92 research outputs found

    Decentralized Limited-Feedback Multiuser MIMO for Temporally Correlated Channels

    Get PDF

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Adaptive Bit Partitioning for Multicell Intercell Interference Nulling with Delayed Limited Feedback

    Full text link
    Base station cooperation can exploit knowledge of the users' channel state information (CSI) at the transmitters to manage co-channel interference. Users have to feedback CSI of the desired and interfering channels using finite-bandwidth backhaul links. Existing codebook designs for single-cell limited feedback can be used for multicell cooperation by partitioning the available feedback resources between the multiple channels. In this paper, a new feedback-bit allocation strategy is proposed, as a function of the delays in the communication links and received signal strengths in the downlink. Channel temporal correlation is modeled as a function of delay using the Gauss-Markov model. Closed-form expressions for bit partitions are derived to allocate more bits to quantize the stronger channels with smaller delays and fewer bits to weaker channels with larger delays, assuming random vector quantization. Cellular network simulations are used to show that the proposed algorithm yields higher sum-rates than an equal-bit allocation technique.Comment: Submitted to IEEE Transactions on Signal Processing, July 201

    Distributed Learning Policies for Power Allocation in Multiple Access Channels

    Full text link
    We analyze the problem of distributed power allocation for orthogonal multiple access channels by considering a continuous non-cooperative game whose strategy space represents the users' distribution of transmission power over the network's channels. When the channels are static, we find that this game admits an exact potential function and this allows us to show that it has a unique equilibrium almost surely. Furthermore, using the game's potential property, we derive a modified version of the replicator dynamics of evolutionary game theory which applies to this continuous game, and we show that if the network's users employ a distributed learning scheme based on these dynamics, then they converge to equilibrium exponentially quickly. On the other hand, a major challenge occurs if the channels do not remain static but fluctuate stochastically over time, following a stationary ergodic process. In that case, the associated ergodic game still admits a unique equilibrium, but the learning analysis becomes much more complicated because the replicator dynamics are no longer deterministic. Nonetheless, by employing results from the theory of stochastic approximation, we show that users still converge to the game's unique equilibrium. Our analysis hinges on a game-theoretical result which is of independent interest: in finite player games which admit a (possibly nonlinear) convex potential function, the replicator dynamics (suitably modified to account for nonlinear payoffs) converge to an eps-neighborhood of an equilibrium at time of order O(log(1/eps)).Comment: 11 pages, 8 figures. Revised manuscript structure and added more material and figures for the case of stochastically fluctuating channels. This version will appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Wireless Communication

    Limited feedback MIMO techniques for temporally correlated channels and linear receivers

    Get PDF
    Advanced mobile wireless networks will make extensive use of multiantenna (MIMO) transceivers to comply with high requirements of data rates and reliability. The use of feedback channels is of paramount importance to achieve this goal in systems employing frequency division duplexing (FDD). The design of the feedback mechanism is challenging due to the severe constraints imposed by computational complexity and feedback bandwidth restrictions. This thesis addresses the design of transmission strategies in both single-user and multi-user MIMO systems, based on compact feedback messages. First, recursive feedback mechanisms for single-user transmission scenarios are proposed, including stochastic gradient techniques, deterministic updates based on Givens rotations and low computational complexity schemes based on partial update filtering concepts. Thereafter, channel feedback algorithms are proposed, and a convergence analysis for static channels is presented. These algorithms can be used to provide channel side information to any multi-user MIMO solution. A limited-feedback decentralized multi-user MIMO solution is proposed, which avoids the need for explicit channel feedback. A feed-forward technique is proposed, which allows our methods to operate in presence of feedback errors. The performance of all the proposed algorithms is illustrated via link-level simulations, where the effect of different parameter values is assessed. Our results show that the proposed methods outperform existing limited-feedback counterparts over a range of low to medium mobile speeds, for moderate antenna array sizes that are deemed practical for commercial deployment. The computational complexity reduction of some of the proposed algorithms is also shown to be considerable, when compared to existing techniques

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.
    corecore