-8 

2.2.2.  Kinematics of the dual-arm system 

In contrast to the single-arm model, internal force and torque between the two manipulators arises when dual-arm actions 

are performed. In order to test the proposed CFTE method on the dual-arm robot, with consideration of internal interaction, 

a kinematic model must first be defined. The first step is decoupling two robots according to Eq. 2-8, with 𝑜02 = 𝑜0 +

[𝑙 0 0]𝑇. Then, an extension spring is fixed to the end effectors of the two manipulators. The effects of this spring on 

the two arms are regarded as the internal force. Therefore, the position and orientation of the TCP of each manipulator with 

respect to the other one must be determined.  

Similar to the single-arm model, the kinematic model of the dual-arm system are defined using the DH convention. One 

UR5 is deemed as the master and the other is regarded as the slave one (Fig. 2.4). DH coordinate frame assignment for the 

dual-arm system is displayed in Fig. 2.4. The base of the master manipulator is decided as the base frame and described as 

𝑜0. The six joints of the master manipulator are numbered from 1 to 6 and the counterpart joints of the slave one are 

numbered from 7 to 12. Each frame assignment for individual joints is determined according to the method mention in 
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section 2.2.1.  

 

Fig. 2.4.  DH coordinate frame assignment for the dual-arm system 

    The position and orientation of frame 𝑜6 with respect to base frame 𝑜0 is presented by 𝑻6
0 and calculated by: 

 𝑻6
0 = 𝑨1𝑨2𝑨3𝑨4𝑨5𝑨6 2-9 

The position and orientation of frame 𝑜12 with respect to base frame 𝑜02 is calculated by: 

 𝑻12
02 = 𝑨7𝑨8𝑨9𝑨10𝑨11𝑨12 2-10 

It is to be noted that in Chapter 5, the position of frame 𝑜12 with respect to frame 𝑜6 is required to calculate the internal 

force between the two manipulators, the effect of which is simulated by an extension spring. Therefore, transformation 

from 𝑜0 to 𝑜02 is calculated by:  

 

𝑨02
0 = [

1 0
0 1

0 0
0 𝑙

0 0
0 0

1 0
0 1

] 2-11 

where 𝑙 is the distance of two UR5 bases. The position of frame 𝑜12 with respect to frame 𝑜0 is obtained by: 

 𝑻12
0 = 𝑨02

0 𝑨7𝑨8𝑨9𝑨10𝑨11𝑨12 2-12 

For the purpose of simplification, term 𝑩 is introduced to show the displacement between the end effectors and obtained 

by: 

 𝑩 = 𝑻12
0 − 𝑻6

0 2-13 

Consequently, the position of frame 𝑜12  with respect to frame 𝑜6  is expressed in the base frame 𝑜0  by 
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[𝑩(1 , 4) 𝑩(2 , 4) 𝑩(3 , 4)]𝑇 and 𝑩(𝑖 , 𝑗) represents the element which is located at the 𝑖-th row and 𝑗-th column of 𝑩. 

The four characteristic parameters of the kinematics of the right manipulator can be found in Table 2-1 and those of the 

left one are displayed in Table 2-2. 

Table 2-2 The DH parameters of slave UR5 

Parameters  

Joint 
𝜃𝑖 [rad] 𝑎𝑖−1 [m] 𝑑𝑖 [m] 𝛼𝑖−1 [rad] 

7 0 0 0.089159 0 

8 0 0 0 π/2 

9 0 -0.425 0 0 

10 0 -0.39225 0.10915 0 

11 0 0 0.09465 π/2 

12 0 0 0.0823 -π/2 

 

2.3. Jacobian of the robotic systems 

In section 2.2, a model for the forward kinematics is defined to enable calculation of the positions and orientations of the 

end effector using joint angles. To further analyse the relationships between joints and end effectors, equations relating 

individual joint velocities to the end effectors velocities are derived. These equations are the Jacobian of the robot position 

as matrices. The Jacobian can be mathematically deemed the derivative of a scalar function which is expressed in the 

format of the vector and it is necessary for the manipulation of the manipulators. In particular, it works in the same way of 

transforming forces and torques exerted on the end effectors to the corresponding torques on the joints as that of velocity 

transformation. In the following sections, in order to display how to determine the Jacobian of the manipulator, the position 

of the end effector is defined in the middle of the surface of the sixth link (Link 6 in Fig. 2.2) as an example.  

2.3.1.  Angular velocity 

The Eq. 2-8 can be described as:  

 
𝑻6
0(𝒒1) = [

𝑹6
0(𝒒1) 𝒐6

0(𝒒1)

0 1
] 2-14 

where 𝒒1 = [𝑞1
1 𝑞1

2 𝑞1
3 𝑞1

4 𝑞1
5 𝑞1

6]𝑇 and 𝑞1
𝑖  is velocity of the 𝑖-th joint of the master manipulator (Fig. 2.4). When 

the joints rotate, the orientation 𝑹6
0(𝒒1) and position 𝒐6

0(𝒒1) of the end effector are functions of joint position.  

According to the definition in section 2.2.1. , the 𝑖-th link rotates about Z𝑖 and its angular velocity in frame 𝑜0 can be 

expressed by: 

 𝝎𝑖
0 = �̇�1

𝑖  𝐙𝑖
0 2-15 

�̇�1
𝑖  denotes the speed of the 𝑖-th joint of the first UR5. 𝐙𝑖

0  is the Z axis of coordinate frame 𝑜𝑖  and it is expressed in 

coordinate frame 𝑜0. Therefore, the angular velocity of the end effector, which is expressed in coordinate frame 𝑜0, is 
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calculated by: 

 

𝝎6
0 =∑�̇�1

𝑖  𝐙𝑖
0

6

𝑖=1

 2-16 

Therefore, the part of the manipulator Jacobian related to angular velocity is expressed as: 

 𝑱𝑤_1 = [𝐙1
0 𝐙2

0 𝐙3
0 𝐙4

0 𝐙5
0 𝐙6

0] 2-17 

2.3.2.  Linear velocity 

    According to Eq. 2-14, 𝒐6
0(𝒒1) is the position of the end effector. Therefore, the linear velocity of the end effector can 

be calculated by the derivate of position with respect to time: 

 

�̇�6
0(𝒒1) = ∑�̇�1

𝑖  ∙

6

𝑖=1

𝜕𝒐6
0 𝜕𝑞1

𝑖⁄  2-18 

The UR5 consists of 6 rotating joints, and the velocity of the end effector expressed in frame 𝑜0 is calculated: 

 

�̇�6
0(𝒒1) = ∑�̇�1

𝑖  𝐙𝑖
0 × (𝒐6

0 − 𝒐𝑖
0)

6

𝑖=1

 2-19 

Therefore, the part of the manipulator Jacobian related to linear velocity is expressed as: 

 𝑱𝑣_1 = [𝐙1
0 × (𝒐6

0 − 𝒐1
0) … 𝐙6

0 × (𝒐6
0 − 𝒐6

0)] 2-20 

2.3.3.  Combination of the angular and linear velocity 

With the conclusions captured in the past two sections, the Jacobian of the first manipulator is expressed as: 

 
𝑱1 = [

𝑱𝑣_1
𝑱𝑤_1

] 2-21 

The velocity of the end effector can be calculated using a simplified way: 

 𝒗6
0 = 𝑱1�̇�1 2-22 

where �̇�1 = [�̇�1
1 �̇�1

2 �̇�1
3 �̇�1

4 �̇�1
5 �̇�1

6]𝑇 is the joint velocity of the master UR5. 

It should be noticed that, the end effector may be attached in an alternative geometry from the assumptions of 

the above kinematic model. Consequently, the linear velocity of the end effector changes as its position expressed 

in frame 𝑜6  varies. Nevertheless, the angular velocity of the end effector stays the same despite of its varying 

position in frame 𝑜6. Therefore, the manipulator Jacobian is determined according to the way the end effector is 

attached.  Precise details will be presented in relevant chapters. 

2.4. Dynamics of the robotic system based on the Euler-Lagrange equations 

In this section, dynamics of the robotic system is expressed by the Euler-Lagrange equations, by which the evolution of 
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the robotic system is displayed subject to holonomic constraints. Each term in the equations is detailed.  Derivation of these 

equations can be found in [90].   

2.4.1.  Dynamic model of the single-arm robot 

For the single master UR5, the rigid dynamic model can be expressed as:  

 𝑴1(𝒒1)�̈�1 + 𝑪1(𝒒1, �̇�1)�̇�1 + 𝑮(𝒒1) + 𝝉fri_1 + 𝝉ext_1 + 𝝉dri_1 = 0 2-23 

The details of the terms in the above equation can be obtained by: 

a. 𝒒1 = [𝑞1
1 𝑞1

2 𝑞1
3 𝑞1

4 𝑞1
5 𝑞1

6]𝑇 is the joint position of the first UR5 and 𝑞1
𝑖  denotes the position of the 𝑖-th joint. 

�̇�1 = [�̇�1
1 �̇�1

2 �̇�1
3 �̇�1

4 �̇�1
5 �̇�1

6]𝑇 is the joint velocity of the first UR5 and �̇�1
𝑖  denotes the speed of the 𝑖-th joint. 

�̈�1 = [�̈�1
1 �̈�1

2 �̈�1
3 �̈�1

4 �̈�1
5 �̈�1

6]𝑇 is the joint acceleration of the first UR5 and �̈�1
𝑖  denotes the acceleration of the 𝑖-

th joint. 

b. 𝑴1(𝒒1) ∈ 𝓡
𝑛×𝑛 is the inertia matrix of the master UR5 and described as: 

 
𝑴1(𝒒1) = [∑{𝑚𝑖[𝑱𝑣_1𝑖(𝒒1_𝑖) 03×(𝑛−𝑖)]

𝑇
[𝑱𝑣_1𝑖(𝒒1_𝑖) 03×(𝑛−𝑖)]

𝑛

𝑖=1

+ [𝑱𝜔_1𝑖(𝒒1_𝑖) 03×(𝑛−𝑖)]
𝑇
𝑹𝑖(𝒒1_𝑖)𝑰𝑖𝑹𝑖(𝒒1_𝑖)

𝑻
[𝑱𝜔_1𝑖(𝒒1_𝑖) 03×(𝑛−𝑖)]}] 

2-24 

where 𝒒1_𝑖 = [𝑞1
1 … 𝑞1

𝑖 ]𝑇 , 𝑚𝑖 is the mass of the 𝑖-th link, and 𝑹𝑖 is the orientation transformation between the body-

attached-frame of the 𝑖-th link and the inertial frame. In this research, 𝑹𝑖 = 𝑹𝑖
0. 𝑰𝑖 ∈ 𝓡

3×3 is the inertia tensor of the 𝑖-

th link of 𝑹𝑖 are provided in section 2.4.2.  𝑱𝒗_𝟏𝑖 and 𝑱𝝎_𝟏𝑖 are the first 𝑖 columns of 𝑱𝑣_1 and 𝑱𝝎_1 respectively.  

c. 𝑪(𝒒1, �̇�1) ∈ 𝓡
𝑛×𝑛 is the Coriolis and centrifugal matrix of the UR5 and its 𝑘, 𝑗-th element is described as: 

 
𝑐𝑘𝑗 =∑𝑐𝑖𝑗𝑘

𝑛

𝑖=1

(𝒒1)�̇�1
𝑖 =∑

1

2

𝑛

𝑖=1

{
𝜕𝑚𝑘𝑗

𝜕𝑞1
𝑖
+
𝜕𝑚𝑘𝑖

𝜕𝑞1
𝑗
−
𝜕𝑚𝑖𝑗

𝜕𝑞1
𝑘 } �̇�1

𝑖  2-25 

where 𝑚𝑘𝑗 is the 𝑘, 𝑗-th element of 𝑴1(𝒒1). 

d. 𝑮1(𝒒1) ∈ 𝓡
𝑛 is the gravity of the first UR5 and expressed as: 

 𝑮1(𝒒1) = 𝒈𝒓𝒂 ∙ 𝒈1(𝒒1) 2-26 

where 𝒈1(𝒒1) = [𝑔1
1(𝒒) 𝑔1

2(𝒒) 𝑔1
3(𝒒) 𝑔1

4(𝒒) 𝑔1
5(𝒒) 𝑔1

6(𝒒)]𝑇  and 𝒈𝒓𝒂  is vector giving the direction of 

gravity in the inertial frame. 𝑔1
𝑖 (𝒒) = 𝜕𝑃1 𝜕𝑞𝑖⁄ . The function 𝑃1 = ∑ 𝑚𝑖 ∙ 𝒈𝒓𝒂

𝑇 ∙ 𝒓𝑐𝑖
𝑛
𝑖=1  provides the potential energy 

of the first UR5. 𝒓𝑐𝑖 is the coordinates of the centre of mass of link 𝑖, which can be found in section 2.4.2.  

e. 𝝉fri_1 ∈ 𝓡
𝑛 is the joint friction of the first UR5. 

f. 𝝉dri_1 ∈ 𝓡
𝑛  is the joint driving torques of the first UR5. 
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g. 𝝉ext_1 ∈ 𝓡
𝑛  is the joint torques caused by the external wrench exerted on the single-arm system 𝒇1 ∈ 𝓡

𝑚. It is worth 

noting that 𝑚 ≤ 𝑛 is possible since the external wrench in 𝑛 − 𝑚 directions could be null vectors. 𝝉ext_1 is related to 

𝒇1 by the first manipulator Jacobian matrix: 

 𝝉ext_1 = 𝑱1
𝑇 ∙ 𝒇1 2-27 

2.4.2.  Inertial parameters of the UR5 

    The position of the mass centre of link 𝑖 is expressed in the 𝑖-th coordinate frame in [91]. It is to be noticed that the 

modified DH coordinate frame is employed in this research. Therefore, the centres of mass are different from [91], in which 

the standard DH coordinate frame is used. The mass of each link [91] and the modified position of the mass centre are 

displayed in Table 2-3. 

Table 2-3 Dynamic parameters of the UR5 

Parameters 

Link 
Mass [kg] Centre of Mass [m] 

1 3.7 [0, -0.00193, 0.02561] 

2 8.393 [-0.2125, 0, 0.11336 ] 

3 2.33 [-0.24225, 0, 0.0265] 

4 1.219 [0, -0.01634, -0.0018] 

5 1.219 [0, 0.01634, -0.0018] 

6 0.1879 [0, 0, -0.001159] 

The inertial tensor of link 𝑖, which is involved in Eq. 2-24, is expressed in the coordinate whose origin is located at the 

centroid of link 𝑖 and can be obtained from [91]: 

 
𝑰1 = [

0.0084 0 0
0 0.0084 0
0 0 0.0064

] 2-28 

 
𝑰2 = [

0.0078 0 0
0 0.2100 0
0 0 0.2100

] 2-29 

 
𝑰3 = [

0.0016 0 0
0 0.0462 0
0 0 0.0462

] 2-30 

 
𝑰4 = [

0.0016 0 0
0 0.0009 0
0 0 0.0016

] 2-31 

 
𝑰5 = [

0.0016 0 0
0 0.0009 0
0 0 0.0016

] 2-32 

 
𝑰6 = [

0.0001 0 0
0 0.0001 0
0 0 0.0001

] 2-33 

2.4.3.  Model of the external wrench 

The external wrench is modeled as:  
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 �̇�1 = 𝑺1𝒇1 + 𝒆𝑓_1 2-34 

where 𝑺1 ∈ 𝓡
𝑚×𝑚 is the dynamic matrix of the contact force and torque on the single-arm system. Normally, the term 𝑺1 

is defined according to the nature of the contact force/torque and it can be divided into constant contact, high-order contact, 

and harmonic contact. In this work, the payload on the UR5 can be regarded as constant, though there is sudden force and 

torque on the manipulator within a very short period. Furthermore, a-priori information of the external force is not available 

in most actual cases. Therefore, 𝑺1 usually defaults to 0 and �̇�1 = 𝒆𝑓_1 [95]. The common choice for 𝒆𝑓_1 are positive gains 

and larger diagonal elements of 𝝈𝑓_1
2  are preferred in order to decrease the effect of contact force/torque change and reduce 

response time. However, the diagonal elements must be limited to a certain magnitude as large diagonal elements can 

increase the effect of the estimation noise. The problem is mitigated in the proposed approach with the introduction of the 

MSMA based on variable time period. Thus, during the same response period (with the same 𝝈𝑓_1
2 ), the effect of noise is 

lower than that caused by the CKF. 

2.4.4.  Dynamic model of the dual-arm system 

    With the dynamics of the master UR5, the model of the slave UR5 can be obtained in the same way. Consequently, the 

rigid body dynamics of coordinated robotic system consisting of two UR5 is expressed as:  

 
[
𝑴1(𝒒1) 0𝑛×𝑛
0𝑛×𝑛 𝑴2(𝒒2)

]
⏟            

𝑴(𝒒)

[
�̈�1
�̈�2
]

⏟
�̈�

+ [
𝑪1(𝒒1, �̇�1) 0𝑛×𝑛
0𝑛×𝑛 𝑪2(𝒒2, �̇�2)

]
⏟                

𝑪1(𝒒,�̇�)

[
�̇�1
�̇�2
]

⏟
�̇�

+ [
𝑮1(𝒒1)

𝑮2(𝒒2)
]

⏟      
𝑮(𝒒)

+ [
𝝉fri_1
𝝉fri_2

]
⏟  
𝝉fri

+ [
𝝉ext_1
𝝉ext_2

]
⏟    
𝝉ext

+ [
𝝉int_1
𝝉int_2

]
⏟  
𝝉int

+ [
𝝉dri_1
𝝉dri_2

]
⏟    
𝝉dri

= 0 

2-35 

𝑴𝑖(𝒒𝑖) ∈ ℛ
𝑛×𝑛 is the inertia matrix of the 𝑖-th UR5. 𝒒𝑖 ∈ 𝓡

𝑛, �̇�𝑖 ∈ 𝓡
𝑛, and �̈�𝑖 ∈ 𝓡

𝑛  represent the joint position, speed, 

and acceleration of the 𝑖-th UR5. 𝑪𝑖(𝒒𝑖 , �̇�𝑖) ∈ 𝓡
𝑛×𝑛  denotes the Coriolis and centrifugal matrix of the 𝑖-th UR5. The 

gravity of the 𝑖-th UR5 is expressed as 𝑮𝑖(𝒒𝑖) ∈ 𝓡
𝑛×𝑛. 𝝉fri_𝑖 ∈ 𝓡

𝑛 is the joint friction of the 𝑖-th UR5. 𝝉int_𝑖 is the joint 

torques exerted on the 𝑖-th UR5, which result from the internal force between the two arms. 𝝉dri_𝑖 ∈ 𝓡
𝑛 is the joint driving 

torques of the 𝑖-th UR5. 𝝉ext_𝑖 ∈ 𝓡
𝑛 is the joint torques resulting from the external wrench 𝒇 ∈ 𝓡𝑚 ( m  is the dimension 

of the external wrench), which is exerted on both arms by: 

 𝒇 = 𝒇1 + 𝒇2 2-36 

𝒇𝑖 is related to 𝝉ext_𝑖 by the Jacobians 𝑱𝑖(𝒒𝑖) ∈ 𝓡
𝑚×𝑛 of the 𝑖-th UR5 joint via the equation: 

 𝝉ext_𝑖 = 𝑱𝑖
𝑇(𝒒𝑖)𝒇𝑖 2-37 

𝝉int_1 and 𝝉int_2 are the joint torques resulting from the internal force/torque between the two arms. 

    To mitigate unnecessary complication when validating the proposed method on the dual-arm system, two UR5 robots 
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were instructed to perform mirrored movements in Section 7.1.1. and Section 8.1.1.  Thus, the tool centre point was located 

in the middle of the end effectors of the two robots. Therefore, many elements in the dynamic model can be regarded as 

null and estimation results based on Eq. 2-35 can be assumed correct. However, it must be noted that this is a special 

condition. This work is mainly focused on designing an adaptive Kalman filter, calibrating it and validating it on different 

systems. Hence, a simplified model and setup are employed in the experiments. Hence, while deriving the dynamic model 

that incorporates the constraint equations is possible, it was extraneous to the goals of this thesis. Reformulating the model 

to incorporate the constraint may form the next logical step in this research stream. 

2.5. Dynamics of the robotic system in the format of the generalized momentum 

    Typically, the acceleration is not measured directly, but is obtained by numerical differentiation of the measured position. 

However, unavoidable measurement noise amplification occurs during this process. Furthermore, numerical differentiation 

can cause extra computational burden since real-time information of the acceleration is required in the CFTE. 

Consequently, the generalized momentum model proposed by De Luca et al. is employed in this research. 

2.5.1.  Modified dynamic model of the single-arm robot 

    In order to use the generalized-momentum-based model, the generalized momentum 𝒑1 of the first UR5 is defined as: 

 𝒑1 = 𝑴1(𝒒1)�̇�1 2-38 

The derivate of 𝒑1 with respect to time is consequently obtained: 

 �̇�1 = �̇�1(𝒒1)�̇�1 +𝑴1(𝒒1)�̈�1 2-39 

    According to the conclusion in 0, the property of anti-symmetry of �̇�1(𝒒1) − 𝟐𝑪1(𝒒1, �̇�1) is utilized and expressed as:  

 
�̇�1(𝒒1) − 𝟐𝑪1(𝒒1, �̇�1) = −(�̇�1(𝒒1) − 𝟐𝑪1(𝒒1, �̇�1))

𝑇

 2-40 

and Eq. 2-23 can then be expressed as:  

 �̇�1 = 𝑪1(𝒒1, �̇�1)
𝑇�̇�1 − 𝑮1(𝒒1) − 𝝉fri_1 − 𝝉ext_1 − 𝝉dri_1 2-41 

In order to simplify the above equation, the term 𝝉inp_1 is defined as: 

 𝝉inp_1 = 𝑪1(𝒒1, �̇�1)
𝑇�̇�1 − 𝑮1(𝒒1) − 𝝉fri_1 − 𝝉dri_1 2-42 

It should be noticed that, although dynamic properties of the UR5 achieved from the manufacturer are assumed to be 

precise in this research, uncertainty in 𝝉inp_1 cannot be avoided due to measurement noise. The magnitude of the noise in 

the measured motor current is much larger than the noise in the measured motor position and velocity, and can thus be 

ignored. So it is reasonable to consider the uncertainty in 𝝉fri_1 and 𝝉dri_1 as the dominant noise in 𝝉inp_1. The noise is 
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expressed as 𝒆𝑝_1. With 𝒆𝑝_1 ∼ 𝑁(0, 𝝈Dyn_1
2 ), 𝝈Dyn_1

2  is assumed as a diagonal matrix reflecting that errors in the individual 

joints are independent and 𝝈Dyn_1
2 ∈ 𝓡𝑛×𝑛. Therefore, Eq. 2-42 can be modified as:  

 𝝉inp_1 = 𝑪1(𝒒1, �̇�1)
𝑇�̇�1 − 𝑮1(𝒒1) − 𝝉fri_1 − 𝝉dri_1 + 𝒆𝑝_1 2-43 

and Eq. 2-41 is then described as:  

 �̇�1 = 𝝉inp_1 − 𝑱1
𝑇(𝒒1)𝒇1 2-44 

2.5.2.  Modified dynamic model of the dual-arm robot 

Similar to the modification in the above section, the generalized momentum 𝒑 of the dual-arm system is defined as 𝒑 =

𝑴(𝒒)�̇� and thus Eq. 2-35 is described as:  

 �̇� = 𝝉inp − 𝑱
𝑇(𝒒1, 𝒒2)𝒇ext 2-45 

The combined external wrench 𝒇ext ∈ 𝓡
2𝑚, the combined Jacobian matrix 𝑱(𝒒1, 𝒒2) ∈ 𝓡

2𝑚×2𝑛, the combined input term 

𝝉inp ∈ 𝓡
2𝑛, and the combined uncertainty of the systematic dynamics 𝒆𝑝 ∈ 𝓡

2𝑛 are defined as: 

 
𝒇ext = [

𝒇1
𝒇2
] 

2-46 

 
𝑱(𝒒1, 𝒒2) = [

𝑱1(𝒒1) 0𝑚×𝑛
0𝑚×𝑛 𝑱2(𝒒2)

] 
2-47 

 𝝉inp = 𝑪(𝒒, �̇�)
𝑇�̇� − 𝑮(𝒒) − 𝝉fri − 𝝉dri + 𝒆𝑝 2-48 

 
𝒆𝑝 = [

𝒆𝑝_1
𝒆𝑝_2

] 
2-49 

2.6. Discretized model of the robot  

In order to apply the conventional Kalman filter, the dynamics of both the single-arm and dual-arm systems must be 

expressed in the discretized form. Furthermore, the dynamic terms, such as the inertial matrices and the manipulator 

Jacobians, are transient. Therefore, discretization of the linear time-varying robotic system is performed and state space 

models of the robots are obtained to enable application of the conventional Kalman filter.  

2.6.1.  Discretized model of the single-arm robot  

    The state model of the first robotic manipulator is described as:  

 �̇�1 = 𝑨1𝒙1 + 𝑩1𝒖1 +𝒘1 

𝒚1 = 𝑪1𝒙1 + 𝒁1 

2-50 

The state space vector of the single-arm dynamics is defined as: 

 𝒙1 = [
𝒑1
𝒇1
] ∈ ℛ𝑛+𝑚  2-51 

The State matrix is defined as: 
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𝑨1 = [

0𝑛×𝑛 −𝑱1
𝑇

0𝑚×𝑛 𝑺1
]  2-52 

The input matrix is defined as: 

 
𝑩1 = [

𝑰𝑛
0𝑛×𝑚

]  2-53 

The output matrix is defined as: 

 𝑪1 = [𝑰𝑛 , 0𝑛×𝑚]  2-54 

The covariance matrix of the predicted state noise is defined as: 

 
𝒘1 = [

𝒆𝑝_1
𝒆𝑓_1

] ∈ 𝓡𝑛+𝑚  2-55 

The input vector is defined as: 

 𝒖1 = 𝝉inp_1  2-56 

The measurement noise is defined as 𝒁1~𝛮(0, 𝝈mea_1
2 ). Details of calculating 𝝈mea_1

2 ∈ 𝓡𝑛×𝑛 can be found in the next 

chapter. With all the terms identified, the discretized state space dynamics is then obtained:  

 𝒙𝑘+1_1 = 𝑨𝑘+1_1𝒙𝑘_1 + 𝑩𝑘+1_1𝒖𝑘+1_1 +𝒘𝑘+1_1 

𝒚𝑘+1_1 = 𝑪𝑘+1_1𝒙𝑘+1_1 + 𝒛𝑘+1_1 
2-57 

where 𝑘 and 𝑘 + 1 represent the time steps of the discretized model. Following [97], the discretized state matrices are 

expressed as: 

 
[
𝑨𝑘+1_1 𝑩𝑘+1_1
0𝑛×(𝑛+𝑚) 𝑰𝑛

] = exp ([
𝑨1 𝑩1

0𝑛×(𝑛+𝑚) 0𝑛×𝑛
] 𝑡𝑠) 

𝑪𝑘+1_1 = 𝑪 

2-58 

According to Eq. 2-52, 𝑨1 is time-varying due to the continuously varying Jacobian matrix −𝑱1
𝑇. The same conclusion 

can be applied to the dual-arm case. 

    The covariance matrix of the noise caused by measurement is described as:  

 𝝈𝑘+1_1
2 = 𝝈mea_1

2 𝑡𝑠⁄  2-59 

where 𝑡𝑠 is the sampling time. According to the conclusion in [98], the discretized predicted state noise matrix 𝑸𝑘+1 is 

calculated by:  

 
[

𝑴𝑘+1_1
11 𝑴𝑘+1_1

12

0(𝑛+𝑚)×(𝑛+𝑚) 𝑴𝑘+1_1
22 ] = exp ([

𝑨1 𝝈pro_1
2

0(𝑛+𝑚)×(𝑛+𝑚) −𝑨1
] 𝑡𝑠) 

𝑸𝑘+1 = (𝑴𝑘+1_1
22 )

𝑇
𝑴𝑘+1_1
12  

2-60 

where the covariance matrix of the predicted state noise is expressed as: 
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𝝈pro_1
2 = [

𝝈Dyn_1
2 0𝑚×𝑛

0𝑛×𝑚 𝝈𝑓_1
2 ] 2-61 

2.6.2.  Discretization of the dual-arm system  

    Discretization of the dual-arm robotic systems is similar to that of the single one. The state model is described as:  

 �̇� = 𝑨𝒙 + 𝑩𝒖 + 𝒘 

𝒚 = 𝑪𝒙 + 𝒁 

2-62 

The state space vector of the dual-arm dynamics is defined as: 

 𝒙 = [
𝒑
𝒇] ∈ ℛ

2𝑛+2𝑚  2-63 

and 𝑨 = [
02𝑛×2𝑛 −𝑱1

𝑇

02𝑚×2𝑛 𝑺
], 𝑩 = [

𝑰2𝑛
02𝑛×2𝑚

], and 𝑪 = [𝑰2𝑛, 02𝑛×2𝑚] are state matrices. 𝑺 = [
𝑺1 0𝑚×𝑚
0𝑚×𝑚 𝑺2

] and 𝑺𝑖  are the 

dynamic matrix of external force and torque exerted on the 𝑖-th UR5. 𝒘 = [
𝒆𝒑
𝒆𝒇
] ∈ ℛ2𝑛+2𝑚 is the covariance matrix of the 

predicted state noise. 𝒆𝑝 = [
𝒆𝑝_1
𝒆𝑝_2

] ∈ 𝓡2𝑛 and 𝒆𝑓 = [
𝒆𝑓_1
𝒆𝑓_2

] ∈ 𝓡2𝑚. 𝒖 = 𝝉inp denotes the input of the state model and 𝝉inp =

[
𝝉inp_1
𝝉inp_2

]. The measurement noise is 𝒁~𝛮(0, 𝝈mea
2 ) with 𝝈mea

2 = [
𝝈mea_1
2 0𝑛×𝑛
0𝑛×𝑛 𝝈mea_2

2 ] ∈ ℛ2𝑛×2𝑛. The discretized state space 

dynamics is then obtained:  

𝒙𝑘+1 = 𝑨𝑘+1𝒙𝑘 +𝑩𝑘+1𝒖𝑘+1 +𝒘𝑘+1 

𝒚𝑘+1 = 𝑪𝑘+1𝒙𝑘+1 + 𝒛𝑘+1 

where 𝑘 and 𝑘 + 1 represent the time steps of the discretized model. The discretized state matrices are expressed as: 

[
𝑨𝑘+1 𝑩𝑘+1

02𝑛×(2𝑛+2𝑚) 𝑰2𝑛
] = exp ([

𝑨 𝑩
02𝑛×(2𝑛+2𝑚) 02𝑛×2𝑛

] 𝑡𝑠) 

𝑪 = 𝑪𝑘+1 

The covariance matrix of the noise caused by measurement is described as:  

𝝈𝑘+1
2 = 𝝈mea

2 𝑡𝑠⁄  

The discretized predicted state noise matrix 𝑸𝑘+1 is calculated by:  

[
𝑴𝑘+1
11 𝑴𝑘+1

12

0(2𝑛+2𝑚)×(2𝑛+2𝑚) 𝑴𝑘+1
22 ] = exp ([

𝑨 𝝈pro
2

0(2𝑛+2𝑚)×(2𝑛+2𝑚) −𝑨
] 𝑡𝑠) 

𝑸𝑘+1 = (𝑴𝑘+1
22 )𝑇𝑴𝑘+1

12  

where the covariance matrix of the predicted state noise is expressed as 𝝈pro
2 = [

𝝈Dyn
2 02𝑚×2𝑛

02𝑛×2𝑚 𝝈𝑓
2 ]. 
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3. SENSORLESS IDENTIFICATION OF THE DYNAMIC PARAMETERS 

In order to capture a precise dynamic model of the robotic systems, identification of the unknown parameters in equation 

2-23 and 2-35 must be performed. It may be noted that the physical cost of the proposed method is negligible as additional 

external sensors are avoided by observing the external contact and modelling the dynamics of the system. In this chapter, 

sensorless identification of motor constants, joint outputs, joint friction, and errors of the dynamics is conducted.  

3.1. Background and motivation  

Recently, a Kalman disturbance observer has been applied to sensorless contact force/torque estimation of the robots. 

Using the extended Kalman filter and a Lyapunov-based adaption law, Jung et al. designed an estimator and applied it to 

estimate the external wrench of a three-link manipulator [99]. Their proposed estimator was tolerant to model error and 

sensor noise. The estimator has been further improved and certain assumptions such as a-priori determination of underlying 

patterns that govern subject behavior has been deemed unnecessary [100]. In [95], a semiparametric dynamic model that 

combines parametric rigid-body dynamics and the nonparametric multilayer perception dynamics is proposed. With the 

composite model, the force/torque exerted is observed as a disturbance variable and estimated by the disturbance Kalman 

filter. Subsequently, the uncertainty in dynamics is neglected as unmodelled effects are accounted for by the nonparametric 

model. Thus, empirical parameters are needed when calibrating the Kalman filter. With an automatic covariance matrix 

tuning scheme presented in [96], the problem of the neglected dynamic uncertainty in [95] was overcome. The matrix 

tuning scheme abstracts uncertainty in the system dynamics to improve the estimation quality. However, the covariance 

matrix in [96] is limited by the errors of the friction model that are generally assumed constant. Furthermore, the scheme 

remain dependent on joint torque sensors when modelling the friction and the current measurement noise is ignored. 

With the contact force/torque estimation method proposed in this thesis, the physical cost will decrease since the external 

sensors are totally avoided during the process of not only observing the external contact, but modelling the dynamics of 

the system. To the authors’ knowledge, most of the present sensorless force/torque sensing methods depend on expensive 

experimental setups when building the friction model [92] - [96]. 

However, the low cost of the proposed approach does not imply inadequate model accuracy. In the proposed approach, 

the errors resulting from the sensorless-tuned friction model are combined with the noise in the measured current and 

analyzed. Therefore, all the uncertainties in 𝝉inp are considered and the assumption that dynamic errors are dominated by 

uncertainties in the friction model in [96] is not necessary. The benefit of the proposed method of friction modelling is its 

ease of implementation. More specifically, independent calculation of its errors is not required but already considered as 

part of errors in 𝝉inp. Furthermore, the proposed calibration method can be applied to robotic manipulators in various 
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engineering scenarios as long as the motor current, joint position, and joint velocities are available.  

In the following sections, identification experiments are only conducted on the elbow joint of the master UR5 are shown. 

Experiments on other joints or the slave UR5 are conducted in a similar manner. 

3.2. Experiments and results of parameters identification 

Typically, motor constants are accessible from the manufacturer. However, the true value may differ from the nominal 

characteristics of the motors. Therefore, experimental tests must be conducted to capture precise values. However, external 

force/torque sensors are also avoided during this process in order to decrease physical cost. In this brief, only the motor 

current 𝒊1, joint position 𝒒1, and joint velocity �̇�1 are measurable. The joint driving torque is calculated by Eq. 3-1: 

 𝝉dri_1̂ = 𝒌1 ∘ 𝒓1 ∘ 𝒊1 3-1 

where 𝒌1 and 𝒓1 denote the motor torque constant and gearbox ratio, respectively.  

3.2.1.  Identification of the elbow joint motor constant 

In order to calculate the joint driving torques, 𝒌1 ∘ 𝒓1 must be determined. However, separate identification of 𝒌1 and 

𝒓1 are not necessary. Therefore, a composite term is introduced for simplification of the elbow joint motor parameter as: 

 𝐷1_elb = 𝑘1_elb ∙ 𝑟1_elb 3-2 

    The term 𝐷1_elb is determined experimentally by moving the joints at a constant speed clockwise and counterclockwise 

while the other joints were held rigid (as shown in Fig. 3.1).  

 

Fig. 3.1.  Identification of the motor torque constant and friction. 

When the elbow joint rotates clockwise and counterclockwise without the external wrench, the manipulator dynamics 
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described in terms of current can be expressed as: 

 
𝑖gra + 𝑖fri + 𝑖dri

+ = 0 

𝑖gra − 𝑖fri + 𝑖dri
− = 0 

3-3 

where 𝑖gra is the current related to the elbow joint torque resulting from the gravity of Link 3, Link 4, Link 5, Link 6, Wrist 

1, Wrist 2, and Wrist 3. 𝑖fri denotes the current corresponding to the elbow joint friction. 𝑖dri
+  and 𝑖dri

−  indicate the motor 

currents with the elbow joint moving clockwise and counterclockwise respectively. With Eq. 3-3, 𝑖gra is calculated by: 

 𝑖gra = (−𝑖dri
+ − 𝑖dri

− ) 2⁄  3-4 

An accurate dynamic model is thus achieved and the term 𝐷1_elb can be obtained by 

 𝐷1_elb = 𝐺(𝒒) 𝑖gra⁄  3-5 

𝐺(𝒒) can be determined by the Eq. 2-26 and thus 𝐷1_elb = 12.2 Nm/A. It should be noted that 𝐺(𝒒) is used in Eq. 3-5 is 

different from the 𝑮(𝒒) in Eq. 2-23. In particular, it is a scalar rather than a vector. It represents the joint torque resulting 

from the gravity, for which the motor constant is calculated.  

 

3.2.2.  Identification of the elbow joint friction 

    To simplify the model, only Coulomb friction and viscous friction are considered. Joint friction stems from the relative 

motion between gears of the harmonic drive, bearings, oil seals and so forth. Therefore, all the frictional damping effects 

are regarded as a concomitantly: 

 𝜏fri_1(�̇�1
𝑖) = 𝑓𝐶_1

𝑖 + 𝑓�̇�_1
𝑖 �̇�1

𝑖  3-6 

where 𝑖 = [1 2 3 4 5 6]𝑇 , 𝒇𝐶_1 = [𝑓𝐶_1
1 𝑓𝐶_1

2 𝑓𝐶_1
3 𝑓𝐶_1

4 𝑓𝐶_1
5 𝑓𝐶_1

6 ]
𝑇

 is the Column friction and 𝒇�̇�_1 =

[𝑓�̇�_1
1 𝑓�̇�_1

2 𝑓�̇�_1
3 𝑓�̇�_1

4 𝑓�̇�_1
5 𝑓�̇�_1

6 ] is the viscous friction coefficient. For individual joints, the corresponding 𝑓𝐶_1
𝑖  and 

𝑓�̇�_1
𝑖  are constant. Consequently, the joint friction is a linear function of joint velocity. With Eq. 3-3 and Eq. 3-5, the friction 

of the elbow joint moving at different speeds is obtained by: 

 𝝉fri(�̇�) = 𝐷1_elb (−𝑖dri
+ + 𝑖dri

− ) 2⁄  3-7 

Consequently, the unknown parameters 𝑓𝐶_1
3  and 𝑓�̇�_1

3  in Eq. 3-6 can be identified a-priori, with 𝑓𝐶_1
3 = −1.365 Nm and 

𝑓�̇�_1
3 = −0.753 Nms/rad. 

   With the dynamic parameters identified, the accuracy of the UR5 can be analyzed and thus the system uncertainty is 

obtained. It should be noted that the model uncertainty is required to apply the Adaptive Kalman filter.  

3.2.3.  Identification of the predicted state noise 

The term 𝝉inp_1 in Eq. 2-44 contains the noise caused by the measurement of 𝒒, �̇�, and 𝒊. In contrast to [96], where the 
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noise resulting from 𝒒 and 𝒊 were ignored, the proposed approach compiles and analyses the kinematic measurement noise. 

Initially, experiments without external wrench are performed. Since the joint acceleration is not directly measurable, the 

individual joints were set to move at a constant speed and the ideal joint output torques were calculated by: 

 𝝉dri_1̅̅ ̅̅ ̅̅ ̅ = −𝑪1(𝒒1, �̇�1)�̇�1 − 𝑮1(𝒒1) − 𝝉fri_1 3-8 

The errors between the target driving torques 𝝉dri_1̅̅ ̅̅ ̅̅ ̅ and the actual driving torques calculated from Eq. 3-1 are calculated. 

In a particular experiment, the elbow joint of the master UR5 moves at constant speed with no payload while the motor 

current is filtered by the pre-filter (WMA or MSMA) with a time period of 𝑡. Specification and justification of the pre-

filters can be found in Section 4.4. The errors are calculated and displayed in Fig. 3.2.  

 

Fig. 3.2.  Distribution of joint output errors. The elbow joint is employed as an example and moves without payload. The 

errors are computed with 𝜏𝑑𝑟𝑖_1
3̅̅ ̅̅ ̅̅ ̅ obtained from Eq. 3-8 and 𝜏𝑑𝑟𝑖_1

3̂  obtained from Eq. 3-1. The red line (Histfit.m, Matlab 

R2020b) is fitted to the normal distribution, the variance of which is computed from the empirical standard deviation of 

the errors. 

3.2.4.  1Identification of the measurement noise 

In this research, accurate inertial and kinematic parameters of the manipulator are available from the manufactures, and 

thus the measurement noise in  𝑴(𝒒)�̇� is caused by only noise in the measurements of terms 𝒒 and �̇�. The errors in �̇� are 

the dominant part of the measurement noise since �̇�  is derived from measurable 𝒒  by numerical differentiation. 

Differentiation amplifies such errors. In order to extract the errors in �̇�, each joint of the UR5 manipulator is commanded 

to move at constant speed, the empirical distribution of the errors between the target velocity �̅̇� and the measured speed �̂̇� 

is shown in Fig. 3.3.   
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Fig. 3.3.  Distribution of the measured joint speed errors. The elbow joint is employed as an example and moves at constant 

speed. The frequency of the errors is described as a histogram. The errors are computed with the target speed �̅̇� and the 

measured mean speed �̂̇�. The red line is an added fitted line for the normal distribution, the variance of which is computed 

from the empirical standard deviation of the errors. 

The standard deviation of the elbow joint 𝝈�̇�
elbow is observed to vary as the speed changes and the trend is depicted in 

Fig. 3.4. As shown in Fig. 3.4, 𝝈�̇�
elbow increases approximately linearly with the velocity from speed 0 to 0.13 rad/s and 

seems to stay approximately constant above that speed. 

 

Fig. 3.4.  The standard deviation of the elbow joint speed noise at different speeds. 

According to Fig. 3.4, the variance of the measurement errors of the elbow joint velocity can be approximated via the 

following equations:  

 
(𝝈�̇�

𝑖 )
2
= {

(𝑎�̇�𝑖 + 𝑏)2, |�̇�𝑖| ≤ �̇�thr
𝑖

𝑐2, |�̇�𝑖| > �̇�thr
𝑖

 3-9 

where �̇�thr
𝑖  is a threshold velocity for the 𝑖-th joint of the manipulator. 𝑎, 𝑏, and 𝑐 are obtained by offline identification 

experiments related to Fig. 3.4. Similarly, the measurement error equations of the other 5 joints are determined.   

The Anderson-Darling test allows an assumption of a Gaussian distribution in velocity error �̇�~𝑁(�̅̇�, 𝝈�̇�
2) . The 

measurement noise in Eq. 2-62 can thus be expressed by:  
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 𝒁~𝑁(0, 𝝈mea
2 ) 3-10 

where 𝝈mea
2 = 𝑴(𝒒)𝝈�̇�

2𝑴(𝒒). 

3.3. Discussion 

3.3.1.  Sensorless identification of motor constant and friction 

Identification of the motor constant and joint friction in this research is conducted without any force/torque sensors, 

which can reduce cost. It is worth noting that the friction increases nonlinearly as the relative velocity of the contact surfaces 

increases from zero to some certain value. Beyond this threshold, friction increases linearly [102]. However, a simplified 

friction model is used, and each joint is assumed to be moving at speeds beyond particular threshold values. Therefore, the 

proposed estimation method is still successfully validated on the robotic systems in Chapter 5 to Chapter 8 using the 

simplified friction model. 

However, in reality the joint velocity cannot be guaranteed in general cases and thus a generalized friction model will 

eventually become valuable. Therefore, a Stribeck friction model or neural network will be employed to model the friction 

in the future work. Furthermore, the friction is also affected by the loading and temperature. However, these concerns are 

beyond this research, and details of more friction models can be found in [102]. 

    It is worth noting that the magnitude of 𝑖gra  in Eq. 3-5 varies through rotation. Therefore the phenomenon of singularity 

occurred while the 𝑖gra fluctuated around 0. To demonstrate that, the elbow joint is used as an example. In this case, the 

elbow joint (the red square of Fig. 3.5 (b)) was commanded to move from -1.4 rad (around the position as shown in Fig. 

3.5 (a)) to -0.2 rad (around the position as shown in Fig. 3.5 (b)) and the corresponding 𝐷1_elb was calculated and displayed 

in Fig. 3.6. As shown in Fig. 4, the real magnitude of the term 𝐷1_elb was approximately 12.7. When the joint moved from 

-1.4 to -0.5 rad, the estimated 𝐷1_elb was 12.7 and kept stable. However, the value of 𝐷1_elb increased to 50 when the elbow 

joint moved around the -0.2 rad, as the torque exerted by gravity on the elbow joint was close to 0 (𝑖gra ≈ 0). Consequently, 

a singularity occurred. In order to avoid the singularity, the elbow joint should be commanded to move in regions proximal 

to π/2 or -π/2 rad when calculating 𝐷1_elb.  
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(a) The position −𝜋 2⁄  around which singularity is avoided. (b) The position 0 around which singularity occurred. 

  

Fig. 3.5.  Different identifying positions of the elbow joint.  

 

 

Fig. 3.6.  Estimated term 𝐷1_𝑒𝑙𝑏 varies as the joint position changes. 

    Fig. 3.6 is used to show that when the joint moves near the singularity position (negligible gravity effect on the joint), 

an imprecise motor constant will be calculated. However there is a wide range of angles for which the motor constant can 

be precisely calculated (-1.4 to -0.5 rad). 

3.3.2.  Analysis of the predicted state noise  

    In the proposed approach, the errors resulting from the sensorless-tuned friction model are combined with the noise in 

the measured current. Therefore, uncertainties in 𝝉inp_1 are considered and the assumption in [96] that dynamic errors are 

dominated by uncertainties in the friction model is not necessary. The benefit of the proposed method is its easy 

implementation. To be more specific, independent calculation of measurement errors are not required but incorporated as 

part of the errors in 𝝉inp_1. Furthermore, the variance of the elbow joint model errors with time period 𝑡 can be obtained 
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and thus 𝝈Dyn_1
2  is determined. 

In order to improve the performance of the proposed method, the P-Value of the elbow joint output errors is to be bigger 

than 0.05, under which situation the errors are more likely to follow Gaussian distribution. Although the errors show a 

normal distribution in Fig. 3.2, validation of this conclusion could be conducted. However, in the experiment results not 

shown, the errors vary as the time period 𝑡 changes. Therefore, determination of the time period 𝑡 will affect the distribution 

of the errors and further affect the CFTE results. More discussion of determining the timer period 𝑡 can be found in section 

4.4.2. and Anderson-Darling test within Minitab is used to analyze the errors.  

3.3.3.  Analysis of the measurement noise  

Again, Anderson-Darling test is employed to analyze the measurement noise and the P-Value of the measurement errors 

of the elbow joint speed is required to be bigger than 0.05. In that case, it is reasonable to conclude that the measurement 

noise of the elbow joint speed follows Gaussian distribution. Furthermore, the variance of the elbow joint velocity errors 

can be obtained and thus 𝝈mea
2  is determined. 

 𝝈mea
2  is a variable since calculation of 𝑴(𝒒) is based on the pose of the manipulator. Eq. 3-9 is determined 

by offline experiment in the process of calibration, by which 𝝈�̇�
2  is calculated in real time according to the time-

varying joint speed. The covariance matrix of the measurement noise 𝝈mea
2  is then updated in each iterative step 

of the Kalman filter. 

It is worth noting that the elbow joint velocity in SD identification experiments (Fig. 3.4) is limited to 0.2 

rad/s due to the safety policy of the host institution. 
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4. DEVELOPMENT AND CALIBRATION OF THE ADAPTIVE KALMAN FILTER 

In order to achieve faster estimation response as well as improved estimation accuracy, adaptive Kalman filters are 

implemented in the control algorithms. This chapter details the development and calibration of the proposed AKF.  

4.1. Background and motivation  

The Kalman filter is an effective method to realize real-time reduction of the measurement and estimation noise. The 

adaptive Kalman filter is the most popular in recent years. For example, the variational Bayesian based adaptive Kalman 

filter (AKF) and suboptimal AKF are proposed in [103], [104], and [105]. These methods perform well in spite of 

inaccuracies intrinsic within the measurement covariance matrices. For example, Paolo presents a model-based AKF that 

involves a structure-switching strategy, to realize the sensorless control of a piezo actuator [106] and monitoring of the 

health information with no physical sensors [107]. The cascaded extended AKF was utilized to estimate the immeasurable 

states of the piezo actuator [108]. In order to estimate the real-time state of the power system, an error-prediction AKF with 

step-varying processes [109] and a two-stage AKF [110] were utilized, respectively. The two-stage AKF can also be 

employed [111] as a disturbance estimator in automotive applications. In order to enhance filter accuracy, the Sage-Husa 

AKF can be employed to estimate the statistical characteristics of the noise [112].  The constrained adaptive robust 

integration Kalman filter is used to realize a reliable and precise navigation solution [113]. In this navigation solution, the 

raw observations from the heterogeneous sensors are corrected by the pseudo observations derived from state equality 

constraint. A computationally efficient version of the variational adaptive Kalman filter is proposed to solve the filtering 

problem of transfer alignment with an inaccurate measurement noise covariance matrix [114]. An unscented AKF is 

presented in [115] to track sudden changes in stiffness of structural systems exposed to earthquake induced excitations. 

Variations of the AKF have been applied to vehicle navigation [116], [117], UAV control [118], robot operation [119]-

[121] and battery state detection [122]. 

In [95], a Kalman filter was introduced to achieve force/torque estimation with empirical parameters used as Kalman 

filter gains. It is worth noting that although the method using empirical parameters worked effectively (better estimation 

performance is achieved compared to typical methods, e.g. nonlinear disturbance observer and generalized-momentum 

observer) and saves time (offline calibration experiments are not required), it is not generalised as the approach ignores the 

characteristics of the individual manipulator and uses uniform gains. Consequently, this thesis describes a new scientific 

goal of improving the estimation performance of the external wrench. This goal is achieved by exploring the potential 

uncertainty of the manipulator dynamics and system measurement (as discussed in section 3.2.3. and 3.2.4. ).   

    A Kalman filter tuning method is presented in [96]. In this paper, uncertainty of robotic dynamics is captured. For 
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example, the errors in the friction model are assumed as the dominant part of  𝝉𝐢𝐧𝐩. However, this research using a UR5 

showed that the fluctuations in current lead to more noise than the friction model does. This inspired us to take the errors 

from measured current into account. Intuitively, filtering the noisy current would help to improve estimation accuracy. 

However, time lag is ubiquitous with all the real-time moving averages. Thus, response speed and estimation accuracy can 

trade off. In order to solve this problem, one of the main contributions in this research, a mode-switching moving average 

(MSMA), is proposed. The improvement of the MSMA includes, but is not limited to, filtering the measured joint current. 

More intrinsically, the MSMA depends on the fact that smaller diagonal elements in the covariance matrix lead to faster 

CKF responses [96] and thus the optimal balance between response time and accuracy can be maintained. Ultimately, the 

approach is intended to allow more accurate estimation and faster response concurrently. Fig. 4.1 better displays the process 

of the mode-switching moving average. 

    In this research, information of current noise and dynamics uncertainty is employed to calibrate the AFK, due to which 

the AKF works faster and more precisely in contact estimation compared to peer methods [95] and [96]. Table 4-1 

highlights the distinction of the proposed method to existing approaches. 

 

Fig. 4.1.  Inner contribution of the proposed MSMA.    
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Table 4-1 A summary of different methods applied in this work and previous papers. 

 Method in [47] Method in [48] Proposed method 

Is the generalized-momentum-

based model used? 

Yes Yes Yes 

Are the external force/torque 

sensors used when modelling 

the robot? 

Yes Yes No 

Is the classical Kalman filter 

involved? 

Yes Yes Yes 

Is the Kalman filter tuned? No Yes Yes 

Is the motor current used? Yes Yes Yes 

Is the motor current noise 

addressed? 

No No Yes 

Is the friction model errors 

considered? 

No Yes Yes 

Is the disturbance Kalman filter 

adaptive? 

No No Yes 

Is the mode-switching moving 

average involved and 

calibrated? 

N/A N/A Yes 

4.2. AKF based on WMA 

    The first AKF developed uses the WMA to filter the current. Structures of the WMA and the corresponding AKF are 

introduced in the following parts. 

4.2.1.  Weighted Moving Average with variable span     

    In contrast to the CKF that directly utilizes the measured current, the measured signal is regulated by the pre-filter with 

variable time period first and then used to enable estimation of the contact force and torque with the CKF. In this research, 

a single moving average is used as the pre-filter first. In [123], the Weighted Moving Average with variable span is 

proposed (as shown in Fig. 4.2) in order to smooth the currents. 
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Fig. 4.2.  The Weighted Moving Average based on variable span. 

where 𝑟 and 𝑑 denote the step times.  𝑖𝑑 is the measured current at step time 𝑑. 𝑡 is the number of the samples which are 

averaged in each step. Detail of how 𝑡 is determined is described in the following section. 𝑖𝑑
𝑜𝑝𝑡

 stands for the filtered current 

at step time 𝑑. 𝛿 is an experimentally determined parameter which is used to decide whether the span varies or not. 𝑊(𝑑, 𝑡) 

is the Weighted Moving Average and is calculated by 

 𝑊(𝑑, 𝑡) = 2[𝑖𝑑𝑡 + 𝑖𝑑−1(𝑡 − 1) + ⋯+ 𝑖𝑑−1+1] [𝑡(𝑡 + 1)]⁄  4-1 

In this research, it is assumed that the time gap between any two sudden changes in the exerted external wrench is larger 

than 𝑡𝑠 ⋅ 𝑡. 

Implementation of the WMA with variable span is as follows:  

Step 1. At time step 𝑑(1 ≤ 𝑑 < 𝑡), 𝑑 samples (𝑖𝑑  included) before 𝑖𝑑  are averaged to get the optimal option 𝑖𝑑
𝑜𝑝𝑡

=

𝑊(𝑑, 𝑑) (as shown in Fig. 4.3). 
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Fig. 4.3.  𝑑 samples up to 𝑖𝑑 are shown in the dotted rectangle. 

Step 2. At time step 𝑑(𝑡 ≤ 𝑑), 𝑡 samples (𝑖𝑑 included) before 𝑖𝑑 are averaged to get the optimal option 𝑖𝑑
𝑜𝑝𝑡

= 𝑊(𝑑, 𝑡). 

At the same time, 𝑖𝑑+1 is checked to make sure whether external force occurs (as shown in Fig. 4.4). If external force is 

detected, go to Step 3, otherwise 𝑖𝑑+1
𝑜𝑝𝑡

 is calculated in a similar manner to Step 2. 

 

Fig. 4.4.  𝑡 samples up to 𝑖𝑑 are shown in the dotted-line rectangle. 𝑖𝑑+1 in the dashed-line rectangle is checked. 

Step 3. In case of dramatic change in the external wrench or joint acceleration at time step 𝑑 + 1, a sudden rise or drop 

will occur in the current. If the change between the present current 𝑖𝑑+1 and the previous currents 𝑖𝑑
𝑜𝑝𝑡

 exceeds 𝛿, an 

external wrench is assumed. Hence, from time step 𝑑 + 1 to time step 𝑑 + 𝑡, 𝑏 samples (𝑖𝑑+𝑏 included, 1 ≤ 𝑑 < 𝑡) before 

𝑖𝑑+𝑏 are averaged to get the optimal option 𝑖𝑑+𝑏
𝑜𝑝𝑡

= 𝑊(𝑑 + 𝑏, 𝑏) (as shown in Fig. 4.5).  

 

Fig. 4.5.  𝑏 samples up to 𝑖𝑑+𝑏 are shown in the dotted-line rectangle. 

Step 4. At time step 𝑑 + 𝑡, the  filter goes back to Step 2. 𝑖𝑑+𝑡
𝑜𝑝𝑡

= 𝑊(𝑑 + 𝑡, 𝑡) is calculated and verification of 𝑖𝑑+𝑡+1 is 

performed (as shown in Fig. 4.6). 
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Fig. 4.6.  𝑡 samples up to 𝑖𝑑+𝑡 are in the dotted-line rectangle. 𝑖𝑑+𝑡+1 in the dashed-line rectangle is checked. 

4.2.2.  AKF based on the WMA with variable span 

With the Weighted Moving Average based on variable span, the proposed adaptive Kalman filter is introduced, which 

is displayed in Fig. 4.7. When the AKF starts to work, the motor current is measured and used to determine whether there 

was sudden pendulation, which can be assumed to be an external wrench exerted on the UR5. If there is sudden external 

wrench detected, the measured current will be filtered by the WMA with variable span; if not, the current will be filtered 

by the WMA with fixed span. The function of the variable span can facilitate a fast response of the contact estimation. As 

shown in Fig. 4.7, the SKF is calibrated based on the parameters obtained from measured motor current and measured joint 

speed. The filtered current is transferred to joint output torque and then the external wrench is calculated using the dynamic 

model of the UR5 and the environment.   

 

Fig. 4.7.  Adaptive Kalman filter based on the WMA with variable span. 
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4.3. AKF based on MSMA 

Although the WMA with variable span in [123] works well in external contact estimation, individual moving averages 

have specific advantages in different periods during external wrench estimation. Therefore, a mode-switching moving 

average is designed to optimize performance across multiple scenarios.  

4.3.1.  Determination of the moving averages 

The most common moving averages are considered to build the MSMA: the Simple Moving Average (SMA), the 

Exponential Moving Average (EMA), the Weighted Moving Average (WMA), and the Hull Moving Average (HMA).  

    Firstly, the SMA was discounted since it overemphasizes the past samples in comparison to more recent samples, and 

this leads to poor performance in terms of respond time, especially when dealing with varying external contact. Secondly, 

as discussed in section 6, the smoothing effect of the HMA is better than that of the WMA when the time period is fixed 

and large. Conversely, the performance of the WMA is better in terms of reducing estimation errors and response time. 

Advantages of both moving average approaches are adopted in this research. The difference in the performance of WMA 

and EMA is negligible when the time period is small and varying and the weight coefficients for both averages are 

appropriately chosen. Thus, the approach can use a combination of the HMA (when the time period is large and fixed) and 

the EMA (when the time period is small and varying). However, it should be noted that the WMA is utilized when 

calculating the HMA (Eq. 4-1 and Eq. 4-2). This leads a less burdensome calculation in the proposed method. Specifically, 

calculation of the WMA is still required if the combination of the HMA and the EMA is employed.  

4.3.2.  Mode-switching moving average 

The schematic of the mode-switching moving average based on variable time period for the single-arm robot is displayed 

in Fig. 4.8.  
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Fig. 4.8.  Mode-switching filter based on variable time period for the single-arm robot. 

where 𝑡 denotes the time period, 𝑑 is the step time, 𝒊𝑑
𝑜𝑝𝑡

 stands for the filtered current at step time 𝑑, 𝛿 is a experimentally 

determined parameter that determines whether the time period should be varied. 𝑊(𝑑, 𝑡) is the Weighted Moving Average. 

𝐻(𝑑, 𝑡) is the Hull Moving Average, and the closing current is obtained by 

 𝐻(𝑑, 𝑡) = 𝑊 {{2𝑊[𝑑, int(𝑡 2⁄ )] −𝑊(𝑑, 𝑡)}, int(√𝑡)} 4-2 

It is to be noted that the Mode-switching filter employed for the CFTE of dual-arm robot is different from that used for 

the single-arm robot. To be more specific, the HMA is employed at the start of the CFTE and during the period when the 

span is varying. Conversely, the WMA is used when the span is fixed. The mode-switching filter for the dual-arm system 

is displayed in Fig. 4.9. 



42 
 

 

Fig. 4.9.  Mode-switching filter based on variable time period for the dual-arm robot. 

4.3.3.  AFK based on the MSMA with variable span 

With the MSMA based on variable span, a more powerful adaptive Kalman filter is introduced, and it is displayed in 

Fig. 4.7. When the AKF starts to work, the motor current is measured and used to determine whether there is sudden 

pendulation, which can allow assumption of an external wrench exerted on the UR5. When the proposed AKF is activated, 

the time period is allowed to vary from 1 to 𝑡. Then the measured current sample is compared to the previous current 

sample. If 𝛿 is larger than the magnitude of the gap, an external wrench is assumed to be exerted on the UR5 and the 

measured current will consequently be filtered by the WMA with variable span, which varies from 1 to 𝑡 again; if not, the 

current will be filtered by the WMA with fixed span at 𝑡. With the filtered current, joint output torque is obtained and then 

the external wrench is calculated using the dynamic model of the UR5 and the environment.  As shown in Fig. 4.10, tuning 

the threshold value 𝛿 will be talked about in the next section. 
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Fig. 4.10.  Adaptive Kalman filter based on the MSMA with variable span for the single-arm robot. 

As discussed in section 4.3.2. , the mode-switching filters employed for dual-arm robot is different from that used for 

the single-arm robot. Therefore, the AKF used for the dual-arm robot also differs from that of the single-arm robot and it 

is displayed in Fig. 4.11. 

 

Fig. 4.11.  Adaptive Kalman filter based on the MSMA with variable span for the dual-arm robot. 
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4.4. Calibration of the pre-filter 

    In order to apply the proposed AKF, another scientific challenge of exploring new tuning strategies for the mode-

switching moving average must be met. To be more specific, by balancing time lags and the smoothing effect, the optimal 

time periods of individual moving averages are determined. Furthermore, appropriate threshold values must be decided 

considering the characteristics of the motor currents.     

4.4.1.  Threshold value of pre-filter 

    In order to obtain a value for 𝛿, the elbow joint was commanded to move from position of 1.48 rad to position of 1.52 

rad at constant speed of 0.01 rad/s. During this motion, the motor current is observed in Fig. 4.12. 

 

Fig. 4.12.  Recorded motor current of the elbow joint varies as the joint position changes. 

    As shown in Fig. 4.12, the current fluctuated approximately 0.3 A (-0.8 to -0.5 A) without external payload. 

Consequently, the motor output can be reasonably approximated as constant, with an effective current of -0.65 A. Thus, 𝛿 

was set to half the amplitude 0.3 2⁄ = 0.15. Beyond this threshold, the algorithm assumes an external wrench has been 

applied to the robot and the mode then switched.  

4.4.2.  Time period of the pre-filter 

It is assumed that larger 𝑡 values would lead to less noisy filtered current signals. Consequently, the response of the 

external force/torque estimation will be more precise, and thus quicker convergence is potentially achieved. However, 

excessive samples in each averaging step increase the time lag, and weaken the trends in the smoothed motor current signal. 

Hence, the variance decreases as 𝑡 increases. However, beyond approximately 𝑡 = 50, the variance in the driving torque 

errors plateaus as the smoothing benefits are cancelled by the latency of the system (Fig. 4.13). Furthermore, at high values 

of 𝑡, missed dynamics contribute to the errors observed by the estimator. In contrast, at low values, measurement errors 

from the sensor contribute more significantly to the errors observed by the estimator. Hence, while low values of 𝑡 yield 

measurement error signals, larger values of 𝑡 tend to lead to non-measurement ones. The span of the elbow joint using 
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HMA is determined and the value can be any integer between 45 and 55 (as shown in Fig. 4.13). 

 

Fig. 4.13.  The variance of the predicted state noise 𝒆𝑝 with different time periods 

However, an approximate estimation of the time period is not sufficiently enough for proposed approach. Consequently, 

determination of the optimal time period implementation is further researched. It is to be noted that the standard Kalman 

filter is proficient at dealing with Gaussian noise, and thus keeping the predicted state noise within Gaussian distribution 

will be one of requirements while choosing the optimal time period. In [123], the WMA is employed as the pre-filter. The 

variance of the predicted state noise is displayed in Fig. 4.14. Similarly, a greater number of samples in each averaging 

step will lead to a lower noise contribution in the current signal. However, excessive samples in each step will weaken the 

trends in the smoothed motor current signal because the actual current is changing all the time. Hence, the variance initially 

decreases as t  increases. After that, the variance in the joint output torque errors plateaus as the smoothing benefits are 

cancelled by the latency of the system. Worse yet, excessive examples in each averaging step can lead to new errors that 

are not Gaussian. In that case, the largest span (𝑡 = 19) for which the noise in the elbow joint is still normally distributed 

is determined and the related variance is obtained.  
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Fig. 4.14.  The variance of the predicted state noise 𝒆𝑝 with different spans. The green circles indicate noise which is 

normally distributed. The red crosses denote the noise that does not follow normal distribution. 

 

 

 

 

 

  



47 
 

5. CFTE OF THE SINGLE-ARM ROBOT WITH THE AKF BASED ON WMA 

In this chapter, the effectiveness of the proposed CFTE method based on the WMA with variable time period is 

demonstrated in UR5 manipulator experiments. In section 5.1.1. , the algorithms used in this chapter are presented. In 

sections 5.1.2. to 5.1.4. , the CFTE experiments with different configurations are described and the results are presented. 

In section 5.1.5. the performance of the experiments is discussed. 

An end-effector was prepared and rigidly attached to the manipulator by pneumatic power (Fig. 5.1(a)). The contact 

surface between the pneumatic end effector and the payload is horizontal. The end effector was commanded to move 

vertically at uniform speed during the experiment. Therefore, the exerted force on the manipulator from the payload can 

be precisely known. The contact torque can also be calculated as both the contact force and the distance between the TCP 

and the contact force are available. 

At the start of motion, acceleration cannot be avoided. Therefore, the trajectory of end effector must be specifically 

designed in order to obtain a motion at uniform speed when the payload is engaged by the manipulator. In the following 

experiment, the speed of the end-effector is set at 0.06 m/s and the acceleration is set at 0.24 m/s2.    

The effectiveness of the proposed CFTE method is demonstrated at constant speed with varying payload. External 

wrench is exerted on the UR5, which includes three steps: 

Step 1. The robot is moved to an initial position with a gripper attached to the end effector (Fig. 5.1(a)). After 

initialization, the TCP is programmed to move up vertically at constant speed. The payload (lead filled cup in Fig. 5.1) is 

initially not engaged by the gripper. The effect of gripper on the TCP can be deemed as a constant force of 17.09 N in the 

-𝑍0 direction and a constant torque in the 𝑋0 direction. 

Step 2. The payload is engaged by the moving gripper, as shown in Fig. 5.1(b). The model has no a priori information 

to anticipate coupling with the payload. 

Step 3. The payload and gripper are coupled and raised together (Fig. 5.1(c)). The effect of the payload and the gripper 

can be regarded as a constant force in the -𝑍0 direction and a constant torque in the 𝑋0 direction. 

During the experiment, the joint kinematic information and motor current are recorded with a sampling frequency of 

125 Hz.  
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(a)  Initial pose. The gripper in the red square weighs 1.742 kg. The TCP raises at constant velocity of 0.06m/s and the 

payload is stationary. 

 

(b)  The payload starts to move up vertically due to the contact with the gripper. 
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(c)  The manipulator moves up at constant speed as the TCP does. 

Fig. 5.1.  Demonstration scenario for the experiment. The UR5 manipulator is initialized as (a). The TCP is commanded 

to move up vertically and the effect of the cup filled with lead can be regarded as constant external wrench exerted on the 

TCP. 

5.1.1.  Codes used in the experiments 

The algorithms used in this experiment are displayed in Fig. 5.2. The codes used for communication between the 

computer and the UR5 are stored in “.py” files (Fig. 5.2 yellow). When the experiment starts, the data read and storage 

commands are sent from the computer to the UR5 by “realtimeclient.py” (Appendix A1) and “jointqqdidirecord.py” 

(Appendix A2). The UR5 movement commands are sent by “UR5.py” (Appendix A3) and “experiment.py” (Appendix 

A4). 
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Fig. 5.2.  Scripts used in the experiment. 

The data generated by the UR5 is stored and transferred in “experiment.xlsx” files (blue background in Fig. 5.2). The 

time and data is stored in Column A and Column B (Fig. 5.3). Measured position of individual joints is stored in Column 

C-H (Fig. 5.3). Measured velocity of individual joints is stored in Column I-N (Fig. 5.3). Measured motor current of 

individual joins is stored Column O-T (Fig. 5.3).  

 

Fig. 5.3.  “experiment.xlsx” files 

With “experiment.xlsx” files, the measured motor current is averaged by the WMA with variable span (Appendix B2).  

The filtering effect of WMA on the elbow joint is displayed in Fig. 5.4. The pre-filter is modelled in Matlab and stored in 

“.m” files (Fig. 5.2 green). 
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Fig. 5.4.  Filtering effect of the WMA with variable time period. 

Then, the filtered current is used to calculating the joint driving torque by Eq. 3-1. With the joint driving torque, all the 

parameters in Eq. 2-23 are obtained except for the external wrench. UR5 dynamics is then modelled in Matlab using the 

following 5 files (Fig. 5.5), and it is stored in “.m” files (Fig. 5.2 green). It is worth noting that “UR5dynamics.m” 

(Appendix B1) is the main file, and the others are its clients. “Coriolis.m” (Appendix B3) is used to model the Coriolis and 

centrifugal effect. However, in order to reduce calculation burden caused by “Coriolis.m”, the Christoffel symbols of the 

first kind is introduced [90]. As the subroutine of “Coriolis.m”, the file “christoffel.m” (Appendix B4) calculates the term 

𝑐𝑖𝑗𝑘  in Eq. 2-35. The effect of the manipulator gravity is modelled by “gravity.m” (Appendix B5). The homogeneous 

transformation (Eq. 2-3) is calculated by “Trans.m” (Appendix B6). 

 

Fig. 5.5.  The Matlab codes used for modelling the manipulator dynamics. 
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5.1.2.  CFTE at constant speed with varying payload  

In this experiment, the TCP goes up at the speed of 0.06 m/s, and the experiment is repeated with payloads of 400 g to 

900 g with increments of 100 g and from 1000 g to 2000 g with increments of 200 g. 

Fig. 5.6 shows the force estimation performance with the SKF presented in [96] and the proposed estimation approach 

of the standard Kalman filter based on the Weighted Moving Average with variable span (SKFW). The torque estimation 

results are displayed in Fig. 5.7.  

 

Fig. 5.6.  Estimation of contact force (with 1400 g lead inside the cup) in the −𝑍0 direction. 
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Fig. 5.7.  Estimation of contact torque (with 1000 g lead inside the cup) in the 𝑋0 direction. 

As a function of payload, the root-mean-squared errors (RMSE) of the force estimation based on the SKF and the SKFW 

are displayed in Fig. 5.8. The response time of force sensing based on both methods also varies with the payload changes 

(Fig. 5.9). 
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Fig. 5.8.  The RMSE of the external force estimation based on the SKF and the SKFW from 400 g to 2000 g. 

 

Fig. 5.9  Comparison of the response time with different payloads. 

    The proposed contact force estimation method based on the SKFW worked effectively in the physical experiments and 

the response time is reduced by 55.2% on average compared to an established SKF approach [96] (Fig. 5.9). Furthermore, 

the root-mean-square errors between the estimator force and the measured contact force is reduced by 20.8% (Fig. 5.8). As 
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to the torque estimation, the estimation errors of the SKFW are smaller than those from the SKF (Table 5-2). The response 

time of the SKFW is similar to that of the SKF for some payloads. However, the proposed SKFW outperforms the SKF at 

each payload.  

5.1.3.  CFTE at different speeds with constant payload  

In order to validate the generalization of the WMA-based AKF across different speeds, an experiment with consistent 

payload but different speeds of 0.04 m/s, 0.06 m/s, and 0.08 m/s (as shown in Fig. 5.1) was conducted. The RMSE of the 

estimation errors of the approaches using the same payload and at different speed are compared in Table 5-1 and Table 

5-2.  

Table 5-1 RMSE [𝑁] of the force estimation errors with different motions 

Speed  

Method 
0.04 m/s 0.06 m/s 0.08 m/s 

SKF 1.43 1.28 1.03 

SKFW 1.32 1.14 0.93 

 

Table 5-2 RMSE [𝑁𝑚] of the torque estimation errors with different motions 

Speed  

Method 
0.04 m/s 0.06 m/s 0.08 m/s 

SKF 0.31 0.32 0.29 

SKFW 0.21 0.18 0.15 

 

5.1.4.  CFTE in different orientation with constant payload 

Another comparison experiment with the UR5 moving in the alternative orientation is conducted. Both methods are 

employed and their estimation results are displayed in Fig. 5.10. To validate the effect of the variable span, the force 

estimation results based on the SKFNW (Weighted Moving Average with No Variable Span) and the SKFW (Weighted 

Moving Average with Variable Span) are displayed in Fig. 5.11. 



56 
 

 

Fig. 5.10.  Force estimation results of the comparison experiments (in different orientation from that in Fig. 13) in the −𝑍0 

direction (with 1000 g payload).  

 

Fig. 5.11.  Estimation of contact force (with 1400 g payload) in the −𝑍0 direction. 

5.1.5.  Discussion 

a. Influence of the WMA and the variable span 
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    The proposed SKFW method was validated with the TCP of the UR5 moving at different speeds (Table 5-1 and Table 

5-2) and in different orientations (Fig. 5.10). The proposed method ultimately produces force and torque estimation errors 

that are smaller than the established method. 

    The SKFW works faster than the SKFNW when dealing with the varying contact force. Hence, it can be concluded that 

the variable span improves force detection speed. When external force is exerted on the manipulator, the previous current 

samples are omitted in each averaging step because of the variable span. The benefit is twofold: Firstly, the fixed span 

approach has a longer response time. Secondly, estimation errors are reduced significantly by the proposed approach since 

there are apparent discrepancies between previous motor current samples and the current samples extracted when external 

force is applied (Fig. 5.4). 

    In summary, both the WMA and the function of the variable span improves estimation performance in terms of response 

time and estimation quality. The noise in the measured current is reduced by the WMA and thus the diagonal elements of 

related 𝝈Dyn
2  are reduced. Smaller diagonal elements of covariance matrix 𝝈Dyn

2  lead to a lower response time for the 

system.  

b. Influence of the generalized momentum model 

    Since the dynamic model is based on the format of generalized momentum (Eq. 2-44), the proposed contact force 

estimation method does not require inversion of the manipulator inertia matrix, and consequently the computational burden 

is low. Furthermore, joint acceleration is not required with the proposed method, and therefore amplification of the 

measurement noise can be avoided. In particular, acceleration is computed from measured joint angles. However, 

measurement noise is amplified via the numerical differentiation utilized in a latter step. Uncertainty in the manipulator 

dynamics is overcome in the approach presented since the noise in the measured current is mitigated by the averaging step 

and ultimately allows for definition of a more accurate dynamic model. For robotic manipulator tasks that require contact 

force information, the presented estimation method and control approach are validated in terms of response time and 

estimation quality. In addition, the costs of physical implementation of the approach cost are lower than the similar standard 

Kalman filter based approaches [95], [96] as it works independently of force/torque sensors. The proposed SKFW can 

potentially be applied to any robotic manipulators where the kinematic and dynamic information is accessible. However, 

the specific benefits in robotic manipulators of different orientations and sizes have not been established experimentally.  

c. Limitation of the proposed method and future works 

It must be noted that in order to apply the proposed estimation method, a time gap between every two occurrences of the 

external force during the experiment is assumed to be larger than 𝑡𝑠 ∙ 𝑡. However, 𝑡𝑠 ∙ 𝑡 is generally very small compared 

to the indicative time of the system dynamics. Hence, the assumption is valid in many manufacturing applications. 
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However, if the robotic manipulator is used in an environment with high frequency vibration, such as a turning or milling 

processes, the time gaps between contact may become smaller than 𝑡𝑠 ∙ 𝑡, and the approach may not yield benefit. Future 

research should be conducted to evaluate the performance of the approach in such turning, milling, or grinding applications.  

d. Conclusion 

    The proposed approach was validated in a physical system implementation with differing loading scenarios. The 

validation used key parameters that are critical for the effective implementation of robotic manipulators – response time 

and force estimation precision. The control system was not aware of the force contact a priori nor the weight of the end 

effector loading. Using a series of loading scenarios shows that parameters of the approach are not specifically tuned to 

succeed in limited range of applications. Hence, the successful results from the implementation of the approach can be 

assumed for industrial applications.  

    Identification results varied as the environmental conditions were altered. For example, the friction and noise were 

affected by the loading. This problem was somewhat mitigated in this case as the maximum load on the manipulator was 

2 kg. However, a comprehensive system identification method will help to obtain more accurate model parameters. 

Therefore, modern machine learning techniques will be employed in the future work to determine the friction and noise. 

    In case of some particular orientations, singularity may occur and thus, the magnitude of the external wrench in some 

directions cannot be observed by the robot. Consequently the effectiveness of the proposed method will be affected. This 

phenomenon will be considered in the future to improve the generalizability of this work. 
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6. CFTE OF THE SINGLE-ARM ROBOT WITH THE AFK BASED ON MSMA 

    In this chapter, the mode-switching moving average (MSMA) is analysed using the similar validation to the SKFW 

(Chapter 5). The algorithms used in this chapter are introduced in section 6.1.1. The experiments are repeated with the 

manipulator moving at different speeds and with different orientations (section 6.1.2. to 6.1.4. ). The proposed method is 

discussed in section 6.1.5.   

6.1.1.  Codes used in the experiments 

Similar to the codes used in Chapter 5, the computer sent the read and storage commands (“realtimeclient.py” (Appendix 

A1) and “jointqqdidirecord.py” (Appendix A2)) to the manipulator. The pre-designed trajectory of the UR5 is transferred 

by “UR5.py” (Appendix A3) and “experiment.py” (Appendix A4). 

The only script used in this experiment, which is different from that employed in Chapter 5, is the file of the mode-

switching moving average with variable span (Appendix B7). The current smoothing effect of the elbow joint is used as 

an example in Fig. 6.1. 

 

Fig. 6.1.  Smoothing effect of the MSMA with variable span. 

The joint output torques were calculated using the filtered current and Eq. 3-1. The dynamic model of the UR5 

manipulator was then modelled in UR5dynamics.m” (Appendix B1) and its subroutine scripts (“Coriolis.m” (Appendix 

B3), “christoffel.m” (Appendix B4), “gravity.m” (Appendix B5), and “Trans.m” (Appendix B6)) by Matlab. 

6.1.2.  CFTE with varying payload  

    In this section, experiments (as shown in Fig. 5.1) undergo the same motion with payloads of 100 g to 1000 g in 
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increments of 100 g. 

Fig. 6.2(a) and Fig. 6.2(b) show the performance of the varying contact force and torque (with 1000g payload) estimation 

based on the peer method of the CKF [96], the approach of the AKF without the WMA, and the proposed AKF that includes 

WMA.  

 

(a)  Estimation of the varying force with the lead of 1kg. 
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(b)  Estimation of the varying torque with the lead of 1kg. 

Fig. 6.2.  Estimation of the force in -𝑍0 direction and torque in 𝑋0 direction. The estimation results of the AKF and the 

AKF (no WMA) are very similar. Therefore the red line and the blue line overlap.   

With different payloads, the standard deviation (SD) and root mean squared error (RMSE) of the force and torque 

estimation based on the CKF and the AKF are displayed in Fig. 6.3 and Fig. 6.4. 

 

Fig. 6.3.  The SD and RMSE of the contact force estimation based on the CKF and the AKF with different payloads. 
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Fig. 6.4.  The SD and RMSE of the contact torque estimation based on the CKF and the AKF with different payloads. 

    The response time of force and torque sensing based on different methods varies as the payload changes and is shown 

in Fig. 6.5(a) and Fig. 6.5(b). 

 

(a) Force/torque estimation of the CKF and the proposed AKF. 
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(b) The blue curve and dashed blue one stand for the force and torque estimation time by the proposed AKF with only the 

WMA and varying time period (WMAWVT). The purple ones represent the estimation based on the proposed AKF with 

only the WMA and fixed time period (WMAWFT). 

Fig. 6.5.  Comparison of the response time with different methods. 

6.1.3.  CFTE at constant speed with the constant payload  

In order to validate the generalization of the proposed method across different speeds, another two experiments utilized 

the same payload but different vertical speeds (0.04 m/s and 0.08 m/s, respectively) as shown in Fig. 5.1. Fig. 6.6(a) and 

Fig. 6.6(b) show the estimation results of constant force and torque. The RMSE of the estimation errors in Fig. 6.6(a) and 

Fig. 6.6(b) are summarized in Tables 1 and 2. 
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(a)  Estimation of the constant force. 

 

(b)  Estimation of the constant torque. 

Fig. 6.6.  Estimation of the force in -𝑍0 direction and torque in 𝑋0 direction. Under some circumstances, the estimation 

results of the AKF and the AKF (no WMA) are very similar. Therefore the red line and the blue line overlap each other.   

 



65 
 

Table 6-1  RMSE [𝑁] of the force estimation errors in different periods (0.06 m/s). (For Table 6-1 - Table 6-6, *denotes 

periods dominated by WMA averaging, and ** denotes periods dominated by HMA averaging – note that AKF 

automatically switches between WMA and HMA if permitted) 

Time  

Method 
0-0.45 s  0.45-1.5 s 0-1.5 s 

CKF 0.94 1.19 1.12 

AKF(no WMA) 0.92** 0.88** 0.97  

AKF 0.60* 0.88** 0.84  

 

Table 6-2  RMSE [𝑁𝑚] of the Torque estimation errors in different periods (0.06m/s). 

Time 

Method 
0-0.45 s 0.45-1.5 s 0-1.5 s 

CKF 0.33 0.26 0.28 

AKF(no WMA) 0.30** 0.11** 0.20 

AKF 0.20* 0.11** 0.14 

 

6.1.4.  CFTE at different speeds with constant payload  

To establish velocity dependence of the methods, comparison experiments underwent the same payload but with 

different speeds of 0.04 m/s and 0.08 m/s. Results are displayed in Table 6-3 - Table 6-6. 

Table 6-3  RMSE [𝑁] of the force estimation errors in different periods (0.08 m/s). 

Time  

Method 
0-0.45 s  0.45-1.5 s 0-1.5 s 

CKF 1.06 0.92 0.98 

AKF(no WMA) 1.50** 0.75** 1.07  

AKF 0.96* 0.75** 0.90  

 

Table 6-4  RMSE [𝑁𝑚] of the Torque estimation errors in different periods (0.08 m/s). 

Time 

Method 
0-0.45 s 0.45-1.5 s 0-1.5 s 

CKF 0.27 0.28 0.28 

AKF(no WMA) 0.27** 0.13** 0.19 

AKF 0.17* 0.13** 0.16 

 

Table 6-5  RMSE [𝑁] of the force estimation errors in different periods (0.04 m/s). 

Time  

Method 
0-0.45 s  0.45-1.5 s 0-1.5 s 

CKF 1.24 1.58 1.49 

AKF(no WMA) 1.59** 1.50** 1.53  

AKF 1.09* 1.50** 1.41 
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Table 6-6  RMSE [𝑁𝑚] of the Torque estimation errors in different periods (0.04 m/s). 

Time 

Method 
0-0.45 s 0.45-1.5 s 0-1.5 s 

CKF 0.28 0.34 0.33 

AKF(no WMA) 0.33** 0.26** 0.28 

AKF 0.18* 0.26** 0.25 

 

6.1.5.  Discussion 

a. Effect of the AKF 

The proposed contact force/torque estimation method based on the AKF performed better in physical experiments 

compared to the peer CKF method [96]. The SD and the RMSE of the force estimation based on two methods are shown 

in Fig. 6.3. With the exception of the RMSE of the estimation at 100g, the errors of the estimation based on the AKF were 

all smaller than those resulting from the CKF. Hence, in typical industrial scenarios, more accurate estimation of contact 

force is likely with the proposed AKF. The same conclusion can be made for torque estimation errors with the SD and the 

RMSE of the AKF being lower than those of the CKF. However, some model uncertainty was evident as the SD is larger 

than the RMSE (Fig. 6.3 and Fig. 6.4). This is likely to be caused by unmodelled effects, such as the weight and the 

damping of the hose that powers the gripper (Fig. 5.1). 

It can be seen from Fig. 6.5(a) that the AKF conducted apparently faster force estimation than the CKF when the payload 

increased above 400 g. Below this threshold, the time consumed by both filters was very similar. The response time of 

torque estimation was similar across the two methods during all experiments.  

The magnitude of the exerted torque is relatively small, thus which the advantage of torque-estimating response time is 

not apparent. As the varying torque gets larger, the response time advantages of the proposed AKF may emerge in concert 

with the benefits of force estimation. However, a validation experiment is required to validate this claim. 

b. Effect of the switching mode, the HMA and the WMA 

    The mechanism of mode switching, the involved moving averages, and the variable time period all contribute to the 

improved response time and estimation accuracy. The smoothing effect of the HMA is better than that of the WMA when 

the time period is fixed and large. Conversely, the performance of the WMA is better in terms of reducing estimation errors 

and response time. Advantages of both moving average approaches were adopted in this research (Fig. 6.2). As shown in 

Fig. 6.2(a), the estimation errors resulting from the WMA were smaller than that resulting from the HMA when the time 

period was varied (from 0 to 0.45 s and from 0.56 to 1 s). Furthermore, the WMA also needed less time to finish the 

estimation. A similar outcome occurred for the torque estimation (as shown in Fig. 6.2(b)), although the gap in response 

time was not pronounced. These benefits outcomes were consistent across all payloads considered.  Further, both the WMA 



67 
 

and the HMA produced faster response times than the CKF. 

    In particular, the smaller diagonal elements in the covariance matrix 𝝈Dyn
2  led to a reduced response time for the system. 

The effect of the noise in the measured current was reduced by the mode-switching filter (both the HMA and the WMA) 

and thus the diagonal elements of 𝝈Dyn
2  were reduced. 

    Compared to the CKF (Table 6-1), the RMSE of the MSMA was reduced from 0.94 to 0.60 in the initial period (0-0.45 

s) of force estimation as the WMA was used in the proposed method. Across the time period 0.45-1.5 s, the RMSE was 

decreased from 1.19 to 0.88 due to the activation of the HMA. Consequently, the estimation precision was improved across 

the experiment (from 1.12 to 0.84). Furthermore, the WMA (0.60) facilitated better estimation accuracy compared to the 

HMA (0.92) during the initial time period 0-0.45 s. The RMSE of the torque estimation errors showed the similar results 

(Table 6-2). In the comparison experiments with the same payload but different speeds, the above conclusion was further 

validated from Table 6-3 to Table 6-6. The WMA and the HMA facilitate the application of the AKF and the estimation 

result was improved in terms of response time and estimation accuracy.     

c. Effect of the variable time period 

The variable time period further reduced the response time when interacting with the unexpected change in external 

force. Fig. 6.5 shows the effect of allowing the method to adapt the averaging span. In particular, when the external wrench 

was exerted on the manipulator, the proposed WMAWVT approach was able to omit the previous current samples in each 

averaging step due to the variable time period. Consequently, the proposed WMAWVT approach led to faster response 

(with the exceptions of estimation at low weights of 100g and 200g (Fig. 6.5(b)).  

d. Effect of tuning strategy of the proposed AKF 

    In contrast to peer adaptive Kalman filters that update process and measurement covariance matrices using the estimated 

information, the proposed approach uses measured system uncertainty by offline experiments combined with the real-time 

dynamic information to update measurement covariance matrices in each iterative step. Hence, better performance was 

achieved by the proposed AKF as it was able to utilize measured values over a shorter timeframe upon recognition of an 

external wrench and could thus, determine the measured noise characteristics more precisely. Furthermore, tuning routines 

for the mode-switching moving averages must be considered in this research, and determining the optimal time period 

provides further potential to optimize estimation accuracy and response time when dealing unexpected loads.  

e. Future work 

Since the MSMA uses the same foundational averaging functions as the SKFW, potential benefits from optimising the 

time are similar to those described in section 5.1.5. In particular, a time gap between every two occurrences of the external 

force during the experiment is assumed to be larger than 𝑡𝑠 ∙ 𝑡. However, this may not be the case for some industrial 
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applications with high frequency vibrational inputs. Therefore, the proposed approaches will be evaluated scenarios with 

different characteristic time gaps. 

    Only UR5 was used in the validation experiments, and the estimation quality may depend on the manipulator used. This 

concern is somewhat mitigated by the general ability of control system architecture to remain reasonably consistent across 

geometry. In the future, the AKF will be adapted to industrial manipulators used in various applications, such as polishing, 

assembly, and lead-through programming. 

    While there are a number of potential moving average functions that could be implemented in the proposed approach, 

this paper presents a comparison of the WMA and HMA filters. These filters were chosen for their popularity and 

comparative ease of implementation. Future research may consider other filters.  

    A simplified friction model identification was conducted in this research. Although validation of the proposed contact 

force/torque sensing method was realized based on it, a more advanced friction model identification will strengthen the 

approach. In the future, modern machine learning techniques will be used to determine a phenomenological friction model.  
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7. CFTE OF THE DUAL-ARM ROBOT WITH THE AKF BASED ON WMA 

In this chapter, validation of the proposed AKF based on the WMA with variable span on the dual-arm robot is conducted. 

In section 7.1.1. , experiments are conducted with varying payload and the estimation results are shown. Section 7.1.2.  

discusses the estimation results.  

A dual-arm robot was constructed with two UR5 (Fig. 7.1). To couple the UR5 robots, an end effector (Fig. 7.2) was 

designed by Solidworks and fabricated with a 3-D printer (Fig. 7.3). Two end effectors were rigidly attached to two 

manipulators using bolts (Fig. 7.4). A wooden batten (Fig. 7.5) was inserted through the holes on the end effectors. The 

contact between the wooden batten and the holes was tight, and thus the batten remained stationary with respect to the end 

effectors when two UR5 moved. The reason a wooden batten is used is threefold: First, the batten is rigid and allowed the 

two manipulators to be coupled. Secondly, the actual scenario is simulated since minor dislocation between two 

manipulators will cause obvious internal force/torque. Thirdly, in the case of unexpected kinematics, the wooden batten is 

easy to be broken and thus two UR5 are protected from damage.  

The TCP is located in the middle of the batten (Fig. 7.7(a)). It is worth noting that, the batten is effectively rigid and thus 

end effectors of the two UR5 must maintain compatible positions and rotations with each other during motion. A simple 

option is to command two manipulators travel vertically at the same speed. The effectiveness of the proposed CFTE 

methods was demonstrated in experimental tests with single scenario: at constant speed and with varying payload.  

In the general case, the internal interaction (𝝉int  in Eq. 2-35) between two UR5 arises as they move. However, the main 

purpose of this experiment is to validate the proposed methods in the process of the CFTE. Therefore, the trajectory of two 

arms are specially defined in order to minimize the internal force and this simplifies the system dynamics.  

When the experiment starts, the same data read and storage commands are sent from the computer to two UR5 by 

“realtimeclient.py” (Appendix A1) and “dualarm-jointqqdidirecord.py” (Appendix A5). While both UR5 had the same 

commands, each had its own port (192.168.1.1 and 192.168.1.2, respectively). Consequently, the real-time dynamic and 

kinematic information from both manipulators was stored in two different “.CSV” files ('1800g1.csv' and ‘1800g2.csv’) 

and then used to estimate the external wrench by codes (Appendix B8). 

The UR5 movement commands are sent by “UR5.py” (Appendix A3) and “dualarm-experiement.py” (Appendix A4). 

Receiving the motion commands, two UR5 were commanded to raise at a speed from 0 to 0.06 m/s at a constant acceleration 

of 0.24 m/s2. After 0.25 s, two end effectors reach 0.06 m/s and kept rising at the constant speed. Hence, the two end 

effectors stayed stationary with respect to each other and deformation of the wooden batten was avoided. Consequently, 

internal force/torque should be negligible. 
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Fig. 7.1.  Dual-arm robot. 

 

Fig. 7.2.  End effector. 
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Fig. 7.3.  3-D printer. 

 

Fig. 7.4.  The end effector is attached to the manipulator using bolts.  

 

Fig. 7.5.  Wooden batten. 
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The experimental process involves three steps: 

Step 1. The TCP is moved to an initial position (Fig. 7.7(a)). After initialization, the TCP is programmed to move up 

vertically at constant speed. The payload (lead filled cups in Fig. 7.7) is initially not engaged by the cup holders. The effect 

of the batten and two holders on the TCP can be deemed as a constant force of 5.4 N in the -𝑍0 direction (Fig. 7.6) and a 

constant torque in the 𝑋0 direction. 

Step 2. The payload is engaged by the moving holders, as shown in Fig. 7.7(b). The model has no a priori information 

to anticipate coupling with the payload. 

Step 3. The payload and cup holders are coupled and raised together (Fig. 7.7(c)). The effect of the payload and the 

holders can be regarded as a constant force in the -𝑍0 direction and a constant torque in the 𝑋0 direction. 

 

Fig. 7.6.  The black grippers, batten, and cup holders weigh 0.55 kg. 
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(a) Initial pose. Two UR5 are coupled by a batten. The TCP is located in the middle of the batten and goes up at constant 

velocity of 0.06m/. Initially the cups are not engaged. 

 

(b)  Two cups and the lead inside them start to move up vertically due to the movement of the grippers. 
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 (c)  Two UR5 move up at constant speed as the TCP does. 

Fig. 7.7.  Demonstration scenario for the experiment. Two UR5 manipulators are initialized as (a). The TCP is 

commanded to move up vertically and the effect of two cups filled with lead can be regarded as constant external wrench 

exerted on the TCP. 

7.1.1.  CFTE with varying payload 

Fig. 7.8(a) and Fig. 7.8(b) show the performance of the contact force and torque (with 4000g payload) estimation based 

on the peer method of the CKF [96] and the proposed AKF based on the WMA with variable time period. The force 

estimation errors in different periods are concluded in Table 7-1. 

Table 7-1  RMSE [𝑁] of the force estimation errors in different periods. (*denotes periods of WMA averaging) 

Time  

Method 
0-0.288 s  0.288-0.968 s 0.968-1.256 s 1.256-1.5 s 

AKF 1.71* 1.02* 10.45* 0.97* 

CKF 1.92 1.73 9.78 1.13  
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(a)  Estimation of the varying force with a payload of 4kg.

 

(b)  Estimation of the varying torque with the lead of 4kg. 

Fig. 7.8.  Estimation of the force in -Z0 direction and torque in X0 direction. The actual force/torque (black curve) is 

compared to estimation with the CKF (red curve) and the AKF with the WMA (blue curve).  The dashed blue and red 

lines show the response time of two methods.  

    Response time and the standard deviation of the CFTE based on the proposed method and the peer method [96] are 
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displayed in Fig. 7.9 and Fig. 7.10, respevtively.  

 

Fig. 7.9.  Comparison of the response time with different methods. The red curve and blue one stand for the force 

estimation based on the CKF and the AKF respectively.  

 

Fig. 7.10.  The standard deviation of the contact force estimation based on the CKF and the AKF with different payloads. 

    In order to validate the performance of the variable time period, the CFTE are conducted with the proposed method and 
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the method of the AKF based on MSMA with fixed time period. The estimation results are displayed in Fig. 7.11.  

 

Fig. 7.11.  Comparison of the response time with different methods. 

7.1.2.  Discussion 

To the knowledge of the author, peer research of sensorless CFTE is exclusively focused on the single-arm robot, leaving 

the dual-arm robotic system ignored. Therefore, validation of the proposed method on the CFTE of the dual-arm robot was 

conducted. The proposed AKF performance exceeded the method using CKF [96]. Both the WMA and the variable time 

period contribute to the improved response time and estimation accuracy.  

a. Interaction between the two robotic arms 

The two arms were instructed to conduct mirrored motion in this experiment. Thus the external wrench exerted on both 

manipulators was expected to be the same. However, small perturbation occurred and perfect parallel movement could not 

be achieved. Furthermore, the contact between the batten and two end effectors was fixed. Consequently, minor dislocation 

would cause noticeable internal force between two manipulators.  

As shown in Fig. 7.8(a), there is an apparent gap between the estimated force (AKF method) on the master manipulator 

(yellow line) and that on the slave manipulator (green line). The similar situation happens to the estimation results with the 

CKF method (magenta line and cyan line). Although the estimated force and torque on both manipulators differed from 

the ideal values, the observed contact force on the whole robotic system is consistent with the target. To be more specific, 

the internal effects between two UR5 have no influence on the estimation results of the dual-arm system. 
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    Fig. 7.8(b) shows torque estimation results. The theoretical torques exerted on both manipulators are 0. However, noise 

and dynamics uncertainty exist, and thus curves fluctuate near zero. Furthermore, flexure in the batten coupled with 

rotational rigidity in the end effectors may have produced some residual torque on the end effectors. However, the torque 

estimation errors appear larger than that of force estimation. However, since there was no step input in torque, there was 

no effective comparator.  

b. Effect of the AKF 

    The proposed contact force/torque estimation method based on the AKF performs better in the physical experiments of 

dual-arm robot compared to the peer [96] method of the CKF. The standard deviation of the force estimation based on two 

methods are shown in Fig. 7.10. With the exception of the SD of the estimation at 3.4 Kg, the errors of the estimation based 

on the AKF are all smaller than those resulting from the CKF. Hence, in cases similar to the experimental process, more 

accurate estimation of contact force is likely with the proposed AKF. The same conclusion can be made for torque 

estimation errors with the SD of the AKF being lower than those of the CKF.  

     It can be seen from Fig. 7.9 that the AKF conducts apparently faster force estimation than the CKF throughout the 

differing payloads. Furthermore, it is worth noting in Fig. 7.8 that, force estimation on two single robotic arms with the 

AKF is also faster than that with CKF. This outcome also occurred in section 5.1.5. In this experiment, the payload is 

exerted in the middle of the batten, and thus the torques exerted on both two UR5 and the dual-arm system are zero.   

c. Effect of the WMA 

    With the WMA, the RMSE of estimation errors are reduced (Table 7-1). Although the WMA leads to larger errors in 

the period of 0.968-1.256 s, faster estimation is achieved. In particular, the effect of the noise in the measured current is 

reduced by the WMA and thus the diagonal elements of 𝝈Dyn
2  are reduced. Consequently, the smaller diagonal elements in 

the covariance matrix 𝝈Dyn
2  led to a further reduced response time for the system.  

d. Effect of the variable time period 

The WMA facilitates the application of the AKF and the estimation result is improved in terms of response time and 

estimation accuracy. Furthermore, the variable time period further reduces the response time when interacting with the 

unexpected change in external force (Fig. 7.11). The only difference between two methods in Fig. 7.11 is whether the time 

period is varying or not. In particular, when the external wrench is exerted on the dual-arm system, the proposed approach 

is able to omit the previous current samples in each averaging step due to the variable time period. Consequently, the 

proposed approach leads to faster response.  

e. Comparison to the single arm SKFW (Chapter 5) 

Although the approach used in this chapter was similar to that employed in Chapter 5, validation of the proposed method 
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was conducted on the dual-arm system. In order to simplify the dynamic model, limitations on the motion were necessary. 

An experiment considering unexpected internal interaction between two robotic arms will be considered in the future. In 

this chapter, the limitation that two UR5 must perform mirrored motions in the experimental tests could be avoided and 

the proposed method can be validated in more general scenarios. However, the simple case analysed in Chapter 7 show 

evidence of the potential of the overall approach.  
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8. CFTE OF THE DUAL-ARM ROBOT WITH THE AKF BASED ON MSMA 

In this section, experiments in Fig. 7.7 are repeated with the proposed method of the AKF based on the MSMA with 

variable span. In particular, section 4.3.3. notes that the MSMA used for the CFTE of dual-arm robot is different from that 

employed for the single-arm robot. 

The payloads on the dual-arm robot varied from 4.2 to 6 kg (2.1 to 3 kg in each cup). Two cups were symmetrically 

distributed on both sides of the TCP similar to Chapter 7. Experiments with varying payload are conducted in section 8.1.1. 

and the results presented. The estimation performance is then discussed in section 8.1.2.  

8.1.1.  CFTE with varying payload 

Fig. 8.1(a) and Fig. 8.1(b) show the performance of the varying contact force and torque (with 6000g payload) estimation 

based on the peer method of the CKF [96] and the proposed approach.  

   

(a)  Estimation of the varying force with the lead of 6kg. 
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(b)  Estimation of the varying torque with the lead of 6kg. 

Fig. 8.1.  Estimation of the force in -𝑍0 direction and torque in 𝑋0 direction. The actual force/torque (black curve) is 

compared to estimation with the AKF (blue curve) with MSMA and the CKF (red curve).  The dashed blue and red lines 

show the response time of two methods. 

    The RMSE of force estimation errors with two methods in Fig. 8.1(a) is concluded in Table 8-1 and it is divided into 

four periods. In the starting period (0-0.288 s), the HMA is active and the span is varying. During the period (0.288-0.968 

s and 1.256-1.5 s), the WMA is employed and the span is fixed. When the external wrench is exerted on the manipulator 

and the time period is varying (0.968-1.256 s), the HMA is used. For the peer method, the CKF is active for the duration 

of the experiment. 

Table 8-1  RMSE [𝑁] of the force estimation errors in different periods. (For Table 8-1 - Table 8-4, *denotes periods of 

WMA averaging, and ** denotes periods of HMA averaging – note that AKF automatically switches between WMA and 

HMA if permitted) 

Time  

Method 
0-0.288 s  0.288-0.968 s 0.968-1.256 s 1.256-1.5 s 

AKF 2.36** 0.81* 16.63** 0.62* 

CKF 1.99 1.76 16.05 1.22  

 

Response time and the standard deviation of the CFTE based on the proposed method and the peer method [96] are 

displayed in Fig. 8.2 and Fig. 8.3 respectively. 
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Fig. 8.2.  Comparison of the response time with different methods. 

 

Fig. 8.3.  The standard deviation of the contact force estimation based on the CKF and the AKF with different payloads. 

    In second experiment, the AKF based on the MSMA with variable time period was compared to the AKF based on the 

HMA with variable time period and the force estimation performance (2.9 kg payload) is displayed in Fig. 8.4.  
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Fig. 8.4.  Estimation of the force (62.24 N) in -𝑍0 direction. The actual force/torque (black curve) is compared to estimation 

with the AKF based on the MSMA (blue curve) and the AKF based on only the HMA (red curve).  The dashed blue and 

red lines show the response time of two methods. 

    The RMSE of force estimation errors with two methods in Fig. 8.4 is concluded in Table 8-2. The experiment is divided 

into four periods. In the starting period (0-0.288 s), the HMA is active. In the periods of 0.288-0.968 s and 1.256-1.5 s, the 

WMA is employed. When the external wrench is exerted on the manipulator and the time period is varying (0.968-1.256 

s), the HMA is used. For the AKF HMA method, only the HMA is active for the duration of the experiment. 

Table 8-2  RMSE [𝑁] of the force estimation errors in different periods 

Time  

Method 
0-0.288 s  0.288-0.968 s 0.968-1.256 s 1.256-1.5 s 

AKF MSMA 2.46** 0.65* 14.79** 0.63* 

AKF HMA 2.46** 1.93** 14.79** 1.81** 

 

    In the third experiment, the AKF based on the MSMA with variable time period as compared to the AKF based on the 

WMA with variable time period and the force estimation performance (2.8 kg payload) is displayed in Fig. 8.5. 
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Fig. 8.5.  Estimation of the force in -𝑍0 direction. 

    The RMSE of force estimation errors with two methods in Fig. 8.5 is presented in Table 8-3 and it is divided into four 

periods. In the starting period (0-0.288 s), the HMA is active. In the fixed-span period (0.288-0.968 s and 1.256-1.5 s), the 

WMA is employed. When the external wrench is exerted on the manipulator and the time period is varying (0.968-1.256 

s), the HMA is used. For the AKF WMA method, only the WMA is active for the duration of the experiment. 

Table 8-3  RMSE [𝑁] of the force estimation errors in different periods 

Time  

Method 
0-0.288 s  0.288-0.968 s 0.968-1.256 s 1.256-1.5 s 

AKF MSMA 2.52** 0.87* 15.11** 0.75* 

AKF WMA 1.77* 0.87* 15.72* 0.76 * 

 

    In the last experiment, the AKF based on the MSMA with variable time period was compared to the AKF based on the 

WMA with no variable time period and the force estimation performance (2.7 kg payload) is displayed in Fig. 8.6. 
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Fig. 8.6.  Estimation of the force in -𝑍0 direction. 

    The RMSE of force estimation errors with two methods in Fig. 8.6 is concluded in Table 8-4 and it is divided into four 

periods. In the starting period (0-0.288 s), the HMA works. In the fixed-span period (0.288-0.968 s and 1.256-1.5 s), the 

WMA is employed. When external wrench is exerted on the manipulator and the time period is varying (0.968-1.256 s), 

the HMA is used. The only difference for the AKF no vary method is that the time period is fixed when the HMA is 

working during the period of 0.968-1.256 s. 

Table 8-4  RMSE [𝑁] of the force estimation errors in different periods 

Time  

Method 
0-0.288 s  0.288-0.968 s 0.968-1.256 s 1.256-1.5 s 

AKF 2.67** 0.68* 14.19** 0.74* 

AKF no vary 2.67** 0.68* 22.32** 0.52 * 

 

8.1.2.  Discussion 

In this chapter, the proposed AKF based on the MSMA with variable time period is discussed and its force/torque 

estimation performance on the decoupled system is validated. 

a. Difference between the MSMA used for single-arm robot and that used for the dual-arm robot  

Although the MSMA with HMA working in the period of varying span and WMA working in the period of fixed span 

leads to better performance in CFTE for single-arm robot, the converse phenomenon occurred when the proposed approach 
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was applied to dual-arm robot. Therefore, the MSMA employs the HMA at the start and in case of changing external 

wrench, and use the WMA when the time period is fixed. 

b. Effect of the AKF 

The proposed contact force/torque estimation method based on the AKF performs better in the dual-arm physical 

experiments compared to the peer CKF method [96]. The standard deviation of the force estimation based on two methods 

are shown in Fig. 8.3. The errors of estimation from the AKF were all smaller than those from the CKF. Hence, in cases 

similar to the experimental process, more accurate estimation of contact force is likely with the proposed AKF. The same 

conclusion can be made for torque estimation errors as the AKF error SD was lower than those of the CKF (Fig. 8.1 (b)). 

However, more torque estimation experiments with different payloads should be conducted to further validate the 

conclusion.  

The RMSE of the estimation errors presented in Table 8-1 shows the CKF had a higher RMSE (1.76) than the AKF 

(0.81). However, the RMSE of the proposed method was worse (1.99 vs 2.36) during the initial period (0-0.288 s), and 

(16.05 vs 16.63) during these periods the HMA was active. However, the response time of the AKF was superior (0.184 

vs 0.072 s). Therefore, the accuracy and response time must be balanced depending on the application scenario. 

It can be seen from Fig. 8.2 that the AKF conducts apparently faster force estimation than the CKF throughout all 

payloads. The response time of torque estimation is not displayed in these experiments since the external exerted torques 

on both the single-arm and the dual-arm robots are supposed to be constant. Hence, a valid comparison is impossible. 

Furthermore, the magnitude of the ideal exerted torque is zero, because of which the advantage of torque-estimating 

response time is not apparent. An experimental test is required to validate if the response time advantages of the proposed 

AKF are likely to emerge in concert with the benefits in force estimation as the varying torque gets larger.  

c. Effect of the switching mode, the HMA, the WMA, and the variable time period 

    The mechanism of mode switching, the involved moving averages, and the variable time period all contribute to the 

improved response time and estimation accuracy. 

The smoothing effect of the WMA is better than that of the HMA when the time period is fixed and large. Fig. 8.4 shows 

the AKF based on the MSMA and the AKF based on only HMA. The performance of the MSMA is better in terms of 

reducing estimation errors, which can be concluded from 0.288 to 1.256 s and 1.256 to 1.5 s. During the period of span 

varying (0 to 0.288 s and 0.968 to 1.256 s), the MSMA and WMA only curves almost overlap each other. Furthermore, the 

RMSE of estimation errors is shown in Table 8-2. During the period of 0 to 0.288 s and 0.968 to 1.256 s, the estimation 

results of both methods are similar since only the HMA is active. However, the estimation errors are reduced dramatically 

with the proposed method since the time period is fixed and the WMA is working.  
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When a varying external wrench is exerted on the manipulator, the HMA needs less time to effectively recognize the 

load. As shown in Fig. 8.5, the response time resulting from the HMA are smaller than that resulting from the WMA when 

the time period is varied. Furthermore, the estimation errors of the HMA is also smaller than that of the WMA. As shown 

in Table 8-3, the RMSE of estimation error is reduced from 15.72 to 15.11. This is possible as the HMA is active in the 

period of 0.968-1.256 s with the proposed method. These benefits occurred across all payloads considered. Both the WMA 

and the HMA produced faster response times than the CKF. 

Advantages of both moving average approaches are adopted in this research, the performance of which can be seen in 

Fig. 8.1(a). Time lag is ubiquitous with all non-predictive moving averages. Consequently, using any moving averages in 

a CFTE will lead to estimation lag. However, fast estimation is realized in this experiment for two reasons: Firstly, the 

smaller diagonal elements in the covariance matrix 𝝈Dyn
2  leads to a reduced response time for the system. The effect of the 

noise in the measured current is reduced by the mode-switching filter (both the HMA and the WMA) and thus the diagonal 

elements of 𝝈Dyn
2  are reduced. Secondly, the variable time period adapts quickly to large changes in the motor current and 

further reduces the response time. 

d. Effect of the variable time period 

The WMA and the HMA facilitate the application of the AKF and achieve improved estimation results in terms of 

response time and estimation accuracy. Furthermore, the variable time period further reduces the response time when 

interacting with the unexpected change in external force. As shown in Fig. 8.6, estimation results of the AKF based on 

MSMA with variable span and the counterpart without variable span are displayed. When the external wrench is applied 

to the UR5, the varying span approach is able to omit the previous current samples in each averaging step due to the variable 

time period. Consequently, the proposed approach leads to faster response. It can also be concluded from Table 8-4 that 

the RMSE time period is able to reduce estimation errors when the span is varying (0.968-1.256 s), and the RMSE is 

reduced from 22.32 to 14.19. 

Noted that the RMSE in the period of 1.256-1.5 s (Table 8-4) is supposed to be the same for two methods, while the 

RMSE for the AKF is bigger than that for the AKF with a fixed span. The reason is the current samples from 0.968-1.256 

s are still employed to calculate the estimated current samples at the start of the 1.256-1.5 s period. Thus the obtained 

currents in 1.256-1.5 s are derived from two methods. Anyway, during the experiment, the difference will become 

increasingly negligible. In the period of 0 – 0.968 s, the RMSE for two methods are the same since the same moving 

average is active.     

e. Effect of tuning strategy of the proposed AKF 

In order to calibrate the AKF, various tuning routines are proposed. The peer method [95] updates process and 
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measurement covariance matrices using the estimated information. In [96], uncertainty of the modelled joint driving 

torques is calculated and thus applied to calibrate the AKF. In contrast to these AKF approaches, the proposed approach 

measured system uncertainty by offline experiments (section 3.2) on the dual-arm robot. Furthermore, the real-time 

dynamic and kinematic information of the dual-arm robot is observed. Using these information, measurement covariance 

matrices are updated in each iterative step. Hence, better CFTE performance is achieved for the dual-arm robot as the 

approach is able to utilize measured values over a shorter timeframe upon recognition of an external wrench and can thus, 

determine the noise characteristics more precisely. 

Moreover, tuning routines for the mode-switching moving averages were also considered in this research (section 4.4). 

Off-line-experiments-determined switching mechanism and the optimal varying time period provide an ability to optimize 

estimation accuracy and response time when dealing with unexpected loads.  

f. Effect of the generalized-momentum-based model 

Similar to the method of the CFTE for the single-arm robot, the proposed contact force estimation approach depends on 

the generalized-momentum-based model. Therefore, inversion of the manipulator inertia matrix is not required and the 

computational burden is reduced.  

Furthermore, joint acceleration is not required with the proposed method, and therefore amplification of the measurement 

noise can be avoided. Uncertainty of the manipulator dynamics is overcome in the proposed approach as the noise in the 

measured current is taken into account and ultimately allows for definition of a more accurate Kalman filter gain. In 

addition, the physical implementation cost of the approach is lower than the similar Kalman filter based approaches [95] 

as it does not require additional force/torque sensors.  

Moreover, as discussed in [123] and [124], the proposed method can be applied to not only the dual-arm robot but any 

robotic manipulators where the kinematic and dynamic information is accessible.   

g. Overview of the AKF based on the MSMA  

The proposed approach is validated in a dual-arm robotic system with variable loading scenarios. The validation used 

key parameters that are critical for the effective implementation of robotic manipulators – response time and force/torque 

estimation precision. The control system was not aware of the force/torque contact before occurrence nor the weight of the 

end effector payload. Use of a series of loading scenarios shows that parameters of the approach are not specifically tuned 

to succeed in limited range of applications. 

Typically, the internal force and torque between two robotic arms occur as the dual-arm system operates. Consequently, 

a model of the interaction needed to be built before the proposed method could be applied to the physical experiment. 

However, parallel movements are conducted in this experiment for two manipulators and thus the dynamics can be 
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simplified as a model of the internal interaction is avoided in this research. In order to generalize the proposed method, the 

internal force and torque between two robotic manipulators must first be modelled.  

Theoretically, the proposed method can be applied to robotic systems which consist of any number of robotic 

manipulators as long as the information of manipulator kinematics, manipulator dynamics, and motor feedbacks is 

available. However, this conclusion needs to be verified and validation of the generalization of the proposed method will 

be conducted on more manipulators.  
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9. CONCLUSION 

In Chapter 1, the state of art of the contact force/torque estimation for serial industrial manipulator was presented. 

Motivation of sensorless CFTE for manipulators was clarified and objective of this research is introduced. Organization of 

the thesis was described. Kinematic models were built based on the Denavit-Hartenberg convention in Chapter 2 for both 

the single-arm robot and the dual-arm robot. With the kinematic models, Jacobians of the robots were determined. Based 

on the manipulator kinematics and Jacobians, dynamics of the robotic systems were expressed by the Euler-Lagrange 

equations. 

 The dynamic models based on Euler-Lagrange equations were modified into the format of the generalized momentum. 

Using models in the new format reduces calculation and observation burden in the CFTE. The generalized-momentum-

based models are then discretized as state space equations, which could then be applied to the conventional Kalman filter.  

Sensorless identification of the motor constant was accomplished based on the dynamic and kinematic parameters 

obtained from the manufacture in Chapter 3. With the motor information, a simplified joint friction model was built and 

applied to the Euler-Lagrange dynamics. The performance of the simplified model in the sensorless CFTE of the robotic 

systems was validated and discussed. Sensorless identification of the predicted state noise and the measurement noise was 

also presented in Chapter 3. With this information, the uncertainty in the Euler-Lagrange dynamics was determined and 

facilitated improvements in the performance of the sensorless CFTE. Analysis of these noise was also conducted. 

Development of the adaptive Kalman filter was introduced in Chapter 4. The proposed AKF based on the weighted 

moving average with variable time period was presented and contrasted to some popular current methods. Calibration and 

application strategies of the AKF was introduced. A mode-switching moving average concept was also presented in 

Chapter 4. Determination of the moving averages was presented according to different application scenarios. With the 

MSMA, a different potential AKF strategies with variable time periods can be active estimators. The mode-switching 

algorithm of the pre-filter was presented. Calibrating strategies of the threshold value and time period of the pre-filter were 

clarified.  

Experimental tests of the AKF based on the WMA with variable time period on the single-arm robot were performed in 

Chapter 5. Experiments were conducted with differing configurations. The method was test using different payloads, 

different speeds, and different orientations. Experimental results are summarized and analysed. Effects of the pre-filter, the 

current detecting mechanism, the variable time period, the generalized-momentum-based model, and the limitations of the 

approach were discussed. Critically, the proposed AKF yielded force and torque estimation that exceeded the performance 

of the current state-of-the-art methods. 

Experimental tests of the AKF based on the MSMA with variable time period on the single-arm robot were performed 
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and presented in Chapter 6. Again, experiments were conducted in different scenarios. Experimental results are summarized 

and analysed. Effects of the WMA and the HMA, the mode switch mechanism, and the tuning method are discussed. Again, 

the proposed MSMA algorithm predicted force better than the comparator methods. Since, the MSMA incorporates the 

best elements of the moving averages presented in chapter 4, it also improved upon the performance presented in Chapter 

5. 

Experimental tests of the AKF based on the WMA with variable time period on the dual-arm robot were performed and 

presented in Chapter 7. The experimental results were summarized and analysed. Internal interaction between two 

manipulators and effects of the pre-filter were discussed. The performance of applying the method to the dual-arm robot is 

compared to that to the single-arm robot. Ultimately, the performance of the proposed approach exceed the performance 

of current methods.  

The MSMA used in Chapter 8 is different from that in Chapter 5 (section 4.3.3. ). Experiments of the AKF based on this 

MSMA with variable time period on the dual-arm robot were performed and presented in Chapter 8. Experimental results 

showed that the MSMA has potential to accurately estimate the external wrenches on dual arm arrangements. Furthermore, 

effects of the AKF, the switching mode, the HMA, the WMA, and the calibrating approach on the dual-arm robot are 

discussed.  

All the physical experiments were conducted on UR5. The codes employed for commanding the UR5 and collecting 

robot data are summarized in Appendix A. The robot dynamics are modelled and experimental data are analysed using 

Matlab. The related codes are summarized in Appendix B.  
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10. FUTURE WORK 

In future analysis, the proposed adaptive Kalman filters should be applied to different manipulators to validate their 

performance. In this research, the experimental tests were conducted on UR5 manipulators. However, the UR5 is a 

collaborative robot and the physical constitution is different from the traditional industrial manipulators with six degrees 

of freedom. In particular, servo motors or stepper motors are used for most current industrial serial robots [125]. 

Furthermore, harmonic reducers or RV (rotate vector) reducers are employed. Therefore, the dynamics uncertainty and 

measurement noise of UR5 joints may differ from that of the conventional manipulators when the proposed method is 

applied.  

The proposed CFTE methods will be applied to more industrial scenarios. In Chapter 5 to Chapter 8, the proposed AKF 

were tested with the UR5 manipulators lifting a payload. However, force/torque feedback of the robotic manipulator is 

required in control strategies of more applications and orientations. For example, it has been hypothesized that force/torque 

control is necessary for improving the precision of robotic polishing or grinding tasks. Therefore, more complicated and 

challenging tests of the presented approach should be undertaken to validate the generality.  

A neural network approach will be employed to build a more general friction model. In this research, a simplified friction 

model was employed in order to simplify the system dynamics. Consequently, the joint speeds were limited within certain 

ranges to ensure the effectiveness of the friction model. However, joint velocity cannot be predicted in the real applications. 

Furthermore, the joint friction is also affected by the temperature and payload, which are ignored in this thesis. Therefore, 

a more comprehensive friction model should be designed and parameterized via a neural network optimization.  

The potential for the method to be used in the risk mitigation for attendant human operators will be investigated. 

Cooperation of these robots with human operators requires that the emergency stop can be activated if the robot is in 

expected contact with human or external environment. To achieve that goal, the CFTE method must recognize whether the 

accidental contact or the expected external wrench is exerted. Such discrimination is an important but nontrivial task. 

A model to predict the internal interaction of two manipulators will be built. In this thesis, two robotic arms conducted 

mirrored motions in order to avoid the internal interaction between two arms. However, dual arm robots often yield 

imperfect coordination in the real case. For example, internal force/torque will occur if two arms conducted different 

uncoordinated motions in Chapter 7, and thus the proposed method may fail since the model of the internal interaction is 

ignored. Consequently, CFTE experiments with two manipulators moving with different motions will be conducted and 

the estimation results will be analysed.  

In Chapter 3, sensorless identification of the dynamics and system uncertainty is conducted. Although better estimation 

results (compared to peer method) were obtained in Chapter 5 to Chapter 8 with these identified parameters, more accurate 
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identification using the physical sensors will be considered in the future. The sensorless identified results will be analysed 

and compared to that received with sensors.  
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APPENDIX A: PYTHON CODES 

Appendix A1 

1. import datetime 

2. import time 

3. import socket 

4. import struct 

5. import collections 

6.  

7.  

8. TIMEOUT_SAMPLES = 5 # How many missed samples should count as a timeout? 

9. TIMEOUT_RESET = 1 # How many seconds until the timeout counter is reset. 

10. TIMEOUT_MAX = 5 # How many timeouts before a connection reset? 

11.  

12. RATE = {30001:10, 

13.         30002:10, 

14.         30003:125, 

15.         30004:125} 

16.  

17. VECTOR_6F = 'd'*6 

18.          

19. DATA_TYPES = collections.OrderedDict([ 

20.     ('Message Size', 'i'), 

21.     ('Time', 'd'), # [s] 

22.     ('q target', VECTOR_6F), 

23.     ('qd target', VECTOR_6F), 

24.     ('qdd target', VECTOR_6F), 

25.     ('I target', VECTOR_6F), 

26.     ('M target', VECTOR_6F), 

27.     ('q actual', VECTOR_6F), # [rad,rad,rad,rad,rad,rad] 

28.     ('qd actual', VECTOR_6F), 

29.     ('I actual', VECTOR_6F), 

30.     ('Tool Accelerometer data', 'd'*3), 

31.     ('RTC_Unused', 'd'*15), 

32.     ('TCP force', VECTOR_6F), 

33.     ('Tool vector', VECTOR_6F), # [m,m,m,rad,rad,rad] 

34.     ('TCP speed', VECTOR_6F), 

35.     ('Digital input bits', 'd'), 

36.     ('Motor temperatures', VECTOR_6F), 

37.     ('Controller Timer', 'd'), 

38.     ('Test value', 'd'), 

39.     ('Robot Mode', 'd'), 

40.     ('Joint Modes', VECTOR_6F)]) 

41.  

42. class RTC: 

43.     def __init__(self, host, port=30003): 

44.         self.host = host 

45.         self.port = port 

46.         self.timeoutcount = 0 
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47.         self.timeoutlast = time.time() 

48.         self.data = dict() 

49.         self.msgSizeMin = struct.calcsize(DATA_TYPES['Message Size']) 

50.          

51.     def connect(self): 

52.         self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

53.         self.socket.connect((self.host, self.port)) 

54.         self.socket.settimeout(TIMEOUT_SAMPLES / RATE[self.port]) 

55.         self.buffer = bytearray() 

56.         print('Connected') 

57.          

58.     def disconnect(self): 

59.         self.socket.close() 

60.         print('Disconnected') 

61.          

62.          

63.     def read(self, writer): 

64.         try: 

65.             self.buffer += self.socket.recv(1024) 

66.         except socket.timeout: 

67.             print('Timeout') 

68.             now = time.time() 

69.             if (now - self.timeoutlast) > TIMEOUT_RESET: 

70.                 self.timeoutcount = 0 

71.                 self.timeoutlast = now 

72.             self.timeoutcount += 1 

73.             if self.timeoutcount >= TIMEOUT_MAX: 

74.                 print('Max timeouts reached') 

75.                 self.disconnect() 

76.                 self.connect() 

77.                 self.timeoutcount = 0 

78.                 return(0) 

79.          

80.         packetsRead = 0 

81.         packetsAvailable = len(self.buffer) >= self.msgSizeMin 

82.          

83.         while packetsAvailable: 

84.             i = 0 

85.             for name in DATA_TYPES.keys(): 

86.                 if name == 'Message Size': 

87.                     self.timestamp = datetime.datetime.now() 

88.                 fmt = DATA_TYPES[name] 

89.                 value = struct.unpack_from('>'+fmt, self.buffer, i) 

90.                 

91.                 if len(fmt) == 1: 

92.                     value = value[0] 

93.                 if i == 0: 

94.                     msgSize = value 

95.                     packetsAvailable = len(self.buffer) >= msgSize 

96.                     if packetsAvailable: 

97.                         pass#print() 
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98.                     else: 

99.                         return(packetsRead) 

100.                      

101.                 self.data[name] = value 

102.                 #print(name + ':\t' + str(value)) 

103.                 i += struct.calcsize(fmt) 

104.  

105.             self.buffer = self.buffer[msgSize:] 

106.             packetsAvailable = len(self.buffer) >= self.msgSizeMin 

107.             writer() 

108.             packetsRead += 1 

109.         return(packetsRead) 
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Appendix A2 

1. import realtimeclient 

2.  

3. robot = realtimeclient.RTC("132.181.60.76") 

4. robot.connect() 

5. f = open('experiment.xlsx', 'w') 

6.  

7. def record_fun(): 

8.     f.write(str(robot.data['Time'])) 

9.     f.write(',!!!!') 

10.     f.write(str(robot.timestamp)) 

11.      

12.      

13.     for i in range(6): 

14.         f.write(',') 

15.         f.write(str(robot.data['q actual'][i])) 

16.     for i in range(6): 

17.         f.write(',') 

18.         f.write(str(robot.data['qd actual'][i]))  

19.     for i in range(6): 

20.         f.write(',') 

21.         f.write(str(robot.data['I actual'][i])) 

22.  

23.  

24.          

25.     for i in range(6): 

26.         f.write(',') 

27.         f.write(str(robot.data['q target'][i])) 

28.     for i in range(6): 

29.         f.write(',') 

30.         f.write(str(robot.data['qd target'][i]))  

31.     for i in range(6): 

32.         f.write(',') 

33.         f.write(str(robot.data['I target'][i])) 

34.     for i in range(6): 

35.         f.write(',') 

36.         f.write(str(robot.data['qdd target'][i]))   

37.      

38.     f.write('\n') 

39.  

40. try: 

41.     while True: 

42.         robot.read(record_fun) 

43.  

44.  

45. except (KeyboardInterrupt, SystemExit): 

46.     f.close() 

47.     robot.disconnect() 
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Appendix A3 

1. import socket 

2. import time 

3.  

4.  

5.  

6. PORT = {30001: 'PRIMARY_CLIENT',  

7.         30002: 'SECONDARY_CLIENT', 

8.         30003: 'REAL_TIME_CLIENT', 

9.         30004: 'REAL_TIME_DATA_EXCHANGE'} 

10.  

11. ''' 

12. DATA_TYPES = collections.OrderedDict([ 

13.     ('packageSize', 'i'), 

14.     ('packageType', 'B'), 

15.     ('timestamp', 'Q'), 

16.     ('isRobotConnected', '?'), 

17.     ('isRealRobotEnabled', '?'), 

18.     ('isPowerOnRobot', '?'), 

19.     ('isEmergencyStopped', '?'), 

20.     ('isProtectiveStopped', '?'), 

21.     ('isProgramRunning', '?'), 

22.     ('isProgramPaused', '?'), 

23.     ('robotMode', 'B'), 

24.     ('controlMode', 'B'), 

25.     ('targetSpeedFraction', 'd'), 

26.     ('speedScaling', 'd'),  

27.     ('targetSpeedFractionLimit', 'd')]) 

28. ''' 

29.      

30. class UR5: 

31.     def __init__(self, host, port, wait=3): 

32.         self.host = host 

33.         self.port = port 

34.         if not(port in PORT.keys()): 

35.             print('Unsupported port.') 

36.         self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

37.         self.wait = wait 

38.          

39.     def connect(self): 

40.         self.buffer = bytearray() 

41.         self.socket.connect((self.host, self.port)) 

42.          

43.     def disconnect(self): 

44.         self.socket.close() 

45.  

46.     def send(self, command): 

47.         ur_cmd = command.strip('\n\r') + '\n' 

48.         self.socket.send(ur_cmd.encode()) 

49.         print("Sending: " + command + '\n') 
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50.         time.sleep(self.wait) 

51.          

52.     def receive(self): 

53.         self.buffer += self.socket.recv(1024) 

54.         return self.buffer 

55.      

56.     def set_tool_voltage(self, volts): 

57.         volts = max(volts, 0) 

58.         volts = min(volts, 24) 

59.         volts = 12*round(volts/12) 

60.         self.send("set_tool_voltage({})".format(volts)) 

61.          

62.     def set_payload(self, mass): 

63.         mass = max(mass, 0) 

64.         self.send("set_payload({})".format(mass)) 

65.      

66.     def set_gravity(self, d): 

67.         self.send("set_gravity({})".format(d)) 

68.      

69.     def movej(self, q, a=3, v=0.75, t=0, r=0): 

70.         self.send("movej({},{},{},{},{})".format(q,a,v,t,r)) 

71.      

72.     def movel(self, p, a, v,t,r): 

73.         self.send("movel({},{},{},{},{})".format(p,a,v,t,r)) 

74.      

75.     def speedj(self, qd, a, t_min): 

76.         self.send("speedj({},{},{})".format(qd,a,t_min)) 

77.      

78.     def speedl(self, xd, a, t_min): 

79.         self.send("speedl({},{},{})".format(xd,a,t_min)) 

80.          

81.     def stopj(self, a): 

82.         self.send("stopj({})".format(a)) 

83.          

84.     def stopl(self, a): 

85.         self.send("stopl({})".format(a)) 

86.      

87.     def set_digital_out(self, n, b): 

88.         self.send("set_digital_out({},{})".format(n,b)) 

89.          

90.     def get_actual_joint_speeds(self): 

91.         self.send("get_actual_joint_speeds()") 

92.          

93.     def get_target_payload(self): 

94.         self.send("get_target_payload()") 
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Appendix A4 

2. import ur5  

3. from math import pi 

4. import time 

5.  

6. HOST = "132.181.60.76"    # Robot's IP address. 

7. PORT = 30002            # Port used for standard communications. 

8.  

9.  

10. robot = ur5.UR5(HOST, PORT) 

11. robot.connect()   

12. time.sleep(1) 

13.  

14. DEG_TO_RAD = pi/180 

15. Q_HOME = [90,-46,70,-24,90,-220] 

16. robot.movej([DEG_TO_RAD*x for x in Q_HOME]) 

17. time.sleep(70) 

18.  

19.  

20. xd =[0,0,0.06,0,0,0] 

21. robot.speedl(xd,0.24,3) 

22. time.sleep(5) 

23.  

24.  

25. robot.disconnect() 

26. input("Press any key to close.") 
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Appendix A5 

1. import realtimeclient 

2.  

3. robot = realtimeclient.RTC("192.168.1.1") 

4. robot2 = realtimeclient.RTC("192.168.1.2") 

5.  

6. robot.connect() 

7. robot2.connect() 

8.  

9. f = open('1800g1.csv', 'w') 

10. f2 = open('1800g2.csv', 'w') 

11.  

12. def record_fun1(): 

13.     f.write(str(robot.data['Time'])) 

14.     f.write(',!!!!') 

15.     f.write(str(robot.timestamp)) 

16.      

17.      

18.     for i in range(6): 

19.         f.write(',') 

20.         f.write(str(robot.data['q actual'][i])) 

21.     for i in range(6): 

22.         f.write(',') 

23.         f.write(str(robot.data['qd actual'][i]))  

24.     for i in range(6): 

25.         f.write(',') 

26.         f.write(str(robot.data['I actual'][i])) 

27.  

28.  

29.          

30.     for i in range(6): 

31.         f.write(',') 

32.         f.write(str(robot.data['q target'][i])) 

33.     for i in range(6): 

34.         f.write(',') 

35.         f.write(str(robot.data['qd target'][i]))  

36.     for i in range(6): 

37.         f.write(',') 

38.         f.write(str(robot.data['I target'][i])) 

39.     for i in range(6): 

40.         f.write(',') 

41.         f.write(str(robot.data['qdd target'][i]))   

42.      

43.     f.write('\n') 

44.  

45. def record_fun2(): 

46.     f2.write(str(robot2.data['Time'])) 

47.     f2.write(',!!!!') 

48.     f2.write(str(robot2.timestamp)) 

49.      
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50.      

51.     for i in range(6): 

52.         f2.write(',') 

53.         f2.write(str(robot2.data['q actual'][i])) 

54.     for i in range(6): 

55.         f2.write(',') 

56.         f2.write(str(robot2.data['qd actual'][i]))  

57.     for i in range(6): 

58.         f2.write(',') 

59.         f2.write(str(robot2.data['I actual'][i])) 

60.  

61.  

62.          

63.     for i in range(6): 

64.         f2.write(',') 

65.         f2.write(str(robot2.data['q target'][i])) 

66.     for i in range(6): 

67.         f2.write(',') 

68.         f2.write(str(robot2.data['qd target'][i]))  

69.     for i in range(6): 

70.         f2.write(',') 

71.         f2.write(str(robot2.data['I target'][i])) 

72.     for i in range(6): 

73.         f2.write(',') 

74.         f2.write(str(robot2.data['qdd target'][i]))   

75.      

76.     f2.write('\n') 

77.  

78. try: 

79.     while True: 

80.         robot.read(record_fun1) 

81.         robot2.read(record_fun2) 

82.  

83.  

84. except (KeyboardInterrupt, SystemExit): 

85.     f.close() 

86.     f2.close() 

87.     robot.disconnect() 

88.     robot2.disconnect() 
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Appendix A6 

1. import ur5  

2. from math import pi 

3. import time 

4.  

5. HOST1 = "192.168.1.1"    # Robot1's IP address. 

6. PORT1 = 30003            # Port1 used for standard communications. 

7.  

8. HOST2 = "192.168.1.2"    # Robot2's IP address. 

9. PORT2 = 30003            # Port2 used for standard communications. 

10.  

11. robot1 = ur5.UR5(HOST1, PORT1) 

12. robot1.connect()   

13. time.sleep(1) 

14.  

15. robot2 = ur5.UR5(HOST2, PORT2) 

16. robot2.connect()   

17. time.sleep(1) 

18.  

19. DEG_TO_RAD = pi/180 

20.  

21. Q_HOME1 = [180,-113,-105,-52,90,0] 

22. Q_HOME2 = [180,-67,105,-128,-90,0] 

23.  

24. robot1.movej([DEG_TO_RAD*x for x in Q_HOME1]) 

25. robot2.movej([DEG_TO_RAD*x for x in Q_HOME2]) 

26. time.sleep(10) 

27.  

28. xd =[0,0,0.06,0,0,0] 

29. robot1.speedl(xd,0.24,3) 

30. robot2.speedl(xd,0.24,3) 

31. time.sleep(5) 

32.  

33. xd =[0,0,-0.06,0,0,0] 

34. robot1.speedl(xd,-0.24,3) 

35. robot2.speedl(xd,-0.24,3) 

36. time.sleep(5) 

37.  

38. robot1.disconnect() 

39. robot2.disconnect() 

40. input("Press any key to close.") 
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APPENDIX B: THE MATLAB CODES 

Appendix B1 

1. clear; 

2. clc; 

3.  

4. global M; 

5. global P; 

6.  

7. global theta1 theta2 theta3 theta4 theta5 theta6; 

8.  

9. global dtheta1 dtheta2 dtheta3 dtheta4 dtheta5 dtheta6; 

10.  

11. global ddtheta1 ddtheta2 ddtheta3 ddtheta4 ddtheta5 ddtheta6; 

12.  

13. global tauext; 

14.  

15. global tauf1 tauf2 tauf3 tauf4 tauf5 tauf6; 

16. global taum1 taum2 taum3 taum4 taum5 taum6; 

17. global miuv1 miuv2 miuv3 miuv4 miuv5 miuv6; 

18. global miuc1 miuc2 miuc3 miuc4 miuc5 miuc6; 

19. global taun1 taun2 taun3 taun4 taun5 taun6; 

20.  

21. global sf1 sf2 sf3 sf4 sf5 sf6; 

22.  

23. global J6; 

24. global Ja3; 

25. global MM3; 

26. syms alpha0 a0 theta1 d1 

27. syms alpha1 a1 theta2 d2 

28. syms alpha2 a2 theta3 d3 

29. syms alpha3 a3 theta4 d4 

30. syms alpha4 a4 theta5 d5 

31. syms alpha5 a5 theta6 d6 

32.  

33. % centroid of link i expressed in coordinates i 

34. syms x1 y1 z1  

35. syms x2 y2 z2  

36. syms x3 y3 z3  

37. syms x4 y4 z4  

38. syms x5 y5 z5  

39. syms x6 y6 z6 

40.  

41. syms m1 m2 m3 m4 m5 m6 g 

42.  

43. %Angle, angular velocity and angular acceleration 

44. syms theta1 theta2 theta3 theta4 theta5 theta6 

45. syms dtheta1 dtheta2 dtheta3 dtheta4 dtheta5 dtheta6 

46. syms ddtheta1 ddtheta2 ddtheta3 ddtheta4 ddtheta5 ddtheta6 
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47. syms M M1 M2 M3 M4 M5 M6  

48. syms fx fy fx nx ny nz 

49.  

50. g = sym(-9.81); 

51.  

52. theta =  [theta1;  theta2;  theta3;  theta4;  theta5;  theta6]; 

53. dtheta = [dtheta1; dtheta2; dtheta3; dtheta4; dtheta5; dtheta6]; 

54.  

55. % inertial tensor of link i expressed in the coordinates whose 

56. % origin is located at the centroid of link i 

57.  

58. Ic1=[0.0084 0 0; 0 0.0084 0; 0 0 0.0064]; 

59. Ic2=[0.0078 0 0; 0 0.2100 0; 0 0 0.2100]; 

60. Ic3=[0.0016 0 0; 0 0.0462 0; 0 0 0.0462]; 

61. Ic4=[0.0016 0 0; 0 0.0009 0; 0 0 0.0016]; 

62. Ic5=[0.0016 0 0; 0 0.0009 0; 0 0 0.0016]; 

63. Ic6=[0.0001 0 0; 0 0.0001 0; 0 0 0.0001]; 

64. % Ic6=[0.0016 0 0; 0 0.0009 0; 0 0 0.0016]; 

65.  

66. %UR5 parameters 

67. d1 = sym(0.08916);   d2 = sym(0);         d3 = sym(0);  

68. d4 = sym(0.10915);   d5 = sym(0.09465);   d6 = sym(0.0823); 

69. a0 = sym(0);         a1 = sym(0);         a2 = sym(-0.425);  

70. a3 = sym(-0.39225);   a4 = sym(0);         a5 = sym(0);  

71. alpha0 = sym(0);     alpha1 = sym(pi/2);  alpha2 = sym(0);  

72. alpha3 = sym(0);     alpha4 = sym(pi/2);  alpha5 = sym(-pi/2);  

73. m1 = 3.7;            m2 = 8.393;          m3 = 2.33; 

74. m4 = 1.219;          m5 = 1.219;          m6 = 0.1879;  

75.  

76. T01 = Trans(alpha0, a0, theta1, d1); 

77. T12 = Trans(alpha1, a1, theta2, d2); 

78. T23 = Trans(alpha2, a2, theta3, d3); 

79. T34 = Trans(alpha3, a3, theta4, d4); 

80. T45 = Trans(alpha4, a4, theta5, d5); 

81. T56 = Trans(alpha5, a5, theta6, d6); 

82.  

83. T00 = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; 

84. T01 = T01; 

85. T02 = T01 * T12; 

86. T03 = T01 * T12 * T23; 

87. T04 = T01 * T12 * T23 * T34; 

88. T05 = T01 * T12 * T23 * T34 * T45; 

89. T06 = T01 * T12 * T23 * T34 * T45 * T56; 

90.  

91. % centroid of link 1 to 6 expressed in coordinate 0  

92. c1 = [1, 0, 0, 0; 0, 1, 0, -0.00193; 0, 0, 1, -0.02561; 0 0 0 1];  

93. T0c1 = T01 * c1;  

94. c2 = [1, 0, 0, -0.2125; 0, 1, 0, 0; 0, 0, 1, 0.11336; 0 0 0 1];  

95. T0c2 = T02 * c2;  

96. c3 = [1, 0, 0, -0.24225; 0, 1, 0, 0; 0, 0, 1, 0.0265; 0 0 0 1];  

97. T0c3 = T03 * c3;  
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98. c4 = [1, 0, 0, 0; 0, 1, 0, -0.01634; 0, 0, 1, -0.0018; 0 0 0 1];  

99. T0c4 = T04 * c4;  

100. c5 = [1, 0, 0, 0; 0, 1, 0, 0.01634; 0, 0, 1, -0.0018; 0 0 0 1];  

101. T0c5 = T05 * c5;  

102. c6 = [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, -0.001159; 0 0 0 1];  

103. T0c6 = T06 * c6;  

104.  

105. B = [0; 0; 0]; 

106.  

107. %Z axes of coordinate 0 to 6 expressed in coordinate 0 

108. Z0 = T00([1 2 3], 3); 

109. Z1 = T01([1 2 3], 3); 

110. Z2 = T02([1 2 3], 3); 

111. Z3 = T03([1 2 3], 3); 

112. Z4 = T04([1 2 3], 3); 

113. Z5 = T05([1 2 3], 3); 

114. Z6 = T06([1 2 3], 3); 

115.  

116. %Origin of coordinate 0 to 6 expressed in coordinate 0 

117. o0 = T00([1 2 3], 4); 

118. o1 = T01([1 2 3], 4); 

119. o2 = T02([1 2 3], 4); 

120. o3 = T03([1 2 3], 4); 

121. o4 = T04([1 2 3], 4); 

122. o5 = T05([1 2 3], 4); 

123. o6 = T06([1 2 3], 4); 

124.  

125. %Centroid of link 1 to 6 expressed in coordinate 0 

126. oc1 = T0c1([1 2 3], 4); 

127. oc2 = T0c2([1 2 3], 4); 

128. oc3 = T0c3([1 2 3], 4); 

129. oc4 = T0c4([1 2 3], 4); 

130. oc5 = T0c5([1 2 3], 4); 

131. oc6 = T0c6([1 2 3], 4); 

132.  

133. %Jacobian of centroid of link 1 

134. JV1_1 = cross(Z1, oc1-o1); 

135. J1 = [JV1_1, B, B, B, B, B; Z1, B, B, B, B, B]; 

136. Jv1 = J1([1 2 3], :); 

137. Jw1 = J1([4 5 6], :); 

138.  

139. %Jacobian of centroid of link 2 

140. JV2_1 = cross(Z1, oc2-o1); 

141. JV2_2 = cross(Z2, oc2-o2); 

142. J2 = [JV2_1, JV2_2, B, B, B, B; Z1, Z2, B, B, B, B]; 

143. Jv2 = J2([1 2 3], :); 

144. Jw2 = J2([4 5 6], :); 

145.  

146. %Jacobian of centroid of link 3 

147. JV3_1 = cross(Z1, oc3-o1); 

148. JV3_2 = cross(Z2, oc3-o2); 
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149. JV3_3 = cross(Z3, oc3-o3); 

150. J3 = [JV3_1, JV3_2, JV3_3, B, B, B;Z1, Z2, Z3, B, B, B]; 

151. Jv3 = J3([1 2 3], :); 

152. Jw3 = J3([4 5 6], :); 

153.  

154. %Jacobian of centroid of link 4 

155. JV4_1 = cross(Z1, oc4-o1); 

156. JV4_2 = cross(Z2, oc4-o2); 

157. JV4_3 = cross(Z3, oc4-o3); 

158. JV4_4 = cross(Z4, oc4-o4); 

159. J4 = [JV4_1, JV4_2, JV4_3, JV4_4, B, B;Z1, Z2, Z3, Z4, B, B]; 

160. Jv4 = J4([1 2 3], :); 

161. Jw4 = J4([4 5 6], :); 

162.  

163. %Jacobian of centroid of link 5 

164. JV5_1 = cross(Z1, oc5-o1); 

165. JV5_2 = cross(Z2, oc5-o2); 

166. JV5_3 = cross(Z3, oc5-o3); 

167. JV5_4 = cross(Z4, oc5-o4); 

168. JV5_5 = cross(Z5, oc5-o5); 

169. J5 = [JV5_1, JV5_2, JV5_3, JV5_4, JV5_5, B;Z1, Z2, Z3, Z4, Z5, B]; 

170. Jv5 = J5([1 2 3], :); 

171. Jw5 = J5([4 5 6], :); 

172.  

173. %Jacobian of centroid of link 6  

174. JV6_1 = cross(Z1, oc6-o1); 

175. JV6_2 = cross(Z2, oc6-o2); 

176. JV6_3 = cross(Z3, oc6-o3); 

177. JV6_4 = cross(Z4, oc6-o4); 

178. JV6_5 = cross(Z5, oc6-o5); 

179. JV6_6 = cross(Z6, oc6-o6); 

180. J6 = [JV6_1, JV6_2, JV6_3, JV6_4, JV6_5, JV6_6;Z1, Z2, Z3, Z4, Z5, Z6]; 

181. Jv6 = J6([1 2 3], :); 

182. Jw6 = J6([4 5 6], :); 

183.  

184. R0c1 = T0c1([1 2 3], [1 2 3]); 

185. R0c2 = T0c2([1 2 3], [1 2 3]); 

186. R0c3 = T0c3([1 2 3], [1 2 3]); 

187. R0c4 = T0c4([1 2 3], [1 2 3]); 

188. R0c5 = T0c5([1 2 3], [1 2 3]); 

189. R0c6 = T0c6([1 2 3], [1 2 3]); 

190.  

191. %kinetic energy 

192. M1 = m1.* (Jv1.' * Jv1) + Jw1.' * (R0c1 * Ic1 * R0c1.') * Jw1; 

193. M2 = m2.* (Jv2.' * Jv2) + Jw2.' * (R0c2 * Ic2 * R0c2.') * Jw2; 

194. M3 = m3.* (Jv3.' * Jv3) + Jw3.' * (R0c3 * Ic3 * R0c3.') * Jw3; 

195. M4 = m4.* (Jv4.' * Jv4) + Jw4.' * (R0c4 * Ic4 * R0c4.') * Jw4; 

196. M5 = m5.* (Jv5.' * Jv5) + Jw5.' * (R0c5 * Ic5 * R0c5.') * Jw5; 

197. M6 = m6.* (Jv6.' * Jv6) + Jw6.' * (R0c6 * Ic6 * R0c6.') * Jw6; 

198.  

199. M = M1 + M2 + M3 + M4 + M5 + M6; 
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200.  

201. P01 = T0c1([1 2 3],[4]); 

202. P02 = T0c2([1 2 3],[4]); 

203. P03 = T0c3([1 2 3],[4]); 

204. P04 = T0c4([1 2 3],[4]); 

205. P05 = T0c5([1 2 3],[4]); 

206. P06 = T0c6([1 2 3],[4]); 

207.  

208. P = m1 * g * P01(3, 1) + m2 * g * P02(3, 1) + m3 * g * P03(3, 1) +  m4 * g * 

P04(3, 1) +  m5 * g * P05(3, 1) +  m6 * g * P06(3, 1); 
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Appendix B2 

1. clc 

2. clear 

3.  

4. global tt; 

5. A = xlsread('D:\experiment.xlsx'); 

6.  

7. B  = size(A); 

8. length = B(1,1); 

9. T2 = 19; 

10. aa=1:1:length; 

11.  

12. hold on 

13. grid on 

14.  

15. joint = 17;  

16. tt = A(1:length,joint); 

17. plot(aa,tt(1:length,1),'k','linewidth',1.5); 

18. i=2; 

19. while i<= T2 

20.         WMA(i,i); 

21.         A(i,joint)=WMA(i,i); 

22.         i=i+1; 

23. end     

24. while i<=length 

25.     if abs(A(i,joint)- A(i-1,joint))<= 0.47      

26.         A(i,joint)=WMA(i,T2); 

27.         i=i+1; 

28.     else 

29.         old = i 

30.         222 

31.         newT2=i+T2-2; 

32.         WMA(i,T2); 

33.         i=i+1; 

34.         while i <=newT2 

35.             WMA(i,i-old+1); 

36.             A(i,joint)=WMA(i,i-old+1); 

37.             i=i+1; 

38.         end 

39.     end 

40. end 

41. plot(aa,A(1:length,joint),'r','linewidth',1.5); 

42.  

43. xlswrite('D:\experiment.xlsx',A,'Sheet1','A1'); 
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Appendix B3 

1. function f = Coriolis(k) 

2.  

3. s= 0; 

4. global dtheta1;  

5. global dtheta2;  

6. global dtheta3;  

7. global dtheta4;  

8. global dtheta5;  

9. global dtheta6;  

10.  for i=1:6 

11.     for j=1:6 

12.      s = s + christoffel(i,j,k)*eval(['dtheta' num2str(i)])*eval(['dtheta' num

2str(j)]); 

13.     end 

14.  end 

15. f = s; 

16. end 

Appendix B4 

1. function f = christoffel(i,j,k) 

2. syms s 

3.  

4. global M; 

5. global theta1; 

6. global theta2; 

7. global theta3; 

8. global theta4; 

9. global theta5; 

10. global theta6; 

11.  

12. s = diff(M(k,j),eval(['theta' num2str(i)]))+diff(M(k,i),eval(['theta' num2str(

j)]))-diff(M(i,j),eval(['theta' num2str(k)])); 

13.  

14. f = 0.5 * s; 

15. end 
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Appendix B5 

1. function f = gravity(k) 

2.  

3. global P; 

4. global theta1;  

5. global theta2;  

6. global theta3;  

7. global theta4;  

8. global theta5;  

9. global theta6;  

10.  

11. f = diff(P,eval(['theta' num2str(k)])); 

12. end 

 

Appendix B6 

1. function [ T ] = Trans( alpha, a, theta, d) 

2. T = [            cos(theta)           -sin(theta)           0             a; 

3.       sin(theta)*cos(alpha) cos(theta)*cos(alpha) -sin(alpha) -sin(alpha)*d; 

4.       sin(theta)*sin(alpha) cos(theta)*sin(alpha)  cos(alpha)  cos(alpha)*d; 

5.                           0                     0           0             1]; 

6. end 
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Appendix B7 

1. clc 

2. clear 

3.  

4. global tt; 

5. A = xlsread('D:\experiment.xlsx'); 

6. B  = size(A); 

7. length = B(1,1); 

8. T = 49; 

9. TT = 49; 

10. aa=1:1:length; 

11.  

12. joint = 17; 

13. tt = A(1:length,joint); 

14. hold on 

15. grid on 

16.  

17. tt = A(1:length,joint); 

18. plot(aa,tt(1:length,1),'k','linewidth',1.5); 

19. i=2; 

20. while i<= T 

21.         HMA(i,i); 

22.         A(i,joint)=WMA(i,1,i); 

23.         i=i+1; 

24. end     

25. while i<=length 

26.     if i ~= 72 

27.         A(i,joint)=HMA(i,T); 

28.         i=i+1; 

29.     else 

30.         old = i 

31.         222 

32.         newTT=i+T-2; 

33.         HMA(i,T); 

34.         i=i+1; 

35.         while i <=newTT 

36.             HMA(i,i-old+1); 

37.             A(i,joint)=WMA(i,1,i-old+1); 

38.             i=i+1; 

39.         end 

40.     end 

41. end 

42. plot(aa,A(1:length,joint),'r','linewidth',1.5); 

43.  
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Appendix B8 

1. global M; 

2.  

3. global theta1 theta2 theta3 theta4 theta5 theta6; 

4.  

5. global J6; 

6.  

7. A_1 = xlsread('D:\dualarm_experiment1.xls');%KF WMA 

8. A_2 = xlsread('D:\dualarm_experiment2.xls');%KF WMA 

9. Qcf     = diag([1500,1500,1500,1500,1500,1500]);%KF WMA  

10. Qcp_1   = diag([0,0.6,0.26,0.03,0,0]);%KF WMA 

11. Qcp_2   = diag([0,0.34,0.28,0.04,0,0]);%KF WMA 

12.  

13. i     = 1; 

14. Bc    = eye(12,6); 

15. Cc    = eye(6,12); 

16.  

17. Mc_1    = diag([0,12.932,12.6,13,0,0]);%motor1 constant 

18. Mc_2    = diag([0,12.9,12.7,13,0,0]);%motor2 constant 

19. x_1     = [0;0;0;0;0;0;0;0;0;0;0;0]; 

20. x_2     = [0;0;0;0;0;0;0;0;0;0;0;0]; 

21.  

22.  

23. Qc_1    = [Qcp_1 zeros(6,6);zeros(6,6) Qcf]; 

24. Qc_2    = [Qcp_2 zeros(6,6);zeros(6,6) Qcf]; 

25.  

26. data_1  = []; 

27. data_2  = []; 

28. data_3  = []; 

29.  

30. p_1     = eye(12,12); 

31. p_2     = eye(12,12); 

32.  

33. fri1_1  = diag([0,-0.8207,-1.495,-0.4154,0,0]); 

34. fri1_2  = [0;0.6996;0.71325;0.1577;0;0]; 

35.  

36. fri2_1  = diag([0,-0.5474,-0.9978,-0.4287,0,0]);%?? 

37. fri2_2  = [0;0.6564;0.572;0.1658;0;0]; 

38.  

39. while i <= 201 

40.     q_1     = [pi, A_1(i,4:6), pi/2, 0]; 

41.     q_2     = [pi, A_2(i,4:6), -pi/2, 0]; 

42.     qd_1    = [0, A_1(i,10:12), 0, 0]; 

43.     qd_2    = [0, A_2(i,10:12), 0, 0]; 

44.     m_1     = vpa(subs(M,{theta1,theta2,theta3,theta4,theta5,theta6},{q_1})); 

45.     m_2     = vpa(subs(M,{theta1,theta2,theta3,theta4,theta5,theta6},{q_2})); 

46.     Rc_1    = m_1*diag([0,0.000003,0.000002,0.000005,0,0])*transpose(m_1); 

47.     Rc_2    = m_2*diag([0,0.000003,0.000002,0.000005,0,0])*transpose(m_2); 

48.     R_1     = double(Rc_1/0.008); 

49.     R_2     = double(Rc_2/0.008); 
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50.   

51.     cd      = zeros(6,1); 

52.  

53.     gra_1   = vpa(subs([0;gravity(2);gravity(3);gravity(4);0;0],{theta1,theta2

,theta3,theta4,theta5,theta6},{q_1})); 

54.     gra_2   = vpa(subs([0;gravity(2);gravity(3);gravity(4);0;0],{theta1,theta2

,theta3,theta4,theta5,theta6},{q_2})); 

55.      

56.     u_1     = -

Mc_1*transpose([0  A_1(i,16:18) 0 0]) + cd - gra_1 - Mc_1*(fri1_1*transpose(qd

_1)+diag([0,-sign(qd_1(1,2)),-sign(qd_1(1,3)),-sign(qd_1(1,4)),0,0])*fri1_2); 

57.     u_2     = -

Mc_2*transpose([0  A_2(i,16:18) 0 0]) + cd - gra_2 - Mc_2*(fri2_1*transpose(qd

_2)+diag([0,-sign(qd_2(1,2)),-sign(qd_2(1,3)),-sign(qd_2(1,4)),0,0])*fri2_2); 

58.      

59.     Jaco_1    = vpa(-

transpose(subs(J6,{theta1,theta2,theta3,theta4,theta5,theta6},{q_1}))); 

60.     Jaco_2    = vpa(-

transpose(subs(J6,{theta1,theta2,theta3,theta4,theta5,theta6},{q_2}))); 

61.      

62.     Ac_1      = double([zeros(6,6) Jaco_1; zeros(6,6)  zeros(6,6)]); 

63.     Ac_2      = double([zeros(6,6) Jaco_2; zeros(6,6)  zeros(6,6)]); 

64.      

65.     [Ak_1,Bk_1] = c2d(Ac_1,Bc,0.008); 

66.     [Ak_2,Bk_2] = c2d(Ac_2,Bc,0.008); 

67.      

68.     GUO_1     = expm([-transpose(Ac_1) Qc_1; zeros(12,12) Ac_1]*0.008); 

69.     GUO_2     = expm([-transpose(Ac_2) Qc_2; zeros(12,12) Ac_2]*0.008); 

70.      

71.     M22_1     = GUO_1(13:24,13:24); 

72.     M12_1     = GUO_1(1:12,13:24); 

73.     M22_2     = GUO_2(13:24,13:24); 

74.     M12_2     = GUO_2(1:12,13:24);   

75.      

76.     Q_1       = transpose(M22_1)*M12_1;  

77.     Q_2       = transpose(M22_2)*M12_2;  

78.      

79.     xp_1      = Ak_1*x_1 + Bk_1*u_1; 

80.     xp_2      = Ak_2*x_2 + Bk_2*u_2; 

81.      

82.     pp_1      = Ak_1*p_1*transpose(Ak_1)+Q_1; 

83.     pp_2      = Ak_2*p_2*transpose(Ak_2)+Q_2; 

84.      

85.     aaa_1     = pp_1*transpose(Cc); 

86.     bb_1      = Cc*pp_1; 

87.     bbb_1     = bb_1*transpose(Cc); 

88.     bbbb_1    = double(bbb_1+R_1); 

89.      

90.     aaa_2     = pp_2*transpose(Cc); 

91.     bb_2      = Cc*pp_2; 

92.     bbb_2     = bb_2*transpose(Cc); 
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93.     bbbb_2    = double(bbb_2+R_2); 

94.      

95.     K_1       = aaa_1/bbbb_1; 

96.     K_2       = aaa_2/bbbb_2; 

97.      

98.     Y_1       = m_1*transpose(qd_1)+[0;0.000003;0.000002;0.000005;0;0]; 

99.     Y_2       = m_2*transpose(qd_2)+[0;0.000003;0.000002;0.000005;0;0]; 

100.      

101.     x_1       = xp_1 + K_1*[Y_1-Cc*xp_1]; 

102.     x_2       = xp_2 + K_2*[Y_2-Cc*xp_2]; 

103.     x_1       = [x_1(1:6,1); x_1(7,1); 0; x_1(9:10,1); 0; 0]; 

104.     x_2       = [x_2(1:6,1); x_2(7,1); 0; x_2(9:10,1); 0; 0]; 

105.     x_3       = x_1 + x_2; 

106.      

107.     p_1       = (eye(12,12)-K_1*Cc)*pp_1; 

108.     p_2       = (eye(12,12)-K_2*Cc)*pp_2; 

109.      

110.     data_1(i,1:6) = x_1(7:12,1); 

111.     data_2(i,1:6) = x_2(7:12,1); 

112.     data_3(i,1:6) = x_3(7:12,1); 

113.  

114. end 
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