58 research outputs found

    Fusing Censored Dependent Data for Distributed Detection

    Full text link
    In this paper, we consider a distributed detection problem for a censoring sensor network where each sensor's communication rate is significantly reduced by transmitting only "informative" observations to the Fusion Center (FC), and censoring those deemed "uninformative". While the independence of data from censoring sensors is often assumed in previous research, we explore spatial dependence among observations. Our focus is on designing the fusion rule under the Neyman-Pearson (NP) framework that takes into account the spatial dependence among observations. Two transmission scenarios are considered, one where uncensored observations are transmitted directly to the FC and second where they are first quantized and then transmitted to further improve transmission efficiency. Copula-based Generalized Likelihood Ratio Test (GLRT) for censored data is proposed with both continuous and discrete messages received at the FC corresponding to different transmission strategies. We address the computational issues of the copula-based GLRTs involving multidimensional integrals by presenting more efficient fusion rules, based on the key idea of injecting controlled noise at the FC before fusion. Although, the signal-to-noise ratio (SNR) is reduced by introducing controlled noise at the receiver, simulation results demonstrate that the resulting noise-aided fusion approach based on adding artificial noise performs very closely to the exact copula-based GLRTs. Copula-based GLRTs and their noise-aided counterparts by exploiting the spatial dependence greatly improve detection performance compared with the fusion rule under independence assumption

    Fusing Dependent Decisions for Hypothesis Testing with Heterogeneous Sensors

    Get PDF
    In this paper, we consider a binary decentralized detection problem where the local sensor observations are quantized before their transmission to the fusion center. Sensor observations, and hence their quantized versions, may be heterogeneous as well as statistically dependent. A composite binary hypothesis testing problem is formulated, and a copula-based generalized likelihood ratio test (GLRT) based fusion rule is derived given that the local sensors are uniform multi-level quantizers. An alternative computationally efficient fusion rule is also designed which involves injecting a deliberate random disturbance to the local sensor decisions before fusion. Although the introduction of external noise causes a reduction in the received signal to noise ratio, it is shown that the proposed approach can result in a detection performance comparable to the GLRT detector without external noise, especially when the number of quantization levels is larg

    Copula-based Multimodal Data Fusion for Inference with Dependent Observations

    Get PDF
    Fusing heterogeneous data from multiple modalities for inference problems has been an attractive and important topic in recent years. There are several challenges in multi-modal fusion, such as data heterogeneity and data correlation. In this dissertation, we investigate inference problems with heterogeneous modalities by taking into account nonlinear cross-modal dependence. We apply copula based methodology to characterize this dependence. In distributed detection, the goal often is to minimize the probability of detection error at the fusion center (FC) based on a fixed number of observations collected by the sensors. We design optimal detection algorithms at the FC using a regular vine copula based fusion rule. Regular vine copula is an extremely flexible and powerful graphical model used to characterize complex dependence among multiple modalities. The proposed approaches are theoretically justified and are computationally efficient for sensor networks with a large number of sensors. With heterogeneous streaming data, the fusion methods applied for processing data streams should be fast enough to keep up with the high arrival rates of incoming data, and meanwhile provide solutions for inference problems (detection, classification, or estimation) with high accuracy. We propose a novel parallel platform, C-Storm (Copula-based Storm), by marrying copula-based dependence modeling for highly accurate inference and a highly-regarded parallel computing platform Storm for fast stream data processing. The efficacy of C-Storm is demonstrated. In this thesis, we consider not only decision level fusion but also fusion with heterogeneous high-level features. We investigate a supervised classification problem by fusing dependent high-level features extracted from multiple deep neural network (DNN) classifiers. We employ regular vine copula to fuse these high-level features. The efficacy of the combination of model-based method and deep learning is demonstrated. Besides fixed-sample-size (FSS) based inference problems, we study a distributed sequential detection problem with random-sample-size. The aim of the distributed sequential detection problem in a non-Bayesian framework is to minimize the average detection time while satisfying the pre-specified constraints on probabilities of false alarm and miss detection. We design local memory-less truncated sequential tests and propose a copula based sequential test at the FC. We show that by suitably designing the local thresholds and the truncation window, the local probabilities of false alarm and miss detection of the proposed local decision rules satisfy the pre-specified error probabilities. Also, we show the asymptotic optimality and time efficiency of the proposed distributed sequential scheme. In large scale sensors networks, we consider a collaborative distributed estimation problem with statistically dependent sensor observations, where there is no FC. To achieve greater sensor transmission and estimation efficiencies, we propose a two-step cluster-based collaborative distributed estimation scheme. In the first step, sensors form dependence driven clusters such that sensors in the same cluster are dependent while sensors from different clusters are independent, and perform copula-based maximum a posteriori probability (MAP) estimation via intra-cluster collaboration. In the second step, the estimates generated in the first step are shared via inter-cluster collaboration to reach an average consensus. The efficacy of the proposed scheme is justified

    MAC-PHY Frameworks For LTE And WiFi Networks\u27 Coexistence Over The Unlicensed Band

    Get PDF
    The main focus of this dissertation is to address these issues and to analyze the interactions between LTE and WiFi coexisting on the unlicensed spectrum. This can be done by providing some improvements in the first two communication layers in both technologies. Regarding the physical (PHY) layer, efficient spectrum sensing and data fusion techniques that consider correlated spectrum sensing readings at the LTE/WiFi users (sensors) are needed. Failure to consider such correlation has been a major shortcoming of the literature. This resulted in poorly performing spectrum sensing systems if such correlation is not considered in correlated-measurements environments

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance

    Hypothesis Testing Using Spatially Dependent Heavy-Tailed Multisensor Data

    Get PDF
    The detection of spatially dependent heavy-tailed signals is considered in this dissertation. While the central limit theorem, and its implication of asymptotic normality of interacting random processes, is generally useful for the theoretical characterization of a wide variety of natural and man-made signals, sensor data from many different applications, in fact, are characterized by non-Gaussian distributions. A common characteristic observed in non-Gaussian data is the presence of heavy-tails or fat tails. For such data, the probability density function (p.d.f.) of extreme values decay at a slower-than-exponential rate, implying that extreme events occur with greater probability. When these events are observed simultaneously by several sensors, their observations are also spatially dependent. In this dissertation, we develop the theory of detection for such data, obtained through heterogeneous sensors. In order to validate our theoretical results and proposed algorithms, we collect and analyze the behavior of indoor footstep data using a linear array of seismic sensors. We characterize the inter-sensor dependence using copula theory. Copulas are parametric functions which bind univariate p.d.f. s, to generate a valid joint p.d.f. We model the heavy-tailed data using the class of alpha-stable distributions. We consider a two-sided test in the Neyman-Pearson framework and present an asymptotic analysis of the generalized likelihood test (GLRT). Both, nested and non-nested models are considered in the analysis. We also use a likelihood maximization-based copula selection scheme as an integral part of the detection process. Since many types of copula functions are available in the literature, selecting the appropriate copula becomes an important component of the detection problem. The performance of the proposed scheme is evaluated numerically on simulated data, as well as using indoor seismic data. With appropriately selected models, our results demonstrate that a high probability of detection can be achieved for false alarm probabilities of the order of 10^-4. These results, using dependent alpha-stable signals, are presented for a two-sensor case. We identify the computational challenges associated with dependent alpha-stable modeling and propose alternative schemes to extend the detector design to a multisensor (multivariate) setting. We use a hierarchical tree based approach, called vines, to model the multivariate copulas, i.e., model the spatial dependence between multiple sensors. The performance of the proposed detectors under the vine-based scheme are evaluated on the indoor footstep data, and significant improvement is observed when compared against the case when only two sensors are deployed. Some open research issues are identified and discussed

    Decision-Making with Heterogeneous Sensors - A Copula Based Approach

    Get PDF
    Statistical decision making has wide ranging applications, from communications and signal processing to econometrics and finance. In contrast to the classical one source-one receiver paradigm, several applications have been identified in the recent past that require acquiring data from multiple sources or sensors. Information from the multiple sensors are transmitted to a remotely located receiver known as the fusion center which makes a global decision. Past work has largely focused on fusion of information from homogeneous sensors. This dissertation extends the formulation to the case when the local sensors may possess disparate sensing modalities. Both the theoretical and practical aspects of multimodal signal processing are considered. The first and foremost challenge is to \u27adequately\u27 model the joint statistics of such heterogeneous sensors. We propose the use of copula theory for this purpose. Copula models are general descriptors of dependence. They provide a way to characterize the nonlinear functional relationships between the multiple modalities, which are otherwise difficult to formalize. The important problem of selecting the `best\u27 copula function from a given set of valid copula densities is addressed, especially in the context of binary hypothesis testing problems. Both, the training-testing paradigm, where a training set is assumed to be available for learning the copula models prior to system deployment, as well as generalized likelihood ratio test (GLRT) based fusion rule for the online selection and estimation of copula parameters are considered. The developed theory is corroborated with extensive computer simulations as well as results on real-world data. Sensor observations (or features extracted thereof) are most often quantized before their transmission to the fusion center for bandwidth and power conservation. A detection scheme is proposed for this problem assuming unifom scalar quantizers at each sensor. The designed rule is applicable for both binary and multibit local sensor decisions. An alternative suboptimal but computationally efficient fusion rule is also designed which involves injecting a deliberate disturbance to the local sensor decisions before fusion. The rule is based on Widrow\u27s statistical theory of quantization. Addition of controlled noise helps to \u27linearize\u27 the higly nonlinear quantization process thus resulting in computational savings. It is shown that although the introduction of external noise does cause a reduction in the received signal to noise ratio, the proposed approach can be highly accurate when the input signals have bandlimited characteristic functions, and the number of quantization levels is large. The problem of quantifying neural synchrony using copula functions is also investigated. It has been widely accepted that multiple simultaneously recorded electroencephalographic signals exhibit nonlinear and non-Gaussian statistics. While the existing and popular measures such as correlation coefficient, corr-entropy coefficient, coh-entropy and mutual information are limited to being bivariate and hence applicable only to pairs of channels, measures such as Granger causality, even though multivariate, fail to account for any nonlinear inter-channel dependence. The application of copula theory helps alleviate both these limitations. The problem of distinguishing patients with mild cognitive impairment from the age-matched control subjects is also considered. Results show that the copula derived synchrony measures when used in conjunction with other synchrony measures improve the detection of Alzheimer\u27s disease onset

    One-bit Compressed Sensing in the Presence of Noise

    Get PDF
    Many modern real-world systems generate large amounts of high-dimensional data stressing the available computing and signal processing systems. In resource-constrained settings, it is desirable to process, store and transmit as little amount of data as possible. It has been shown that one can obtain acceptable performance for tasks such as inference and reconstruction using fewer bits of data by exploiting low-dimensional structures on data such as sparsity. This dissertation investigates the signal acquisition paradigm known as one-bit compressed sensing (one-bit CS) for signal reconstruction and parameter estimation. We first consider the problem of joint sparse support estimation with one-bit measurements in a distributed setting. Each node observes sparse signals with the same but unknown support. The goal is to minimize the probability of error of support estimation. First, we study the performance of maximum likelihood (ML) estimation of the support set from one-bit compressed measurements when all these measurements are available at the fusion center. We provide a lower bound on the number of one-bit measurements required per node for vanishing probability of error. Though the ML estimator is optimal, its computational complexity increases exponentially with the signal dimension. So, we propose computationally tractable algorithms in a centralized setting. Further, we extend these algorithms to a decentralized setting where each node can communicate only with its one-hop neighbors. The proposed method shows excellent estimation performance even in the presence of noise. In the second part of the dissertation, we investigate the problem of sparse signal reconstruction from noisy one-bit compressed measurements using a signal that is statistically dependent on the compressed signal as an aid. We refer to this signal as side-information. We consider a generalized measurement model of one-bit CS where noise is assumed to be added at two stages of the measurement process- a) before quantizationand b) after quantization. We model the noise before quantization as additive white Gaussian noise and the noise after quantization as a sign-flip noise generated from a Bernoulli distribution. We assume that the SI at the receiver is noisy. The noise in the SI can be either in the support or in the amplitude, or both. This nature of the noise in SI suggests that the noise has a sparse structure. We use additive independent and identically distributed Laplacian noise to model such sparse nature of the noise. In this setup, we develop tractable algorithms that approximate the minimum mean square error (MMSE) estimator of the signal. We consider the following three different SI-based scenarios: 1. The side-information is assumed to be a noisy version of the signal. The noise is independent of the signal and follows the Laplacian distribution. We do not assume any temporal dependence in the signal.2. The signal exhibits temporal dependencies between signals at the current time instant and the previous time instant. The temporal dependence is modeled using the birth-death-drift (BDD) model. The side-information is a noisy version of the previous time instant signal, which is statistically dependent on the signal as defined by the BDD model. 3. The SI available at the receiver is heterogeneous. The signal and side-information are from different modalities and may not share joint sparse representation. We assume that the SI and the sparse signal are dependent and use the Copula function to model the dependence. In each of these scenarios, we develop generalized approximate message passing-based algorithms to approximate the minimum mean square error estimate. Numerical results show the effectiveness of the proposed algorithm. In the final part of the dissertation, we propose two one-bit compressed sensing reconstruction algorithms that use a deep neural network as a prior on the signal. In the first algorithm, we use a trained Generative model such as Generative Adversarial Networks and Variational Autoencoders as a prior. This trained network is used to reconstruct the compressed signal from one-bit measurements by searching over its range. We provide theoretical guarantees on the reconstruction accuracy and sample complexity of the presented algorithm. In the second algorithm, we investigate an untrained neural network architecture so that it acts as a good prior on natural signals such as images and audio. We formulate an optimization problem to reconstruct the signal from one-bit measurements using this untrained network. We demonstrate the superior performance of the proposed algorithms through numerical results. Further, in contrast to competing model-based algorithms, we demonstrate that the proposed algorithms estimate both direction and magnitude of the compressed signal from one-bit measurements

    Decentralized Narrowband and Wideband Spectrum Sensing with Correlated Observations

    Get PDF
    This dissertation evaluates the utility of several approaches to the design of good distributed sensing systems for both narrowband and wideband spectrum sensing problems with correlated sensor observations
    corecore