28 research outputs found

    Decentralized multi-agent reinforcement learning in average-reward dynamic DCOPs

    Get PDF
    Researchers have introduced the Dynamic Distributed Constraint Optimization Problem (Dynamic DCOP) formulation to model dynamically changing multi-agent coordination problems, where a dynamic DCOP is a sequence of (static canonical) DCOPs, each partially different from the DCOP preceding it. Existing work typically assumes that the problem in each time step is decoupled from the problems in other time steps, which might not hold in some applications. Therefore, in this paper, we make the following contributions: (i) We introduce a new model, called Markovian Dynamic DCOPs (MD-DCOPs), where the DCOP in the next time step is a function of the value assignments in the current time step; (ii) We introduce two distributed reinforcement learning algorithms, the Distributed RVI Q-learning algorithm and the Distributed R-learning algorithm, that balance exploration and exploitation to solve MD-DCOPs in an online manner; and (iii) We empirically evaluate them against an existing multi-arm bandit DCOP algorithm on dynamic DCOPs

    Coordinating decentralized learning and conflict resolution across agent boundaries

    Get PDF
    It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and coordinate in uncertain, dynamic environments, especially when they have large state spaces. It is also critical for agents operating in a multiagent system (MAS) to resolve conflicts among the learned policies of different agents, since such conflicts may have detrimental influence on the overall performance. The focus of this research is to use a reinforcement learning based local optimization algorithm within each agent to learn multiagent policies in a decentralized fashion. These policies will allow each agent to adapt to changes in environmental conditions while reorganizing the underlying multiagent network when needed. The research takes an adaptive approach to resolving conflicts that can arise between locally optimal agent policies. First an algorithm that uses heuristic rules to locally resolve simple conflicts is presented. When the environment is more dynamic and uncertain, a mediator-based mechanism to resolve more complicated conflicts and selectively expand the agents' state space during the learning process is harnessed. For scenarios where mediator-based mechanisms with partially global views are ineffective, a more rigorous approach for global conflict resolution that synthesizes multiagent reinforcement learning (MARL) and distributed constraint optimization (DCOP) is developed. These mechanisms are evaluated in the context of a multiagent tornado tracking application called NetRads. Empirical results show that these mechanisms significantly improve the performance of the tornado tracking network for a variety of weather scenarios. The major contributions of this work are: a state of the art decentralized learning approach that supports agent interactions and reorganizes the underlying network when needed; the use of abstract classes of scenarios/states/actions that efficiently manages the exploration of the search space; novel conflict resolution algorithms of increasing complexity that use heuristic rules, sophisticated automated negotiation mechanisms and distributed constraint optimization methods respectively; and finally, a rigorous study of the interplay between two popular theories used to solve multiagent problems, namely decentralized Markov decision processes and distributed constraint optimization

    Distributed Online Learning via Cooperative Contextual Bandits

    Full text link
    In this paper we propose a novel framework for decentralized, online learning by many learners. At each moment of time, an instance characterized by a certain context may arrive to each learner; based on the context, the learner can select one of its own actions (which gives a reward and provides information) or request assistance from another learner. In the latter case, the requester pays a cost and receives the reward but the provider learns the information. In our framework, learners are modeled as cooperative contextual bandits. Each learner seeks to maximize the expected reward from its arrivals, which involves trading off the reward received from its own actions, the information learned from its own actions, the reward received from the actions requested of others and the cost paid for these actions - taking into account what it has learned about the value of assistance from each other learner. We develop distributed online learning algorithms and provide analytic bounds to compare the efficiency of these with algorithms with the complete knowledge (oracle) benchmark (in which the expected reward of every action in every context is known by every learner). Our estimates show that regret - the loss incurred by the algorithm - is sublinear in time. Our theoretical framework can be used in many practical applications including Big Data mining, event detection in surveillance sensor networks and distributed online recommendation systems

    Multiagent systems: games and learning from structures

    Get PDF
    Multiple agents have become increasingly utilized in various fields for both physical robots and software agents, such as search and rescue robots, automated driving, auctions and electronic commerce agents, and so on. In multiagent domains, agents interact and coadapt with other agents. Each agent's choice of policy depends on the others' joint policy to achieve the best available performance. During this process, the environment evolves and is no longer stationary, where each agent adapts to proceed towards its target. Each micro-level step in time may present a different learning problem which needs to be addressed. However, in this non-stationary environment, a holistic phenomenon forms along with the rational strategies of all players; we define this phenomenon as structural properties. In our research, we present the importance of analyzing the structural properties, and how to extract the structural properties in multiagent environments. According to the agents' objectives, a multiagent environment can be classified as self-interested, cooperative, or competitive. We examine the structure from these three general multiagent environments: self-interested random graphical game playing, distributed cooperative team playing, and competitive group survival. In each scenario, we analyze the structure in each environmental setting, and demonstrate the structure learned as a comprehensive representation: structure of players' action influence, structure of constraints in teamwork communication, and structure of inter-connections among strategies. This structure represents macro-level knowledge arising in a multiagent system, and provides critical, holistic information for each problem domain. Last, we present some open issues and point toward future research

    Dynamic Continuous Distributed Constraint Optimization Problems

    Get PDF
    The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model multi-agent coordination problems that are distributed by nature. The formulation is suitable for problems where the environment does not change over time and where agents seek their value assignment from a discrete domain. However, in many real-world applications, agents often interact in a more dynamic environment and their variables usually require a more complex domain. Thus, the DCOP formulation lacks the capabilities to model the problems in such dynamic and complex environments. To address these limitations, researchers have proposed Dynamic DCOPs (D-DCOPs) to model how DCOPs dynamically change over time and Continuous DCOPs (C-DCOPs) to model DCOPs with continuous variables. The two models address the limitations of DCOPs but in isolation, and thus, it remains a challenge to model problems that have continuous variables and are in a dynamic environment. Therefore, this dissertation investigates a novel formulation that addresses the two limitations of DCOPs together by modeling both dynamic nature of the environment and continuous nature of the variables. Firstly, we propose Proactive Dynamic DCOPs (PD-DCOPs) which model and solve DCOPs in dynamic environment in a proactive manner. Secondly, we propose several C-DCOP algorithms that are efficient and we provide quality guarantee on their solution. Finally, we propose Dynamic Continuous DCOP (DC-DCOP), a novel formulation that models the DCOPs with continuous variables in a dynamic environment

    Distributed Gibbs: A linear-space sampling-based DCOP algorithm

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ
    corecore