10,567 research outputs found

    ConTaCT: Deciding to Communicate during Time-Critical Collaborative Tasks in Unknown, Deterministic Domains

    Get PDF
    Communication between agents has the potential to improve team performance of collaborative tasks. However, communication is not free in most domains, requiring agents to reason about the costs and benefits of sharing information. In this work, we develop an online, decentralized communication policy, ConTaCT, that enables agents to decide whether or not to communicate during time-critical collaborative tasks in unknown, deterministic environments. Our approach is motivated by real-world applications, including the coordination of disaster response and search and rescue teams. These settings motivate a model structure that explicitly represents the world model as initially unknown but deterministic in nature, and that de-emphasizes uncertainty about action outcomes. Simulated experiments are conducted in which ConTaCT is compared to other multi-agent communication policies, and results indicate that ConTaCT achieves comparable task performance while substantially reducing communication overhead

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconfiguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconfigurable STSs

    Cooperative localization for mobile agents: a recursive decentralized algorithm based on Kalman filter decoupling

    Full text link
    We consider cooperative localization technique for mobile agents with communication and computation capabilities. We start by provide and overview of different decentralization strategies in the literature, with special focus on how these algorithms maintain an account of intrinsic correlations between state estimate of team members. Then, we present a novel decentralized cooperative localization algorithm that is a decentralized implementation of a centralized Extended Kalman Filter for cooperative localization. In this algorithm, instead of propagating cross-covariance terms, each agent propagates new intermediate local variables that can be used in an update stage to create the required propagated cross-covariance terms. Whenever there is a relative measurement in the network, the algorithm declares the agent making this measurement as the interim master. By acquiring information from the interim landmark, the agent the relative measurement is taken from, the interim master can calculate and broadcast a set of intermediate variables which each robot can then use to update its estimates to match that of a centralized Extended Kalman Filter for cooperative localization. Once an update is done, no further communication is needed until the next relative measurement

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Asynchronous Decentralized Task Allocation for Dynamic Environments

    Get PDF
    This work builds on a decentralized task allocation algorithm for networked agents communicating through an asynchronous channel, by extending the Asynchronous Consensus-Based Bundle Algorithm (ACBBA) to account for more real time implementation issues resulting from a decentralized planner. This paper specfically talks to the comparisons between global and local convergence in asynchronous consensus algorithms. Also a feature called asynchronous replan is introduced to ACBBA's functionality that enables e ffcient updates to large changes in local situational awareness. A real-time software implementation using multiple agents communicating through the user datagram protocol (UDP) validates the proposed algorithm.United States. Air Force (grant FA9550-08-1-0086)United States. Air Force Office of Scientific Research (grant FA9550-08-1-0086)Aurora Flight Sciences Corp. (SBIR - FA8750-10-C-0107
    corecore