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Fusing Dependent Decisions for Hypothesis

Testing with Heterogeneous Sensors
Satish G. Iyengar, Ruixin Niu, Senior Member, IEEE, and, Pramod K. Varshney, Fellow, IEEE

Abstract

In this paper, we consider a binary decentralized detection problem where the local sensor obser-

vations are quantized before their transmission to the fusion center. Sensor observations, and hence

their quantized versions, may be heterogeneous as well as statistically dependent. A composite binary

hypothesis testing problem is formulated, and a copula-based generalized likelihood ratio test (GLRT)

based fusion rule is derived given that the local sensors are uniform multi-level quantizers. An alternative

computationally efficient fusion rule is also designed which involves injecting a deliberate random

disturbance to the local sensor decisions before fusion. Although the introduction of external noise

causes a reduction in the received signal to noise ratio, it is shown that the proposed approach can result

in a detection performance comparable to the GLRT detector without external noise, especially when the

number of quantization levels is large.

Index Terms

Multimodal signals, Statistical dependence, Copula theory, Hypothesis testing, Multisensor fusion,

Quantization, Stochastic Resonance

I. INTRODUCTION

Decentralized detection has long been an active and important research area [1]. One of the earliest

applications to have motivated research in decentralized detection was distributed radar where it was
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essential to compress data at each (local) radar before relaying it to a fusion center (see [2] and

references therein). More recently, decentralized detection has found applications in sensor networks.

Recent technological advances have enabled the deployment of multiple low cost sensors to monitor a

region of interest (ROI) for reliable detection, estimation and/or tracking of events. Each sensor is usually

programmed to send only quantized versions of its measurements to a remotely located fusion center

due to communication bandwidth and power constraints. The fusion center then consolidates receptions

from all the sensors to make a global inference.

The design of a distributed detection system involves designing the local and fusion center decision

rules under different criteria and constraints [1], [3], [4]. Under the assumption that local observations are

conditionally independent given the hypothesis, and the fusion center receives the local sensor outputs

without any loss, the optimality of the LRT for local sensor decision rules under the Bayesian criterion

and the Neyman-Pearson criterion have been proved in [5] and [6]. However, the problem becomes highly

complex when conditional independence assumption does not hold. The LR based decision rules at the

local sensors may no longer result in an optimal system design [7], [8]. It has also been shown that

distributed detection with dependent observations is an NP-complete problem; it cannot be solved using

a polynomial time algorithm [9], [10]. The problem is usually simplified by constraining the local sensors

to be binary quantizers. In [11], Drakopoulos and Lee have derived a rule for fusing correlated decisions

under the assumption that the correlation coefficients between the sensor decisions are known and local

sensor thresholds generating the correlated decisions are given. Kam et. al [12], employed another

approach, namely, the Bahadur-Lazarsfeld series expansion of probability density functions (PDFs) to

derive the optimum fusion rule for correlated local decisions. It was, however, assumed that the joint

distribution of sensor observations was completely known. In this paper, we consider the scenario in

which the dependence structure and hence the joint distribution between the sensor observations may

be unknown. Such problems are typical of sensor networks that consist of heterogeneous sensors, i.e.,

sensors with disparate sensing modalities. For example, it is not immediately clear how one could model

the complex relationship between observations of an audio and a video sensor monitoring a common

ROI.

The problem of binary hypothesis testing with heterogeneous sensors has been considered in our earlier

work [13], where we developed a parametric framework using the statistical theory of copulas. While

designing the copula based fusion rule in [13], it was, however, assumed that the fusion center has access

to the exact real-valued (analog) version of the locally processed data. In many cases such as in WSNs

discussed above, there could be limitations on both the transmission power and the bandwidth available

May 17, 2012 DRAFT



3

for sensor-to-fusion center communication. It may, thus, be necessary to quantize the information at each

sensor before its transmission to the fusion center. Our goal, in this paper, is to design a decision fusion

rule based on copula theory, for combining quantized heterogeneous information, thereby significantly

extending the formulation and results in [13]. We note here that the application of copula theory for fusing

correlated decisions has been recently considered in [14]. The local sensors were binary quantizers, and

it was assumed that the true copula function generating the data under each hypothesis is known a priori

but for some parameters. In this work, we relax this assumption and consider the case when the copula

function used to model the dependence structure between the variables may be “misspecified”, i.e., the

chosen copula density may not accurately characterize inter-sensor dependence. The formulation is also

extended to include multi-bit quantizers at the local sensors.

As will be evident later, one of the main limitations of the copula-based generalized likelihood ratio

test (GLRT) for fusing discrete decisions is the considerable increase in computational complexity as

the number of sensors and/or quantization levels increases. For example, a system with N sensors each

with an M -level quantizer requires the computation of N -dimensional integrals, and optimization over

an N(N−1)
2 -dimensional space for maximum likelihood (ML) estimation of parameters associated with

elliptical copulas such as the Gaussian and t-copula functions [15]. This issue of computational complexity

is also addressed in this paper, and an alternative computationally efficient fusion rule is proposed that

involves deliberately adding external noise to the quantized observations before fusion. We call this

noise, the low pass filter (LPF) noise for reasons that will become clear later. The approach completely

eliminates the necessity to compute the multidimensional integrals and greatly simplifies the fusion rule.

However, the reduced complexity comes at the cost of the decreased signal to noise ratio (SNR) at the

fusion center. Thus, the key to the success of this approach is a “good” design of the LPF noise, i.e., we

need to derive the form of the LPF-noise PDF that would introduce minimal distortion. We present an

approach based on Widrow’s additive quantization noise model. Our approach is similar to Gustafsson

and Karlsonn [16] who have considered the problem of estimating a deterministic parameter in noise

using quantized observations. However, unlike [16], where the authors propose to inject the artificial

dither noise before quantization, we add the deliberate disturbance post quantization, and at the fusion

center. As we show later, the addition of noise after quantization is equivalent to low pass filtering in the

characteristic function (CF) domain, unlike dithering which amounts to anti-alias filtering [16], [17].

The paper is organized as follows. The problem is formulated in Section II, and a copula based rule

for fusing dependent local sensor decisions is derived in Sections III and IV. Section V addresses the

issue of computational complexity associated with the fusion rule derived in the previous sections. An
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alternative computationally efficient fusion rule based on Widrow’s statistical theory of quantization is

proposed here. An illustrative example is presented in Section VI to elucidate the theory presented in the

previous sections. In Section VII, we identify a class of problems for which the detector threshold can be

determined to achieve a desired false alarm rate. We summarize our paper and provide some concluding

remarks in Section VIII.

II. PROBLEM FORMULATION

The problem of signal detection is formulated as a binary hypothesis test where the hypothesis H1

indicates the presence of a signal, while H0 indicates its absence. A total of N sensors are used to

collect observations, Zn, for n = 1, . . . , N . Observations at each sensor n are independent and identically

distributed (i.i.d.) over time with PDFs fn(zn;ψn) and gn(zn;λn) under H1 and H0 respectively, where

ψn and λn are distributional parameters. We assume that these marginal PDFs are well-specified under

both hypotheses (see Definition 1 below).

Definition 1. Well-specified model (White 1994 [18])

A parametric model {f(x; Θ)} is well-specified for a random variable X if there exists a unique θ
′ ∈ Θ

such that f(x; θ
′
) ∈ {f(x; Θ)} corresponds to the true density of X . Otherwise, {f(x; Θ)} is said to be

misspecified for X .

However, no knowledge is assumed regarding the dependence structure between the heterogeneous

data streams. We approximate this dependence using copula functions (see Section II-A below). Sensor

observations are further passed through uniform multi-level quantizers (see Fig. 1) before their trans-

mission to a remotely located fusion center. The input-output transfer function of the quantizer at each

sensor is shown in Fig. 2. Thus, the quantizer output, during any time interval 1 ≤ l ≤ L, can be given

as

unl = Qm(znl) =


−mnqn − qn

2 , znl < −mnqn,

qnb znlqn c+ qn
2 , −mnqn < znl ≤ mnqn,

mnqn + qn
2 , znl ≥ mnqn,

(1)

where, qn and 2(mn + 1) correspond to the quantizer step size and the number of quantization levels

respectively, at sensor n. Further, bxc stands for the floor operation that denotes an integer smaller

than or equal to x. The quantized value at sensor n can be represented with an integer in = −mn −

1,−mn, . . . ,mn + 1. In this paper, we do not consider quantizer saturation errors. That is, we assume
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Fig. 1. Distributed heterogeneous sensor network: A parallel architecture.

that the dynamic range of the (analog) signal input to the quantizer is well within the lower and upper

limits of the quantizer.

Observations thus received at the fusion center are used to estimate the unknown model parameters,

and a GLRT based fusion rule is employed for global decision making. In addition to estimating the

model parameters, the selection of copula densities is also embedded in the GLRT formulation and is

thus performed in real-time. Sensor observations and hence their quantized versions are assumed to be

i.i.d. in time, and, our focus, in this paper, is on designing a fusion rule that could exploit the spatial

dependence between sensor decisions for improved detection performance.

Next, we briefly discuss the use of copula theory to approximate joint density functions.

A. Joint PDF approximation using copula theory

We begin with the definition of a copula function.
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Fig. 2. Input-output transfer function of a uniform scalar quantizer

Definition 2. A function C : [0, 1]N → [0, 1] is an N-dimensional copula if C is a joint cumulative

distribution function (CDF) of an N-dimensional random vector on the unit cube [0, 1]N with uniform

marginals [15], [19], [20].

The following theorem by Sklar is central to the statistical theory of copulas.

Theorem 1. (Sklar’s Theorem)

Let F be an N -dimensional CDF with continuous marginal CDFs F1, F2, . . . , FN . Then there exists a

unique copula C such that for all z1, z2, · · · , zn in [−∞,∞],

F (z1, z2, . . . , zN ) = C(F1(z1), F2(z2), . . . , FN (zN )). (2)

Note that the copula function C(u1, u2, . . . , uN ) is itself a CDF with uniform marginals as Un =

Fn(Zn) ∼ U(0, 1) (by probability integral transform). The joint density can now be obtained by taking

the N th order derivative of (2),

f(z) =
∂N

∂z1 . . . ∂zN
C(F1(z1), . . . , FN (zN ))

=

(
N∏
n=1

fn(zn)

)
︸ ︷︷ ︸

fp(z)

c(F1(z1), . . . , FN (zN )) (3)
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Thus, in Eq. (3), the copula density, c(·), weights the product density, fp(z), appropriately to incorporate

dependence between the random variables {Zn}Nn=1.

Theorem 1 also admits the following converse, especially useful in practice when the true distribution F

(and hence the true copula C) is unknown. It allows one to construct a statistical model by considering the

univariate behavior of the underlying marginals and subsequently fitting the desired dependence structure

specified by some copula, say, K.

Theorem 2. If F1, F2, . . . , FN are univariate marginal CDFs and if K is an N dimensional copula,

then the function Ξ : RN → [0, 1],

Ξ(z1, . . . , zN ) = K(F1(z1), . . . , FN (zN )), (4)

is a valid N -variate CDF with marginals F1, F2, . . . , FN .

A copula based parametric model can be derived by taking the N th order derivative of (4) to obtain

f̂(z) = fp(z)k(F1(z1), · · · , FN (zN )) (5)

= fk(z). (6)

Some of the commonly used copula functions include the Gaussian, Student’s t and those belonging to

the Archimedean family [13].

It is evident that model mismatch errors are introduced when k(·) 6= c(·); i.e., the selected copula does

not represent the true dependence structure. This leads to suboptimal performance. An important question

then is, how does one choose k(·) from a finite set (say Ak) of copula densities? As discussed earlier,

the selection of copula densities is embedded in the GLRT formulation in this paper (see Eq. (14)). It

may also be required to estimate the parameters, ψd, of the chosen copula function from the acquired

data. These parameters control the shape of the copula function and can be estimated by exploiting their

relations to other nonparametric measures of association such as Kendall’s τ or Spearman’s ρ [15]. In this

paper, we use a maximum likelihood (ML) based approach known as the method of inference functions

for margins (IFM) [21] to estimate the copula dependence parameters.

III. (MISSPECIFIED) GLRT BASED FUSION OF SOFT DECISIONS

In the following, we consider a two-sensor network for simplicity.

Under hypothesis H1, the probability that the data Rl = (u1l, u2l) received at the fusion center at the
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time instant l takes a specific value
(
i1q1 + q1

2 , i2q2 + q2
2

)
is

Pi1,i2 =

∫ (i1+1)q1

i1q1

∫ (i2+1)q2

i2q2

f(z1, z2) dz2 dz1, (7)

where f(z1, z2) is the true but unknown joint PDF of unquantized sensor observations under H1. Now,

approximating the dependence structure using a copula density k1 {F1(z1;ψ1), F2(z2;ψ2);ψd} contained

in some set Ak of valid copula densities, we have

P̂i1,i2(ψ) =

∫ (i1+1)q1

i1q1

∫ (i2+1)q2

i2q2

f̂(z1, z2;ψ)dz2dz1

=

∫ (i1+1)q1

i1q1

∫ (i2+1)q2

i2q2

f1(z1;ψ1)f2(z2;ψ2)k1 (F1(z1;ψ1), F2(z2;ψ2);ψd) dz2dz1

= K1 {F1 ((i1 + 1)q1;ψ1) , F2 ((i2 + 1)q2;ψ2) ;ψd} −

K1 {F1 (i1q1;ψ1) , F2 (i2q2;ψ2) ;ψd} , (8)

where ψ = (ψ1, ψ2, ψd)
T ∈ Ψ ⊂ Ra is the a-dimensional unknown parameter vector that will be

estimated from the received data, K1{·} is the copula CDF and Fn(·) is the CDF of Zn under hypothesis

H1. The dependence of P̂i1,i2(ψ) on K1{·} is not made explicit for notational convenience.

The likelihood function of the data Rl under hypothesis H1 can now be written as

P̂ (Rl;ψ,H1) =
∏
i1

∏
i2

[
P̂i1,i2(ψ)

]δ(u1l−i1q1− q12 ,u2l−i2q2− q22 )
, (9)

where δ(·) is the two-dimensional Kronecker-delta function defined as

δ(x, y) =

1, x = y = 0

0, otherwise.
(10)

The log-likelihood function of Rl is, therefore,

log P̂ (Rl;ψ,H1) =
∑
i1

∑
i2

δ
(
u1l − i1q1 −

q1

2
, u2l − i2q2 −

q2

2

)
log P̂i1,i2(ψ). (11)

Similarly, the likelihood function of Rl under H0, when a copula density k0 (G1(z1;λ1), G2(z2;λ2);λd) ∈

Ak is used to approximate the joint distribution under H0, can be derived as,

log P̂ (Rl;λ,H0) =
∑
i1

∑
i2

δ
(
u1l − i1q1 −

q1

2
, u2l − i2q2 −

q2

2

)
log Q̂i1,i2(λ), (12)
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where

Q̂i1,i2(λ) = K0 {G1 ((i1 + 1)q1;λ1) , G2 ((i2 + 1)q2;λ2) ;λd} −

K0 {G1 (i1q1;λ1) , G2 (i2q2;λ2) ;λd} . (13)

λ = (λ1, λ2, λd)
T ∈ Λ ⊂ Rb, is the b-dimensional unknown parameter vector, K0{·} is the copula CDF

and Gn(·) is the CDF of Zn under hypothesis H0.

With Eqs. (11) and (12), it is straightforward to derive the test to be employed at the fusion center,

Tk(u1,u2) , log

max
k1(·)∈Ak,Ψ

∏
l

P̂ (Rl;ψ,H1)

max
k0(·)∈Ak,Λ

∏
l

P̂ (Rl;λ,H0)

H1

≷
H0

η (14)

which results in

∑
l

∑
i1

∑
i2

δ
(
u1l − i1q1 −

q1

2
, u2l − i2q2 −

q2

2

)
log

P̂ ∗i1,i2(ψ̂)

Q̂∗i1,i2(λ̂)

H1

≷
H0

η,

(15)

where P̂ ∗i1,i2(ψ̂) and Q̂∗i1,i2(λ̂) correspond to the copula functions K∗1 (·) and K∗0 (·) respectively, which

maximize the terms on the left hand side of Eq. (14), and l is the time index. Thus, the maximization

in Eq. (14) is over the copula densities belonging to a set Ak of valid copula densities as well as the

unknown marginal and copula dependence parameters. Unlike the classical composite hypothesis testing

formulation which would have required the knowledge of the true copula densities with possibly unknown

parameters, we allow for the case when the set Ak may not be inclusive of the true models c1(·) and/or

c0(·). Thus, the copula functions, K∗1 (·) and K∗0 (·), chosen after maximization may still be misspecified.

We, therefore, call the test a misspecified GLRT (mGLRT).

IV. EXTENSION TO N (> 2) SENSORS

The copula based fusion rule designed for a two sensor network in the previous section can be easily

extended to larger sensor networks. Similar to Eq. (15), the fusion rule for N sensors can be derived as

∑
l

∑
i1

· · ·
∑
iN

δ
(
u1l − i1q1 −

q1

2
, . . . , uNl − iNqN −

qN
2

)
log

P̂ ∗i1,...,iN (ψ̂)

Q̂∗i1,...,iN (λ̂)

H1

≷
H0

η, (16)
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where,

P̂ ∗i1,...,iN (ψ) =

∫ (i1+1)q1

i1q1

· · ·
∫ (iN+1)qN

iNqN

f̂(z1, . . . , zN ;ψ)︸ ︷︷ ︸
copula-based estimate

dzN · · · dz1 (17)

= K∗1 {F1 ((i1 + 1)q1;ψ1) , . . . , FN ((iN + 1)qN ;ψN ) ;ψd} −

K∗1 {F1 (i1q1;ψ1) , . . . , FN (iNqN ;ψN ) ;ψd} , (18)

and,

Q̂∗i1,...,iN (λ) =

∫ (i1+1)q1

i1q1

· · ·
∫ (iN+1)qN

iNqN

ĝ(z1, . . . , zN ;λ)︸ ︷︷ ︸
copula-based estimate

dzN · · · dz1 (19)

= K∗0 {G1 ((i1 + 1)q1;λ1) , . . . , GN ((iN + 1)qN ;λN ) ;λd} −

K∗0 {G1 (i1q1;λ1) , . . . , GN (iNqN ;λN ) ;λd} . (20)

Thus, the fusion rule involves evaluating N -dimensional integrals in real-time where N is the number of

sensors, i.e., the computational complexity is exponential in the number of sensors. This is in addition to

the optimization over multiple dimensions to obtain ML estimates of the unknown parameters. Application

of mGLRT is, therefore, highly prohibitive as the number of sensors increases due to the increased

computational complexity. We derive an alternative computationally efficient test in the next section.

V. A COMPUTATIONALLY EFFICIENT FUSION RULE

In this section, we propose a computationally efficient approach that involves deliberately injecting

noise to the quantized observations before fusion (see Fig. 3). While noise is generally perceived as an

unwanted signal, interestingly, several studies have shown that the addition of controlled noise could

in fact be beneficial in some cases. For example, dithering, the process of adding noise to the signal

before quantization has been shown to improve signal quality and mitigate the artifacts introduced due

to quantization [22]–[24]. Also, it has been observed by many researchers that some types of signals

get amplified by a nonlinear system when noise is added to the input signal (see [25] and references

therein). This phenomenon is popularly known as stochastic resonance (SR). Here, we use this approach

of adding external noise to reduce computational complexity rather than to enhance the signal to noise

ratio (SNR). Our approach is based on Widrow’s quantization theory which we review next.
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Fig. 3. A controlled noise dn is added at the output of each sensor n. The approach greatly simplifies the fusion rule by
avoiding the need to compute multidimensional integrals.

A. Widrow’s Statistical Theory of Quantization: A Review

The statistical theory of quantization was developed by Widrow and co-workers [17], [26], [27]. They

interpreted quantization of a random variable as sampling of its PDF, and showed that the PDF of the

quantized signal is the convolution of the input signal PDF with a rectangular pulse function followed by

conventional sampling. Thus, the PDF of the quantizer output, unl, at sensor n and at any time instant,

l, can be given as

pUn(z) =
(
pWn

(z) ? pZn(z)
)
· cδ′n(z), (21)

May 17, 2012 DRAFT
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where pZn(z) is the PDF of the random variable at the input Zn, pWn
(z) denotes the rectangular pulse

function,

pWn
(z) =


1
qn
, −qn/2 < z < qn/2

0, elsewhere,

(22)

whose width depends on the quantizer step-size (qn) defined in Section II, and cδ′n(z) denotes the impulse

train,

cδ′n(z) =
∑
in∈Z

qnδ
′
(
z − inqn −

qn
2

)
. (23)

The ‘?’ in Eq. (21) denotes the convolution operation, and δ
′
(·) in Eq. (23) is the Dirac-delta function.

This process of convolution followed by conventional sampling is popularly known as “area sampling”

[27]. Also, note that pWn
(·) is also the PDF of a uniform random variable, Wn ∼ U

(
− qn

2 ,
qn
2

)
. Thus,

quantization introduces two ‘types’ of distortions or errors: (a) the additive uniform noise (AUN) error,

and (b) the aliasing error due to sampling.

The two errors introduced due to quantization can be better visualized in the characteristic function

(CF) domain. The CF of a random variable X is obtained by taking the Fourier transform of its PDF

pX(x),

φX(v) =

∫ ∞
−∞

pX(x)ejvxdx = E
[
ejvx

]
. (24)

Taking the Fourier transform of Eq. (21), one obtains the CF of output variable Un,

φUn(v) =

∞∑
in=−∞

φZn

(
v + in

2π

qn

)
sinc

(
qn(v + in

2π
q )

2

)
e−jin

2π

qn

qn
2

=

∞∑
in=−∞

(−1)in φZn

(
v + in

2π

qn

)
sinc

(
qn(v + in

2π
q )

2

)
(25)

where φZn(v) is the CF of the input Zn and sinc(v) = sin(v)
v . Note that Eq. (25) is different from the one

in [17, p. 65, Eq. 4.11] as we have considered a mid-rise quantizer here instead of a mid-tread quantizer

used in [17]. Fig. 4 shows the operations in the ‘frequency’ domain. Note that the central lobe (in = 0

in Eq. (25)),

φZn+Wn
(v) = φZn(v) · sinc

(qnv
2

)
, (26)

corresponds to the CF one would obtain by adding an independent and uniformly distributed random

variable Wn to the input Zn. It is clear from Fig. 4 that, in addition to the error introduced due to

the addition of uniform noise, quantization also causes an aliasing error due to overlapping (and phase
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Fig. 4. Illustration of the quantization process in the CF domain: (a) CF of Zn; (b) CF of Wn, the sinc function; (c) CF of
Zn +Wn; (d) Repetition of CF of Zn +Wn; the CF of the quantized variable is given by the summation of these repetitions
after weighting each appropriately (see Eq. (25)).

shifted) lobes of φZn+Wn
(v). However, if the input PDF is band-limited so that φZn(v) = 0 for |v| > π

qn
,

then the ‘frequency’-shifted versions of φZn+Wn
(v) do not overlap and, in principle, the original PDF

can be reconstructed from the knowledge of pUn(·). This is Widrow’s first quantization theorem:

Theorem 3. (Widrow’s Quantization Theorem I)

If the CF of the input variable Zn is bandlimited so that

φZn(v) = 0, |v| > π

qn
, (27)

then the different lobes in φUn(v) do not overlap, and in principle, the orignal PDF pn(zn) (before

quantization) can be recovered from the PDF of Un.
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When φZn(v) = 0 for |v| > 2π
qn

so that the derivatives of φUn(v) computed at v = 0 are not affected

due to the overlap of CF lobes, then the moments of Zn can be recovered from those of Un. This is

Widrow’s second theorem:

Theorem 4. (Widrow’s Quantization Theorem II)

If the CF of Zn is bandlimited so that

φZn(v) = 0, |v| > 2π

qn
, (28)

then the moments of Zn can be derived from the moments of Un.

In the following, we assume that Theorem 3 (and hence Theorem 4) holds, and derive a rule to fuse

multi-level decisions at the fusion center. We also note here that Widrow’s additive model for quantization

noise, and, hence the fusion rule derived in the next section, is better suited for high resolution quantization

(See [28] and references therein).

B. Derivation of a Computationally Efficient Fusion Rule

As discussed previously, the high complexity in computing the mGLRT statistic for quantized observa-

tions stems from the need for computing multi-dimensional integrals. We propose to simplify the fusion

process by adding controlled noise to the observations received at the fusion center. The system is shown

in Fig. 3. An externally generated noise, dn, with PDF pDn(dn) is added to the quantized observations

from each sensor n before fusing them for making a global decision. Denote the new observations by

yn = un + dn whose CF is given by

φYn(v) = φUn(v) · φDn(v). (29)

One can choose the noise source with a bandlimited CF to filter out the repeated and phase-shifted CF

lobes in φUn(v). This is analogous to low pass filtering in signal processing. We, therefore, call the noise

Dn, the LPF-noise. As shown in Fig. 4 (d), an ideal noise source would be one with a rectangular CF

in the pass-band, − π
qn
≤ v ≤ π

qn
, (also see Fig. 5). However, a rectangular function in the CF domain

corresponds to a PDF whose shape corresponds to a sinc function, an invalid PDF. Note that this is

similar to the non-realizability of an ideal low pass filter in signal processing. One, therefore, needs to

carefully design Dn so that it causes minimal distortion while transforming the discrete-valued random

variable, Un, into a continuous variable, Yn. As long as the input variable Zn satisfies Widrow’s first
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quantization theorem (Theorem 3) under both H1 and H0, we have,

Yn = Zn +Wn +Dn. (30)

Thus, under hypothesis H1, the PDF of data, ynl, at time instant l is

pYn (ynl;ψn, H1) = pZn(ynl;H1) ? pWn
(ynl) ? pDn(ynl) (31)

= fn(ynl;ψn) ? pWn
(ynl) ? pDn(ynl). (32)

Using a copula density (say) k1(·;ψd) ∈ Ak to estimate the dependence structure between sensor

observations, the joint PDF of the data yl = (y1l, y2l, . . . , yNl) can now be approximated as

p̂Y(y1l, . . . , yNl;ψ,H1) =

{
N∏
n=1

pYn (ynl;ψn, H1)

}
k1 {FY1

(y1l;ψ1) , . . . , FYN (yNl;ψN ) ;ψd} (33)

where

FYn(y) =

∫ y

−∞
pYn(t;ψn, H1)dt (34)

denotes the CDF of Yn under H1.

Similarly, the joint PDF of the data under H0 can be approximated as

p̂Y(y1l, . . . , yNl;λ,H0) =

{
N∏
n=1

pYn (ynl;λn, H0)

}
k0 {GY1

(y1l;λ1) , . . . , GYN (yNl;λN ) ;λd} , (35)

where

pYn (ynl;λn, H0) = pZn(ynl;H0) ? pWn
(ynl) ? pDn(ynl) (36)

= gn(ynl;λn) ? pWn
(ynl) ? pDn(ynl), (37)

k0(·;λd) ∈ Ak is the copula density used to estimate the dependence structure of sensor observations

under H0, and

GYn(y) =

∫ y

−∞
pYn(t;λn, H0)dt (38)

denotes the CDF of Yn when the underlying hypothesis is H0.
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With Eqs. (33) and (35), it is now straightforward to derive the (misspecified) GLRT

T ′k (y) = log

max
k1(·)∈Ak,Ψ

L∏
l=1

pY (y1l, . . . , yNl;ψ,H1)

max
k0(·)∈Ak,Λ

L∏
l=1

pY (y1l, . . . , yNl;λ,H0)

H1

≷
H0

η. (39)

The test derived above involves continuous-valued variables and thus does not involve computation of

multidimensional integrals. This greatly simplifies the test. The reduced complexity is, however, at the

expense of decreased signal-to-noise ratio due to the injection of noise dn at the fusion center. The

addition of external noise facilitates filtering of the baseband CF, φZn+Wn
(v), from the received quantized

observations φUn(v). This noise should be designed so that it destroys as little information as possible

while filtering the required signal.

Next, we present a numerical illustration.

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we consider the problem of detecting a random phenomenon using a network of

two sensors. It is known that the observations received at the local quantizers each follow a Gaussian

distribution. That is,

H0 : Z1 ∼ N (0,
√

10), Z2 ∼ N (0,
√

10)

H1 : Z1 ∼ N (µ1,
√

10), Z2 ∼ N (µ2,
√

10) (40)

where,

N (µ, σ) := 1√
2πσ2

exp
( −1

2σ2 (z − µ)2
)

is the usual univariate Gaussian density function. The means, µ1 and µ2, under the hypothesis, H1,

are unknown, although a priori we know that they are greater than zero. Further, the observations may

be statistically dependent; however, no knowledge about the dependence structure (and hence the joint

distribution) is provided.

The observations, {z1l, z2l}Ll=1, at the two local sensors are passed through uniform scalar quantizers

before their transmission to the fusion center. Thus, the fusion center has access only to the quantized

measurements, u = {u1l, u2l}Ll=1, to make a global decision in favor of one of the two hypotheses. Then,

the GLRT based fusion rule for this problem is the same as the one derived in Eq.(15), with the joint

May 17, 2012 DRAFT



17

probabilities,

P̂ ∗i1,i2

(
µ̂1, µ̂2, ψ̂d

)
= K∗1

{
Φµ̂1,

√
10 ((i1 + 1)q1) ,Φµ̂2,

√
10 ((i2 + 1)q2) ; ψ̂d

}
−

K∗1

{
Φµ̂1,

√
10 (i1q1) ,Φµ̂2,

√
10 (i2q2) ; ψ̂d

} (41)

and

Q̂∗i1,i2 = Φ0,
√

10 ((i1 + 1)q1) · Φ0,
√

10 ((i2 + 1)q2)− Φ0,
√

10 (i1q1) · Φ0,
√

10 (i2q2) , (42)

where Φµ,σ(·) denotes the Gaussian CDF with mean, µ, and standard deviation, σ. The unknown marginal

parameters, µ1 and µ2, and the copula function K∗1 (·; ψ̂d) in Eq. (41) are obtained by maximizing the

generalized likelihood ratio as shown in Eq.(14). An alternative computationally efficient test was derived

in Section V-B which involves injection of LPF-noise before fusion. We evaluate its performance using

the example presented here.

Although Gaussian CFs are not perfectly bandlimited, a property necessary for using the LPF-noise

based fusion rule, they are very close to being bandlimited for all practical purposes. Fig. 5 shows

quantization and the effect of LPF-noise in the CF domain. The quantization step size, qn is set to 0.3

of the input standard deviation (qn = 0.3σn). The CF of the input variable zn is shown in Fig. 5(a).

Addition of the quantization noise, w1, is equivalent to multiplication of φZn(v) (shown in Fig. 5(a)) with

a sinc function, sinc
( qnv

2

)
. The resultant CF, φZn+Wn

(v), is shown in Fig. 5(b). This CF is repeated and

summed in Fig. 5(c) which represents the CF of the quantized signal, un (see Eq. (25)). The CF of the

LPF-noise, Dn, a standard Gaussian distributed variable in this example, is shown in Fig. 5(d).1 It is clear

that multiplication of φUn(v) with φDn(v) which is equivalent to addition of dn to zn+wn in the random

variable domain, ‘filters’ the signal so that only the main lobe (v = 0) of φUn(v) is retained (Fig. 5(e)).

Since the LPF-noise is different from the ideal one with rectangular CF, the signal, zn +wn, undergoes

some distortion while being ‘filtered’. However, this distortion is almost imperceptible as evident from

Fig. 5(e).

1It is important to note that a standard Gaussian noise may not be the ‘best’ LPF-noise. It is used here to provide a simple
illustrative example.
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Fig. 5. ‘Filtering’ the quantized signal with LPF-noise. The quantization step size, qn, is set to 0.3σn: (a) CF of Zn; (b) CF
of Zn +Wn; (c) CF of Un; (d) CF of the external LPF-noise, Dn; (e) CF of Yn = Zn +Wn +Dn.

The PDF of the transformed variable, Yn = Zn +Wn +Dn, under the hypothesis H1 is given by

pYn(yn;µn, H1) = pZn+Dn(yn) ? pWn
(yn)

= N
(
µn,
√
σ2
n + σ2

dn

)
? U

(
−qn

2
,
qn
2

)
=

1

qn

[
Φµn,

√
11

(
yn +

qn
2

)
− Φµn,

√
11

(
yn −

qn
2

)]
(43)
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Similarly, under H0, we have

pYn(yn, H0) = pZn+Dn(yn) ? pWn
(yn)

= N
(

0,
√
σ2
n + σ2

dn

)
? U

(
−qn

2
,
qn
2

)
=

1

qn

[
Φ0,
√

11

(
yn +

qn
2

)
− Φ0,

√
11

(
yn −

qn
2

)]
(44)

Having derived the marginal PDFs (Eqs. (43) and (44)), the LPF-noise based fusion rule (Eq. (39)) is

now applied for testing between the two hypotheses. We include the Frank and the Gaussian copula

functions in the set, Ak, of potential copula models for characterizing dependence between observations

under H1.

In order to inject dependence between observations under H1, we first generate dependent uniformly

distributed bivariate samples, V = {(v1l, v2l)}l=1,2,...,L, using Clayton copula with Kendall’s τ set to

0.31. The inverse CDF corresponding to each sensor’s observation (specified in Eq. (40)) is then used to

transform the bivariate samples, V, to give a bivariate vector of dependent sensor observations with the

required marginals:

znl = Φ−1
µn,σn(vnl), ∀n, l. (45)

The marginal parameters, µ1 and µ2, are set to 0.5. Detection performance of the LPF-noise based GLRT

is evaluated using this synthetic dataset. As discussed earlier, the set, Ak, of potential copula functions

consists of the Frank and Gaussian copula functions. Note that we have deliberately excluded the Clayton

copula from this set so that we can evaluate the detection performance when the true underlying copula

is unavailable. Hence, we also call the test the misspecified GLRT.

In Fig. 6, we plot the ROC curves using 50, 000 Monte Carlo trials. The decision window, L, is set

to 50 samples. That is, we assume that the sensors observe the phenomenon over L = 50 time intervals

before making a decision in favor of either hypothesis. It is evident from the figure that the performance

of the LPF-noise based fusion rule is very close to the upper bound given by the analog/unquantized

transmission case albeit with reduced computational complexity. This is true for both the quantizers,

qn = 0.3 σn and qn = 0.6 σn, considered here. The quantization step sizes of 0.3 σn and 0.6 σn

correspond to 22 and 12 quantization levels respectively in the [−3σ, 3σ] region of a Gaussian density

function.

Another approach that is often adopted to address the issue of computational complexity is to de-

liberately neglect statistical dependence between sensor observations while designing the test. The test,
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Fig. 6. Monte Carlo based Receiver Operating Characteristics: Performance of the fusion rule based on LPF noise is very
close to the upper bound given by the analog transmission case. Also, the LPF-noise based GLRT outperforms the one designed
assuming statistical independence between the observations.

so designed, would require computation of N one-dimensional integration operations as opposed to N-

dimensional integrations where N is the number of sensors. However, such an approach severely degrades

the detection performance as evident from Fig. 6. The LPF noise based GLRT significantly outperforms

the one designed with the statistical independence assumption.

VII. DETERMINATION OF THE DETECTOR THRESHOLD

Following the Neyman-Pearson formulation, we now look for a method to set the detector threshold η

in (15) so that the false alarm probability, PF , is constrained to α ∈ (0, 1). This, however, requires the

knowledge of pTk(tk;H0), the PDF of the test statistic under the null hypothesis. Since the postulated

statistical models, {f̂(z; Ψ ⊂ Ra)} and {ĝ(z; Λ ⊂ Rb)}, under H1 and H0 respectively, are only

approximations of the true underlying distributions, it is difficult to derive the exact distribution of

the test statistic under either hypothesis. However, some advancement is possible for a certain class of

problems especially when L is large. The following theorem, due to Wilks [29], identifies this class of

problems.

Theorem 5. Suppose the following conditions hold, in addition to the usual regularity conditions [30]

that ensure the validity of asymptotic ML theory:
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C 1. {f̂(z; Ψ ⊂ Ra)} and {ĝ(z; Λ ⊂ Rb)} are well-specified under H0,

C 2. {ĝ(z; Λ)} is nested in {f̂(z; Ψ)}, i.e., ĝ(z;λ) ∈ {f̂(z; Ψ)}, ∀λ ∈ Λ.

Then the modified test statistic, 2Tk(·), converges in distribution (
d→) to a chi-squared distribution with

ν (= a− b) degrees of freedom under the null hypothesis.

2Tk(z)
d→ χ2

a−b, under H0 (46)

From (46), the probability of false alarm, PF , is

PF = Pr (2Tk(·) > 2η;H0)

L→∞
= Qχ2

a−b
(2η) , (47)

where Qχ2
ν
(·) denotes the right-tail probability of a chi-squared random variable with ν degrees of

freedom. One can thus obtain the threshold η so that PF is constrained to a desired level α ∈ (0, 1) as

below:

η =
Q−1
χ2
a−b

(α)

2
(48)

The assumption of a well-specified g(·;λ) is reasonable for many applications. For example, it is always

possible to collect enough training data under H0 (when there is no signal present), so that g(·) can be

consistently estimated.

Note that the illustrative example in Section VI satisfies the conditions of Theorem 5, and thus belongs

to the class of problems for which the detector threshold can be determined. Here, the true distribution

under H0, given by the product of two univariate Gaussian PDFs, was assumed to be completely known

(and hence well-specified). Now, given that the data belongs to the null hypothesis,

f̂(z; ψ̂) =

(
2∏

n=1

f(zn; ψ̂n)

)
k(·; ψ̂d)

H0−−→ g(z;λ) =

2∏
n=1

g(zn;λn) (49)

since both the Frank and the Gaussian copulas converge to the independence copula. Thus, condition

C1 of Theorem 5 holds. Also, it is easy to see that g(z; Λ) is nested in the family defined by {f̂(z; Ψ)}

since the marginal PDFs under both hypotheses are univariate Gaussian PDFs. Thus, the condition C2

is satisfied, and we have the asymptotic convergence of the test statistic to a chi-squared distribution

with a − b = 3 degrees of freedom, where the number of unknown parameters under H1, denoted by

‘a’ is three (µ1, µ2 and ψd), and that under H0, denoted by ‘b’, is zero. Thus, PF = Qχ2
3

(2η). Fig. 7
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Fig. 7. System probability of false alarm vs. Detector threshold. A good match between the theoretical and simulated PF

values is evident from the figure.

shows a plot of this theoretical PF along with simulated false alarm values obtained using 50, 000 Monte

Carlo trials with the decision window, L, set to 50 samples. A good match between the theoretical and

simulated PF values across the two different quantization step sizes is evident from the figure.

Note that the distribution of 2Tk(z; λ̂, ψ̂) under the null hypothesis depends only on the model complex-

ities of {f̂(·; Ψ)} and {g(·; Λ)}, i.e., the number of uncertain parameters a and b. If the set Ak consists

of copula densities with parameters of different dimensions, the threshold η must be adjusted accordingly

(see Eq. (48)) to maintain a desired false alarm probability. Alternatively, one could restrict the set Ak
to include copula models with equal complexity to avoid the extra step of varying η in real-time.

VIII. CONCLUSION

In this paper, the problem of fusing statistically dependent sensor decisions for the detection of a random

event was considered. Sensor observations (or features extracted thereof) are first quantized using uniform

multilevel quantizers before their transmission to the fusion center. Inter-modal dependence was assumed

to be unknown and was approximated using copula functions. A GLRT based decision fusion algorithm

that can fuse both hard and soft local decisions was derived. The important problem of selecting the

best copula was embedded in the GLRT formulation. It was noted that the derived copula-based fusion

algorithm becomes computationally expensive as the number of sensors and/or number of quantization

levels increase. A novel approach based on Widrow’s additive quantization noise model was developed
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which requires deliberate injection of an external noise at the receiver before fusion. The addition of

external noise at the fusion center effectively ‘filters’ the baseband CFs by rejecting the repetitive CF

lobes that arise due to quantization. Since this process is analogous to low pass filtering (LPF) in signal

processing, we term this noise, the LPF-noise.

As an illustrative example, using different copula functions such as the Clayton, Frank and Gaussian

copulas was presented. Gaussian noise sources were used to generate LPF-noise at the fusion center, and

results for two different quantization step sizes were obtained. Our results show that the approach based

on LPF-noise can be considerably accurate provided the CF of the input signals are bandlimited and

Widrow’s first quantization theorem is satisfied. The key to the success of this computationally efficient

approach is the choice of the external noise source used for filtering the baseband CF. Design of a noise

source that introduces minimal distortion while filtering is a topic of future research.
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