
ConTaCT : Deciding to Communicate during Time-Critical
Collaborative Tasks in Unknown, Deterministic Domains

Vaibhav V. Unhelkar and Julie A. Shah
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

{unhelkar, julie a shah}@csail.mit.edu

Abstract

Communication between agents has the potential to im-
prove team performance of collaborative tasks. However,
communication is not free in most domains, requiring
agents to reason about the costs and benefits of shar-
ing information. In this work, we develop an online,
decentralized communication policy, ConTaCT, that en-
ables agents to decide whether or not to communicate
during time-critical collaborative tasks in unknown, de-
terministic environments. Our approach is motivated by
real-world applications, including the coordination of
disaster response and search and rescue teams. These set-
tings motivate a model structure that explicitly represents
the world model as initially unknown but deterministic
in nature, and that de-emphasizes uncertainty about ac-
tion outcomes. Simulated experiments are conducted in
which ConTaCT is compared to other multi-agent com-
munication policies, and results indicate that ConTaCT
achieves comparable task performance while substan-
tially reducing communication overhead.

Introduction
Communication between agents has the potential to improve
team performance during collaborative tasks, but often has
associated costs. These costs may arise due to the power re-
quirements necessary to transmit data, computational require-
ments associated with processing new data, or the limitations
of human information processing resources (if the team in
question includes human agents). The benefit gleaned from
using newly communicated information may not necessarily
outweigh the associated costs, and excessive communication
can hamper collaborative task performance.

A number of works (Xuan, Lesser, and Zilberstein 2004;
Spaan, Gordon, and Vlassis 2006; Williamson, Gerding, and
Jennings 2009) have aimed to design communication strate-
gies that support agents in communicating only when nec-
essary, reducing communication overhead and potentially
improving collaborative task performance. Prior decision-
theoretic approaches for generating online communication
(Roth, Simmons, and Veloso 2005; Wu, Zilberstein, and
Chen 2011) have largely focused on tasks modeled us-
ing extensions of DEC-POMDP (Bernstein et al. 2002)

Copyright c� 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that include communications (Pynadath and Tambe 2002;
Goldman and Zilberstein 2003) and assume complete knowl-
edge of action and sensing uncertainty present in the model.
These approaches are particularly suited for multi-agent set-
tings that include uncertain outcomes from agents’ actions
and partially observable local states, and circumstances where
the associated uncertainty - namely, transition and observa-
tion probabilities - can be quantified a priori.

The focus of our work, in contrast, is a subclass of decen-
tralized, multi-robot problems wherein the world model is
initially unknown but deterministic in nature. In the DEC-
POMDP model, this corresponds to a setting with a deter-
ministic but initially unknown transition function. We are
motivated by real-world applications, including the coordi-
nation of disaster response teams, where agents can often
achieve the desired outcome from a chosen action in a ro-
bust fashion (e.g., through the use of dynamic controllers),
thereby de-emphasizing uncertainty about the outcomes of
actions. However, the world model is unknown at the out-
set, potentially precluding a priori generation of optimal or
even feasible plans. In addition, these domains are typically
time-critical, meaning that there are hard temporal deadlines
under which tasks must be completed. Finally, agents are
assumed to have prior knowledge of the planning behavior,
initial states and goal states of their collaborators.

The key contribution of this paper is an online, decentral-
ized communication strategy, ConTaCT, that allows an agent
to reason about whether to communicate to team members
during execution of a time-critical collaborative task within
an unknown, deterministic domain. By maintaining an esti-
mate of what other team members know about the domain,
the algorithm allows the agent to compare the expected bene-
fit of its decision against the cost of communication.

We begin with a formal definition of the subclass of the
multi-agent problems of interest, and highlight how it differs
from problems considered in prior art. Next, we describe the
ConTaCT algorithm and evaluate its performance of a simu-
lated task motivated by rescue operations in disaster response.
We compare ConTaCT with online communication policies
generated using an existing approach for multi-agent commu-
nication (Roth, Simmons, and Veloso 2005) applied to our
task model, and show that ConTaCT achieves comparable
task performance while substantially reducing communica-
tion overhead.

Preprint accepted at the
Thirtieth AAAI Conference on
Artificial Intelligence (AAAI-2016),
Phoenix, Arizona, 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78068639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Problem Definition
In this section, we define the decentralized, multi-agent com-
munication problem in the context of time-critical collabora-
tive tasks within unknown, deterministic domains. We specify
the model structure, objective function and solution repre-
sentation. In the following section, we highlight the need to
study the chosen subclass of communication problems and
call attention to its key differences from those assessed in
prior research.

Model Structure
Our model builds upon the factored, DEC-MDP framework
(Becker et al. 2004), which is transition and observation in-
dependent, locally fully observable and has null state space
corresponding to external features (Becker et al. 2004). We
incorporate additional model features to represent commu-
nication between agents and characteristics of time-critical
tasks. The model, which we call the “time-critical determin-
istic factored, DEC-MDP with communication” (TCD-DEC-
MDP-COM) model, is defined as follows:
• I is a finite set of agents i indexed 1, . . . , n.
• T ∈ Z+ denotes the time horizon of the problem.
• Si is a finite set of states, si, available to agent i. �S =

×i∈ISi is the set of joint states, where �s = �s1, . . . , sn�
denotes a joint state.

• ai ∈ Ai is a finite set of operation actions, ai, available
to agent i. �A = ×i∈IAi is the set of joint actions, where
�a = �a1, . . . , an� denotes a joint action.

• Pi is a Markovian state transition function (Pi : Si×Ai×
Si → {0, 1}), corresponding to agent i, which depends on
local states and actions. The joint state transition function
is given as P =

�
i∈I Pi, as we assume transition indepen-

dence. Note that Pi maps only to the discrete set {0, 1},
denoting deterministic transitions.

• Ci ∈ {0, 1} is the set of communication decisions avail-
able to the agent i. �C = ×i∈ICi is the set of joint commu-
nication decisions. The communication decision 0 repre-
sents no communication, while communication decision 1
indicates transmission of information to all agents. In order
to model the communication delays observed in practice,
we assume that communication is not instantaneous and
that information takes up to one time step to reach other
agents. At a given time step an agent may carry out an
operation action and communication simultaneously.

• Ria is the agent action reward function (Ria : Si ×Ai →
�), corresponding to agent i. It denotes the reward received
by agent i while initializing from state si(t) and taking
action ai(t).

• Ric is the agent communication reward function (Ric :
Si × Ci → �), corresponding to agent i. It denotes the
reward received by agent i for making communication
decision ci(t), while in state si(t).

• Rig is the agent goal reward function (Rig : Si → �)
corresponding to agent i. It denotes the reward received by
agent i based on its terminal state si(T). The agent goal
reward function is used to model the time-critical nature
of the task, and can serve to quantify the penalty for not
completing the subtask by the specified time.

• Ξi is the cumulative agent reward corresponding to agent
i, and is given as

Ξi = Rig (si(T)) +

T�

t=0

Ria (si(t), ai(t)) +Ric (ci(t))

• Ξ is the final team reward assigned at the end of the task,
and is given as Ξ = mini∈I Ξi. This definition of team
reward is chosen to reflect that the overall task is complete
if and only if all agent subtasks are complete.

Task Characteristics
Our model also incorporates following task characteristics1,
• The agents begin the task with incomplete information

about the domain. The true deterministic, Markovian state
transition function P is not accurately known to the agents
at the start of the problem, but an initial estimate of the
state transition function P̂ is common knowledge.

• On visiting a state s, an agent observes its own state as
well as some components of the transition function based
on a domain-dependent function ObserveDomain. The
ObserveDomain function depends on the previous estimate
of transition function P̂ i(t− 1) and the local state of the
agent si(t), and provides an updated estimate P̂ i(t).

• The initial state �s(0) and desired goal state �sg(T) for all
agents are pre-specified and common knowledge. The time
horizon, action and communication space, reward func-
tions and ObserveDomain function are also known to the
agents.

• The algorithm to generate action plans (i.e., the planning
technique) for each agent is specified and common knowl-
edge, and is denoted as ActionPlanner. This planner com-
pletely specifies the policy πi : Si → Ai of an agent i
given the initial state si(0), goal state sg,i(T) and transi-
tion function P̂ i used to generate the plan.

• Lastly, a communication message from an agent i includes
the agent’s local estimate of transition function P̂ i, an
indicator function Δi corresponding with the observed
components of P that it knows accurately, the joint state
�̂s i and its action policy πi.

Objective Function The objective of the agents is to com-
plete the task with maximum reward, represented as follows:

maxΞ = maxmin
i∈I

Ξi.

Solution Representation
Given the model structure, task characteristics and objective
function, our objective is to design a decentralized algorithm
that determines at each time step whether an agent should
re-plan for itself using newly observed information about the
environment and/or communicate this information to others,
in order to maximize team reward.
1Notation: ·̂ denotes an estimate. A superscript denotes the agent
maintaining the estimate. Two superscripts are equivalent to nested
superscripts. For instance, P̂ ji = (P̂ j)i and denotes estimate
maintained by agent i regarding the estimate of P maintained by
agent j.

Background and Prior Art
We review prior art related to multi-agent communication,
including task models and communication algorithms, and
discuss the distinguishing features of our approach.

Task Models The first decision-theoretic frameworks to de-
scribe multi-agent tasks with communication include COM-
MTDP (Pynadath and Tambe 2002) and DEC-POMDP-COM
(Goldman and Zilberstein 2003). These approaches extended
the DEC-POMDP (Bernstein et al. 2002) model to include
communication actions and their associated costs.

These models have since been augmented in a number of
ways. For example, the work of Spaan, Gordon, and Vlassis
modeled the noise within the communication channel. The
DEC-POMDP-Valued-COM framework (Williamson, Gerd-
ing, and Jennings 2008) augmented the model to include
communication rewards corresponding to information gain,
and used a heuristic to determine the contribution of that com-
munication to the total team reward. RS-DEC-POMDP im-
proved upon this by adopting a more principled approach to
merge communication and action rewards (Williamson, Gerd-
ing, and Jennings 2009). Most recently, Amato, Konidaris,
and Kaelbling developed a framework incorporating macro
actions for DEC-POMDPs capable of generating both actions
and communication (Amato et al. 2014).

TCD-DEC-MDP-COM, the task model proposed in this
paper, addresses a sub-class of multi-agent communication
problems by building upon the factored DEC-MDP model
(Becker et al. 2004) and incorporating communication actions
and costs similar to DEC-POMDP-COM. Our model is dis-
tinguished by additional features that represent time-critical
tasks and unknown but deterministic settings. By consider-
ing deterministic, factored DEC-MDP tasks, our model does
not include sensing or action uncertainties, thereby improv-
ing computational tractability. However, from the agent’s
perspective, we treat the transition function as an unknown.
Our model includes an additional terminal reward function
to model the associated time constraints; an alternate but
potentially computationally prohibitive approach would be
to include time-dependent reward functions by incorporat-
ing time as part of the state. Also, our model assumes non-
instantaneous, one-way communication to better capture the
impact of communication delays observed in practice.

Communication Algorithms Several prior approaches
have used sequential decision theory to determine when
agents should communicate in multi-agent settings. These
methods have ranged from offline, centralized approaches
that generate communication policies prior to task initiation
(Nair, Roth, and Yokoo 2004; Mostafa and Lesser 2009) to
decentralized algorithms that determine each agent’s commu-
nications during task execution (Xuan, Lesser, and Zilberstein
2004). Here, we review the online, decentralized approaches,
due to our focus on finite-horizon, time-critical tasks for
which agents must generate plans and make decisions about
communication during execution.

Roth, Simmons, and Veloso developed the DEC-COMM
algorithm, one of the first approaches to consider communi-
cation decisions during execution time. The DEC-COMM
algorithm requires agents to generate a centralized, offline

policy prior to execution. The agents maintain a joint belief
over the state of every agent and execute actions based on
the offline policy. Upon making observations about the en-
vironment, the agents weigh the expected benefit of sharing
this information against the cost of communication to decide
whether or not to communicate. Communication messages
include the agent’s observation history, and are assumed to
be transmitted instantaneously. This may result in multiple
communications at each time step. Once the information is
shared, agents re-compute the joint policy and follow it until
the next communication action. By using a pre-computed
joint policy and by not using local information until it is
communicated, agents maintain perfect predictability and
coordination. (Roth, Simmons, and Veloso 2005) also pre-
sented a variant DEC-COMM-PF that uses a particle filter
for maintaining estimates of possible joint beliefs to improve
computational tractability.

Wu, Zilberstein, and Chen designed MAOP-COMM, an
online communication algorithm that offers improved compu-
tational tractability and performance. The algorithm requires
that agents use only jointly known information when generat-
ing plans; however, agents are able to use local information
for task execution. The proposed communication policy re-
quires agents to communicate when their observations of the
environment are inconsistent with their pre-existing beliefs.
The MAOP-COMM algorithm is robust to communication
delays; however, it assumes that communication occurs ac-
cording to the synced communication model (Xuan, Lesser,
and Zilberstein 2004). Recently, an alternate approach to
communication has been developed by posing it as a sin-
gle agent in a team decision (SATD) problem (Amir, Grosz,
and Stern 2014). The authors proposed MDP-PRT, a novel
logical-decision theoretic approach that combines MDPs and
probabilistic recipe trees (Kamar, Gal, and Grosz 2009).

The decision-theoretic approaches to communication dis-
cussed above assume knowledge of the underlying transition
and observation probabilities, which is often not available in
real-world settings. Our problem definition assumes deter-
ministic transitions and perfect sensing on the part of each
agent, and instead requires agents to generate communica-
tion decisions in the absence of complete knowledge of the
deterministic transition function.

Communication for Time-Critical
Collaborative Tasks : ConTaCT

In this section, we describe the proposed algorithm, ConTaCT,
for the multi-agent problem of interest - namely, TCD-DEC-
MDP-COM with unknown transition function. The algorithm
operates in a decentralized fashion and allows each agent on
a team to make communication and re-planning decisions
during task execution, with the aim of maximizing the team
reward. The proposed algorithm includes the following three
components:

• the model representation maintained by each agent;
• algorithms to update the model with and without commu-

nication (model ‘propagate’ and ‘update’ rules); and
• an algorithm to generate communication and trigger re-

planning when warranted.

Essentially, the ConTaCT algorithm computes, at each time
step, the anticipated reward for communicating and re-
planning by maintaining an estimation of the knowledge of
the other agents. The output of the algorithm is the decision
whether or not to communicate and/or re-plan at each time
step. Below, we describe each of these three components.

Agent Model Representation
In order to carry out the multi-agent collaborative task, each
agent i must maintain its local action policy πi - also re-
ferred to as the agent’s plan. In addition to this, the ConTaCT
algorithm requires the agent i to maintain estimates of the
following:

• �̂s i, the joint state, and P̂ i, the transition function;
• π̂i

j , the action policy of other agents (j ∈ I \ i);
• P̂ ji, the transition function as estimated by other agents j;
• Δi, an indicator function (Δi : S × A × S → {0, 1})

defined over the same space as P , which maps to 1 if the
corresponding component of transition function is known
to i accurately and 0 otherwise; and

• Δi
j indicator function of other agents (j ∈ I \ i).

We denote the agent model as Mi : ��̂s i, P̂ i, P̂ ji,πi,
π̂i
j ,Δi,Δ

i
j�, where j denotes other agents; i.e., (j ∈ I \ i).

The estimates of joint state �̂s i and the transition functions
P̂ i and P̂ ji are initialized using the initial joint state and
an a priori estimate of the transition function, respectively,
both of which are common knowledge. All components of
the indicator functions Δi,Δ

i
j are initialized to 0. The local

action policy, π̂i, and estimates of the policies of other agents,
π̂i
j , are initialized using the known ActionPlanner, the initial

estimate of the transition function, and the known goal states.

Model Propagate and Update Rules
Borrowing terminology from estimation theory, the agent
carries out ‘propagate’ and ‘update’ procedures at each time
step to maintain reliable model estimates. During execution,
agent i propagates its model estimates at each time step in
the absence of any communications. Upon receiving new
information through incoming communication, the agent uses
this information to update its model.

Propagation comprises of two steps - ModelSelfPropagate
and ModelOtherPropagate (see Algorithms 1-2). In Model-
SelfPropagate, the agent updates knowledge about its local
state based on local observations, and updates �P̂ i,Δi� ac-
cording to the available information based on the domain-
dependent function ObserveDomain. For all the (s, a, s�) tu-
ples observed via ObserveDomain, the indicator function Δi

is set to 1. Thus, Δi quantifies the amount of knowledge
gathered regarding the unknown, deterministic domain. Ad-
ditionally, ModelSelfPropagate provides a binary output, bo,
which quantifies whether or not the agent received any new
information about the environment; bo is set to ‘true’ if the
estimate P̂i changes from its past value.

Propagation of estimates corresponding to another agent j -
i.e., (ŝij , P̂

ji, π̂i
j) - is carried out using ModelOtherPropagate.

This function additionally requires as input information about

Algorithm 1 ModelSelfPropagate
1: function MODELSELFPROPAGATE(Mi)
2: bo = false
3: si ← obtained from local observations ;
4: �P̂ i,Δi� ← updated based on ObserveDomain;
5: if change in the estimate P̂ i then
6: bo = true ;
7: end if
8: return Mi, bo
9: end function

Algorithm 2 ModelOtherPropagate
1: function MODELOTHERPROPAGATE(Mi, j, Cj)
2: if Cj = 0 then
3: ψ̂i

j ← ActionPlanner(ŝij , P̂ ji)
4: if EP̂ ji [Ξj(π̂

i
j)] < EP̂ ji [Ξj(ψ̂

i
j)] then

5: π̂i
j ← ψ̂i

j

6: end if
7: end if
8: âi

j ← π̂i
j(ŝ

i
j) ; ŝij ← argmax

sj
P̂ i
j (·|ŝij , âi

j)

9: P̂ ji ← SimulateObserveDomain(P̂ ji, ŝij , P̂
i)

10: return Mi

11: end function

whether or not agent j communicated during the previous
time step. In the event that agent j did not communicate, then
agent i first propagates the estimate of j’s policy, π̂i

j . This is
done by comparing the expected local reward of π̂i

j denoted2

as EP̂ ji [Ξj(π̂
i
j)], with that of a policy ψi

j after re-planning,
and choosing the latter if it results in a greater reward. Policies
of the agents that communicated during the previous time step
are known based on their communication, and do not need
to be recomputed during the propagation step. The policy
estimate is used to compute the previous action based on the
previous estimate of the agent state, which is then used to
estimate the current state. Lastly, agent i updates its estimate
of the transition function maintained by agent j, P̂ ji, by
using the SimulateObserveDomain function to simulate the
transition function update of agent j. This function simulates
ObserveDomain assuming the true transition function as P̂ i.

Similarly, the update step includes two substeps: ModelSel-
fUpdate and ModelOtherUpdate (see Algorithms 4-5). Both
these functions use MergeTransition, which merges the avail-
able information about the domain received from a sender
(P̂ s, Δs) into the receiver’s model (P̂ r, Δr). MergeTransi-
tion, described as Algorithm 3, updates a component of the
transition function if and only if the corresponding compo-
nent of the sender’s indicator function is 1. This ensures that
only observed information is used in the update. Further, in
the event of a conflict between the two models for which
Δs(�s�|�s,�a) = 0, the receiver retains its previous estimate.
Note that because we model one-way communication, only
the receiver’s estimate P̂ r and indicator function are updated.
Using the MergeTransition function, the ModelSelfUpdate
and ModelOtherUpdate incorporate the received information
in the agent’s model.

2The subscript of the expected value denotes the transition function
used to calculate the expected reward, which in this case is P̂ ji.

Algorithm 3 MergeTransition

1: function MERGETRANSITION(P̂ r , Δr , P̂ s, Δs)
2: for (�s,�a, �s� ∈ S ×A× S) do
3: if Δs(�s�|�s,�a) = 1 then
4: P̂r(�s�|�s,�a) ← P̂s(�s�|�s,�a) ; Δr(�s�|�s,�a) ← 1
5: end if
6: end for
7: return P̂ r , Δr
8: end function

Algorithm 4 ModelSelfUpdate

1: function MODELSELFUPDATE(Mi, j, P̂ j , sj , πj , Δj)
2: �P̂ i,Δi� ← MergeTransition(P̂ i,Δi, P̂

j ,Δj)

3: �P̂ ji, ŝij , π̂
i
j� ← �P̂ j , sj ,πj�

4: return Mi
5: end function

Algorithm 5 ModelOtherUpdate

1: function MODELOTHERUPDATE(Mi, j,P̂ j ,Δj)
2: for (k ∈ I \ i) do
3: �P̂ i

k,Δ
i
k� ← MergeTransition(P̂ i

k,Δ
i
k, P̂

j ,Δj)
4: end for
5: return Mi
6: end function

Making Replanning and Communication Decisions
The model of the agent obtained after the ‘update’ and ‘prop-
agate’ steps is used to make the re-planning and communi-
cation decisions. If an agent receives novel observations, as
indicated by bo, it has to decide whether to use this infor-
mation for re-planning, communicating, both or neither. Re-
planning its own actions without communicating may lead to
a loss of coordination, while communicating each time prior
to using the information may result in high communication
costs. Lastly, although not using observed information does
not lead to loss of coordination or any communication cost,
it may result in poor task performance due to use of a stale
model and plan. Thus, either option available to the agent can
potentially be the best decision, depending on the domain
and the problem state. To determine which decision is opti-
mal, the communicating agent must use its current model to
assess the impact of utilizing information unavailable to other
agents. To compare the benefits of the available choices, we
define the following three quantities of interest that must be
estimated after gathering new observations about the world:

• α, the team reward estimated to result from the previously
chosen policy if it is executed within the updated world
model. This may not be identical to the true reward, but
is the best estimate that the agent can calculate with the
available information. Given that the agent does not modify
its policy, coordination if present before is maintained.

• β, the team reward estimated to result from modifying the
policy locally but not communicating this modification to
other agents. This may result in better performance from
the agent; however, by not communicating the information,
the agent is at risk of poor coordination within the team.
The agent must calculate the potential gain in reward from
using the local information, and the potential reduction in
reward due to the possible poor coordination. However, no
communication costs must be factored in.

Algorithm 6 The ConTaCT algorithm
1: function CONTACT(Mi(t− 1), Cj(t− 1) ∀j ∈ I and

�P̂ j , sj ,πj ,Δj�∀j ∈ {I such that Cj(t− 1) = 1})
2: Calculate total number of communications within

the team since the previous time step: Nc =
�

j∈I Cj

3: ∀j ∈ {I \i such that Cj = 1}:
Mi ← ModelSelfUpdate (Mi, j, P̂

j , sj ,πj ,Δj)
4: �Mi, bo� ← ModelSelfPropagate (Mi)
5: ∀j ∈ {I \i}:

Mi←ModelOtherPropagate(Mi, j, Cj)
6: ∀j ∈ {I such that Cj = 1}:

Mi ← ModelOtherUpdate(Mi, j, P̂
j ,Δj)

7: if Nc = 1 then
8: ∀j ∈{I\(i, Cj =1)} : π̂i

j ←ActionPlanner(ŝij ,P̂ ji)
9: else if Nc > 1 then

10: ∀j ∈ {I\i} : π̂i
j ← ActionPlanner(ŝij , P̂ ji)

11: end if
12: if bo = true then
13: Calculate α, β, γ.
14: Select the maximum among α, β, γ.

In case of ties, prefer α over β over γ.
15: If maximum is β or γ :πi←ActionPlanner(si,P̂ i)
16: If maximum is γ : Ci ← 1
17: end if
18: return Mi(t), Ci(t)
19: end function

• γ, the team reward estimated to result from a globally
modified policy, wherein an agent communicates an ob-
servation, and all agents then work with a modified policy.
This includes the reward resulting from use of novel in-
formation and the communication cost; however, no costs
due to poor coordination must be factored in.

After receiving new observations, the agent calculates the
above three quantities and selects the option which results in
maximum expected reward among the three. To avoid redun-
dant communication, the agent performs this computation if
and only if its local observations contain novel information re-
garding the domain. In case of ties between α,β and γ, prefer-
ence in choosing the maximum is given in the order (α,β, γ).
This order is chosen to reduce the amount of re-planning and
communication in the team. The agent communicates if γ is
the maximum. The agent re-plans its actions if the maximum
is either β or γ. Upon receiving a new communication the
agent updates its model and re-plans its actions.

Algorithm 6 presents ConTaCT, which is called by each
agent at each time step. The algorithm includes the model
propagate and update steps, and the logic for deciding
whether to communicate and/or re-plan. The algorithm takes
as input agent i’s current model as of the previous timestep
Mi(t− 1) and the incoming communications since the pre-
vious timestep, Cj(t − 1) ∀j ∈ I and �P̂ j , sj ,πj ,Δj�∀j ∈
{I such that Cj(t− 1)=1}. The algorithm outputs agent i’s
updated model Mi(t) and its communication decision Ci(t).
In line 2, the agent i first computes the number of communi-
cations within the team since the previous time step, Nc. In
line 3-4, the agent uses the received communications (from
agents with Cj = 1) and local observations to improve its
model Mi. In line 4, the agent also computes bo, which indi-

cates whether new information regarding the environment is
observed. Next, the agent propagates its estimate of the transi-
tion and indicator functions maintained by other agents (line
5), and incorporates the effect of communication on them via
ModelOtherUpdate (line 6). The agent then recomputes plan
estimates π̂i

j using the updated model (lines 7-11). In case
of only one sender (Nc = 1), agent i recomputes its plan
estimates for other agents except for the sender (who does not
receive any new communication). When there are multiple
senders (Nc > 1), agent i recomputes plan estimates for all
the other agents, since all receive new information and ini-
tiate replanning. Lastly, in lines 12-17, if the agent receives
any novel information (bo = 1) it makes replanning and
communication decisions based on the parameters (α,β, γ).

Results
We empirically evaluate the efficacy of ConTaCT through
simulations of a multi-agent task motivated by rescue op-
erations during disaster response scenarios. In this section,
we briefly describe the simulated domain, the computational
policies against which we benchmark our algorithm and the
results of our simulation experiments.

Task Description We consider a hypothetical disaster re-
sponse scenario in which a team of first-responders answers
a rescue call. At the outset, the responders are distributed at
known starting locations, and the location of the person to
be rescued is known. We model the environment as a grid
world with obstacles. Decision making is fully decentralized
and the action planners used by each agent are known and
identical. For this scenario, action planning corresponds to
path planning and ActionPlanner is chosen as a single agent
path planner (Likhachev, Gordon, and Thrun 2003). A map
of the environment is available; however, it does not reflect
any changes to the environment resulting from the disaster.
This requires the responders to operate within a potentially
unknown environment. During execution the agents can ob-
serve their own state but not that of any other agent. Further,
the ObserveDomain function of our task model corresponds
to the agents being able to obtain true information regarding
the adjacent grids of the map during execution.

During the rescue operation, the responders have an op-
tion to communicate with one another. Each communica-
tion consists of an agent sharing their current, labeled map
of the environment (which may differ from the initial map
due to novel observations) with labels indicating whether or
not they know a part of the map accurately, their location
and trajectory, and their belief about location of each agent.
The communication takes up to one time step to reach other
agents. Further, there is a pre-specified cost associated with a
communication (−Ric). The objective of the responders is to
reach and rescue the person before a pre-specified deadline
while maximizing the team reward. The task is successfully
completed if and only if all the responders reach the rescue
location before the deadline.

Experiment Details The task is modeled as a TCD-DEC-
MDP-COM with unknown transitions. Agents incur an action
reward, Ria, of −1 in all states but for the goal state, and

terminal reward, Rig, of −106 if they do not reach their
goal by the deadline (time horizon). The chosen simulated
scenario is analogous to the benchmark problem Meeting in
a Grid (Bernstein et al. 2002); however, in our evaluation
action and sensing uncertainty is absent, and agents have the
additional challenge of reasoning with imperfect knowledge
of the transition function (map). We use a larger map and
team size in comparison to the prior work.

We evaluate the performance of ConTaCT on randomly
generated grid worlds with varying communication reward,
Ric. One fifth of the grids, on average, are labeled as ob-
stacles for the ground truth map of the environment. Each
agent’s initial knowledge of the map is imperfect; 30% of
grids, on average, are mislabeled either obstacle or free space
for the agents. The initial and goal states are common knowl-
edge and are sampled from a uniform distribution over the
obstacle-free grid squares.

The performance of ConTaCT is benchmarked against two
policies, no communication (NC) and re-plan only on com-
munication (RooC). The RooC baseline is implemented by
eliminating the β alternative from ConTaCT, and modify-
ing the propagate rule to reflect no communication implies
no re-planning. The RooC baseline is motivated by the al-
gorithm DEC-COMM (Roth, Simmons, and Veloso 2005)
designed for DEC-POMDPs with known transition functions.
In DEC-COMM agents do not use local information without
communicating it, and communicate only if the expected
reward of the new joint action post communication is higher
than that of the current joint action.

Discussion Table 1 summarizes the experimental results.
While average team reward is comparable for the tasks in
which all algorithms resulted in sucessful completion, teams
completed tasks successfully marginally more often with
RooC than with ConTaCT or NC. For instance, for the fifty
trials on a 10× 10 grid with five agents and Ric = −1,
teams using RooC succeeded in 39 tasks as opposed to the
35 and 26 tasks completed by teams using ConTaCT and NC,
respectively.

However, this marginal improvement in success rate of
RooC as compared to ConTaCT comes at the cost of signifi-
cantly higher numbers of communication messages. Agents
using RooC always communicate prior to using new informa-
tion, resulting in a marginally higher success rate but many
redundant communications. Teams communicated only 43
times using ConTaCT, as compared to 112 for RooC, a more
than two-fold difference. Similar trends are observed across
problems with different grid sizes, number of agents and com-
munication cost. Teams using ConTaCT achieve comparable
performance with more than a 60% reduction in the number
of communications.

ConTaCT’s comparable performance despite the small
number of communications is possible since each agent is
able to use information locally without necessarily communi-
cating the same. This is advantageous when the information
benefits only the local agent but not necessarily other mem-
bers of the team. Thus, the agent communicates if and only if
the information benefits the team and thereby maintains sim-
ilar task performance with less number of communications.

Table 1: Summary of Simulated Results.

ConTaCT Replan only on Communication No Communication

Grid Time Successful Total # Comm. Successful Total # Comm. Successful Total # Comm.
Size Agents Horizon Trials −Ric Tasks (%) across all trials Tasks (%) across all trials Tasks (%) across all trials

5×5 2 25 50 0 84 9 86 46 84 0
50 1 84 5 86 45 84 0
50 2 84 5 86 43 84 0

10×10 5 100 50 0 70 43 78 112 52 0
50 1 70 32 78 95 52 0
50 2 70 29 78 93 52 0

25×25 5 625 20 1 35 21 40 53 35 0

This behavior is especially desired in human-robot teams,
where excessive communication from an agent may hinder
the human’s task performance.

Since, the ConTaCT algorithm requires the agent to com-
municate and maintain estimates of its transition function, as
opposed to the observation history, the memory requirements
of the algorithm are fixed. For implementation in real sys-
tems, protocols may be designed that require the agents to
communicate only the difference between the current transi-
tion function and previous common knowledge to efficiently
use the available communication bandwidth. Lastly, we note
that the ConTaCT algorithm provides a general approach to
making communication decisions through the consideration
of parameters (α,β, γ) and can work with definitions of team
reward other than the one specified by our task model.

Conclusion
In this paper, we present a novel model, TCD-DEC-MDP-
COM, for representing time-critical collaborative tasks in
deterministic domains. This is motivated by applications, in-
cluding disaster response and search and rescue, where the
outcome of agents’ actions can be modeled as certain but
the environment is often initially unknown. We develop an
algorithm, ConTaCT, that generates re-planning and commu-
nication decisions for tasks modeled as a TCD-DEC-MDP-
COM with unknown transitions. Simulated experiments are
conducted for hypothetical rescue tasks. Results suggest that
ConTaCT has the potential to substantially reduce communi-
cation among agents without substantially sacrificing perfor-
mance in the task.

Acknowledgments
We thank Chongjie Zhang for useful discussions.

References
Amato, C.; Konidaris, G.; How, J. P.; and Kaelbling, L. P. 2014.
Decentralized Decision-Making Under Uncertainty for Multi-
Robot Teams. In the Workshop on Future of Multiple Robot
Research and its Multiple Identitie at IROS. IEEE.
Amato, C.; Konidaris, G. D.; and Kaelbling, L. P. 2014. Plan-
ning with macro-actions in decentralized POMDPs. In AAMAS.
Amir, O.; Grosz, B. J.; and Stern, R. 2014. To share or not to
share? the single agent in a team decision problem. In AAAI.

Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V. 2004.
Solving transition independent decentralized Markov decision
processes. JAIR 423–455.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.
Goldman, C. V., and Zilberstein, S. 2003. Optimizing informa-
tion exchange in cooperative multi-agent systems. In AAMAS.
Kamar, E.; Gal, Y.; and Grosz, B. J. 2009. Incorporating helpful
behavior into collaborative planning. In AAMAS.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*: Any-
time A* with provable bounds on sub-optimality. In advances
in NIPS.
Mostafa, H., and Lesser, V. 2009. Offline planning for commu-
nication by exploiting structured interactions in decentralized
MDPs. In International Conference on Intelligent Agent Tech-
nology, volume 2, 193–200.
Nair, R.; Roth, M.; and Yokoo, M. 2004. Communication for
improving policy computation in distributed POMDPs. In AA-
MAS, 1098–1105.
Pynadath, D. V., and Tambe, M. 2002. Multiagent teamwork:
Analyzing the optimality and complexity of key theories and
models. In AAMAS, 873–880.
Roth, M.; Simmons, R.; and Veloso, M. 2005. Reasoning about
joint beliefs for execution-time communication decisions. In
AAMAS.
Spaan, M. T.; Gordon, G. J.; and Vlassis, N. 2006. Decentral-
ized planning under uncertainty for teams of communicating
agents. In AAMAS, 249–256.
Williamson, S.; Gerding, E.; and Jennings, N. 2008. A prin-
cipled information valuation for communications during multi-
agent coordination. In Workshop on Multi-Agent Sequential De-
cision Making in Uncertain Domains at AAMAS.
Williamson, S. A.; Gerding, E. H.; and Jennings, N. R. 2009.
Reward Shaping for Valuing Communications During Multi-
Agent Coordination. In AAMAS, 641–648.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online planning for
multi-agent systems with bounded communication. Artificial
Intelligence 175(2):487–511.
Xuan, P.; Lesser, V.; and Zilberstein, S. 2004. Modeling Coop-
erative Multiagent Problem Solving as Decentralized Decision
Processes. In AAMAS.

