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ABSTRACT

Many modern real-world systems generate large amounts of high-dimensional data stress-

ing the available computing and signal processing systems. In resource-constrained settings, it

is desirable to process, store and transmit as little amount of data as possible. It has been shown

that one can obtain acceptable performance for tasks such as inference and reconstruction us-

ing fewer bits of data by exploiting low-dimensional structures on data such as sparsity. This

dissertation investigates the signal acquisition paradigm known as one-bit compressed sensing

(one-bit CS) for signal reconstruction and parameter estimation.

We first consider the problem of joint sparse support estimation with one-bit measurements

in a distributed setting. Each node observes sparse signals with the same but unknown support.

The goal is to minimize the probability of error of support estimation. First, we study the per-

formance of maximum likelihood (ML) estimation of the support set from one-bit compressed

measurements when all these measurements are available at the fusion center. We provide a

lower bound on the number of one-bit measurements required per node for vanishing proba-

bility of error. Though the ML estimator is optimal, its computational complexity increases

exponentially with the signal dimension. So, we propose computationally tractable algorithms

in a centralized setting. Further, we extend these algorithms to a decentralized setting where

each node can communicate only with its one-hop neighbors. The proposed method shows

excellent estimation performance even in the presence of noise.

In the second part of the dissertation, we investigate the problem of sparse signal recon-

struction from noisy one-bit compressed measurements using a signal that is statistically de-

pendent on the compressed signal as an aid. We refer to this signal as side-information. We

consider a generalized measurement model of one-bit CS where noise is assumed to be added



at two stages of the measurement process- a) before quantization and b) after quantization.

We model the noise before quantization as additive white Gaussian noise and the noise after

quantization as a sign-flip noise generated from a Bernoulli distribution. We assume that the

SI at the receiver is noisy. The noise in the SI can be either in the support or in the amplitude,

or both. This nature of the noise in SI suggests that the noise has a sparse structure. We use

additive independent and identically distributed Laplacian noise to model such sparse nature

of the noise. In this setup, we develop tractable algorithms that approximate the minimum

mean square error (MMSE) estimator of the signal. We consider the following three different

SI-based scenarios:

• The side-information is assumed to be a noisy version of the signal. The noise is in-

dependent of the signal and follows the Laplacian distribution. We do not assume any

temporal dependence in the signal.

• The signal exhibits temporal dependencies between signals at the current time instant and

the previous time instant. The temporal dependence is modeled using the birth-death-

drift (BDD) model. The side-information is a noisy version of the previous time instant

signal, which is statistically dependent on the signal as defined by the BDD model.

• The SI available at the receiver is heterogeneous. The signal and side-information are

from different modalities and may not share joint sparse representation. We assume that

the SI and the sparse signal are dependent and use the Copula function to model the

dependence.

In each of these scenarios, we develop generalized approximate message passing-based algo-

rithms to approximate the minimum mean square error estimate. Numerical results show the

effectiveness of the proposed algorithm.

In the final part of the dissertation, we propose two one-bit compressed sensing reconstruc-

tion algorithms that use a deep neural network as a prior on the signal. In the first algorithm,



we use a trained Generative model such as Generative Adversarial Networks and Variational

Autoencoders as a prior. This trained network is used to reconstruct the compressed signal

from one-bit measurements by searching over its range. We provide theoretical guarantees on

the reconstruction accuracy and sample complexity of the presented algorithm. In the second

algorithm, we investigate an untrained neural network architecture so that it acts as a good

prior on natural signals such as images and audio. We formulate an optimization problem to

reconstruct the signal from one-bit measurements using this untrained network. We demon-

strate the superior performance of the proposed algorithms through numerical results. Further,

in contrast to competing model-based algorithms, we demonstrate that the proposed algorithms

estimate both direction and magnitude of the compressed signal from one-bit measurements.
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CHAPTER 1

INTRODUCTION

We generate an enormous amount of digital data daily, and the pace of generation is only accel-

erating with the adoption of new technologies such as the Internet of Things. The tremendous

increase in the volume of data has posed a number of important challenges. A few of the crit-

ical challenges include acquisition, storage, transmission, and inference from these data. For

example, consider modern camera systems that are capable of generating several gigabytes of

raw data in a short period of time. Traditional acquisition systems usually adopt a sample-then-

compress acquisition model that at first samples data and then discards redundant information.

The task at hand could be an inference task such as classification, which usually requires much

less data to yield acceptable performance. So, it is desired to devise an acquisition system

that compresses data at the time of sampling. In many other applications such as CCTV, the

storage requirement is very high as the system is required to store video information from

all the cameras for a significant number of days. One would like to store as little amount of

data as possible while being able to reconstruct the entire signal whenever desired. Further,

in resource-constrained networks and/or power-constrained devices, one would like to mea-

sure, store and transmit as little amount of data as possible. For example, in a cognitive radio

network where mobile devices cooperate to estimate the occupied and unoccupied frequency
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slots, these devices want to communicate as few bits of information as possible to make a final

decision regarding occupancy.

In all of these examples, we can observe some common traits. First, all of these examples

involve signals that are high-dimensional. Second, in all these applications, it is strongly de-

sired to decrease the amount of data we obtain, store, or transmit without compromising on

the ability to reconstruct the original data or make inferences from the data. In this disserta-

tion, we focus on one such acquisition technology known as compressed sensing. To be more

precise, we are interested in an extreme case of compressed sensing when the observations

from the compressed sensing acquisition system are quantized element-wise to one-bit. This is

popularly known as one-bit compressed sensing.

Next, we introduce the problem of compressed sensing and then describe the special case

namely the one-bit compressed sensing considered in this dissertation.

1.1 Compressed Sensing

Compressed Sensing (CS) [15, 26] is a relatively new framework for signal acquisition that

provides a huge saving in the sampling and computation costs for high dimensional signals

having finite sparse or compressible representation. The traditional Nyquist-Shanon sampling

theorem suggests that signals can be accurately reconstructed from the uniformly sampled

measurements if they are acquired at a rate at least twice the signal bandwidth. CS, however,

employing a complex sampling processing, reconstructs the sparse signal from a small set

of linear, nonadaptive measurements. The CS recovery algorithms are highly non-linear and

computationally intensive compared to the sinc-interpolation used for the Nyquist-Shannon-

based algorithm.

Specifically, let x ∈ RN be the signal which has a sparse representation and y ∈ RM be
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Fig. 1.1: A pictorial representation of the noiseless compressed sensing measurement model

the compressed measurements. The measurement model can be represented as

y = Ax+ n, (1.1)

where A ∈ RM×N is a measurement matrix and n is an additive white Gaussian noise

(AWGN). Let x = Ψθ where θ is a K-sparse signal, and Ψ is the basis where x has the

sparse representation. Any signal is called K-sparse, if the signal has at most K non-zero el-

ements. Without loss of generality, we assume that the signal is sparse in canonical basis, i.e.,

Ψ = IN , where IN is the N × N identity matrix. The goal is to recover the sparse signal x

from y when M < N . When the problem is under-determined, for any x, it is impossible to

recover the signal from y. But to reconstruct all K-sparse signals, it is necessary that linear

measurements for two distinct signals are different, i.e., for all K-sparse signals x1 6= x2,

A(x1 − x2) 6= 0. (1.2)

In a noiseless setup, if (1.2) is satisfied, we can recover x by solving the following optimization
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problem

x̂ = arg min
θ

‖θ‖0 s.t. y = Ax, (1.3)

where ‖x‖0 is the `0 norm of x. The optimization problem (1.3) is NP-hard, and is compu-

tationally intractable for high-dimensional signals. The problem in (1.3) can be relaxed to a

convex problems as

x̂ = arg min
x
‖x‖1 s.t. y = Ax, (1.4)

This problem can be solved in a polynomial time. While (1.2) is necessary and sufficient

for reconstruction guarantees in a noiseless setting, the measurement matrix should satisfy a

stronger condition, known as restricted isometry property (RIP), when measurements are noisy.

A measurement matrixA satisfies RIP of order K if there exists some δK ∈ (0, 1) such that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (1.5)

holds for all K-sparse signals x. In the noisy case, the equivalent optimization problem for

sparse signal reconstruction is

x̂ = arg min
x
‖x‖1 s.t. ‖y −Ax‖ ≤ ε, (1.6)

where the ε measures the fidelity of the signal reconstruction to the compressed measurements.

The value of ε can be determined by the noise or the quantization error. When matrix A

satisfies RIP of order 2K, the solution of the optimization problem (1.6) can recover all K-

sparse signals [14]. The unconstrained version of (1.6) is quite popular and can be expressed

as

x̂ = arg min
x
‖y −Ax‖2

2 + λ‖x‖1, (1.7)

where λ is a tuning parameter which is used as a trade-off between the fidelity of the recon-

struction and the sparsity. For some value of λ, problems (1.6) and (1.7) are equivalent. How-
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ever, the value of λ that makes these problems equivalent is not known a priori and several

approaches have been proposed to choose the value of λ [29, 33, 36].

In addition to these convex optimization-based approaches to reconstruct sparse signals,

several greedy/iterative methods have been proposed for solving such reconstruction prob-

lems [7, 9, 10, 22, 28, 88]. These methods either iteratively estimate supports in each iteration

until a certain convergence criterion is met or iteratively improve the signal estimate. Some

of the well-known algorithms are Orthogonal Matching Pursuit [88], and Iterative hard thresh-

olding [10]. These algorithms have similar performance guarantees with respect to the convex

optimization-based approaches. Beyond signal reconstruction, several works have addressed

the problem of inference such as detection, estimation, and classification from compressed

measurements with or without full signal reconstruction [23, 42, 51, 95].

Recently, compressed sensing based approaches have been extended to incorporate differ-

ent classes of low-dimensional signals other than sparsity. In [11], the authors have explored

the idea of compressed sensing when the signal lies in or near the range space of a trained

neural network G(·). We call these methods deep-learning based methods as they use a feed

forward neural network as a prior on the sparse signal. When a trained neural network is used

as the prior, the compressed signal can be recovered by solving the following optimization

problem

x̂ = arg min
g:x=G(g)

‖y −Ax‖2
2, (1.8)

where g ∈ Rk is an input to the neural network. When the signal lies in a set S ∈ RN , the set

restricted eigenvalue condition on A is a sufficient condition for robust signal recovery, which

is defined as

A(x1 − x2) ≥ γ‖x1 − x2‖ − δ, (1.9)

for some γ > 0, δ ≥ 0 and ∀ x1,x2 ∈ S. Note that, in the problem of compressed sensing

using generative model, the unknown signal lies in or near the set S = {x|x = G(g) ∈ RN}.
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Generally, the G(g) is a feed-forward neural network and the optimization problem (1.8)

is non-convex with respect to a latent variable g. Any solution to (1.8) does not guarantee the

optimal solution. However, the empirical performance has been found to be promising.

We note that the standard problem of CS assumes that the measurements are real-valued.

However, practical implementations require quantization of these measurements. When high

precision quantization is employed, compressed sensing can perform similar to the real-valued

compressed sensing as the error or noise due to quantization could be modeled as additive

noise. Coarse quantization, however, is more attractive in practice, as it significantly reduces

bandwidth usage and power consumption leading to its use in low-power devices and resource-

constrained networks. In this dissertation, we focus on the most extreme form of quantization,

i.e., one-bit quantization. We study the performance of sparse signal reconstruction and param-

eter estimation from noisy one-bit measurements with the goal of improving the performance

of existing algorithms in the literature. Next, we introduce the problem of one-bit compressed

sensing.

1.2 One-Bit Compressed Sensing

The problem of one-bit compressed sensing deals with the reconstruction of sparse signals from

one-bit measurements. The linear measurements of low-dimensional signal x are quantized to

one-bit element-wise. The measurement model of one-bit compressed sensing is

y = Q(Ax), (1.10)
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where the quantizer Q : RM → {q1, q2}M is the element-wise quantizer. The m-th element at

the output of the quantizer, [Q(ζ)]m is

[Q(ζ)]m =

 q1, if ζm ≤ Th,

q2, if ζm > Th.
(1.11)

In one-bit quantization, the quantizer is most often implemented as a sign quantizer, i.e.,

q1 = −1, q2 = +1, and Th = 0. The goal of one-bit CS is to reconstruct signal x from one-

bit quantized vector y. Note that, with one-bit quantization amplitude information is lost and

hence, the signal are reconstructed on a unit sphere. One candidate optimization problem to

reconstruct a sparse signal from one-bit measurements is

x̂ = arg min
x∈SN−1

‖x‖0 s.t. y = sign(Ax), (1.12)

where SN−1 represents the unit-sphere. The problem in (1.12) has exponential complexity. Al-

ternative algorithms have been proposed that are computationally feasible. Some of the one-bit

compressed sensing algorithms are Binary Iterative Hard Thresholding algorithm [47], Match-

ing Sign Pursuit [4], and Adaptive Outlier Pursuit [99]. We introduce one of these algorithms

that is used for signal recovery from one-bit measurements in detail as as we employ it in the

dissertation.

Binary Iterative Hard Thresholding

Binary Iterative Hard Thresholding (BIHT) [47] is one of the most popular one-bit CS algo-

rithms that iteratively estimates the K-sparse signal x. The signal estimate at the t-th iteration

with quantized measurements y is given as

xk = ΘK

(
xt−1 − τAT (sign(Axk−1)− y)

)
, (1.13)
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where ΘK(v) computes the best K-term approximation of v by thresholding. BIHT can be

thought of as trying to solve the following optimization problem:

x̂ = arg min
x

‖[y � (Ax)]−‖1 s.t. ‖x‖0 = K, ‖x‖2 = 1, (1.14)

where � is a Hadamard product and ([x]−)i = [xi]− with [xi] = xi if xi < 0 and 0 otherwise.

Notice that y � (Ax) is positive if the sign of (Ax) is the same as that of y. Minimizing the

one-sided `1 objective forcesAx to have the same sign as y , i.e.,

y � (Ax) ≥ 0 (1.15)

The condition in (1.15) enforces consistency between y and the linear measurements of the

reconstructed signalAx.

Note that the measurement model in (1.10) is noiseless and hence, is of limited use. Next,

we introduce a general noisy one-bit compressed sensing measurement model as:

y = fζ∼D(Ax, ζ), (1.16)

where ζ models the randomness due to noise and is assumed to follow distribution D. Any

noisy one-bit compressed sensing model can be expressed as an instance of (1.16). Consider

the measurement model

y = η �Q(Ax+ n), (1.17)

where η and n are noise vectors. We can consider ζ as the vector formed by combining noise

vectors η and n. In this setup, the distribution D is the joint distribution of η and n.

In this dissertation, we are interested in devising reliable algorithms for reconstruction and

parameter estimation of low-dimensional signal x ∈ RN from noisy one-bit measurements y ∈

RM . For all the problems of interest, we focus on the following two types of low-dimensional
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signals:

• Sparse Signals: Sparse signals have only a few elements that are essentially non-zero. If

a signal has at mostK non-zero elements, then we say the signal isK-sparse. In general,

for K-sparse signals K � N .

• Signals on the Range Space of a Neural Network: Let g ∈ Rk and w be the latent

variable (or input to a neural network) and the weight parameter of a neural network,

respectively. We represent a neural network by a mapping G(w; g) that maps any input

vector g ∈ Rk to some signal x ∈ RN . The low-dimensional signal is assumed to lie

in the range space of this network, i.e., x = G(w; g) ∈ RN . The mapping function

G(w; g) represents a trained neural network or untrained neural network. Note that, we

assume both the input g and the signal x to be vectors. We can represent even two-

dimensional signals such as images with this problem setup. In this case, the signal is

the vectorized form of the actual image. If we like to represent both the input and the

output as matrices, the network architecture of G(w; g) should be adjusted accordingly.

We approach the problem of inference and signal reconstruction from two different per-

spectives.

• Bayesian Perspective: In this setup, we look at the problem of joint sparse support esti-

mation in a distributed setting and the problem of sparse signal reconstruction from noisy

one-bit measurements. For the task of support estimation, we use the maximum likeli-

hood estimation of support using noisy one-bit measurements from distributed nodes

and provide a lower bound on the number of one-bit measurements required per node for

vanishing probability of error. Specifically, we consider the following problem.

Û = argmax
Uk,n0=1,··· ,N0

p(Y |Un0), (1.18)

where Y is the measurement matrix at the Fusion Center, Un0 is the n0-th support set
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where n0 ∈ {1, · · · , N0}, and N0 is the total number of sparse support sets. Next, we

address the problem of signal reconstruction by evaluating minimum mean square error

(MMSE) estimate of the signal. We use a prior on the signal to impose a sparse structure.

Let p(x) be the pdf of the prior on x and p(x|y) be the posterior density function of the

signal x. The MMSE estimate of the signal is evaluated as

x̂ = E[x|y], (1.19)

where E[x|y] represents the expectation of the signal with respect to p(x|y). We then

investigate several scenarios when the receiver has access to a signal that is statistically

dependent on the compressed signal, which we call side-information (SI). In several

applications such as dynamic MRI reconstruction [68], video signal reconstruction [53],

sequential estimation [17], and wireless channel estimation [69] SI is available and can

be used as an aid to improve reconstruction performance. In this setup, we evaluate the

MMSE estimate of the signal as

x̂ = E[x|y, x̃], (1.20)

where the expectation is with respect to the posterior pdf of the signal when SI is avail-

able at the receiver. As the evaluation of the MMSE estimator is intractable in high-

dimensions, we propose computationally tractable algorithms to approximate the esti-

mators. We use the Bayesian framework in these problems because it allows us to model

the sparse structure of the signal, higher-order dependence, and randomness in support

and measurements with ease.

• Machine-learning Perspective: In this approach, we assume that the signal lies in the

range space of a feed-forward neural network. In this dissertation, we look into two dif-

ferent cases when a feed-forward neural network is used as a prior. In the first case, we
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assume that the neural network used as a prior is trained to the desired dataset. For ex-

ample, the trained neural network could be the decoder of the Variational Autoencoders

(VAEs) [55] or the generator network of Generative Adversarial Networks (GANs) [37].

Let G(g,w) be the trained network. We compute x̂ from one-bit measurements y by

optimizing a loss function L(Ax;y) as

min
g
L(AG(w; g),y). (1.21)

The loss function is optimized over the input of the trained neural network. In the sec-

ond case, we use an untrained feed-forward neural network as a prior and consider the

following optimization problem to reconstruct a signal from one-bit measurements.

min
w
L(AG(w; g),y). (1.22)

In this case, the loss function is optimized over the weights of the untrained neural net-

work. In both settings, we formulate optimization problems and provide algorithms to

reconstruct low-dimensional signals from one-bit measurements.

1.3 Literature Review

In this section, we review some recent progress in the area of one-bit compressed sensing. We

discuss recent works focused on the task of signal reconstruction and inference. At the end,

we introduce a few other works which deal with problems beyond signal reconstruction and

inference.

The idea of one-bit compressed sensing was first introduced in [13], and since then, it has

been an active field of research. The popularity of one-bit CS is because the quantizer is easier

to build and is cost-effective. Further, it provides savings in the number of bits of information
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for storage and transmission. These are the reasons why one-bit CS has found applications

in several areas such as wireless sensor networks [18, 85, 97], radar [25, 63, 100], cognitive

radios [32, 60], bio-signal processing [2, 41], and wireless communications [67, 71, 79, 84, 98].

Most of the works in one-bit compressed sensing are focused on the sparse signal recon-

struction problem [1, 4, 5, 13, 21, 31, 46, 48, 50, 52, 57, 62, 66, 74, 77, 78, 80, 105]. The recon-

struction algorithms can be categorized into optimization-based methods and greedy/iterative

algorithms. Optimization-based methods [1, 57, 77, 78] usually minimize the `1 norm under

some constraints. These constraints force consistency between sign measurements and their

linear measurements. Greedy/Iterative methods in [4, 12, 48] reconstruct the sparse signal

by iteratively improving the signal estimate until the specified convergence criterion is sat-

isfied. While many of these approaches estimate the signal as a point in a high-dimensional

space, some works have addressed one-bit compressed sensing from the Bayesian perspec-

tive [52, 62, 74, 82, 105]. These methods use probability density function (pdf) as a prior on

the signal to impose sparse structure and approximate the posterior pdf of the sparse signal

rather than providing a point estimate. These posterior pdfs can be used to perform mini-

mum mean square error and maximum a posteriori estimation of the sparse signal. All these

methods, both Bayesian and non-Bayesian, require sparse structure on the signal. However,

in recent works [46, 50, 66, 80] authors have extended the framework of one-bit CS to other

low-dimensional structures. Specifically, in [50, 66, 80], the low-dimensional signals are as-

sumed to lie on the range space of trained neural networks, whereas in [46], the signal is

assumed to lie on a manifold. In most of these one-bit CS signal reconstruction algorithms,

the authors have assumed noiseless one-bit measurements or noisy measurements where the

noise is introduced either before or after quantization. In a general noisy one-bit compressed

sensing setup, noise is introduced both before quantization and after quantization. The signal

reconstruction performance decreases with the presence of noise and can be improved by using

side-information (SI). Authors in [76, 79] have exploited the side-information available at the
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receiver to improve the sparse signal reconstruction performance. In [76] and [79], the authors

assume partial knowledge and complete knowledge of the support set of the sparse signals as

the side-information, respectively. These works assume that the SI at the receiver does not have

erroneous information. The performance of these algorithms suffers when SI is imperfect. So,

we look at the problem of general noisy one-bit compressed sensing where the noise is intro-

duced at two stages, i.e., before quantization and after quantization when a) the signal is sparse

and b) the signal lies on the range space of a neural network. Further, we aim to improve the

reconstruction performance of noisy one-bit CS by incorporating SI. In contrast to the exist-

ing works, we consider noisy one-bit CS measurements with erroneous SI at the receiver and

develop reconstruction algorithms.

Beyond signal reconstruction, we are also interested in inference tasks from one-bit com-

pressed measurements. We study the sparse support estimation problem in a distributed setup

and provide the lower bound on the number of one-bit measurements required for support

set estimation with vanishing probability of error. Several works have tackled different in-

ference problems such as detection, estimation, and classification using one-bit compressed

measurements. These inference works may not require entire signal reconstruction. Authors

in [61, 92, 101, 102] have studied the problem of sparse signal detection, whereas the authors

in [34, 35, 45] have explored the problem of sparse signal parameter estimation performance

from one-bit compressed measurements. The works in [40, 65, 106] have studied the perfor-

mance of compressive classification from one-bit measurements.

One-bit compressed sensing has been a very fertile research field, and several problems

have been studied beyond signal reconstruction and inference tasks. For example, authors have

studied the performance of one-bit CS algorithms when different sensing matrices are used

other than the Gaussian matrices. The works in [1] and [24] have studied the performance of

one-bit compressed sensing using subgaussian and partial Gaussian circulant sensing matrices,

respectively. Further, dictionary learning [103] and sensing matrix design [39] are a few other
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directions that have been explored in the domain of one-bit compressed sensing.

1.4 Major Contributions

The goal of this dissertation is to develop algorithms for parameter estimation and/or signal

reconstruction from one-bit compressed sensing measurements. In the following, we list the

major contributions of the dissertation:

• We investigate the problem of joint sparse support recovery from one-bit compressed

measurements. In this work, we analyze the performance of the maximum likelihood

(ML) based decoder to estimate the joint support set. We provide a lower bound on the

number of one-bit measurements required per node to estimate the joint support set with

a vanishing probability of error when multiple measurement vectors are available at a

centralized fusion center (FC). We then develop tractable algorithms in centralized and

decentralized settings to recover the joint-support set of the sparse signal. We show the

superior performance of the proposed algorithms through numerical simulations.

• We consider the problem of one-bit compressed sensing in the presence of noise from

the Bayesian framework. The one-bit measurements we consider include both pre-

quantization and post-quantization noise. We then extend the problem to a setup where

the receiver has access to a side-information (SI). We investigate two different scenarios

of side-information: a. Homogeneous SI and b. Heterogeneous SI.

Homogeneous SI: In this setup, we study two different scenarios. In the first scenario,

we assume that the SI is a noisy version of the actual signal. We investigate the cases

when the SI has support information only or both amplitude and support information. In

the second scenario, we assume that the sparse signal and the SI are dependent and use

the Birth-Death-Drift (BDD) model to account for the dependence.

Heterogeneous SI: In this case, the signal and the heterogeneous SI are signals from



15

different modalities and are modeled using different priors. In this case, we use copula

functions to model the dependence between the SI and the signal.

In all these scenarios, we develop reconstruction algorithms using the generalized ap-

proximate message passing (GAMP) framework. We provide closed-form expressions for

the evaluation of all the non-linear update equations in the GAMP algorithm. This makes

the proposed algorithms more computationally efficient. We provide numerical results

to demonstrate the superior performance of the proposed algorithms.

• We develop two one-bit CS algorithms which use feed-forward neural networks as priors

on the compressed signal. In the first algorithm, we use a trained neural network as a

prior. The trained neural networks are generative models such as VAEs and GANs.

We formulate an optimization problem and use a gradient descent-based algorithm to

optimize the representation learned by the model that matches the given measurements.

We establish that, as long as gradient descent finds a good approximate solution to our

optimization problem, the algorithm output will be close to the true vector in the range

of the generator. The second algorithm uses an untrained neural network as a prior on a

signal. We formulate an optimization problem which when solved, optimizes untrained

neural networks to reconstruct the signal from its one-bit measurements. A projected

gradient descent-based algorithm is used to update the weights of the neural network to

reconstruct the signal from one-bit measurements. We provide detailed numerical results

to demonstrate the superior performance of the proposed algorithms.

1.5 Organization of the Dissertation

The dissertation is organized into seven chapters. Chapter 2 introduces the problem of sparse

support estimation using the multiple one-bit noisy measurement vectors (MMVs). We provide

a lower bound on the number of measurements required per node to minimize the estimation
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error using a maximum likelihood estimator. As the evaluation of the maximum likelihood es-

timator is computationally intractable for signals with large dimensions, we propose tractable

algorithms for sparse support estimation in a centralized setting. We then extend these algo-

rithms to a decentralized environment. We provide numerical experiments to demonstrate the

lower bound of the ML estimator and the performance of the proposed algorithm.

In Chapter 3, we study the problem of sparse signal reconstruction from one-bit measure-

ments in the presence of SI. We first pose the signal reconstruction problem in a Bayesian

framework and reconstruct the signal by computing the MMSE estimator. We present the sys-

tem model considered in which one-bit measurements obtained are corrupted by both additive

noise and sign-flip noise. We first develop a reconstruction algorithm using noisy one-bit mea-

surements. We then extend the results to the scenario where the receiver has access to SI.

We use Laplacian distribution to model noise between the side-information and the signal. As

the MMSE estimator is computationally intractable, we develop a tractable algorithm using a

GAMP-based algorithm. We provide closed-form expressions for all of the non-linear equations

required to approximate the MMSE estimator. We provide numerical experiments to demon-

strate the superior performance of the proposed algorithm.

In Chapter 4, we extend the problem considered in Chapter 3 to a setup where sparse signals

have temporal dependence. We model the stochastic dependence of these signals by using

the Birth-Death-Drift (BDD) [69, 83] model. We assume that the amplitudes of the sparse

signal that continues to be non-zero between the consecutive time instant signals are positively

correlated. In this setup, we develop a computationally tractable algorithm to approximate the

MMSE estimator of the signal. We show the effectiveness of the proposed algorithm through

numerical simulations.

In Chapter 5, we consider the problem of SI-aided signal reconstruction when the SI avail-

able at the receiver is heterogeneous. We assume that the SI available at the receiver is of a

different modality than the compressed signal. The distribution of these signals could be differ-
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ent, and these signals may not have a joint sparse representation. We model dependence among

these signals of different modalities using Copula functions. We develop a tractable algorithm

in this setup. Numerical results are provided to demonstrate the superior performance of the

proposed algorithm.

In Chapter 6, we consider the problem of signal reconstruction from one-bit measurements

when deep learning-based networks are used as the prior on the signal. First, we investigate the

problem that uses trained generative models such as generative adversarial networks (GANs)

and Variational Autoencoders (VAEs) as a prior on the signal during the signal reconstruction.

In this setup, we provide sample complexity and an upper bound on the reconstruction error.

We also provide numerical results that demonstrate the superiority of the proposed method.

Second, we investigate the signal reconstruction performance from one-bit measurements nu-

merically when an untrained neural network is used as a prior on the signal. We formulate an

optimization problem for this task and estimate the compressed signal by minimizing the loss

function using the projected gradient descent-based method. Numerical results are provided to

demonstrate the superior reconstruction performance.

Finally, in Chapter 7, we summarize the findings and results of this dissertation. Several

directions and ideas for future research are also presented.
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CHAPTER 2

JOINT SPARSITY PATTERN RECOVERY IN

A DISTRIBUTED NETWORK

2.1 Introduction

In this chapter, we investigate the problem of joint support recovery from one-bit compressed

measurements. We assume that signals across the distributed networks have joint sparse sup-

port. First, we consider a centralized setting where the fusion center (FC) has access to one-bit

compressed measurement vectors from all the nodes and develop the maximum likelihood

(ML) decoder for sparsity pattern recovery. We determine the sufficient condition to have

vanishing probability via the ML approach. This gives us a lower bound on the number of

one-bit measurements per node for vanishing probability of error for joint support recovery.

Though the ML-based estimation provides optimal results on joint sparse support estimation,

the approach becomes intractable as the signal dimension and the number of sensors increase.

Hence, we propose two tractable algorithms for joint sparse support estimation in a centralized

setting. We extend these centralized algorithms to a decentralized setting. We illustrate the

performance of the proposed algorithms with numerical experiments.
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2.2 Observation Model

We consider a distributed network with multiple nodes that observe sparse signals. Let the

number of sensors be P . At a given node, consider the followingM×1 real valued observation

vector collected via random projections:

yrp = Apsp + vp (2.1)

whereAp is the M ×N (M < N ) measurement matrix at the p-th node for p = 1, · · · , P.

For each p, the entries of Ap are assumed to be drawn from a Gaussian ensemble with mean

zero. The sparse signal vector of interest, sp for p = 1, · · · , P , has only K(� N) nonzero

elements with the same support and N is the signal dimension. The measurement noise vector,

vp, at the p-th node, is assumed to be independent and identically distributed (i.i.d.) Gaussian

with mean vector 0 and covariance matrix σ2
vIM . We assume that yp is quantized element-wise

into one of the two levels resulting in one-bit per element:

rip =

 −1, if τ0 < yrip < τ1

+1, if τ1 ≤ yrip < τ2

(2.2)

where yrip is the (i)-th element of yrp, for i = 1, 2, · · · ,M . In particular, we take sign

measurements of the signal and, therefore, zero acts as the quantizer threshold, i.e., τ0 =

−∞, τ1 = 0 and τ2 = ∞. We assume that, in a centralized setting, all the distributed nodes

send their one-bit compressive measurements to a centralized FC. Let y denote the matrix

that includes the multiple measurement vectors obtained from distributed nodes. The matrix

is of size M × P in which the p-th column is yp for p = 1, 2, · · · , P . Similarly, let S be the

N × P matrix which contains sp as its p-th column for p = 1, 2, · · · , P . We assume that, in a

centralized setting, all the distributed nodes send their one-bit compressive measurements to a
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centralized FC. LetR be the matrix received at the FC (which is also an M × P matrix).

Y =


y11 · · · y1P

... . . . ...

yM1 · · · yMP

 (2.3)

where yip = rip + wip, for i = 1, 2, ....,M and p = 1, 2, ...., P ; and wip is the noise at the

decoder which is assumed to be an i.i.d. Gaussian with mean zero and variance σ2
w.

The problem of joint support recovery based on one-bit CS reduces to the detection of the

nonzero rows of S based on R in (2.3). First, we obtain the performance bounds when we

assume that support recovery is performed using the ML decoder. It is noted that the imple-

mentation of the ML decoder becomes computationally intractable as N increases. However,

the performance bounds obtained via the ML algorithm can be considered as a benchmark

while comparing suboptimal computationally tractable algorithms for sparsity recovery with

one-bit CS. Next, we develop computationally tractable algorithms to estimate the common

sparse support in centralized as well as decentralized settings.

2.3 Joint Sparse Support Recovery with One-Bit Com-

pressed Sensing via the Maximum Likelihood De-

coder

2.3.1 Probability of Error and Maximum Likelihood Decoder

Define the support set of the signal sp to be U := {i ∈ {1, 2, · · · , N} | sp(i) 6= 0, p ∈

1, 2, · · · , P}. The support of the sparse signals is one of the possible subsets of size K from(
N
K

)
possible subsets, where

(
N
K

)
number of combinations of K elements when chosen from

N . Assuming that each subset occurs with equal probability, the probability of error for any
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decoder θ that maps the quantized observation matrix Y to an estimated support Û is given by,

Perr =
1

N0

N0∑
k=1

Pr(θ(Y ) 6= Uk|Uk)

where N0 =
(
N
K

)
.

Let S̃ denote the K × P matrix which contains the non-zero elements of S. We assume

that each column of S̃ is distributed as sp ∼ N (µ, σ2
sIK). The ML decoder selects the true

support of the signal S as,

Û = argmax
Uk,k=1,··· ,N0

p(Y |Uk) (2.4)

where p(Y |Uk) is the joint probability density function (pdf) of the observation matrix Y given

the support Uk where Uk ⊂ {1, 2, · · · , N} with |Uk| = K.

2.3.2 Sufficient Conditions for Support Recovery

Since the evaluation of the exact probability of error of the ML decoder is difficult in general,

we calculate an upper bound on the probability of error based on union and Chernoff bounds.

The probability of error of the ML decoder is upper bounded by,

Perr =
1

N0

N0−1∑
k=0

Pr(Û 6= Uk|Uk)

≤ 1

2N0

N0−1∑
k=0

N0−1∑
j=0,j 6=k

exp(−Ĉ(α0; pk, pj))

where Ĉ(α0; pk, pj) = max
0≤α≤1

C(α; pk, pj) with C(α; pk, pj) being the Chernoff distance between

the two distributions p(R|Uk) and p(R|Uj) which is defined as,

C(α; pk, pj) = − log
{
C̃(α; pk, pj)

}
(2.5)
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where C̃(α; pk, pj) =
∫
p(R|Uk)1−αp(R|Uj)αdr. In a manner similar to that in [94], it can be

shown that with N,K, and M sufficiently large Perr is upper bounded by

Perr ≤
1

2

K−1∑
t=0

(
K

t

)(
N −K
K − t

) P∏
p=1

(ḡpt)
M (2.6)

where ḡpt = E{g
1
2
p1(Uj,Uk)| (|Uj ∩ Uk| = t)},

g
1
2
pi(Uj,Uk) =

∑
l={0,1}

∫
N (rip; l, σ

2
w)[λlpik − λl+1

pik ]

∑m={0,1} e
mri−m

2/2

σ2w [λmpij − λm+1
pij ]∑

n={0,1} e
nri−n2/2

σ2w [λnpik − λ
n+1
pik ]


1
2

drip, (2.7)

λlpik = Q

 τl−
∑K
j=1

(
ÃpUk

)
ij
µpj√

σ2
v+σ2

s

∑K
j=1

(
ÃpUk

)2
ij

, Ãp
Uk is a M ×K submatrix ofAp at the p-th node such that

Ãp
Uk s̃p = Apsp when the support of the signal sp is Uk, and Q (p) =

∫ +∞
p
N (x; 0, 1)dx .

When σ2
w → 0, and when parameters N,M, and K are sufficiently large, the right hand

side of (2.6) is upper bounded by

Perr ≤
1

2

K−1∑
t=0

(
K

t

)(
N −K
K − t

) P∏
p=1

(āpt)
M (2.8)

where āpt =
∑

l={0,1} E{ãlpt} and E{ãlpt} = E{(λlp1j − λl+1
p1j )

1
2 (λlp1k− λl+1

p1k)
1
2 | (|Uj ∩Uk| = t)}

and λp1k is given by

λp1k = Q

 −
∑K

i=1

(
Ãp
Uk

)
1i
µi

σ2
v + σ2

s

∑K
i=1

(
Ãp
Uk

)2

1i

 . (2.9)

The sufficient conditions for reliable recovery of the sparsity pattern with one-bit quantized

observations (5.8) when σ2
w → 0 are stated in the following theorem:

Theorem 2.1. In the high dimensional setting (such that the parameters N,K,M are suf-
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ficiently large), for one-bit quantized compressive measurements, the sufficient condition to

have a vanishing probability of error asymptotically when using the ML decoder for support

recovery of the sparse signal s is:

M ≥ max {f0(N,K, P, γ), · · · , fK−1(N,K, P, γ)} (2.10)

where

ft(N,K, P, γ) =
1

log 1∏P
p=1 āpt

×[
(K − t)

(
2 + log

K

K − t
+ log

(N −K)

K − t

)
+ log

1

2

]
,

γ = µTµ+Kσ2
s

Nσ2
v

and āpt is as defined in Equation (2.8) for t = 0, 1, · · · , K − 1.

Proof. The probability of error for sparse support recovery with one-bit quantized measure-

ments is upper bound by

Perr ≤
1

2

K−1∑
t=0

(
K

t

)(
N −K
K − t

) P∏
p=1

(āpt)
M (2.11)

We want to find the conditions under which the bounds on probability of error in (2.11) tends

to zero. Let lPt be the logarithm of the t-th term in (2.11) which is given by

lPt = log

(
K

t

)
+ log

(
N −K
K − t

)
+ log

1

2
−M log

1∏P
p=1(āpt)

= log

(
K

K − t

)
+ log

(
N −K
K − t

)
+ log

1

2
−M log

1∏P
p=1(āpt)

(2.12)
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Next, upper bounding
(
K
K−t

)
by
(
Ne
K

)K
, we get

lPt ≥ (K − t)

(
2 + log

K

t
+ log

N −K
K − t

)
+ log

1

2
−M log

1∏P
p=1(āpt)

(2.13)

For lPt to be asymptotically negative,

M ≥ 1

log 1∏P
p=1(āpt)

[
(K − t)

(
2 + log

K

t
+ log

N −K
K − t

)
+ log

1

2

]
(2.14)

The maximum value of M for all t will tend Perr to zero.

The lower bound in (2.10) explicitly shows the minimum number of measurements required

to recover the sparsity pattern of the sparse signal with one-bit CS using the ML decoder with

multiple measurement vectors. Note that, the value of āpt(γ,K) also depends on the sparsity

index K and the measurement SNR γ. Further, using the definition of λpik and assuming finite

σ2
v and σ2

s , it can be shown that 0 < āpt < 1 which ensures that log 1∏P
p=1 āpt

is positive and its

magnitude increases with an increase in P . Thus, the bound onM for asymptotically vanishing

probability of error decreases with an increase in the number of sensors P .

Theorem 2.2. Let N,K, and M be sufficiently large and σ2
w → 0. The lower bound on M

for vanishing probability of error using the ML decoder for joint support recovery of the sparse

signals with P one-bit MMVs is:

MP ≥ CKK log
N

K
(2.15)

where Ck = 1
log 1

aK

, and aK = max
0≤t≤K−1

āpt,2.

Proof. See Appendix A.
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• Remark 1: It is worth noting that the authors in [94] derived bounds on the number

of measurements with a single measurement vector for vanishing probability of error.

However, the authors had simplified the analysis under the assumption that s̃ is drawn

from a 1-st order Gaussian (σ2
s = 0) pdf. Here, we provide results without restricting

to that assumption and in an extended setting when MMVs are available at a centralized

FC.

• Remark 2: From Theorem 2.2, it is sufficient to have Ω(CK
K
P

log(N
K

)) measurements to

recover the sparsity pattern with noisy corrupted one-bit information of the real valued

compressed measurement vectors using the ML decoder. The number of compressed

measurements per node M , required to recover the joint sparsity pattern with vanishing

Perr has an inverse relation with the number of sensors P which is quite intuitive. When

P = 1, it is sufficient to have Ω(CKK log(N
K

)) measurements to recover the sparsity

pattern reliably which is compatible with the results on the number of measurements

required for sparse support recovery obtained in [94] and [78]. When P is increased, M

decreases. If P is large enough, say P >> N , then M < 1. It means that only single

measurements from some nodes of the network are sufficient to recover the joint sparsity

pattern reliably. Thus, M → 0, as P →∞.

2.4 Centralized Algorithms with One-Bit Compressed Sens-

ing

In this section, we develop two computationally tractable algorithms for joint sparsity pattern

recovery in a centralized setting. In the first algorithm, we use the regularized row l1 norm min-

imization approach with the likelihood function as the cost function. In the second algorithm,

we extend the BIHT algorithm to the MMV case.
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2.4.1 Centralized `1,∞ Regularized Maximum Likelihood Based Al-

gorithm

In this algorithm, the ML function is used as the cost function instead of the commonly used

least squares function [87, 108]. Sparsity is imposed by using `1,∞ regularization on the signal

matrix S to obtain a sparse signal matrix estimate Ŝ or the estimate of the support of S. For

the sake of tractability, we assume that the measurement matrix Ap = A is the same for all

p = 1, 2, · · · , P . Then, from (2.1), we have

yrip = AT
i sp + vip, (2.16)

for i = 1, 2, · · · ,M and p = 1, 2, · · · , P . In the rest of the chapter, Ai denotes the i-th row of

A.

Let the matrix R be obtained by element-wise quantization in (2.2) where rip is the (i, p)-th

element of Y. Next, we calculate the probabilities Pr(rip = 1) and Pr(rip = 0) which will

later be used to write the expression of likelihood of R given S. We have,

Pr(yrip ≥ 0) ⇒ Pr(AT
i sp + vip ≥ 0) = φ(AT

i sp/σv).

Similarly,

Pr(yrip < 0) ⇒ Pr(AT
i sp + vip < 0) = φ(−AT

i sp/σv).

where φ(x) = (1/
√

2π)
∫ x
−∞ e

−t2/2dt. The conditional probability of R given S, Pr(R|S), is

given by,

Pr(R|S) =
P∏
p=1

M∏
i=1

Pr(rip|S) =
P∏
p=1

M∏
i=1

(
φ

(
AT
i sp
σv

))rip
×
(
φ

(
−A

T
i sp
σv

))(1−rip)

.
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The negative log-likelihood of R given S, fml(AS), is given by

fml(AS) = − log(Pr(R|S)) = −
P∑
p=1

M∑
i=1

[
rip log

(
φ

(
AT
i sp
σv

))
+ (1− rip) log

(
φ

(
−A

T
i sp
σv

))]
(2.17)

which can be rewritten as

fml(H) = −
P∑
p=1

m∑
i=1

[
rip log

(
φ

(
hip
σv

))
+ (1− rip) log

(
φ

(
−hip
σv

))]
, (2.18)

and H = AS. In the following, we use H and AS interchangeably. We aim to minimize

fml(AS) as well as incorporate the sparsity condition of the signal matrix S to obtain an

estimated signal matrix Ŝ or the support of S. As the signals observed at all the nodes share

the same support, the following matrix norm (as defined in [87] for real valued measurements)

is appropriate. We define the row support of the coefficient matrix S as [87]

rowsupp(S) = {w ∈ [1, N ] : swk 6= 0 for some k},

and the row-l0 quasi-norm of S is given by,

||S||row-0 = |rowsupp(S)|,

which is also known as the l0,∞ norm, where |.| denotes the cardinality. To compute S, we aim

to solve the following optimization problem:

arg min
S

{fml(AS) + λ||S||0,∞} (2.19)

where λ is the penalty parameter. However, the problem (2.19) is not tractable in its current



29

form. The problem can be modified as

arg min
S

{fml(AS) + λ||S||1,∞} (2.20)

where ||S||1,∞ =
∑N

i=1 max
1≤j≤P

|sij|, i.e., ||S||1,∞ is the sum of all the elements with maximum

absolute value in each row, also known as the l1,∞ quasi-norm of a matrix. It is noted that,

fml(AS) and ||S||1,∞ are convex functions. The former is the ML function while the latter is a

convex relaxation of the row-l0 quasi-norm [87], therefore the expression in (2.20) is a convex

optimization problem.

Algorithm for Solving the Optimization Problem in (2.20)

The goal is to solve the problem of the form

arg min
S

{f(AS) + λg(S)} (2.21)

where f(AS) = fml(AS) and g(S) is the l1,∞ norm of S.

The class of iterative shrinkage-thresholding algorithms (ISTA) provides one of the most

popular methods for solving the problem as defined in (2.21). In ISTA, each iteration involves

the solution of a simplified optimization problem, which in most of the cases can be easily

solved using the proximal gradient method, followed by a shrinkage/soft-threshold step; for

e.g., see [6, 16, 30]. It should be noted that in these papers, ISTA is applied to find an optimum

vector which minimizes a given objective function and, therefore, cannot be applied here di-

rectly. We extend the idea to find an optimal matrix which is a minimizer of the expression

f(AS) + λg(S).

From [6], at the k-th iteration we have

Sk = PLf (Sk−1) (2.22)
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where

PLf (T ) = arg min
Ŝ

λg(S) +
Lf
2
||S − (T − 1

Lf
∇f(T )||2F .

Inputs to the algorithm are Lf (the Lipshitz constant of ∇f ) and S0, the initialization for the

iterative method, which could be assumed to be a null matrix or A†Z, where A† is the pseu-

doinverse of A. For our case, the gradient of fml(H) w.r.t. matrix S can be easily calculated

as AT∇fml(H), where x = AS. Notice that, ∇fml(H) is the gradient of fml(H) w.r.t. H

and is given by

∇fml(hip) =
ripexp(− h̃2ip

2
)

√
2πσvφ(h̃ip)

−
(1− rip)exp(− h̃2ip

2
)

√
2πσvφ(−h̃ip)

, (2.23)

where h̃ip = hip/σv.

The problem defined in (2.22) is row separable for each iteration. Therefore, to solve for

Sk, i.e., to find PL(Sk−1), we divide the problem into N subproblems, where N is the number

of rows in S. Next, we solve the following subproblem for each row of Sk:

arg min
si

λg(si) +
Lf
2
||si − (ti − 1

Lf
∇f(ti))||22; (2.24)

where si, ti and∇f(ti) are the ith rows of S, Sk−1 and∇f(Sk−1) respectively, and ‖s‖ is the

`2 norm of s, i.e., ‖s‖ = (
∑

i |s|i)
1
2 . Equation (2.24) is of the form:

arg min
s

{
λg(s) +

Lf
2
||s− u||22

}
; (2.25)

where g(s) = ||si||∞, i.e., the l∞ norm of the ith row of S and constant vector u is given by

u = ti − 1
Lf
∇f(ti) (we avoid using superscript i on g(s) and u for brevity).

Introducing an auxiliary variable t = g(s), the problem in (2.25) can be rewritten as

arg min
s

{
t+

1

2λ̄
||s− u||22

}
, s.t. 0 ≤ wpsp ≤ t. (2.26)
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where λ̄ = λ
Lf

, wp = sign(up) and up and sp are the p-th elements in u and s respectively, for

all p = 1, 2, · · · , P . The problem in (2.26) can be solved using Lagrangian based methods.

The Lagrangian for (2.26) is defined as

L(s, α, β) =
1

2
||s− u||22 + λ̄t−

∑
i

αiwisi +
∑
i

βi(wisi − t),

where α and β are the Lagrangian multipliers. Optimality conditions for 1 ≤ p ≤ P for the

above equation are

(sp − up)− αpwp + βpwp = 0,

λ̄−
∑
p

βp = 0,

αp(wpsp) = 0,

βp(wpsp − t) = 0, (2.27)

for αp, βp ≥ 0.

Notice that, if the optimal t = t∗ was known, we could use the above conditions to compute

the optimum x∗p via

s∗p(t
∗) =

 wpt
∗ if |up| ≥ t∗;

up otherwise.
(2.28)

The proof of the above statement follows from the following lemma [86].

Lemma 2.1. The optimality conditions in (2.27) are satisfied by the solution in (2.28).

Now, the problem reduces to finding the optimal t∗. To find the optimal t∗, we define the

function

h(t) = λ−
∑
p

βp = λ+
∑

p:|up|≥t

wp(sp(t)− up), (2.29)

where sp(t) is obtained by (2.28) with t instead of t∗. The optimal t∗ can be found by solving
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the following equation

h(t∗) = 0. (2.30)

This can be easily solved for t∗ by applying a bisection based method using the initial interval

[0, ||u||∞]. If there does not exist a solution in this interval, i.e., h(0) × g(||u||∞) ≥ 0, the

trivial solution is given by t∗ = 0.

Once we find t∗, the solution to (2.26) is given by (2.28). Each subproblem given by (2.24)

can be solved in a similar way, the solution to each of which can be used to find Sk through

Equations (2.22) and (2.4.1). The summary of all the steps is provided in Algorithm 2.1, where

||.||F denotes the Frobenius norm. Algorithm 2.1 produces the matrix Sk and locations of

non-zero elements in Sk yield the estimated support of original signal matrix S.

Algorithm 2.1 Centralized `1,∞ Regularized ML Based Algorithm (MLA)

1. Given tolerance ε>0, parameters λ̃>λ, 0<α<1 and Lf

2. Initialize S0, S1 such that S0 6= S1, λ̂ = λ̃, k = 1

3. While λ̂ > λ

4. λ̂ = αλ̂

5. While ||Sk − Sk−1||F > ε||Sk−1||F

6. k = k + 1

7. Define matrix U = Sk−1 − 1
Lf
∇f(Sk−1) where∇f(Sk−1) is computed as in (2.23)

8. For each row of Sk

9. Update the p-th row element using (2.30) and (2.28) for p = 1, 2, · · · , P

10. End For

11. End While

12. End While
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2.4.2 Centralized-BIHT

In this section, we extend the BIHT [47] algorithm to the multiple sensor case and refer to it as

the Centralized BIHT (C-BIHT) algorithm. For the sake of completeness, we first introduce the

BIHT algorithm.

BIHT [47]

The BIHT algorithm is an iterative method that reconstructs a K-sparse signal s from binary

information of compressed measurements from a single sensor. The signal estimate at the k-th

iteration with quantized measurements r is given as

sk = ΘK

(
sk−1 − τAT (sign(Ask−1)− r)

)
,

where ΘK is a K-ball projection operator which forces all the elements but K with largest

magnitudes to zero and τ is the step size. This method is an iterative method where at each

iteration an estimate for the support is computed. This estimate is improved in successive

iterations.

Algorithm 2.2 Centralized BIHT algorithm (C-BIHT)
Inputs : A, K, Q, τ

1. Initialize S0

2. For iteration j until the stopping criteria

3. Sj = Sj−1 + τAT ( R − sign(ASj−1))

4. U j = DetectSupport(Sj, K)

5. Sj = Threshold(Sj,U j)

6. End For

7. Ŝ = Sj
∗ and Û = U j∗ when stopping at iteration j∗
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C-BIHT

In a centralized setting, R is available at the fusion center. Merging BIHT [47] and the idea

of Centralized IHT Algorithm [8], we propose the Centralized BIHT (C-BIHT) algorithm to

estimate the joint sparsity pattern using multiple sensors. In Algorithm 2.2, we provide the

pseudo code for C-BIHT.

We first initialize the signal estimate to S0. Next, during the j-th iteration the gradient of

the cost function is evaluated using Sj−1 and a step proportional to the gradient is taken in the

negative direction. This step ensures that Sj moves in the direction where the cost function is

minimized. In Step 4, DetectSupport (Sj, K) is a function which computes the support of the

K-sparse signal matrix. A simple implementation of this function is to select K rows with the

largest l2 norm as the support set. Next, in Step 5, the function Threshold (Sj,U j) forces all

the rows of Sj matrix to zero except for the indices in support U j . In other words, this step

is a hard thresholding operation which forces matrix Sj to be K-row sparse. These iterations

are continued until the stopping criterion is satisfied (such as minimum squared error). The

support estimate of the final iteration is the estimated support.

Since the algorithms developed in the centralized setting take into account all the mea-

surements from multiple sensors, they expect to have better support recovery performance

compared to algorithms that take measurements from a single sensor. However, a centralized

system is not always feasible when the network is large or resource constrained. In the next

section, we propose algorithms to solve the sparsity recovery problem in a decentralized man-

ner.
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Algorithm 2.3 Decentralized- Row-`1 Regularized ML Based Algorithm (DMLA)

1. Given tolerance ε>0, parameters λ̃>λ, 0<α<1 and Lf

2. Initialize S0
p , S1

p such that S0
p 6= S1

p , λ̂ = λ̃, k = 1 for p = 1, · · · , P

3. Local Communication at node p, for all p ∈ V

Transmit rp to its one-hop neighborhood

Receive rr where r ∈ neigh(p) and form rp

4. Up = MLA(rp) for p = 1, · · · , P

5. Global Communication

(a) For all p ∈ V , transmit Ûp to V

(b) Receive Ûi for ∀i 6= p

6. Û = Majority(Û1, Û2, · · · , ÛP )

2.5 Decentralized Algorithms with One-bit Compressed

Sensing

In this section, the algorithms developed for the centralized case are extended to the decentral-

ized settings. A decentralized network is modeled as an undirected graph G = (V , E), where

V is the node set {1, · · · , P}. The set of communication links in the network corresponds

to the set of edges E . An edge exists between the i-th node and the j-th node, if and only

if there is a communication link between them (so that, they can directly communicate with

each other). We also define by neigh(i) = {j | (i, j) ∈ E} the set of neighboring nodes of

node i. The p-th node observes a sparse signal sp, compresses it, quantizes it to one-bit and

shares measurements rp with its one-hop neighbors neigh(p). The p-th node also receives the

measurements from its neighboring nodes. Thus, the p-th node has access to the measurement

matrix Rp = [Rneigh(p), rp], where Rneigh(p) is a matrix of rr for all r ∈ neigh(p). Let the

local support estimate at the p-th node based on the available information be Ûp. Now, the goal

of the p-th node is to collaborate with its one-hop neighbors to recover the common sparsity
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pattern.

In this subsection, we extend Algorithm 2.1 to the decentralized setting for joint support

recovery. In Algorithm 2.3, we provide the pseudo code for DMLA.

In Algorithm 2.3, each node first initializes the local signal estimate to the matrix S0
p of

size N × card(neigh(p)) + 1 where card(.) denotes the cardinality of the corresponding set.

There are two fusion stages in DMLA: 1) information fusion, and 2) index fusion.

Information Fusion Stage

The p-th node estimates the support set, Ûp, based on Rp, in a manner similar to FC in a

centralized setting. However, the size of the problem each node solves is usually smaller than

the one solved by FC in the centralized algorithm because measurements are available only

from 1-hop neighbors. Note that, MLA(Rp) in the algorithm is a shorthand representation of

the steps that the p-th node executes to estimate the support set of the signal. These steps are

similar to steps 3 through 12 of Algorithm 2.1.

Index Fusion Stage

The p-th node forwards Ûp to all the nodes in the network. Similarly, p-th node receives

Ûq, q 6= p. Each node then decides the final sparsity pattern based on the Majority fusion

rule implemented in the Majority(Û1, Û2, · · · , ÛP ) function. A simple implementation of this

function is to count the K-most repetitive indices among all the estimated support sets. The

probability that two or more nodes estimate the same indices that do not belong to the sparsity

pattern after solving step 5 is very small, especially when N >> K.

2.5.1 Decentralized-BIHT

In this subsection, we propose a decentralized algorithm based on the BIHT algorithm for spar-

sity pattern recovery. In Algorithm 2.4, we provide the pseudo code for D-BIHT. This algorithm
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also has information and index fusion stages as in DMLA.

Algorithm 2.4 Decentralized BIHT (D-BIHT)
Inputs : A, K, τ, neigh(p) for all p ∈ V

1. Initialize S0
p for all p ∈ V

2. Local Communication at node p , for all p ∈ V

Transmit rp to its one-hop neighborhood

Receive rr where r ∈ neigh(p) and form Rp

3. For iteration j until the stopping criteria

4. Sjp = Sj−1
p + τAT (Rp − sign(ASj−1

p ))

5. U jp = DetectSupport(Sjp, K)

6. Sjp = Threshold (Sjp,U jp)

7. End For

8. Ŝp = Sj
∗ and Ûp = U j∗ when stopping at iteration j∗

9. Global Communication

(a) For all p ∈ V , transmit Ûp to V

(b) Receive Ûi for ∀i 6= p

10. Û = Majority(Û1, Û2, · · · , ÛP )

Information Fusion Stage

In this stage, the p-th node collects quantized compressed measurements from its one-hop

neighbors and forms Rp. The p-th node then uses the Rp to estimate the support, (Û jp), and the

signal matrix, Sjp, from steps 3 through 7.

Index Fusion Stage

In this stage the p-th node receives estimates of the support set from all the other nodes in the

network. Each node decides on the sparsity pattern using the Majority fusion rule implemented
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in majority function. This stage is the same as the index fusion stage of DMLA. The difference

between the final performance of DMLA and D-BIHT is due to the difference in performance of

their information fusion stage in estimating Ûp.

Decentralized BIHT modified (D-BIHTm):

For a resource constrained network that has very severe restrictions on bandwidth usage and/or

computation capacity (power constraint), we simplify Algorithm 2.4. In particular, Algorithm

2.4 is modified by omitting the Information Fusion stage. Each node obtains an estimate of the

sparsity pattern, Ûp, p = 1, · · · , P , based on only its information via the BIHT algorithm. This

stage is referred to as the Self Decision Stage. Thus, the communication overhead/bandwidth

of the network and the computational cost at each node is reduced. The next stage is the index

fusion stage where the final estimate is obtained by global fusion as in Algorithm 2.4. This

special case of D-BIHT is referred to as the Decentralized BIHT modified algorithm.

2.6 Simulation Results
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Fig. 2.1: PSPR for MLA when η = -3.01
dB, N = 100 and K = 5 in a network of
10 nodes.
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In this section, we evaluate the performances of the proposed centralized and decentralized

algorithms through numerical simulations. We consider the percentage of sparsity pattern re-

covered (PSPR) correctly and the probability of exact sparsity pattern recovery (PESPR) as the

performance metrics. They are defined as

PSPR

=
# of support elements out of K that are recovered correctly

K
× 100

PESPR

=
# of Monte Carlo runs in which true support is recovered

# of Monte Carlo runs

respectively. We obtain the performances of the proposed algorithms for different values of

compression ratios (M/N ) and noise variances (σ2
v). We generate a signal vector of length

N = 100 with sparsity index, K = 5. For each M , we generate the elements of the M × N

measurement matrix A from a normal distribution with mean zero and unit variance. The

sparse support set for the signal is selected from [1, N] uniformly. The amplitudes of the

signals in the support set are generated from an i.i.d. Gaussian distribution with zero mean

and unit variance. The signals are assumed to remain constant over all Monte Carlo runs.

The measurement noise at each node is i.i.d. Gaussian with zero mean. The variance of the

noise vector, v, is set such that E(‖v‖2
2) is a constant. We define the total noise power as

η = 10 log10(E(‖v‖2
2)) dB. We compare our proposed algorithms with algorithms proposed

in [104] and [52] and refer to them as ImpNoise and 1bitGAMP, respectively. We ran C-BIHT,

MLA, D-BIHT, DMLA, D-BIHTm, ImpNoise, 1bitGAMP, and BIHT algorithms for 1000 Monte

Carlo runs. In simulations, we use step size τ = 1 for C-BIHT, D-BIHT and D-BIHTm algorithms.

We ran all the proposed decentralized algorithms over a network with 10 nodes each of which
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is assumed to be of degree 3.

We first compare the performances of the two proposed centralized algorithms, MLA and

C-BIHT. Our results for MLA and C-BIHT are shown in Figures 2.1 and 2.2 respectively. We

can see that, with an increase in M/N for a constant P , the PSPR of both the algorithms im-

proves. We can also see similar improvement in PSPR, with an increase in P for a constant

M/N . Further, C-BIHT achieves 100% in PSPR with less values of M/N and P than MLA. For

example, when the M/N is 0.8, C-BIHT achieves 100% in PSPR with 10 sensors, while MLA

requires 15 sensors to achieve the 100% performance for the same M/N . Next, we conduct
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two experiments where we compare PSPR and PESPR of all the proposed algorithms when η
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= -3.01 dB and η = 6.99 dB respectively. In Figures 2.3 and 2.4, we present our results when

η = -3.01 dB where the values of PSPR and PESPR are shown as a function of M/N . The

results show that, when η = -3.01 dB, all of the proposed centralized and decentralized algo-

rithms perform well with near 100% sparsity pattern recovery. All the curves corresponding

to the proposed algorithms, in Figures 2.3 and 2.4 overlap and are not distinguishable. As ex-

pected, SMV based algorithms, BIHT and 1bitGAMP, perform quite poorly. It should be noted

that ImpNoise, which is a distributed one-bit CS algorithm, also performs quite poorly. For

the case when η = 6.99 dB, we present our results in Figures 2.5 and 2.6. It can be seen that

with increased noise power, there is degradation of performance of all of the algorithms. When

M/N increases, the performance of all of these algorithms improves. It is seen that C-BIHT

and D-BIHT have better performance in sparsity pattern recovery, i.e., almost 100% for all the

measurements. MLA and DMLA performance is 90% or above only when M/N approaches 1.

The performances of both decentralized algorithms are comparable to that of their correspond-

ing centralized algorithms. However, the performance of D-BIHT is better than DMLA. All of

these algorithms have much better performance compared to the BIHT and 1bitGAMP algo-

rithms, i.e., the algorithms using single measurement vectors. The performance of ImpNoise

algorithm is not as good as the proposed algorithms. It should be noted that D-BIHTm does not

lose much in performance when it is compared with D-BIHT even though D-BIHTm uses less

amount of information in estimating the joint sparse support set.

Next, we compare the performances of the proposed one-bit CS algorithms for joint support

recovery with that of their real valued CS counterparts. Here we choose to compare C-BIHT,

D-BIHT, D-BIHTm with the simultaneous iterative hard thresholding (SIHT) algorithm [8]. Fig-

ure 2.9 shows the PSPR of C-BIHT, D-BIHT and SIHT when η = 16.99 dB as a function of

M/N . It is quite interesting to see that, even with an increase in η, the PSPR of C-BIHT and

D-BIHT is almost 100% for all the values of M/N . Next, we analyze the sensitivity of all of

these algorithms with respect to η. In this experiment, we choose M/N = 0.6 and vary η.
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Figures 2.10 shows PSPR values of the proposed algorithms and SIHT as a function of η . It

is seen that C-BIHT and D-BIHT perform similar to SIHT when η is 16 dB or less. The result

is quite promising even when M/N = 0.6. However, when η > 16 dB, the rate of degradation

in the performances of C-BIHT and D-BIHT is higher than SIHT. Degradation in the perfor-

mance of one-bit CS algorithms with an increase in η is expected. It is noted that one-bit CS

yields huge saving in the number of bits required to store and/or transmit compressed mea-

surements. For each signal vector with one-bit CS measurements, zp, requires only M bits.

However, approximation of a real valued CS with L level of quantization requires M log2(L)

bits. Thus, one-bit CS saves M log2(L) −M bits. The saving increases by a factor of P in a

sensor network with P sensors. The performances of these one-bit CS algorithms, except in

very low SNR regimes, are comparable to their real valued counterparts. Thus, the proposed

algorithms provide a promising alternatives to real valued CS based algorithms, especially in

resource constrained networks except when the total noise power is large.

Next, we numerically estimate the total number of one-bit compressed measurements re-

quired by the C-BIHT algorithm on an average for joint support recovery with minimum error.

Here, for each value of signal SNR, γ = Kσ2
s+µTµ
Kσ2

v
, we run the C-BIHT algorithm for different
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number of measurements, say M ′, starting from 1. We estimate the probability of joint support

recovery from 100 runs of the algorithm for M ′. If the probability of joint support recovery

is less than 0.95, we increase the value of M ′ by one and repeat the experiment. The first

M ′ with the probability of joint support recovery of 0.95 or more is considered as the lower

bound, Mmin. For each value of γ, we repeat the experiment for 20 instances. The average

of all Mmins for a γ is considered the desired lower bound for C-BIHT, MCBIHT , for the γ.

We compare this MCBIHT with the bound obtained in (2.15) which we label as MML. Figure

2.11 shows the comparison of MCBIHT with MML for K = 20 and 40. It can be seen that the

MCBIHT is lower-bounded by MML. When the γ is small, the difference between MCBIHT

and MML is high. When γ increases, the difference decreases. However, any further increase

in the value of γ does not change MCBIHT by much and MCBIHT tends to stabilize. Next, we

compare the computational complexities of the proposed algorithms in a centralized setting.

Addition and multiplication are considered as the basic operations in evaluating complexity.

We assume that the number of operations in the evaluation of a gradient and a function is con-

sidered to be equal to the dimensions of the gradient and the variable returned by the function,
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respectively. Based on these assumptions, the total number of operations carried out by the

MLA can be shown to be of order O
(
ceil(logα

λ̃
λ
)
(
1 + T ′(3NP + NPNE + 1)

))
, where T ′ is

the number of times the inner while loop executes and NE denotes the total number of oper-

ations required to update the elements of Sk using (25) and (27). Similarly, the total number

of operations required by C-BIHT is of order O
(
T (4NP + KP )

)
. As the exact analysis of

computational complexity of MLA depends on the algorithm parameters λ̃, λ, and T ′, it is diffi-

cult to provide a fair comparison with the computational complexity of C-BIHT. Therefore, we

employ the run times of centralized algorithms as a measure of computational complexity of

these algorithms. The analysis of time complexities of the decentralized algorithms is similar

to their respective centralized counterparts. This is because time complexity at each node in the
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decentralized algorithms is dominated by the time complexity of the smaller instance of their

corresponding centralized algorithms. Table 2.1 gives a summary of run times required by the

C-BIHT and MLA algorithms to estimate the sparsity pattern from given one-bit compressive

MMV for different values of N , P and M . The experiment is carried out in Matlab 2015b

using processor Intel Xenon(R). The values in the table show the average times required by the

centralized algorithms in seconds to obtain the sparsity pattern which is obtained by averaging

the total time required for 20 runs. For both the algorithms, the time required increases when

one or more of N , P and M increase. The run times of C-BIHT and MLA have a 5-fold increase

when the problem size, N , have a 5-fold increase, i.e., from 100 to 500. For the same values of

N , P and M , C-BIHT is around 100 times faster than MLA and hence is a clear winner in terms

of time complexity.

Finally, we evaluate the performance of the C-BIHT and MLA algorithms when we relax our

assumptions on the measurement matrices. In the first case, we consider the case when the

measurement matrices Ap for p = 1, · · · , P are different and compare the performance with

the case when Ap = A for all p. Figure 2.12 shows the PSPR values of the C-BIHT algo-
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Table 2.1: Comparison of run times of C-BIHT and MLA in seconds to obtain the sparsity
pattern when N=100 and N=500

C-BIHT when N = 100 and K = 5
M→ 60 70 80 90 100
P = 3 0.0285 0.030 0.0307 0.034 0.035
P = 5 0.067 0.069 0.069 0.072 0.118

P = 10 0.090 0.092 0.095 0.111 0.160
MLA when N = 100 and K = 5

M→ 60 70 80 90 100
P = 3 2.2676 2.5566 2.9729 3.3396 4.5327
P = 5 4.5370 5.1878 6.0173 6.6772 7.5497
P =10 9.3963 10.9925 12.6525 14.0072 15.7242

C-BIHT when N = 500 and K = 25
M→ 300 350 400 450 500
P = 3 0.1757 0.1757 0.1695 0.1942 0.1857
P = 5 0.1764 0.1832 0.1890 0.1970 0.2127

P = 10 0.2170 0.2398 0.2594 0.2694 0.3382
MLA when N = 500 and K = 25

M→ 300 350 400 450 500
P = 3 11.8385 13.7213 15.8544 17.6784 19.6593
P = 5 19.7641 23.1694 26.4415 29.6953 32.8875
P =10 39.7087 46.1982 52.7405 59.1511 65.5580

rithm and MLA algorithm as a function of η. MLA_diff and C-BIHT_diff refer to results when

different measurement matrices are used at different sensors. The performance of the C-BIHT

algorithm using differentAp is comparable to when usingA at all nodes. However, Figure 2.12

shows that the MLA algorithm has improvement in performance when different Ap are used at

different sensors, especially when the total noise power is high. The improvement in the per-

formance is due to the diversity of the measurement matrices. Previous works [43, 64] have

also shown improvement in the signal recovery performance theoretically and through numer-

ical experiments when different measurement matrices are used instead of single measurement

matrix. These works, however, assumed compressed measurements to be real-valued. The nu-

merical results in Figure 2.12 show similar results when we have multiple one-bit compressed

measurements from different measurement matrices. We can also see that the performance of
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the MLA algorithm improves and becomes comparable to that of the C-BIHT algorithm by using

different Ap. We should note that the FC is required to know the measurement matrices used

by each sensor in the network. Similarly, in a decentralized system, each sensor is required

to know the measurement matrices of all of its one-hop neighbors. Hence, in both of these

cases, prior communication between sensors and the FC or among sensors are required for

sharing measurement matrices. Further, the space complexity of the FC in a centralized setting

and each of the nodes in a decentralized setting increases with the increase in the size of the

network and increase in connectivity among nodes respectively.

In the second case, PSPR values of C-BIHT and MLA algorithms are evaluated when a ran-

dom partial DCT matrix, which is obtained by picking M rows uniformly at random from N

rows of an N ×N DCT matrix, is used as the measurement matrix and is compared to the case

when random Gaussian measurement matrix is used. The numerical results of the experiment

are shown in Figure 2.13. Curves represented by legends C-MLA_dct and C-BIHT_dct refer

to the results when partial DCT matrices are used instead of a random Gaussian matrices. We

can see a similar performance of the C-BIHT algorithm and improvement of the MLA algorithm

with random partial DCT matrix when compared to a random Gaussian matrix.

We have studied the advantages of using MMVs in centralized and decentralized settings

over SMV. Next, we study the sparsity pattern recovery performance of the SMV-based algo-

rithm with MMV-based algorithms when we put a constraint on the total number of bits that

can be used by algorithms to estimate support of sparse signal(s). Let NB be the total number

of bits that can be used in total to estimate the support of the sparse signals. one-bit SMV-based

CS algorithm makes allNB measurements to estimate the support of the sparse signal, whereas

each sensor in MMV based CS algorithms makes NB/P one-bit CS measurements. In this set-

ting, i.e., when the total number of bits is constant, we compare the performance of MMV

based algorithms (both centralized and decentralized) with SMV-based algorithms. Here, we

chose to compare the performance of C-BIHT, D-BIHT, D-BIHTm with BIHT. We should note
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that in this setting BIHT uses an overcomplete dictionary whereas C-BIHT, D-BIHT, D-BIHTm

uses an under-complete dictionary to obtain measurements. Hence, we compare the support

recovery performance when SMV is available from the over-determined dictionary with the

joint support recovery with MMV from the under-determined dictionary. Figure 2.14 shows

the PSPR values of these algorithms for different values ofM/N . It should be noted thatM/N

refers to the compression ratio of the measurement vectors of each sensor in centralized and

decentralized settings. BIHT is performed when the compression ratio is equal to PM/N .
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2.7 Summary

In this chapter, we considered the problem of joint sparsity pattern recovery with one-bit quan-

tized compressed measurements. We determined the performance bounds for joint support

recovery of sparse signals when one-bit quantized measurements from the distributed sensors

are available at the FC. We showed that the number of compressive measurements required

to recover the joint sparsity pattern with vanishing probability of error has an inverse relation

with the number of sensors in the sensor network. We also developed two computationally

tractable centralized algorithms, namely MLA and C-BIHT for sparsity pattern recovery with

one-bit quantized measurements. Further, we extended the proposed centralized algorithms

to decentralized settings. We showed that the performance of these decentralized algorithms

is comparable to the centralized algorithms. Through numerical simulations, we showed that

one-bit CS algorithms have comparable performance to real-valued CS algorithms except in

cases when the total noise power is large. The proposed one-bit CS algorithms are promising

for resource-constrained networks as they provide a significant saving in the number of bits

required to store and/or transmit with performance comparable to their real-valued CS coun-

terparts.
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CHAPTER 3

ONE-BIT COMPRESSED SENSING WITH

HOMOGENEOUS SIDE-INFORMATION

3.1 Introduction

In general, the performance of sparse signal reconstruction or parameter estimation from one-

bit measurements is susceptible to noise. In the previous chapter, we looked into the problem

of sparse support estimation in a centralized and decentralized setup. We provided empirical

results that demonstrated that the proposed algorithms improved the sparse support estimation

performance. In this chapter, we consider the task of sparse signal reconstruction from noisy

one-bit compressed measurements. We aim to improve the reconstruction performance by

using a statistically dependent signal that the receiver has as an aid. We refer to this signal as

side-information (SI).

The concept of using SI is not new. For example, SI is available in certain applica-

tions, including in the reconstruction of sequences of signals such as in dynamic MRI re-

construction [68], video signal reconstruction [53], and sequential estimation [17]. Several

authors [19, 69, 72, 89, 91, 107] have shown improved reconstruction performance from com-
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pressed measurements by incorporating SI. In [89], the authors assume that the receiver uses

the partial support set of the sparse signal as SI. In [72, 91], the authors assume that SI is a

noisy version of the actual compressed signal. All of these works have exploited SI with real-

valued measurements. Further, in the channel estimation problem in wireless communication,

the channel estimate at the previous time instant can be used as SI to estimate channel at the

current time instant [69]. In the case of one-bit CS, a few works [76,79] have exploited SI in the

signal recovery task. In [76], the authors assume that the receiver has access to partial support

information as SI, and in [79], the authors assume the complete knowledge of the support set

as SI. In [76] and [79], however, the authors do not account for noise in one-bit measurements

and SI.

In this work, we assume that the SI is noisy. We consider two different scenarios of SI -a) SI

consists of support information only, and b) SI consists of both support and amplitude informa-

tion. We approach the problem from the Bayesian perspective. This allows us to incorporate

the sparse structure on signals, noise in the SI and one-bit measurements and model depen-

dence between the signal and the SI with ease. In this problem, we use Bernoulli-Gaussian

distribution as a prior on the signal to impose sparse structure. Note that the SI is usually the

signal reconstructed at the previous time instant. Based on the temporal dynamics of the ob-

served phenomenon, the support and the amplitude of the sparse signal might change over time.

Further, due to noise in the compressed measurement process, the reconstructed signals might

have some incorrect support and amplitude information. Hence, we model the SI as the signal

corrupted with additive noise to account for the discrepancies between the SI and the signal.

For this setup, we develop an algorithm when we model the additive noise in SI using Lapla-

cian distribution. Second, we assume that the receiver has access to the support information

as SI. When SI consists of support information only, we use Bernoulli distribution to model

the noise of the support. We recover the signal as a minimum mean square error (MMSE)

estimate of the posterior pdf of the signal. As the computation of the MMSE estimator is in-
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tractable in a higher dimension, we propose a generalized approximate message passing-based

algorithm to approximate the MMSE estimator. The Expectation-Maximization algorithm is

used to estimate the noise parameter of SI. We show that the signal recovery performance can

be significantly improved by exploiting available side information at the receiver.

3.2 Signal and Measurement Models

In the following, we introduce our signal and measurement models.

3.2.1 Signal Model

We consider the input signal x ∈ RN to be random with elements having identical and inde-

pendent (i.i.d.) distribution

pX (x) =
N∏
n=1

pXn(xn), (3.1)

where each component xi is a Bernoulli-Gaussian distributed random variable with pdf

pXn(xn) = (1− λ)δ(xn) + λN (xn; 0, vx), (3.2)

where δ(x) is the Dirac-delta function, and λ is the probability of having non-zero values. x is

a sparse signal. λ controls the sparsity of the signal. Smaller the value of λ, sparser the signal.

3.2.2 Measurement Model

Figure 3.1 shows the transmission chain of the measurement model of the problem considered

in this work. The sparse signal x ∈ RN is linearly transformed to a vector z ∈ RM using

the random measurement matrix A ∈ RM×N . The transformed vector, z, is assumed to be

corrupted by additive i.i.d Gaussian noise vector with mean zero and variance v, i.e., nm ∼

N (0, v). This corrupted compressed vector is quantized element-wise to +1 or −1 based on
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Fig. 3.1: One-bit CS with pre-quantization and post-quantization noise.

the sign of the signal. We assume a noisy channel between the quantizer and the receiver where

the quantized measurements are corrupted by multiplicative noise which takes values either +1

or −1. Formally, the quantized measurement model can be written as

y = η �Q(Ax+ n), (3.3)

where the quantizer Q : RM → {−1,+1}M is the element-wise sign quantizer. The m-th

element at the output of the quantizer is

[Q(ζ)]m =

 +1, if ζm > 0,

−1, if ζm ≤ 0,
(3.4)

and η ∈ {−1,+1}M is the i.i.d. post-quantization noise. ηm is assumed to follow Bernoulli

distribution with Pr(ηm = 1) = γ. We define the inverse of quantization function, Q−1(.), as

[Q−1(y)]m =

 (−∞, 0 ], if ym ≤ 0,

(0,∞), if ym > 0,
(3.5)

where ym is the m-th element of y.
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3.2.3 Noisy One-Bit Compressed Sensing

As in [52], the posterior distribution of the signal, x, given the quantized and noisy measure-

ments, y, at the receiver is

pX |Y(x|y) ∝ pY|X (y|x)pX (x) ∝
M∏
m=1

Izm∈{Q−1(ηmym)}

N∏
n=1

pXn(xn), (3.6)

where I(.) represents the indicator function, and ∝ represents equality upto a proportional con-

stant. The minimum mean square error (MMSE) estimator of x is the mean of the posterior

distribution, i.e., EX |Y [x|y]. Next, we assume that the receiver has access to side-information

which is related to the signal of interest. The side-information is imposed as probability distri-

bution. Let x̃ represent the side-information of signal x.Here, we construct the posterior distri-

bution of signal, x, given the noisy one-bit compressed measurements y and side-information

x̃ as

pX |Y,X̃ (x|y, x̃) ∝ pY|X (y|x)pX̃ |X (x̃|x) ∝
M∏
m=1

Izm∈{Q−1(ηmym)}

N∏
n=1

pXn|X̃n(xn|x̃n), (3.7)

where pXn|X̃n(xn|x̃n) is the conditional density function that gives the statistical characteriza-

tion of the sparse signal when the side-information is given. The MMSE estimator of x with

SI at the receiver is EX |Y,X̃ [x|y, x̃]. We note that the derivation of the MMSE estimators

(3.6) and (3.7) is intractable in direct form. Therefore, we develop GAMP-based algorithms to

approximate the MMSE estimator.

3.3 Noisy One-Bit Compressed Sensing Algorithm

In this section, we begin with an introduction to the GAMP algorithm. GAMP algorithm [81] is

a generalization of the AMP algorithm [27]. Both AMP and GAMP algorithms apply loopy belief

propagation in the bipartite graph under the Gaussian approximation for the involved messages.
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These methods fall under the Bayesian framework which assume a prior distribution, pX (x),

on x. The key idea in the Bayesian approach is to find the marginal posterior distributions

pXn|Y(xn|y) which could be used in minimum mean square error (MMSE) or maximum a

posteriori (MAP) estimation of each xn as:

x̂MAP
n = arg max

xn

pXn|Y(xn|y),

x̂MMSE
n = arg min

x̂n

EXn,Y
{

(xn − x̂n)2
}

= EXn|Y{xn|y}.

AMP inherently assumes the prior of a signal to be Gaussian whereas GAMP offers the systematic

approach of taking any prior of the signal into account during the denoising step. However,

the evaluation of the true marginal distributions, pXn|Y(xn|y), of a high-dimensional vector,

x, is analytically intractable and computationally prohibitive. The GAMP algorithm implements

loopy belief propagation and uses the central limit theorem with quadratic approximations to

approximate pXn|Y(xn|y) to improve computational performance. The GAMP algorithm uses

the sum-product and max-sum belief propagation algorithms to compute MMSE and MAP

estimators respectively. In the next section, we focus on the MMSE estimation problem corre-

sponding to the posterior densities (3.6) and (3.7). For detailed expositions on AMP, and GAMP,

we refer the readers to [27] and [81]. In this work, we consider the sum-product version of

the GAMP algorithm where we find the MMSE estimator of x corresponding to the posterior

densities (3.6) and (3.7).

3.3.1 Noisy One-Bit Compressed Sensing ( Noisy1bG )

In this subsection, we develop a GAMP based algorithm that reconstructs a sparse signal from

its noisy one-bit compressed measurements. Define z , Ax as the linear transformation of

x. The transformed signal, z, is corrupted by i.i.d. Gaussian noise which is quantized to
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one-bit as defined in (3.4). The one-bit quantized signal is transmitted over a channel with

probability of sign-flip 1 − γ. We represent the entire effect of additive white Gaussian noise

(measurement noise), one-bit quantization and sign-flip error (channel noise) by a probabilistic

channel, pY|Z (y|z;σ2
w). Since we assume that the measurement noise and the channel noise

are i.i.d., the channel is represented as

pY|Z
(
y|z;σ2

w, γ
)

=
M∏
m=1

pYm|Zm
(
ym|zm;σ2

w, γ
)
. (3.8)

In Algorithm 3.4.1, we summarize the steps of the GAMP algorithm for sparse signal re-

construction from one-bit noisy compressed measurements. We refer to this algorithm as

Noisy1bG. This Algorithm requires the computations of non-linear functionsF1(·), F2(·), G1(·), and G2(·)

as defined in (3.10) and (3.12).

Evaluation of F1(.) and F2(.)

First, we evaluate the channel, pYm|Zm(ym|zm), based on our system model as

pYm|Zm(ym|zm) =
∑
yqm

p(yqm|zm)p(ym|yqm, zm)

= γp(yqm : ymq = ym|zm) + (1− γ)p(yqm : yqm 6= ym|zm),

(3.13)

where yqm is them-th element of the output of the quantizer yq. Let Φ(p) =
∫ p
−∞N (x; 0, 1)dx,

δ+
m = δ(ym + 1), and δ−m = δ(ym − 1) . It is noted that p(yqm : yqm = ym|zm) is given by

p(yqm : yqm = ym|zm) = p(zm + nm ≥ 0|zm)δ−m + p(zm + nm ≤ 0|zm)δ+
m

= Φ(
zm√
v

)δ−m + (1− Φ(
zm√
v

))δ+
m.

(3.14)
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Algorithm 3.1 Noisy1bG Algorithm
1. Initialization: Set t = 0 and initialize x̂t, τ tx, and ŝt as x̂t = E[x], τ tx = var[x], ŝt = 0,

where the expectation and variance of x are with respect to px

2. Measurement Update

• Linear Step

τ t+1
p = (A�A)τ tx, p̂

t+1 = Ax̂t − τ p,t+1 � ŝt,

• Non-Linear Step

ŝt+1 = F1(y, p̂
t+1, τ p,t+1),

τ t+1
s = F2(y, p̂

t+1, τ p,t+1),
(3.9)

where F1 and F2 are applied element-wise and are defined as

F1

(
y, p̂t+1, τp,t+1

)
=

1

τp,t+1

(
E[z|y]− p̂t+1

)
,

F2

(
y, p̂t+1, τp,t+1

)
=

1

τp,t+1

(
1− var[z|y]

τp

)
.

(3.10)

The expectation and variance are evaluated with respect to z ∼ N (p̂, τ p).

3. Estimation Update

Linear Step

τ r,t+1 = ((A�A)Tτ t+1
s )−1, r̂t+1 = x̂t + τ r,t+1 � (AT ŝt+1),

where the inversion is performed element-wise

Non-linear Step

x̂t+1 = G1(r̂
t+1, τ r,t+1; pX ),

τ t+1
x = G2(r̂

t+1, τ r,t+1; pX ),
(3.11)

where G1 and G2 are applied element-wise and are defined as

G1(r̂n, τ
r
n; pxn) = EXn|Y [xn|y; r̂n, τ

r
n],

G2(r̂n, τ
r
n; pxn) = varXn|Y [xn|y; r̂n, τ

r
n].

(3.12)

The expectation and variance are evaluated with respect to pXn|Y ∝ N (·; r̂n, τ rn)pXn(·).

Set t = t+1 and return to step 2 until t < T .
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Similarly, we evaluate p(yqm : yqm 6= ym|zm) as

p(yqm : yqm 6= ym|zm) = (1− Φ(
zm√
v

))δ−m + Φ(
zm√
v

)δ+
m. (3.15)

Using central limit theorem arguments, GAMP approximates the distribution of random variable

Z as Gaussian with mean p̂ and variance τ p, i.e., Z ∼ N (p̂, τ p). The posterior marginal

distribution, pYm|Zm(ym|zm), can be evaluated as

pZm|Y
(
zm|y; p̂m, τ

p
m

)
=

pYm|Zm(ym|zm)N (zm; p̂m, τ
p
m)∫

zm
pY|Zm(ym|zm)N (zm; p̂m, τ

p
m)
.

The term in the denominator is the normalization constant. In the following, we evaluate

the normalization constant, Zp
m, the posterior mean EZm|Y [zm|y] and the posterior variance

varZm|Y [zm|y]. Define PIqm =
∫
zqmΦ(zm/

√
v)N (z; p̂m, τ

p
m)dzm for q = 0, 1, and 2. Using the

definition of pYm|Zm(ym|zm) from (3.14), and (3.15), the normalization constant can be derived

as

Zp
m =

∫
pYm|Zm(ym|zm)NZm(zm; p̂m, τ

p
m)dz

= γ
(
PI0

mδ
−
m +

(
1− PI0

m

)
δ+
m

)
+ (1− γ)

((
1− PI0

m

)
δ−m + PI0

mδ
+
m

)
.

Next, we evaluate the posterior mean of zm as

EZm|Y [zm|y; p̂m, τ
p
m] =

[
γ
(
PI1

mδ
−
m + (p̂m − PI1

m)δ+
m

)
+ (1− γ)

(
(p̂m − PI1

m)δ−m + PI1
mδ

+
m

)] 1

Zp
m
.

Similarly, we can evaluate EZm|Ym [z2
m|ym] as,

EZm|Y [z2
m|y; p̂m, τ

p
m] =

[
γ
(
PI2

mδ
−
m + (p̂2

m + τ pm − PI2
m)δ+

m

)
+ (1− γ)

(
(p̂2
m + τ pm − PI2

m)δ−m + I2
mδ

+
m

)] 1

Zp
m
.
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For the evaluation of Zp
m, EZm|Y [zm|y; p̂m, τ

p
m], and EZ|Y [z2

m|y; p̂m, τ
p
m], we need to evaluate

integrals PI0
m, P I

1
m, and PI2

m. Integrals PIqm for q = 0, 1, and 2 can be evaluated in closed-

form as

PI0
m = Φ

( p̂m√
v + τ pm

)
,

P I1
m = p̂mPI

0
m +

τ pm N ( p̂m√
v+τpm

)
√
v + τ pm

,

P I2
m = τ pm PI0

m + p̂m PI1
m +

τ pm p̂m vN ( p̂m√
v+τpm

)

(v + τ pm)1.5
.

(3.16)

The derivations of the closed-form expressions of the integrals are provided in Appendix B.

The posterior variance can be computed as varZm|Y [zm|y] = EZm|Y [z2
m|y] − (EZm|Y [zm|y])2.

With EZm|Y [zm|y] and varZm|Y [zm|y], non-linear functions F1(·), and F2(·) can be computed

as defined in (3.10).

Next, we derive the analytical expressions forG1(·) andG2(·), i.e., expressions for EXn|Y [xn|y; r̂n, τ
r
n]

and varXn|Y [xn|y; r̂n, τ
r
n]. The expectation is carried out with respect to the random variable

Xn given R̂n = r̂n for random variables

R̂n = Xn + Vn,

where Vn ∼ N (0, τ rn) and Xn ∼ pXn(xn) are independent. Therefore, the marginal posterior

distribution can be approximated as

pXn|Y(xn|y; r̂n, τ
r
n) =

pX (xn)N (xn; r̂n, τ
r
n)∫

xn
pXn(xn)N (xn; r̂n, τ rn)

. (3.17)

For Bernoulli-Gaussian distribution, the first-order moment can be computed as

EXn|Y [xn|y; r̂n, τ
r
n] =

1

Zr
n

∫
xn pXn|Y(xn|y; r̂n, τ

r
n)dxn.
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Using (3.2) and (3.17), and some algebra, we can show that the approximate posterior mean

can be expressed as

EXn|Y [xn|y; r̂n, τ
r
n] = Z ′n exp(− r̂2

n

2(vx + τ rn)
)r̂n, (3.18)

where Z ′n = 1
Zrn

λ√
2π

vx
(vx+τrn)1.5

, and Zr
n is the normalization constant which is evaluated as

Zr
n =

∫
xn pXn|Y(xn|y; r̂n, τ

r
n)dxn

=
1− λ√

2πτ rn
exp

(−r̂2
n

2τ rn

)
+

λ√
2π(vx + τ rn)

exp
( −r̂2

n

2(τ rn + vx)

)
.

Similarly, we can evaluate the second-order moment as

EXn|Y [x2
n|y; r̂n, τ

r
n] = Z ′n exp(

−r̂2
n

2(vx + τ rn)
)(

r̂2
nvx

vx + τ rn
+ τ rn). (3.19)

Using (3.18) and (3.19), the non-linear functionsG1(.) andG2(.) in (3.12) can be evaluated

and hence we can carry out the update in (3.11) of Noisy1bG. Thus, we have derived all the

statistical quantities required to implement one-bit CS with pre- and post-quantization noise.

Accounting for the noise leads to an improved signal reconstruction performance. However,

we emphasize that there are applications where the receiver has access to SI which can be used

to further improve signal reconstruction performance. In the next section, we look into how we

can model SI in the sparse signal reconstruction problem and exploit it for better reconstruction

performance.

3.4 Noisy One-bit Compressed Sensing with Side-Information

In this section, we study the problem of signal reconstruction from noisy one-bit compressed

measurements when the receiver has access to SI, x̃, which has both support and amplitude
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information. We design a GAMP based sparse signal reconstruction algorithm taking SI into

account. We assume that the SI is erroneous. The error in SI can either be in the amplitude or

in the support set of the signal. We assume that the signal has a small fraction of support that is

not in the support set of the SI. These errors are random, and hence, we model side information

as a noisy version of the signal, i.e.,

X̃n = Xn + Vn, n = 1, 2, · · · , N (3.20)

where Vn is an additive noise. Note that the magnitude of noise vn for n ∈ {n′ : xn′ 6=

0 and x̃n′ 6= 0} ∪ {n′ : xn′ = 0 and x̃n′ = 0} is relatively small and close to zero. But for the

indices n ∈ {n′ : xn′ 6= 0 and x̃n′ = 0} ∪ {n′ : xn′ = 0 and x̃n′ 6= 0}, the magnitude of vn is

quite large. This nature of the error vector suggests that only a small fraction of the error vector

has significant values, while most of them are close to zero. Since the noise vector is sparse,

we model the noise distribution in (3.20) by a Laplace distribution as it forces most of its

coefficients to be very small, allowing some occasional large values, i.e., it promotes sparsity

on the noise vector [3]. We then use Gaussian distribution to model the noise distribution and

develop algorithms for both of these two cases. Through numerical simulations, we will study

the gain in reconstruction performances by the algorithms when the noise, Vn, is modeled by

the sparsity promoting distribution, i.e., Laplace distribution.

3.4.1 Noisy one-bit Compressed Sensing with Laplacian Noise (laplacianSI)

In this subsection, we model the noise in SI as a Laplacian distributed random variable. Thus,

we choose pX̃ |X (x̃|x) as

pX̃ |X (x̃|x) =
( 1

4vs

)N
exp(−‖x− x̃‖1

2vs
), (3.24)
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Algorithm 3.2 GAMP Algorithm for noisy one-bit CS with SI
1. Initialization: Set t=0 and initialize x̂t, τ tx, ŝ

t and vs as x̂t = E[x], τ tx = var[x], ŝt =
0, and vs = 0 where the expectation and variance of x are with respect to px

2. While loop l < L

3. While loop t < T

4. Measurement Update

Same as in Algorithm

5. Estimation Update

Linear Step

τ r,t+1 = ((A�A)Tτ ts)
−1,

r̂t+1 = x̂t + τ r,t � (AT ŝt+1),

where the inversion is performed element-wise

Non-linear Step

x̂t+1 = G1(r̂
t+1, τ r,t+1; pX|Y,X̃ ) (3.21)

τ t+1
x = G2(r̂

t+1, τ r,t+1; pX|Y,X̃ ), (3.22)

where G1 and G2 are applied element-wise and are defined as

G1(r̂n, τ
r
n; pX|Y,X̃ ) = EXn|Y,X̃n [xn|y, x̃n; r̂n, τ

r
n],

G2(r̂n, τ
r
n; pX|Y,X̃ ) = varXn|Y,X̃n [xn|y, x̃n; r̂n, τ

r
n].

(3.23)

The expectation and variance are evaluated with respect to pXn|X̃n,Y ∝
N (·; r̂n, τ rn)pX (·)pX̃n|Xn(·), and can be computed by using (3.25)

Set t = t+1

6. End While

7. Update vs using (8.16)

8. l = l + 1

9. End While
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Table 3.1: GAMP Equations for Side-Information

Z l
n =

1− λ
4vs
√

2πτ rn
exp

(
− r̂2

n

2τ rn
− |x̃n|

2vs

)
+ λφ

( r̂n√
τ rn + vx

)(
C1,nΦ

(ml
n − (mg

n + vgn
2vln

)
√
vgn

)
+

C2,n

(
1− Φ

(ml
n − (mg

n − vgn
2vln

)
√
vgn

))

EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] =

λN (0; r̂n, vx + τ rn)

Z l
n

(
C1,nI1

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2,n

(
mg
n −

vgn
2vln
− I1

(
ml
n;mg

n −
vgn
2vln

, vgn

)))

EXn|Y,X̃ [x2
n|y, x̃n; r̂n, τ

r
n] =

λN (0; r̂n, vx + τ rn)

Z l
n

(
C1,nI2

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+

C2,n

((
mg
n −

vgn
2vln

)2

+ vgn − I2

(
ml
n;mg

n −
vgn
2vl

, vgn

)))
.

(3.25)

where vs is a constant that determines the variance of the distribution and it captures the confi-

dence that the receiver has on how close SI is to the sparse signal.

Next, we develop a GAMP-based algorithm for one-bit CS with side-information. Note that

the evaluation of EZm|Y [zm|y] and EZm|Y [z2
m|y] depends only on the distribution of the channel

and hence is the same as in Algorithm . Next, we derive expressions for G1(·) and G2(·) when

the receiver has access to SI. Here, we assume that the noise is Laplacian. The expectation

is carried out with respect to random variable Xn given R̂n = r̂n, and X̃n = x̃n for random

variables

R̂n = Xn + Vn, X̃n = Xn +Wn,

where Vn ∼ N (0, τnr ), W ∼ L(0, 2vs) and Xn ∼ pXn(xn) are independent. Therefore, the

marginal posterior distribution can be approximated as
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pXn|Y(xn|y; r̂n, τ
r
n) =

pXn(xn)N (xn; r̂n, τ
r
n)L(xn; x̃n, 2vs)∫

xn
pXn(xn)N (x; r̂n, τ rn)L(xn; x̃n, 2vs)

.

Using the approximated posterior density function, pXn|Y,X̃n(xn|y, x̃n; r̂n, τ
r
n), we evaluate the

first-order moment, EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] and second-order moment, EXn|Y;X̃ [x2

n|y, x̃n; r̂n, τ
r
n].

Result 3.1. Definemg
n , vxr̂n

vx+τrn
, vgn , vxτrn

vx+τrn
,ml

n , x̃n, v
l
n , vs, C1,n , 1

4vln
exp(− 1

2vln
(ml

n −mg
n − vgn

4vln
),

and C2,n , 1
4vln

exp(− 1
2vln

(
− ml

n + mg
n − vgn

4vln

)
). The posterior first-order and second-order

moments are listed in (3.25).

The sketch of the derivations is provided in Appendix C. The first-order and second-order

moments require evaluation of integrals I0(·), I1(·) and I2(·). We have the following results on

the closed-form expressions of these integrals.

Result 3.2. With Iq(x̃n;mn, τ
r
n) ,

∫ x̃n
−∞ x

q
nN (xn|mn, τ

r
n)dxn, the analytical expressions of I1

n

and I2
n are

I1(x̃n;mn, τ
r
n) = mnΦ(

x̃n −mn√
τ rn

)−
√
τ rnφ(

x̃n −mn√
τ rn

)

I2(x̃n;mn, τ
r
n) = mnI1(x̃n;mn, τ

r
n) + τ rn Φ(

x̃n −mn√
τ rn

)− x̃n
√
τ rnφ(

x̃n −mn√
τ rn

).

(3.26)

Proof. We know that I0(x̃;m, τ) =
∫ x̃
−∞N (x;m, τ)dx = Φ( x̃−m√

τ
). Differentiating I0(x̃;m, τ)

with respect to m, we get

∂I0(x̃;m, τ)

∂m
=

∫ x̃

−∞

x−m
τ
N (x;m, τ)dx

=
1

τ

{∫ x̃

−∞
xN (x;m, τ)dx−mΦ(

x̃−m√
τ

)
}

⇒ I1(x̃;m, τ) = mΦ(
x̃−m√

τ
)−
√
τφ(

x̃−m√
τ

).

(3.27)
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Differentiating I0(x̃;m, τ) twice with respect to m, and following steps similar to those in

(3.27), we get

I2(x̃;m, τ) = mI1(x̃;m, τ) + τ Φ(
x̃−m√

τ
− x̃
√
τφ(

x̃−m√
τ

). (3.28)

With posterior first-order moments and second-order moments, we have all the statistical

quantities required to implement Algorithm .

3.4.2 Estimation of the vs

In the following, we employ the Expectation-Maximization (EM) algorithm to estimate the

side-information parameter, vs. The EM algorithm is an iterative technique that increases the

lower bound on the likelihood p(y; vs) at each iteration, which guarantees that the likelihood

converges to a local maximum, or at least to a saddle point. Specifically, the EM algorithms

iterates over two steps: 1) Expectation step: choosing distribution to maximize the lower bound

for fixed vs = vks , and 2) Maximization step: choosing vs to maximize the lower bound for

the fixed distribution from Step 1. We emphasize that the maximizing pdf is the true posterior

under the prior parameter, vs. Since, it is very difficult to compute the true posterior, we use

the posterior approximated by the GAMP algorithm in the evaluation of the expectation. The EM

algorithm is summarized as

vk+1
s = argmin

vs

EX |Y,X̃ ;vks
[− log p(y,x, x̃; vs)], (3.29)

where p(x,y, x̃, vs) is the joint probability distribution of the complete data and p(x|y, x̃, vks )

is the approximated posterior density given the side-information which is parameterized by the



66

previous iteration estimate of vks . We first carry out the expectation step as

EX |Y,X̃ ;vs
[− log p(y,x, x̃, vs)] =

EX |Y,X̃ ;vs
[− log p(y|x, x̃, vts)− log p(x, x̃|vs)− log p(vs)].

We note that, the expectation step is followed by the maximization step, and all the terms that

do not involve vs eventually go to zero. Since log p(y|x, x̃) does not depend on vs, we drop

the term. Similarly, we will drop all the terms that do not depend on vs in the subsequent steps.

EX |Y,X̃ ;vs
[− log p(x, x̃|vs)− log p(vs)] =

N∑
n=1

(
EXn|Y,X̃ ;vs

(
|xn − x̃n|

2vs

)
+ log(vs)− log p(vs)

)
,

where the summation over indices is due to the fact that the posterior density, pX |Y is approxi-

mated as pX |Y =
∏N

n=1 pXn|Y . From (3.29), the estimation of vs can be written as

vk+1
s = argmin

vs

N∑
n=1

EXn|Y,X̃ ;vks

|xn − x̃n|
2vs

+ log(vs)− log p(vs).

We assume a non-informative prior on the parameter vs. Hence, we drop the log p(vs) term and

find the maximum likelihood estimate of vs as

vk+1
s =

1

2N

N∑
n=1

EXn|Y,X̃ ;vks
|xn − x̃n| (3.30)
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With the notations as defined in Result 3.1, we can evaluate the expectation in (3.30) in closed-

form as

EXn|Y,X̃ ;vks
|xn − x̃n| =−

∫ x̃

−∞
(xn − x̃n)N (xn; r̂n, τ

r
n)pXn(xn) exp(

xn − x̃n
2vks

)dxn

+

∫ ∞
x̃n

(xn − x̃n)N (xn; r̂n, τ
r
n)pXn(xn) exp(−xn − x̃n

2vks
)dxn

=
1

Z l
n

(
λN (0; r̂n, vx + τ rn)C2,n

(
mg
n −

vgn
2vln
− I1(ml

n;m′G −
vgn
2vln

, vgn)

− x̃n(1− Φ(
ml
n − (mg

n − vgn
2vln

)
√
vgn

))
)
− λC1,nN (0; r̂n, vx + τ rn)

(
I1(ml

n;mg
n +

vgn
2vln

, vgn)− x̃nΦ(
ml
n − (mg

n + vgn
2vln

)
√
vgn

)
)

+ |x̃n|(1− λ)N (0; r̂n, τ
r
n)L(0; x̃n, 2v

k
s )
)

(3.31)

Using (3.31) in (3.30), we find the estimate of the vs using the EM algorithm.

Hence, we have derived all the expressions required for signal reconstruction from one-bit

measurements with side-information. In Algorithm , we summarize the steps for signal recon-

struction for one-bit compressed sensing with side-information with parameter estimation.

3.4.3 Noisy one-bit Compressed Sensing with Gaussian Noise (GaussianSI)

Next, we list the steps for the estimation of the sparse signals when the side-information is

assumed to be the actual signal corrupted by Gaussian noise.

R̂n = Xn + Vn, X̃n = Xn +Wn,

where Vn ∼ N (0, τ rn),Wn ∼ N (0, vs) and Xn ∼ pXn(xn) are independent. Next, we state the

results for the first and second order moments for this setup.

Result 3.3. The posterior first-order and second-order moments of the signal given side-
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information, x̃n are

EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] = πgn

r̂nvsvx + vxτ
r
nx̃

vxτ rn + τ rnvs + vsvx
, πgnm

g
n

EXn|Y,X̃n [x2
n|y, x̃n; r̂n, τ

r
n] = πgn

( vsτ
r
nvx

vxτ rn + τ rnvs + vsvx
+
(
mg
n

)2)
,

(3.32)

where πgn = λ
λ+(1−λ)Zn

and Zn = N (0;x̂,τrn)N (0;x̃n,vs)

N (0;r̂n,vx+τrn)N (0; r̂nvx
vx+τ

r
n
−x̃, τ

r
nvx

vx+τ
r
n

+vs)
. The sketch of deriva-

tions is provided in Appendix D. Next, we estimate the side-information parameter, vs using

the EM algorithm. Following the steps as in the Laplacian noise case, we can show that the

maximum likelihood estimator of the vs is,

vk+1
s =

1

N

N∑
n=1

EXn|Y,X̃n;vks
(xn − x̃n)2

=
1

N

N∑
n=1

EXn|Y,X̃n;vks
(x2

n)− 2EXn|Y,X̃n;vks
(xn) + x̃2

n

=
1

N

N∑
n=1

πgn

(
vks τ

r
nvx

vxτ rn + τ rnv
k
s + vksvx

−
(
πgn

r̂nv
k
svx + vxτ

r
nx̃n

vxτ rn + τ rnv
k
s + vksvx

)2

− 2x̃nm
g
n + x̃2

n

)
(3.33)

where the equality is obtained by replacing EXn|Y,X̃n;vks
(x2

n) and EXn|Y,X̃n;vks
(x2

n) from (3.32).

With (3.32) and (3.33), we have evaluated all the expressions required for implementing

the one-bit compressed sensing algorithm with Gaussian side-information. In the simulation

section, we will discuss that modeling noise with Laplacian distribution in noise makes the

proposed algorithm more robust when the side-information has partial support information or

when the support in the side-information is erroneous .
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3.5 Noisy One-bit Compressed Sensing with support as

side-information

In this section, we investigate the problem of sparse signal reconstruction from noisy one-bit

compressed measurements when the receiver has access to only support-information as SI. We

develop a GAMP based algorithm by taking support information as SI into account. We assume

that there are some discrepancies between the support of the signal and the SI. We model these

discrepancies using multiplicative noise. Formally, let Sn be a random variable that represents

the support of the n-th index of the sparse signal, Xn, for n = 1, · · · , N . Sn takes values 1 and

−1 depending on whether or not the signal index is in the support set of X , i.e.,

sn =

 +1, if xn 6= 0,

−1, if xn = 0,
(3.34)

Let X̃n be the n-th element of SI which is the noisy version of the actual support of the signal,

i.e., Sn. We assume that a small fraction of the support set is different (erroneous) in the SI

from that of the signal. We model this relationship between SI and the actual support-set of the

signal by

X̃n = ζnSn,

where ζn is the multiplicative noise which can take values 1 or −1, and is assumed to be a

Bernoulli distributed random variable with probability β for event ζn = 1 and probability 1−β

for event ζn = −1, respectively. Thus

p(x̃n = 1|sn = −1) = p(x̃n = −1|sn = 1) = 1− β,

p(x̃n = 1|sn = −1) = p(x̃n = −1|sn = −1) = β



70

Next, we develop a GAMP-based algorithm for one-bit CS with erroneous support information

as SI. As the evaluation of EZ|Y [z|y] and EZ|Y [z2|y] depends only on the distribution of the

channel (3.8), F1(·) and F2(·) are essentially the same as in subsection 3.3.1. Next, we derive

expressions for EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] and EXn|Y;X̃ [x2

n|y, x̃n; r̂n, τ
r
n] when the receiver has

access to noisy support information as SI. The expectation is carried out with respect to the

random variable Xn given R̂n = r̂n, and X̃n = x̃n for random variables

R̂n = Xn + Vn, X̃n = ζnSn

where Vn, ζn and Xn are independent. Therefore, the marginal posterior distribution can be

approximated as

pXn|Y(xn|y; r̂n, τ
r
n) =

pXn(xn)N (xn; r̂n, τ
r
n)pζn(ζn = x̃n

sn
)∫

xn
pXn(xn)N (xn; r̂n, τ rn)pζn(ζn = x̃n

sn
)
. (3.35)

With (3.35) as the approximated marginal posterior density function, we express the analytical

expression for posterior first-order and second-order moments as

Result 3.4. Let πn be the posterior probability of xn being a non-zero element. Then

πn =
λp(x̃n|sn = 1)

λp(x̃n|sn = 1) + (1− λ)p(x̃n|sn = 0)Zn

where Zn = N (0;r̂n,τrn)
N (0;r̂n,vx+τrn)

. The posterior first-order and second-order moments of the sparse

signal given noisy support-information, x̃n, are

EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] = πn

r̂nvx
vx + τ rn

EXn|Y,X̃n [x2
n|y, x̃n; r̂n, τ

r
n] = πn

(
τ rnvx
vx + τ rn

+
( r̂nvx
vx + τ rn

)2
)
,

(3.36)
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where Zn = N (0;x̂,τrn)
N (0;r̂n,vx+τrn)

. We can obtain the above results by the substitution of pXn(xn) from

(3.2) in (3.35), followed by representing the posterior density, pXn|Y , as a Bernoulli-Gaussian

pdf: (1 − πn)δ(x) + πnN (x;m, v), and using the definition of first-order and second-order

moments. Since the derivation of the first-order and the second-order moments is similar to

the case when the noise is assumed to Laplacian, we omit the actual derivations. Note that,

we assumed noisy support-information in the problem statement. Next, we estimate the noise

parameter using the EM algorithm. Following the EM algorithm based approach in the previous

section, the maximum likelihood estimate of β is

βt+1 = argmin
β

EX |Y,X̃ ;β[− log p(y,x, x̃; β)]

= argmin
β

EX |Y,X̃ ;β[− log p(x̃|x; β)]

With πn as the posterior probability of n-th element of x being non-zero, the expectation can

be evaluated as

EX |Y,X̃ ;β[− log p(x̃|x; β)] =∑
{n:x̃n=1}

log(1− β)(1− πn) + log(β)πn

+
∑

{n:x̃n=−1}

log(1− β)πn + log(β)(1− πn),

Next, we estimate the value of β that maximizes the expectation. Differentiating the expecta-

tion with respect to β and equating to zero, we get

β =

∑
{n:x̃n=1} πn +

∑
{n:x̃n=−1}(1− πn)

N
(3.37)

With the results in (3.36) and (3.37), we can use Algorithm for estimating sparse signals from

their one-bit compressed measurements with erroneous support information as the SI. Next,

we provide simulation results for the proposed algorithms.
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Fig. 3.2: Comparison of reconstruction performance of the proposed method as a function of
sign-flip, 1− γ and number of measurements, M when N = 50, λ = 0.15.

3.6 Simulation Results

In this section, we evaluate the signal reconstruction performance of the proposed sparse sig-

nal reconstruction algorithms from noisy one-bit measurements with the state-of-the-art algo-

rithms. We consider the problem of reconstructing a sparse signal of dimension N from M

noisy one-bit measurements. The measurement matrix, A ∈ RM×N is drawn from an i.i.d.

Gaussian distribution with zero-mean and unit variance. We consider real-valued compressed

measurements that are corrupted by AWGN noise before quantization and the sign-flip noise

(Bernoulli) after quantization. We employ normalized mean square error (NMSE) as the per-

formance metric which is defined as

NMSE =

√√√√∥∥∥∥∥ x

‖x‖2

− x̂

‖x̂‖2

∥∥∥∥∥
2

2

where x and x̂ are the actual signal and the reconstructed signal, respectively. We generate

a sparse signal vector from the Bernoulli-Gaussian distribution with signal sparsity parameter

λ = 0.1, mean zero and variance 5.5. We assume that the signal is corrupted by additive white

Gaussian noise before quantization with mean zero and covariance vIN . After quantization,
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the one-bit quantized measurements are corrupted by sign-flip noise generated from Bernoulli

distribution with probability of sign flip 1−γ. We ran the algorithm for 500 Monte-Carlo runs.

In the first experiment, we evaluate the performance of the proposed one-bit CS algorithm

with the state-of-the-art algorithms. In this experiment, we compare the performance of the

proposed algorithm, Noisy1bG, with algorithms proposed in [47], [52], and [62] respectively

and refer to these algorithms as BIHT, AdtGamp, and R1bcs. SignGAMP refers to the one-bit

GAMP algorithm that does not take noise into account. In Figure 3.2, we summarize the NMSE

performance of the one-bit algorithms as a function of 1 − γ, and M . In Figure 3.2 , we see

that the proposed algorithm has superior performance compared to R1bcs, SignGamp, BIHT,

and AdtGamp. BIHT and AdtGAMP perform the worst. Further, the BIHT algorithm does not

account for the noise, which leads to poor performance. We note that the proposed algorithm

performs better than the R1bcs algorithm, which is a Bayesian algorithm that is robust to sign-

flip noise. Moreover, the R1bcs algorithm requires matrix inversion in the algorithm and is

computationally expensive than the proposed algorithm. From the first experiment, we con-

clude that accounting for both pre-quantization and post-quantization noise leads to improved

reconstruction performance. In the following experiments, we consider the performance of

Noisy1bG as the baseline and compare the performance of the SI based algorithms.
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Fig. 3.3: Comparison of reconstruction performance of the proposed methods as a function of
sign-filp probability and measurements in presence of SI when N = 200, λ = 0.15.
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In the second experiment, we study the reconstruction performance of sparse signals from

their noisy one-bit compressed measurements when the receiver has access to some SI. We

assume that the SI is erroneous. A small fraction of the elements in the support set of SI do not

lie in the support set of the compressed signal. Further, we assume some additive noise present

in the SI. The additive noise and the change of support are modeled by the Laplacian noise and

the Gaussian noise in the proposed algorithms LaplacianSI, and GaussianSI, respectively.

With the noisy SI at the receiver, figure 3.3 demonstrates the reconstruction performance of the

proposed algorithms. The first plot shows the performance of the proposed algorithms against

sign-flip probability, and the second plot shows the performance of the proposed algorithms

as a function of M . From both of these results, we conclude that all the proposed algorithms

with SI perform better than the case when we do not have side-information. We emphasize

that the LaplacianSI algorithm outperforms the GaussianSI algorithm. The error in support

with the amplitude information between SI and the compressed signal can be modeled better

by the Laplacian distribution than the Gaussian distribution. We further emphasize that the

SupportSI algorithm only considers the support information as the side-information. We see

that SupportSI performs better than the GaussianSI algorithm. As the change in support is

difficult to model by Gaussian noise, we claim that the poor performance of GaussianSI is

due to the modeling error.

Third, we consider the effect of noise in SI on the reconstruction performance from one-bit

measurements. Like in the second experiment, the SI at the receiver has a fraction of elements

in its support set, which are not in the support of the compressed signals. Further, the ampli-

tudes of the SI are corrupted by additive noise. In the experiment, 10% of the elements in the

support set of SI are not in the support set of the compressed signal. Further, we use Gaussian

noise as additive noise in the SI. In Figure 3.4, we plot the results of the experiment. It is

evident that the performance of algorithms Noisy1bG and SupportSI is relatively constant for

different values of the variance of additive noise. For the SupportSI algorithm, we assume that
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Fig. 3.4: Comparison of the effect of noise in SI on the reconstruction performance of pro-
posed algorithms when λ = 0.1, 1− γ = 0.15, and v = 0.15,

the knowledge of support does not change with the additive noise; hence it does not affect the

performance of the algorithm. Since the Gaussian density could not model the sparse nature of

the noise vector well, the performance of the GaussianSI algorithm is worse than SupportSI

algorithm for all values of the noise variance. The performance of the LaplacianSI degrades

with the increase in the noise in SI. Note that, the performance of LaplacianSI is worse than

SupportSI when the noise in the SI is above a certain level. Hence, using support information,

if available, is better than using the entire SI signal when the signal to noise ratio of SI is small.

In the final experiment, we consider the case where the support of the observed sparse

signal changes slowly over time. In the simulation, we generate a sequence of sparse signals

such that 10% of the support changes between two consecutive time instants. For the first

time instant, the non-zero elements are generated from an i.i.d. Gaussian distribution with

mean zero and variance 5.5. We then obtain the amplitudes of the indices that continue to

be in the support set of the signal by adding a random vector with zero mean and a small
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Fig. 3.5: truction performance of the proposed algorithms when λ = 0.1, 1 − γ = 0.15, and
v = 0.15, N = 200, and M = 600

variance generated from an i.i.d. Gaussian distribution. For the indices that are not in the

support set of the signal at the previous time instant, the amplitudes are generated from an i.i.d.

Gaussian distribution with mean zero and variance 5.5. The receiver has access to noisy one-bit

measurements of these signals. The receiver estimates the sparse signal at the first time instant

using the Noisy1bG algorithm. This estimate of the sparse signal is now fed to the GaussianSI

and the LaplacianSI algorithms as the SI. Using this SI, the proposed algorithms estimate the

compressed signal. In the next iteration, GaussianSI and LaplacianSI use their estimates of

the previous time instant signal as the SI and estimate the compressed signal. In Figure 3.5,

we show the NMSE performance of the proposed algorithms. We can see that LaplacianSI

performs better than the GaussianSI and Noisy1bG algorithms. The GaussianSI algorithm,

though worse than the LaplacianSI algorithm, performs better than the Noisy1bG algorithm.

Hence we conclude that when the support of the signal changes slowly over time, using the

signal reconstructed at the previous time instant as SI leads to improved performance than just
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using a one-bit reconstruction algorithm.

3.7 Conclusion

This chapter developed signal reconstruction algorithms from one-bit measurements using the

generalized approximate message passing (GAMP) framework considering a generalized noisy

measurement process. We then considered the scenario when SI is available at the receiver.

We developed two different algorithms that consider SI, which has either support information

only or both support and amplitude information. We derived closed-form expressions for GAMP

estimation functions for all the proposed algorithms. We showed that by incorporating SI,

we could improve the reconstruction performance in terms of NMSE. Further, we showed

that the noise in the SI is better modeled by the Laplacian noise than Gaussian noise. We

used the EM algorithm to estimate the noise parameter that governs our SI model adaptively

from one-bit measurements and the side-information. Future work can consider extending the

given algorithms to centralized and decentralized settings, especially when different nodes in a

network have access to SI.
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CHAPTER 4

ONE-BIT COMPRESSED SENSING WITH

SIDE-INFORMATION IN TIME-VARYING

ENVIRONMENTS

4.1 Introduction

In the previous chapter, we assumed that the SI is a noisy version of the sparse signal. The pro-

posed algorithm could not take advantage of any specific dependence between the signals and

the SI. There are scenarios where a sequence of signals has temporal dependence. In this chap-

ter, we consider the problem of signal reconstruction of time-varying sparse signals from noisy

one-bit compressed measurements with side-information (SI). We model the time-varying na-

ture of the signal using a birth-death-drift (BDD) model. We assume that one-bit compressed

measurements are corrupted by additive white Gaussian noise before quantization and sign-flip

error after quantization. The exact computation of the MMSE estimator requires evaluation of

high-dimensional integrals that is computationally infeasible. We develop a computationally

tractable algorithm to approximate the MMSE estimator of the signal, which takes advantage
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of the underlying time-varying model and SI to improve reconstruction performance. SI is

assumed to be noisy with independent distributions over signal indices. Laplace distribution,

which is a sparsity promoting distribution, is chosen to model the noise in SI. We demonstrate

that the proposed algorithm greatly improves signal reconstruction performance by exploiting

the underlying dynamic model while being robust to noise in SI.

4.2 Signal and Measurement Models

4.2.1 Signal Model

We consider the case where the support of sparse signals changes slowly over time and there is

a strong correlation between the non-zero elements over successive time instants. We assume

that the signal continues to be sparse. We model the stochastic dependence of the time varying

signals by the Birth-Death-Drift (BDD) [69,83] model. Let xp and xc be the previous time and

the current time instant signals, respectively. For each index n, when the sparse signal changes

slowly over time, there are four possible events:

• Event 1: xpn ∝ δ(.) and xcn ∝ δ(·) , i.e., the n-th element which was zero at the previous

time instant continues to be zero. Let λ1 be the probability of this event.

• Event 2: Death xpn ∝ N (·; 0, vx) and xcn ∝ δ(·), i.e., the n-th element that was non-

zero at the previous time instant is zero at the current time instant. Let λ2 be the proba-

bility of this event.

• Event 3: Birth xpn ∝ δ(·) and xcn ∝ N (·; 0, vx), i.e., the n-th element that was zero at

the previous time instant is non-zero at the current time instant. Let λ3 be the probability

of this event.

• Event 4: Drift xpn, xcn ∝ f(xpn, xcn), i.e., the n-th element that was non-zero at the

previous time instant continues to be non-zero. Let λ4 be the probability of this event.
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The joint probability density function (pdf) of xp and xc can be modeled by the following

distribution.

p(xc,xp) =
N∏
n=1

(λ1δ(xpn)δ(xcn) + λ2δ(xcn)N (xpn; 0, vx)

+ λ3δ(xpn)N (xcn; 0, vx)) + λ4f(xcn, xpn)

=
N∏
n=1

4∑
i=1

λip(xpn, xcn|i) (4.1)

where we assume that the joint pdf is independent over indices n. In this work, for event

4, we consider a fixed dependence model between xpn and xcn as xcn = ρxpn + u, where

xpn ∝ N (0, vx), and u ∝ N (0, v). The signal model (4.1) finds one of its many applications

in the channel estimation problem for wireless communication [69]. The channel estimation

task is equivalent to the problem of sparse signal reconstruction. The channel is known to

be slowly time-varying and exhibits strong dependencies between channel responses in adja-

cent time instants. The random variable, u, represents short-term fading due to multipath and

oscillator drift, and ρ represents correlations or drift between non-zero elements of x, and is

inversely correlated to the amount of fading in a wireless channel. We emphasize that, though

the algorithm we develop focuses on a specific dependence model, this approach is general and

can be extended to any dependence model for event 4 in the BDD model or for any joint pdf of

xp and xc that are independent over indices, i.e., p(xc,xp) =
∏N

n=1 p(xcn, xpn).

4.2.2 Measurement Model

Figure 4.1 shows the transmission chain of the measurement model of the problem considered

in this work. The sparse signal xc ∈ RN is linearly transformed to z ∈ RM using the random

projection matrix A ∈ RM×N . The measurement vector, z, is assumed to be corrupted by

additive i.i.d. Gaussian noise vector with mean zero and variance σ2, i.e.,n ∼ N (0, σ2IM).

This corrupted signal is quantized to +1 or −1 using sign quantizer. We assume that the
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Fig. 4.1: 1-bit CS with pre-quantization and post-quantization noise.

quantized measurements are corrupted by multiplicative noise which takes value either +1 or

−1. Formally, the quantized measurement model can be written as

y = η �Q(Ax+ n), (4.2)

where the quantizer Q : RM → {−1,+1}M is the element-wise sign quantizer. The m-th

element at the output of the quantizer is

[Q(ζ)]m =

 +1, if ζm > 0,

−1, if ζm ≤ 0,
(4.3)

and η ∈ {−1,+1}M is the post-quantization noise. η is assumed to follow Bernoulli

distribution with Pr(ηm = 1) = γ. We define the inverse of quantization function, Q−1(.), as

[Q−1(y)]m =

 (−∞, 0 ], if ym ≤ 0,

(0,∞), if ym > 0,
(4.4)

where ym is the m-th element of y.
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4.2.3 Noisy One-Bit Compressed Sensing

Let x̃ represent the SI of the signal xc. Here, we construct the joint posterior density of the

signal at the current time instant signal, xc, and at the previous time instant signal, xp, given

the noisy one-bit compressed measurements y and SI x̃ as

p(xp,xc|y, x̃) ∝ p(y|xc)p(xp,xc|x̃) ∝
M∏
m=1

Izm∈{Q−1(ηmym)}

N∏
n=1

p(xpn, xcn|x̃n), (4.5)

where p(xpn, xcn) is the joint density function that gives the joint statistical characterization of

the sparse signal at the previous time instant and at the current time instant. The minimum mean

square error (MMSE) estimator of xc given SI is E[xc|y, x̃]. We note that the derivation of the

MMSE estimator (4.5) is intractable in direct form. So, we develop a GAMP-based algorithm to

approximate the MMSE estimator.

4.3 Noisy One-Bit Compressed Sensing Algorithm with

SI in Time-varying Environments

In this section, we develop a one-bit CS signal recovery algorithm based on GAMP that exploits

the available SI at the receiver.

In the subsequent sections, we use GAMP algorithm based on the sum-product belief propa-

gation algorithm to compute the MMSE estimator of xc corresponding to the posterior density

(4.3).

4.3.1 Noisy One-Bit Compressed Sensing in a Time-Varying Envi-

ronment

The sparse signal xc is linearly transformed to z which is corrupted by i.i.d. Gaussian noise.

This corrupted measurement is quantized to one-bit as defined in (4.18) and is propagated over
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Algorithm 4.1 GAMP Algorithm for noisy one-bit CS with SI (1bitdyn)
1. Initialization: Set t=0 and initialize x̂t = EX [x], τ tx = varX [x], ŝt = 0,

2. While loop l < Lmax
3. While loop t < Tmax
4. Measurement Update

• Linear Step

τ p,t+1 = (A�A)τ tx, p̂
t+1 = Ax̂t − τ p,t+1 � ŝt,

• Non-Linear Step

ŝt+1 = F1(y, p̂
t+1, τ p,t+1),

τ t+1
s = F2(y, p̂

t+1, τ p,t+1),
(4.6)

where F1 and F2 are applied element-wise and are defined as

F1

(
ym, p̂

t+1
m , τp,t+1

m

)
=

1

τp,t+1
m

(
EZm|Ym [zm|ym]− p̂m

)
,

F2

(
ym, p̂

t+1
m , τp,t+1

m

)
=

1

τp,t+1
m

(
1−

varZm|Ym [zm|ym]
τpm

)
.

(4.7)

The expectation and the variance are evaluated with respect to z ∼ N (p̂, τ p).

5. Estimation Update

Linear Step

τ r,t+1 = ((A�A)Tτ t+1
s )−1,

r̂t+1 = x̂t + τ r,t+1 � (AT ŝt+1),

where the inversion is performed element-wise
Non-linear Step

x̂t+1 = G1(r̂
t+1, τ r,t+1), (4.8)

τ t+1
x = G2(r̂

t+1, τ r,t+1), (4.9)

where G1 and G2 are applied element-wise and are defined as

G1(r̂n, τ
r
n) = EXcn,Xpn|Y,X̃n [xcn|y, x̃n; r̂n, τ

r
n],

G2(r̂n, τ
r
n) = varXcn,Xpn|Y,X̃n [xcn|y, x̃n; r̂n, τ

r
n].

(4.10)

The expectation and the variance are evaluated with respect to pXcn,Xpn|Y,X̃n , and can be
computed by using (4.13).
Set t = t+1

6. End While
7. Update vs using (4.16)
8. l = l + 1

9. End While
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a noisy binary symmetric channel with probability of sign-flip 1 − γ. The entire effect of

additive white Gaussian noise (measurement noise), one-bit quantization and sign-flip error

(channel noise) is modeled by a probabilistic channel, pY|Z (y|z;σ2, γ). Since we assume that

the measurement noise and the channel noise are i.i.d., the channel is represented as

pY|Z
(
y|z;σ2, γ

)
=

M∏
m=1

pYm|Zm
(
ym|zm;σ2, γ

)
. (4.11)

In Algorithm 4.1, we summarize the steps of the GAMP algorithm for noisy one-bit CS with

SI for a dynamic time-varying sequence of sparse signals. We refer to this algorithm as 1bdyn.

The algorithm has the following three major steps

Evaluation of F1(.) and F2(.)

In Step 4 of Algorithm 4.1, we need to evaluate the non-linear functions F1(·) and F2(·). As

defined in Equation (4.7), we can evaluate F1(·) and F2(·) by computing the posterior mean

and variance of Zm, i.e., EZm|Ym(zm|ym) and varZm|Ym(zm|ym). GAMP uses the central limit

theorem to approximate the distribution of random variable Zm to be Gaussian with mean p̂m

and variance τ pm, i.e.,Zm ∼ N (p̂m, τ
p
m). These parameters are computed in Step 4 of Algorithm

4.1. Using Bayes rule, the posterior marginal density, pZm|Ym(zm|ym), can be approximated as

pZm|Ym
(
zm|y; p̂m, τ

p
m

)
=

pYm|Zm(ym|zm)N (zm; p̂m, τ
p
m)∫

z
pYm|Zm(ym|zm)N (zm; p̂m, τ

p
m)
.

In Appendix B, we provide exact expressions to evaluate EZm|Y [zm|ym] and EZm|Y [z2
m|ym]

which are used to evaluate F1(·) and F2(·).
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Evaluation of G1(·) and G2(·)

G1(·) and G2(·) are the functions of one-bit measurements and SI at the receiver. The side

information x̃n is considered to be the noisy estimate of the actual signal xpn at the previous

time-instant. The estimated signal can have errors either in amplitudes or both the supports

and the amplitudes of the signal. The error in the estimate can be modeled as an additive noise

which has a sparse structure. We use the Laplacian distribution to model the sparse structure

of the noise. Similarly, the GAMP algorithm estimates, xcn with r̂n. At every iteration, the

algorithm has access to R̂n = r̂n, and X̃n = x̃n which are defined as

R̂n = Xcn + Vn, X̃n = Xpn +Wn (4.12)

where Vn ∼ N (0, τ rn) and Wn ∼ L(0, 2vs) are independent additive noises. Note that Xpn

and Xcn follows joint pdf in (4.1) and are independent with additive noises. The non-linear

functionsG1(·), andG2(·) defined in Equation (4.10) are the posterior mean and the variance of

the signal given the SI. Next, we present results for evaluating the posterior first-order moment

and second-order moments in Result 4.1.

Result 4.1. Define Iq(a;m, v) =
∫ a
−∞ x

q
nN (xn;m, v)dxn, and

PIq(µ, τ,m, v) =
∫
xqnΦ(xn−µ√

τ
)N (xn;m, v)dxn.

Let PI1,2
qn = PIq(m2n, v2n,m1n, v1n), P I3,4

qn = PIq(m4n, v4n,m3n, v3n),

C1n = 1
4vs

exp
(
− 1

2vs

(
x̃n −mg

n − vgn
4vs

))
,

C2n = 1
4vs

exp
(
− 1

2vs

(
− x̃n +mg

n − vgn
4vs

))
,

c′1n = 1
4vs

exp
(
− ucn((x̃n − vpn

4vs
)(ρ+ τrn

ρvx
)− r̂n

)
exp

(
− r̂nv

vx+τrn
ucn + v1nu2cn

2

)
,

c′2n = 1
4vs

exp
(
− ucn

(
(−x̃n − vpn

4vs
)(ρ+ τrn

ρvx
) + r̂n

))
exp

(
r̂nv
vx+τrn

ucn + v1nu2cn
2

)
,

ucn = (2vs(ρ+ τrn
ρvx

))−1,

ml
n = x̃n, mg

n = ρr̂nvx
vx+τrn

, vgn = vx(τrn+v)
vx+τrn

, vln = vs,

m1n = r̂nv
vx+τrn

− ucnv1n, m2n = r̂n − (ρ+ τrn
ρvx

)(x̃n − vpn
2vln

),
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m3n = r̂nv
vx+τrn

+ ucnv1n, m4n = r̂n − (ρ+ τrn
ρvx

)(x̃n + vpn
2vln

), mpn = ρvx(r̂n−un)
ρ2vx+τrn

,

v1n = (ρ2vx+τrn)v
vx+τrn

, v2n = (ρ+ τrn
ρvx

)2vpn, v3n = (ρ2vx+τrn)v
vx+τrn

, v4n = (ρ+ τrn
ρvx

)2vpn,

and vpn = vxτrn
ρ2vx+τrn

. The closed-form expressions for EXcn,Xpn|Y,X̃n [xcn|y, x̃n; r̂n, τ
r
n], and

EXcn,Xpn|Y,X̃n [x2
cn|y, x̃n; r̂n, τ

r
n] are presented in (4.13). The details of the derivations are pro-

vided in Appendix E.

Note that the first-order and second-order moments require the evaluation of integrals Iq(·),

and PIq(·) for q = 1 and 2. We have stated the closed-form expressions for PIq(·) in the

evaluation of F1(·) and F2(·) in (4.13). Next, we state results on the closed-form expression of

integrals Iq(·) for q = 1 and 2.

Result 4.2. With Iq(x̃n;mn, τ
r
n) ,

∫ x̃n
−∞ x

q
nN (xn;mn, τ

r
n)dxn, the analytical expressions of I1

and I2 are

I1(x̃n;mn, τ
r
n) = mnΦ(

x̃n −mn√
τ rn

)−
√
τ rnφ(

x̃n −mn√
τ rn

)

I2(x̃n;mn, τ
r
n) = mnI1(x̃n;mn, τ

r
n) + τ rn Φ(

x̃n −mn√
τ rn

)

− x̃n
√
τ rnφ(

x̃n −mn√
τ rn

).

Using Result 4.1 and Result 4.2 we can evaluate functions G1(·) and G2(·) required in Step

5 of the Algorithm 4.1.

SI Parameter Estimation

SI is considered to be a noisy version of the signal. The noise distribution is assumed to

be the Laplacian distribution. In the following, we resort to the expectation-maximization

(EM) algorithm, a popular tool in maximum-likelihood parameter estimation, to estimate the

SI parameter, vs as defined in (4.12). The EM algorithm is an iterative technique that increases

a lower bound on the likelihood p(y; vs) at each iteration, which guarantees that the likelihood

converges to a local maximum, or at least to a saddle point. Specifically, the EM algorithm



87

Table 4.1: GAMP Equations for SI in a dynamic setting

Z l
n =

∫
pXcn,Xpn|Y,X̃n(xc, xp|r̂n, x̃n) = λ1L(0; |x̃n, 2vs)N (0; r̂n, τ

r
n) + λ3N (0; r̂n, vx + τ rn)L(0; x̃n, 2vs)

+ λ2N (0; r̂n, τ
r
n)

∫
L(x; x̃n, 2vs)N (x; 0, vx)dx

+ λ4N (0; r̂n, vx + τ rn)

∫
N (x;

ρr̂nvx
vx + τ rn

,
vx(τ

r
n + v)

vx + τ rn
)L(x; x̃n, 2vs)dx

EXcn,Xpn|Y,X̃n [xcn|y, x̃n; r̂n, τ
r
n] =

N (0; r̂n, vx + τ rn)

Z l
n

(
λ3L(0; x̃n, 2vs)

vxr̂n
vx + τ rn

+ λ4

[
c′1nPI

1,2
1n

+ c′2n
(
m3n − PI3,4

1n

)
+ ρ

(
C1nI1

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
mg
n −

vgn
4vln
− I1(ml

n;mg
n −

vgn
4vln

, vgn)
))])

EXcn,Xpn|Y,X̃n [x2
cn|y, x̃n; r̂n, τ

r
n] =

N (0; r̂n, vx + τ rn)

Z l
n

(
λ3L(0; x̃n, 2vs)

( vxτ
r
n

vx + τ rn
+
( vxr̂n
vx + τ rn

)2
)

+ λ4

[(
ρ2 − 2ρ2v

τ rn + v

)(
C1nI2

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
vgn +

(
mg
n −

vgn
4vln

)2

− I2(ml
n;mg

n −
vgn
4vln

, vgn)
))

+ c′1n PI
1,2
2n + c′2n

(
(m3n)2 + v3n − PI3,4

2n

)
+

2ρr̂nv

τ rn + v

(
C1nI1

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
mg
n −

vgn
4vln
− I1(ml

n;mg
n −

vgn
4vln

, vgn)
))])

. (4.13)
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starts with an initial guess, v0
s . Then, the EM algorithm alternates between the expectation

and the maximization steps in the following manner 1) Expectation step: choosing distribution

to maximize the lower bound for fixed vs = vks , and 2) Maximization step: choosing vs to

maximize the lower bound for the fixed distribution from Step 1. The algorithm continues

until the convergence criterion is met, or the maximum number of iterations is reached. We

emphasize that maximizing the pdf in the maximization step is the true posterior under the

prior parameter, vs. Since it is computationally prohibitive to compute the true posterior, we

use the posterior approximated by the GAMP algorithm in the evaluation of the expectation. The

EM algorithm is summarized as

vk+1
s = argmin

vs

EX c,X p|Y,X̃ ;vks
[− log p(y,xc,xp, x̃; vs)], (4.14)

where p(y,xc,xp, x̃; vs) is the joint probability density of the complete data and p(xc,xp|y, x̃, vks )

is the approximated posterior joint density given the SI which is parameterized by the previous

iteration estimate of vks . We first carry out the expectation step as

EX c,X p|Y,X̃ ;vks
[− log p(y,xc,xp, x̃; vs)]

= EX c,X p|Y,X̃ ;vks
[− log p(y|xc,xp, x̃, vs)− log p(xc,xp, x̃|vs)− log p(vs)].

Since the maximization steps follow the expectation step, we drop all the terms that do not

involve vs as they go to zero.

EX c,X p|Y,X̃ ;vks
[− log p(xc,xp, x̃|vs)− log p(vs)] =

N∑
n=1

(
EXcn,Xpn|Y,X̃n;vks

[
|xpn − x̃n|

2vs

]
+ log(vs)− log p(vs)

)
,

We assume the non-informative prior on the parameter vs. Hence, we drop log p(vs) term and

find the maximum likelihood estimate of vs as
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vk+1
s =

1

2N

N∑
n=1

EXcn,Xpn|Y,X̃n;vks
|xpn − x̃n| (4.15)

While evaluating the expectation, it is required to evaluate the integrals for all the four

events in (4.1). For simplicity, define Ẽi,k|xpn − x̃| , p(r̂n, x̃n|i)EXcn,Xpn|Y,X̃n;vks
[|xpn −

x̃||y, x̃n, i; r̂n, τ rn].

1) Event 1: xpn ∝ δ(·), and xcn ∝ δ(·)

Ẽi=1,k |xpn − x̃n| = |x̃n|N (0; r̂n; τ rn)L(0; x̃n, 2v
k
s )

2) Event 2: xpn ∝ N (·; 0, vx), and xcn ∝ δ(·)

Ẽi=2,k |xpn − x̃n| = N (0; r̂n; τ rn)

{
− C1′

n I1(x̃n;
vx
2vks

, vx)

+ C2′

n

(
− vx

2vs
− I1(x̃n;− vx

2vks
, vx)

)
+ x̃n

(
C1′

n Φ(
x̃n − vx

2vks√
vx

)− C2′

n (1− Φ(
x̃n + vx

2vks√
vx

))

)}
,

where C1′
n and C2′

n follow the definition of C1 and C2 of Appendix A with mL =

x̃n,mG = 0, vL = vks , and vG = vx.

3) Event 3: xpn ∝ δ(·) and xcn ∝ N (·; 0, vx)

Ẽi=3,k |xpn − x̃n| = |x̃n|N (0; r̂n, vx + τ rn)L(0; x̃n, 2v
k
s )
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4) Event 4: xpn 6= 0, xcn 6= 0:

Ẽi=4,k |xpn − x̃n| =N (0; r̂n, vx + τ rn)∫ x̃n

−∞
−(xpn − x̃pn)N (xpn;m′1n, v

′
1n)L(xpn; x̃n, 2v

k
s )dxpn

+

∫ x̃n

−∞
(xpn − x̃n)N (xpn;m′1n, v

′
1nL(xpn; x̃n, 2v

k
s )dxpn

where m′1n = ρr̂nvx
vx+τrn

, and v′1n = vx(τrn+v)
vx+τrn

. Therefore, following the intermediate steps similar to

those in Appendix C, we get

Ẽi=4,k |xpn − x̃n|

= N (0; r̂n, vx + τ rn)

{
− C ′′1nI1(x̃n;m′1n +

v′1n
2vs

, v′1n)

+ C ′′2n

(
m′1n −

v1

2vs
− I1(x̃n;m′1n −

v1

2vs
, v′1n)

)
− x̃n

(
C ′′1nΦ(

x̃n − (m′1n +
v′1n
2vs

)√
v′1n

) + C ′′2nΦ(−
x̃n − (m′1n −

v′1n
2vs

)√
v′1n

)

)}

Note that C ′′1n and C ′′2n are the functions of m′1n, v
′
1n, x̃n and vks . The ML estimate of vs is

vk+1
s =

1

2N

N∑
n=1

4∑
i=1

λiẼi,k|xpn − x̃n|
Z l
n

(4.16)

Hence, we have derived all the statistical quantities required for signal recovery from one-

bit measurements with SI. We summarize all the steps of the algorithm in Algorithm 4.1.

4.3.2 Variations of Algorithm 4.1

In this subsection, we provide two different algorithms that we used to compare the perfor-

mance of the proposed algorithm. We briefly state these algorithms and provide the details of

the update equations of GAMP based algorithms in Appendix F.
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1bitdynG

This algorithm assumes noise in SI to be additive white Gaussian. At every iteration, the

algorithm has access to R̂n = r̂n, and X̃n = x̃n which are defined as

R̂n = Xcn +N (0, τ rn) X̃n = Xpn +Wn (4.17)

whereWn ∼ N (0, vs) and N (0, τ rn) are independent. We refer to this algorithm as 1bitdynG.

Through numerical simulations, we compare the signal recovery performance with 1bdyn.

1bdynS

In this algorithm, we assume the receiver has access to the noisy support-information of the

sparse signal at the previous instant as SI. Let Sn be a random variable that represents the

support of the n-th index of the sparse signal, Xpn, for n = 1, · · · , N which can take values

+1 and −1 according to

sn =

 +1, if xpn 6= 0,

−1, if xpn = 0,
(4.18)

Let X̃n be the n-th element of SI which is the noisy version of Sn. We assume that a small

fraction of the support set is different (erroneous) in the SI from that of xp. We model this

relationship between SI and the actual support-set of the signal by

X̃n = ζnSn,

where ζn is the multiplicative noise which can take values 1 or −1, and is assumed to be a

Bernoulli distributed random variable with probability β for event ζn = 1 and probability 1−β



92

for event ζn = −1, respectively.

At every iteration, the algorithm has access to R̂n = r̂n, and X̃n = x̃n which are defined as

R̂n = Xcn + Vn, X̃n = ζnSn, (4.19)

For this setup, we develop a GAMP based signal recovery algorithm and refer to it as 1bdynS.

The comparison of signal recovery performance of 1bdyn with 1bdynS gives us the gain in

performance by using both support and amplitude information as SI.
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Fig. 4.2: Comparison of reconstruction performance of the proposed method with 1bitdynG,
1bdyn and 1bLaplacian as a function of sign-flip probability and number of measurements,
respectively when N = 200, vx = 5.0, σ2 = 1.0, λ1 = 0.86, λ2 = 0.02, λ3 = 0.02, and
λ4 = 0.1. In first plot M = 200, and in second plot γ = 0.8.

4.4 Simulation Results

In this section, we evaluate the performance of the proposed sparse signal reconstruction al-

gorithm with the state-of-the-art algorithms. We consider the normalized mean square error
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(NMSE) as the performance metric which is defined as

NMSE =

√
‖ x

‖x‖2

− x̂

‖x̂‖2

‖2
2

wherex, and x̂ are the actual signal and the reconstructed signal respectively. Consider a sparse

signal of dimension N = 200. Unless specified otherwise, we consider ρ = 0.9 and vx = 5.0.

We generate a pair of signals xp and xc ∈ RN following distribution (4.1) with parameters

λ1 = 0.86, λ2 = 0.02, λ3 = 0.02, and λ4 = 0.1. The sparse signal is linearly transformed

using the measurement matrix, A ∈ RM×N which is corrupted by the noise vector assumed to

be Gaussian distributed with zero mean and vnIM co-variance. The elements of A are drawn

from i.i.d. Gaussian distribution with zero-mean and unit variance. These noisy measurements

are quantized to one-bit and transmitted through the noisy channel where the measurements

are corrupted by sign-flip noise which is generated from Bernoulli distribution with the proba-

bility of sign flip 1 − γ. We employ 500 Monte-Carlo runs to generate the results. In the first

experiment, we evaluate the performance of the proposed one-bit CS algorithm and compare it

with the state-of-the-art algorithms when the receiver has access to noisy SI. Figure 4.2 sum-

marizes the results of the experiment where we plot the NMSE performance of the proposed

algorithm, 1bdyn with 1bLaplacian, 1bitdynG and 1bitdynS. Note that 1bLaplacian does

not consider the underlying temporal dependence between the previous time instant signal and

the current time instant signal. 1bdynG uses the same dependence between the previous-instant

signal and the current time-instant signal as in 1bitdyn. However, this algorithm assumes the

SI at the receiver to be the previous time instant signal corrupted by the additive Gaussian noise.

Similarly, 1bitdynS assumes the support of the previous time-instant signal as the SI and re-

constructs the signal from the one-bit measurements. In Figure 4.2, we compare the NMSE

performance of the proposed algorithm as a function of M , and 1 − γ. From the plots of Fig-

ure 4.2, we see superior performance of the proposed 1bdyn algorithm compared to 1bdynG,

1bdynS, and 1bdynS. The proposed method is expected to perform better than 1bLaplacian as
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Fig. 4.3: Comparison of the reconstruction performance of the proposed method with
1bitdynG, 1bdyn and 1bLaplacian as a function of noise-variance in SI whenN = 200,M =
200, ρ = 0.9, vx = 5.0, σ2 = 1.0, γ = 0.9, λ1 = 0.86, λ2 = 0.02, λ3 = 0.02, and λ4 = 0.10

the proposed method incorporates the temporal dependence between the previous time-instant

signal and the current time-instant signal while reconstructing the signals. 1bdynS does not

perform as well as the 1bdyn because 1bdyn uses both the support and the amplitude infor-

mation while 1bitdynS uses only the support information as the SI. 1bdyn uses the Laplacian

distribution to model the noise and is better than the Gaussian distribution when there is an

error in the support of the SI compared to the actual support of the previous-time instant signal.

So, the proposed method has better reconstruction performance than 1bdynG. Next, we study

the effect of noise in SI in the reconstruction performance of the compressed signal. The SI at

the receiver is assumed to be corrupted by additive i.i.d. Gaussian noise. We show the NMSE

of the proposed algorithm compared with the state-of-the-art algorithms as a function of noise

variance. In Figure 4.4, we summarize the results of the experiment. It is seen that the per-
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Fig. 4.4: NMSE performance as a function of ρ when N = 200,M = 200, ρ = 0.9, vx =
5.0, σ2 = 1.0, γ = 0.9, λ1 = 0.86, λ2 = 0.02, λ3 = 0.02, and λ4 = 0.10

formance of 1bdyn is better than all the other algorithms for all values of the noise variance.

The proposed algorithm is more robust to noise in the SI. This result is particularly important

because the SI at the receiver is the signal reconstructed from the previous time instant. Note

that we need to estimate the signal using one-bit CS algorithms at the first time instant, which

gives us noisy estimates. From the given results, we can see that even when the noise in the

SI is large, the proposed algorithm is better at estimating the signal. Note that 1bdynG has the

worst performance in the presence of noise in the SI.

In the third experiment, we compare the performance of the proposed algorithm with the

other algorithms as a function of ρ. A higher value of ρ means that the correlation between

the previous time-instant signal, and the current time-instant signals is higher. The result of

the experiment is summarized in Figure 4.4. As expected, the performance of the proposed

algorithms and all the other algorithms degrades for an increased value of ρ. Like in previous
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Fig. 4.5: NMSE performance as a function of time instants when N = 200,M = 400, ρ =
0.9, vx = 5.0, σ2 = 1.0, γ = 0.9, λ1 = 0.86, λ2 = 0.02, λ3 = 0.02, and λ4 = 0.10 of a
sequence of sparse signal with slow time varying dynamics

experiments, the proposed algorithm performs better than all the algorithms considered. In the

final experiment, we consider 50 different sequences of signals that follow the model described

in (4.1). In the experiment, we consider λ1 = 0.86, λ2 = 0.02, λ3 = 0.02 and λ4 = 0.10. We fix

M = 400, N = 200, ρ = 0.90, γ = 0.90, and vn = 0.2. At the first time instant, we reconstruct

the signal from the one-bit CS algorithm proposed in Chapter 3. At the second time instant,

we consider this reconstructed signal as the SI to reconstruct the signal. In this experiment,

we compare the performance of 1bdyn with 1bdynG and 1bLaplacian. For any other time

instant t, all of these algorithms use the signal reconstructed at the previous time instant as SI to

reconstruct the signal. For each realization of the sequence of sparse signals, we ran simulations

for 500 iterations. We then averaged the results over 50 different sequences of sparse signals.

We summarize the results of the experiment in Figure 4.5. We see that the proposed algorithm
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has better NMSE performance than 1bdynG and 1bLaplacian. Similar to Figure 4.3, the

noisy SI leads to poorer reconstruction performance for 1bdynG. So, the noise in reconstructed

signal is accumulated over time instants and that lead to increase in reconstruction error with

time instants. Figure 5 shows that the noise due to signal reconstruction does not accumulate

over time for the proposed algorithm like 1bdynG and is better than 1bLaplacian.

4.5 Conclusion

In this chapter, we developed a new signal reconstruction algorithm from noisy one-bit com-

pressed measurements using the GAMP framework exploiting the temporal dynamics of the sig-

nal and dependence between the non-zero elements. We used the Laplace distribution to model

the noise in the side-information (SI) to account for the noise due to error in the amplitudes or

error in both the amplitudes and the support in SI. We used Birth-Death-Drift (BDD) model

to capture the dependence among consecutive time signals. We provided all closed-form ex-

pressions required to evaluate all the statistical quantities required for the GAMP algorithm.

We showed that when time dynamics is taken into account, the algorithm performs better than

when the time dynamics is ignored. Though the algorithm developed and results provided fo-

cused on the BDD signal model, the approach considered in this chapter is general and can

be extended to any joint pdf of two consecutive time instant signals that are independent over

indices.
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CHAPTER 5

ONE-BIT CS WITH HETEROGENEOUS SI

5.1 Introduction

In the previous chapter, we implicitly assumed that the SI and the signal follow the same distri-

bution and have joint sparse representation. This might not always be the case, especially when

a system has measurements from multiple sensors of different modalities. In this chapter, we

extend the results of the previous chapter to incorporate a statistically dependent signal from

a different modality and possibly without joint sparse representation with the sparse signal as

a SI to improve sparse signal reconstruction performance. We refer to this SI as a heteroge-

neous SI (HSI). We assume a general measurement model where compressed measurements

are corrupted by additive white Gaussian noise before quantization and sign-flip errors after

quantization. We propose a generalized approximate message passing-based algorithm for sig-

nal reconstruction from noisy one-bit compressed measurements, which leverages the depen-

dence between the signal and the heterogeneous side-information. We model the dependence

between signal and heterogeneous side-information using copula functions and show, through

numerical experiments, that the proposed algorithm yields a better reconstruction performance

than one-bit CS-based recovery algorithms that do not exploit the side-information..
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5.1.1 Signal and Measurement Model

5.1.2 Signal Model

We consider the elements of the input signal x ∈ Rn to be random and i.i.d. with joint pdf

px(x) =
N∏
i=1

p(xi), (5.1)

where each component xi is a Gaussian Mixture

pxi = (1− λ)N (xi|0, v1) + λN (xi|0, v2), (5.2)

where λ is the probability of having non-zero values, and v1 � v2 with v1 close to zero to

impose sparse structure on the signal.

5.1.3 Copula Functions

Copula functions [75] allow the signals produced from different modalities to have arbitrary

marginal distributions, while merging them into a joint multivariate probability distribution

function.

Theorem 5.1 (Sklar’s Theorem). The joint distribution functionF of random variables x1, . . . , xd

with continuous marginal distribution functions F1, . . . , Fd can be cast as

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)), (5.3)

whereC is a unique standard d-dimensional copula. Conversely, given a copulaC and univari-

ate Cumulative Distribution Functions (CDFs) F1, . . . , Fd, F in (5.3) is a valid multivariate

CDF with marginals F1, . . . , Fd.

For absolutely continuous distributions F and F1, . . . , Fd, the joint Probability Density
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Function (PDF) of random variables x1, . . . , xd can be obtained by differentiating both sides of

(5.3):

f(x1, . . . , xd) =
( d∏
m=1

fm(xm)
)
c(F1(x1), . . . , Fd(xd)), (5.4)

where f1, . . . , fd are the marginal densities and c is referred to as the density of standard mul-

tivariate copula C that is given by

c(u) =
∂L(C(u1, . . . , ud))

∂u1, . . . , ∂ud
, (5.5)

where um = Fm(xm) and u = [u1, . . . , ud].

Thus, given specified univariate marginal distributions F1, . . . , Fd and copula model C, the

joint distribution function F can be constructed by

F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud)) = C(u1, u2, . . . , ud), (5.6)

where um = Fm(xm) and F−1
m (um) are the inverse distribution functions of the marginals,

m = 1, 2, . . . , d.

Note that C(·) is a valid CDF and c(·) is a valid PDF for uniformly distributed random

variables um, m = 1, 2, . . . , d. Since the random variable um represents the CDF of xm, the

CDF of um naturally follows a uniform distribution over [0, 1].

5.1.4 Measurement Model

Figure 5.1 shows the measurement model of noisy one-bit CS with pre- and post-quantization

noise. The sparse signal x ∈ RN is compressed to a lower-dimensional vector z ∈ RM

using the random measurement matrix A ∈ RM×N . The vector, z, is assumed to be cor-

rupted by additive i.i.d. Gaussian noise vector, n, with mean vector zero and covariance matrix

vnIM , where IM is the M ×M identity matrix. This corrupted compressed vector is quantized
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Fig. 5.1: one-bit CS with pre-quantization and post-quantization noise.

element-wise to +1 or −1 based on the sign of the signal.

We assume that the channel between the one-bit quantizer and the receiver is noisy. The

quantized measurements are corrupted by sign-flip noise. Formally, the noisy one-bit quantized

measurement model can be written as

yj = ηjQ(AT
j x+ nj), j = 1, · · · ,M (5.7)

where AT
j is the j-th row of A, nj is the j-th element of n, the quantizer Q : R → {−1,+1}

is the sign quantizer

[Q(ζ)]j =

 +1, if ζj > 0,

−1, if ζj ≤ 0,
(5.8)

and ηj ∈ {−1,+1} is the post-quantization noise. ηj is assumed to follow i.i.d. Bernoulli

distribution with Pr(ηj = 1) = γ. We define the inverse of the quantization function, Q−1(.),

as

[Q−1(y)]j =

 (−∞, 0 ], if yj ≤ 0,

(0,∞), if yj > 0,
(5.9)

where yj is the j-th element of y.
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5.1.5 Bayesian Formulation

We assume that HSI, x̃, is available at the receiver. HSI is assumed to be dissimilar to but sta-

tistically dependent with the sparse signal. Using Bayesian rule, p(x|y, x̃) ∝ p(x)p(x̃,y|x) =

p(x)p(x̃|x)p(y|x), the posterior distribution of x given the noisy one-bit quantized measure-

ments, y, and HSI, x̃, at the receiver is

p(x|y, x̃) ∝ p(y|x)p(x, x̃) ∝
M∏
j=1

Izj∈{Q−1(ηjyj)}

N∏
i=1

p(xi, x̃i), (5.10)

where I(.) represents the indicator function, and ∝ represents equality up to a proportional

constant, and p(xi, x̃i) is the joint density function that gives the joint statistical characterization

of the sparse signal and the HSI. The minimum mean square error (MMSE) estimator of x

is the mean of the posterior distribution (5.10), i.e., E[p(x|y, x̃)]. As the evaluation of the

MMSE estimator of (5.10) is intractable, we develop a message passing-based algorithm to

approximate the MMSE estimator.

5.2 GAMP Algorithm Update Equations

In this section, we develop a GAMP-based algorithm which reconstructs the sparse signal from

its noisy one-bit compressed measurements when the receiver has access to HSI.

5.2.1 Heterogeneous Side-Information (HSI)

HSI is a signal which is assumed to be of different modality than the compressed signal and

hence may not share joint-sparse representation as considered in the literature previously [69,

72, 93]. So, we cannot impose the Laplace distribution between HSI and the signal during

reconstruction as in the Algorithm 3.5. Instead, we assume that the HSI is dependent with the

sparse signal, and use the Copula function [75] to model the statistical dependence between the
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signal and the HSI.

Algorithm 5.1 GAMP Algorithm for noisy one-bit CS with heterogeneous SI (HSI-GAMP)

1. Initialization: Set t=0 and initialize x̂t, τ tx, and ŝt as x̂t = E[x], τ tx = var[x], ŝt = 0,
where the expectation and variance of x are with respect to px.

2. Measurement Update

• Linear Step
τ t+1
p = (A�A)τ tx, p̂t+1 = Ax̂t − τ t+1

p � ŝt,

• Non-Linear Step
ŝt+1 = F1(y, p̂

t+1, τ t+1
p ), (5.11)

τ t+1
s = F2(y, p̂

t+1, τ t+1
p ), (5.12)

where F1 and F2 are applied element-wise and are defined as

F1

(
y, p̂, τp

)
=

1

τp

(
E[z|y]− p̂

)
,

F2

(
y, p̂, τp

)
=

1

τp

(
1− var[z|y]

τp

)
.

(5.13)

The expectation and variance are evaluated with respect to z ∼ N (p̂, τp).

3. Estimation Update

Linear Step
τ t+1
r = ((A�A)Tτ ts)

−1, r̂t+1 = x̂t + τ t+1
r � (AT ŝt+1),

where the inversion is performed element-wise
Non-linear Step

x̂t+1 = G1(r̂
t+1, τ t+1

r ), (5.14)
τ t+1
x = G2(r̂

t+1, τ t+1
r ), (5.15)

where G1 and G2 are applied element-wise and are defined as
G1(r̂, τr) = E[x|r̂, x̃], G2(r̂, τr) = var[x|r̂, x̃]. (5.16)

The expectation and variance are evaluated with respect to px|r̂ ∝ N (·; r̂, τr)px(·)px̃|x(·).
Set t = t+1 and return to step 2.

5.2.2 Copula Functions

Let FXi and FX̃i represent the marginal cumulative distribution of the i-th signal and HSI coef-

ficients, respectively. Using copula function, the joint probability density function of the signal

and its HSI is

p(xi, x̃i) = c[FXi , FX̃i ] p(xi) p(x̃i), (5.17)
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where c[FXi , FX̃i ] represents the bivariate copula density function. There are several copula

densities such as Gaussian copula, Clayton, and Frank copula which represent different cor-

relation structure between random variables. Among several copula functions, the one that

captures the dependencies between the signal and the HSI should be selected [75]. For sim-

plicity of exposition, we assume that the Gaussian copula models the dependence between the

signal and the HSI. The distribution of Gaussian copula is defined as

cg(w) = |Rg|−
1
2 exp

[
− 1

2
wT
i (R−1

g − I) wi

]
, (5.18)

where wi = [Φ−1(FXi),Φ
−1(FX̃i)]

T , I is the identity matrix, and Rg = [1 ρ; ρ 1] is the

Gaussian copula parameter.

We assume that the receiver knows the copula function that captures the dependence be-

tween the signal and the HSI.

5.2.3 Update Equations

In this subsection, we develop a GAMP based algorithm that reconstructs the sparse signal

from noisy one-bit compressed measurements when the dependence between the signal and

the HSI is modeled by copula functions. In Algorithm 5.1, we summarize the steps required

for the estimation of the sparse signal and refer to it as HSI-GAMP. The algorithm requires the

evaluation of F1, F2, G1, and G2 as defined in (5.13), and (5.16). For F1 and F2, we require the

evaluation of E[z|y] and var[z|y]. Following the steps as in Chapter 3, we obtain the following
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expressions for E[z|y] and E[z2|y]

E[z|y] = 1

C1

[
γ
(
PI1(vn, p̂, τp)δ(y − 1) + (p̂− PI1(vn, p̂, τp))δ(y + 1)

)
+ (1− γ)

(
(p̂− PI1(vn, p̂, τp))δ(y − 1) + PI1(vn, p̂, τp)δ(y + 1)

)]
,

E[z2|y] = 1

C1

[
γ
(
PI2(vn, p̂, τp)δ(y − 1) + (p̂2 + τp − PI2(vn, p̂, τp))δ(y + 1)

)
+ (1− γ)

(
(p̂2 + τp − PI2)δ(y − 1) + PI2(vn, p̂, τp)δ(y + 1)

)]
,

C1 = γ
(
PI0(vn, p̂, τp))δ(y − 1) +

(
1− PI0(vn, p̂, τp)

)
δ(y + 1)

)
+ (1− γ)

((
p̂− PI0(vn, p̂, τp)

)
δ(y − 1) + PI0(vn, p̂, τp)δ(y + 1)

)
.

As var[z|y] = E[z2|y] − (E[z|y])2, F1 and F2 can now be evaluated. Next, we evaluate non-

linear function G1 and G2 required in the estimation update in Algorithm 5.1.

E[x|r̂, x̃] =
1

C2

∫
xN (x|r̂, τr)c[FXi , FX̃i ] p(xi) dx, (5.19)

where C2 is a normalization constant and is given by

C2 =

∫
N (x|r̂, τr)c[FXi , FX̃i ] p(xi)dx. (5.20)

Similarly,

E[x2|r̂, x̃] =
1

C2

∫
x2N (x|r̂, τr)c[FXi , FX̃i ] p(xi)dx. (5.21)

From Equations (5.19) and (5.21), we can clearly see that the method considered is general and

be used for any bivariate coupla function. The evaluation of the closed-form expressions for

(5.19), and (5.21) is possible if the copula density is Gaussian and the signal x follows Gaus-

sian distribution. In other cases, we may need to resort to numerical integrations. Note that, the

evaluation of the mean and the variance in (5.19) and (5.21), respectively requires unidimen-
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sional integrations and hence are computationally feasible. Note that, in both of the Measure-

ment Update and the Estimation Update sections of Algorithm 5.1, per iteration computation

is dominated by matrix multiplication. Hence, the per-iteration computation complexity of the

algorithm is O(MN).

5.3 Simulation Results
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Fig. 5.2: Reconstruction performance of the
proposed method when ρ = 0.7, γ = 0.10, vn =
0.1, λ = 0.1

0.05 0.1 0.15 0.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sign−Flip Probability

M
e

a
n

−
S

q
u

a
re

 E
rr

o
r

 

 

1−bitNoisyGAMP

HSI−GAMP

Fig. 5.3: Reconstruction performance of the pro-
posed method when M/N = 2, vn = 0.1, λ =
.1, ρ = 0.7

We consider the problem of reconstructing a sparse signal of dimension N from M noisy

one-bit compressed measurements. The measurement matrix,A, is drawn from an i.i.d. Gaus-

sian distribution with zero-mean and 1
M

variance. We assume that the side-information at the

receiver is heterogeneous, which may or may not be sparse. We use the Gaussian copula, with

copula parameter Rg, to generate the sparse signal and the HSI. The signal, x, follows the

Gaussian mixture distribution in (5.2) with λ = 0.1, v1 = 0.1, v2 = 5, and N = 100. We

perform 100 Monte Carlo runs and compare the mean square errors (MSE) of HSI-GAMP

with one-bit noisyGAMP proposed in Chapter 3. In several experiments, we study the re-

construction performance of the proposed algorithm. In the first experiment, we study the

reconstruction performance of the proposed algorithm as a function of M . In Figure 5.2, we
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Fig. 5.4: Reconstruction performance of the proposed method. M/N = 2, vn = 0.1, λ = .1, γ = 0.1

plot the MSE values of the HSI-GAMP algorithm and the 1-bitNoisyGAMP against M . In

the second experiment, we study the effect of the sign-flip noise on the reconstruction per-

formance of the proposed algorithm. Figure 5.3 shows the results of the second experiment.

In the third experiment, we study the effect of the correlation parameter of the Gaussian cop-

ula, ρ, on the reconstruction performance of HSI-GAMP. Figure 5.3 shows the results of the

third experiment. From Figure 5.2, we can see that incorporating HSI at the receiver yields

improved reconstruction performance when compared to 1-bitnoisyGAMP. From Figure 5.3,

we can see that the reconstruction performance of the proposed algorithm is more robust to

the sign-flip noise when compared to 1-bitNoisyGAMP. HSI-GAMP exploits the dependence

between the signal and the HSI to get better MSE performance. From Figure 5.4, we can see

significant improvement in the reconstruction performance when the dependence between the

signal and the HSI is large. When the dependence is large, the receiver has more information

regarding the sparse signal through its statistical characterization which leads to improved re-

construction performance. In the third experiment, we obtain the average MSE value of 0.292
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for 1-bitNoisyGAMP and is always larger than HSI-GAMP.

5.4 Conclusion

In this chapter, we proposed an algorithm for sparse signal recovery from noisy one-bit mea-

surements when the receiver has access to heterogeneous side-information. We used copula

functions to capture the dependence between the side-information and the signal. We showed

that by taking the heterogeneous side-information into account during signal reconstruction

yields improved performance. We translate the problem of evaluating a very high dimensional

integration into several signal dimension integration which is computationally very efficient.

We showed that the proposed algorithm is robust to sign-flip noise and can significantly reduce

the reconstruction error when the signal and the HSI are highly dependent.
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CHAPTER 6

ONE-BIT COMPRESSED SENSING USING

NETWORK PRIOR

6.1 Introduction

In this chapter, we address the classical problem of one-bit compressed sensing using deep

learning-based (DL) approaches. We consider two different setups. We present a deep learning-

based reconstruction algorithm that relies on a trained generative model in the first setup. The

generator, a deep neural network, learns a mapping from a low dimensional space to a higher

dimensional set comprising sparse vectors. Generative models such as generative adversarial

networks (GANs) [38] and variational autoencoders (VAEs) [56] are trained on data to learn

the data distribution. The sparse vectors are reconstructed from their one-bit measurements by

searching over the range of this trained generator. A well-trained generative network learns

the distribution of the signal, which includes all possible structural information in the signal,

including sparsity. Because of the use of this trained network, the proposed algorithm provides

excellent reconstruction performance compared to the traditional methods that account for just

sparsity. Importantly, we provide theoretical guarantees on the reconstruction accuracy and
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sample complexity of the presented algorithm. In the second setup, we consider an untrained

neural network as a prior on the signal. The use of an untrained network-based approach

makes sense when it is not possible to train a generative model before reconstruction. We

choose the architecture of the untrained network such that it acts as a good prior on natural

signals such as images. We provide a reconstruction algorithm to estimate signals from the

one-bit measurements using an untrained network as the prior. In both setups, numerical results

demonstrate the efficacy of our algorithm compared to other existing algorithms. We also show

that, in contrast to existing algorithms, the proposed algorithms can recover both the amplitude

and the direction of the signal from one-bit measurements.

6.2 System Model and Algorithm

We consider the problem of recovering an unknown sparse vector x∗ ∈ RN from a set of

one-bit measurements y ∈ {±1}M . The ith measurement yi is modeled as follows:

yi = sign (〈Ai,x
∗〉) ∈ {±1} , i = 1, 2, . . . ,M (6.1)

where Ai ∈ RN is the ith row of the known measurement matrix A ∈ RM×N . Our goal is to

find a reconstruction x̂ such that it is close to the ground truth x∗.

We compute x∗ from one-bit measurements y by optimizing a loss function L(Ax;y),

between y and the corresponding linear measurements Ax. Then, the corresponding opti-

mization problem is given by

min
x∈S
L(Ax,y), (6.2)

where S ⊆ RN represents the solution space of the signal. The design specifications of the

optimization problem in (6.2) include two parts: one, an accurate representation of the solution

space, and two, the form of the loss function L(·). The same structure can be observed in a
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traditional one-bit CS problem as well. For example

x̂ = min
x
− yTAx

subject to ‖x‖1 ≤
√
K and ‖x‖ ≤ 1

In this problem, the loss function when minimized enforces consistency between y and Ax

which lies on the space S = {x : x ∈ RN , ‖x‖0 ≤ K, and ‖x‖ = 1}. The K-sparse structure

of the solution set (‖x‖0 ≤ K) is imposed through inequality involving `1 norm which is

obtained as

|1̃Tx| ≤ ‖1̃‖‖x‖ ≤
√
K,

where 1̃ ∈ RN is a vector with all ones at indices where x is non-zero and zeroes otherwise.

The first inequality is due to the Cauchy-Schwartz inequality while the second is due to the

K-sparsity. Next, we introduce two ideas of compressed sensing from one-bit measurements

using a neural network as a prior. In the following sections, we provide the details of the

solution space, and the optimization problem of the two proposed algorithms and the detailed

empirical results to demonstrate the superior performance.

6.3 Compressed Sensing using Trained Network as a Prior

In this section, we provide the details of the solution space, optimization problem, theoretical

results of the proposed algorithm when a trained generative model is used as the prior.

6.3.1 Solution Space

In this approach, we assume that the set S represents the range space of a trained neural network

G(w; g). Here, w denotes the weights (parameters) of the network, and g ∈ Rk is the latent
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(input) vector. Thus, any sparse vector x can be represented as x = G(w; g) for some g ∈ Rk

and w. In general, to solve (6.2), we need to estimate g, or w, or both. For a trained network,

w is fixed as it is learned during the training process. So the problem of estimating x̂ translates

to evaluating an estimate ĝ. Therefore, the optimization problem in (6.2) can be rewritten as

min
g
L(AG(w; g),y). (6.3)

Our approach is to use a trained generative model such as VAEs and GANs trained on

some datasets which maps input drawn from a distribution pG over Rk to desired signal by a

deterministic function: G : Rk → Rn. Typically, k � N , i.e., G is a mapping from a low

dimensional representation space (⊂ Rk) to a high dimensional sample space (⊂ RN ), learned

by the model. In the training phase, the algorithm learns the function G that can map the

distribution pG to the distribution of the data from training samples. To be specific, we train

the generative model using sparse vectors so that the range of the generator mapping is close

to the desired set of sparse vectors. As w is fixed for trained network, we represent a trained

network by G(g).

During signal reconstruction, we minimize the following objective function:

loss(g) = ‖G(g)‖2
2 −
√

2π

M
yTAG(g). (6.4)

The second term of the objective function maximizes the correlation between the one-bit mea-

surements y and the corresponding linear measurements. For a fixed l2 norm of G(g), the

term is maximized when sign(AG(g)) = y. Therefore, the second term ensures the match

betweenAG(g) and y. However, the second term decreases as the l2 norm of G(g) increases,

and therefore, we use the first term to control the norm. Hence, the two terms of the objective

function jointly optimize the representation error.

Any optimization procedure can be used to minimize the loss function, and if the generative
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model is differentiable, we can use the standard back-propagation learning. Let ĝ denotes the

optimization procedure output. Our reconstructed signal is given by x̂ = G(ĝ). We note that

although the objective function to be optimized is non-convex, the optimization problem can

be solved using gradient descent. Next, we discuss some theoretical guarantees for the above

algorithm, assuming that the gradient descent finds a good approximate solution to the above

non-convex optimization problem.

6.3.2 Theoretical Analysis

Let G be a d−layer neural network with at most n nodes per layer, all weights are upper

bounded by wmax in absolute value, and the non-linearity after each layer is L−Lipschitz.

Further, let the range of the generator be denoted by S. The main result of this section is as

follows:

Theorem 6.1. Let the input to the model G have independent entries drawn from a uniform

distribution over
[
− r√

k
, r√

k

]
during the training phase, andA ∈ RM×N be a random Gaussian

matrix, scaled so that Ai,j ∼ N (0, 1/M). Fix x∗ satisfying ‖x∗‖2 = 1. Assume that the

measurement vector y follows the model given by (6.1). Suppose ĝ minimizes the cost function

in (6.11) to within additive δ of the optimum over the vectors with ‖g‖2 ≤ r. Then, for any

ε > 0 there exists universal constants C, c > 0 such that if

M ≥ Cε−2k
(
r2 + d logLnwmax

)
, (6.5)

the following holds with probability at least 1− 4 exp (−cε2m)

‖G(ĝ)− x∗‖2
2 ≤ min

g∈Rk
‖g‖≤r

‖G(g)− x∗‖2 + δ + ε. (6.6)

The details of the proof is provided in Appendix G.
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Discussion

Optimality of the error bound: The first term of the error bound is also known as represen-

tation error. It arises because we search over the range of the generator to find the unknown

sparse vector. The second term δ accounts for the fact that the gradient descent does not nec-

essarily converges to the global optimum. Empirically, we see that these error terms converge

to zero. These error terms are the minimum possible error terms for the presented technique,

and therefore, they seem to be optimal for our algorithm.

Dependence on r: We see that as r increases, the number of measurements increases and the

estimation error decreases. This is intuitive as r increases, the domain of the generator expands

and thus, we need more measurements to train the generator. Further, as the domain expands,

the range also becomes larger which results in improved accuracy.

Dependence on network parameters: As the network parameters, n, L and wmax increases,

the number of measurements increases. This is because, as these parameters increases, the

number of unknowns to be learned by the network or their respective ranges increase, and

therefore, more number of measurements are required. On the other hand, this also increases

the flexibility of network and thus, the range of G(g) can become larger, and therefore, the first

term in the error bound decreases. Hence, an increase in the number of measurements results

in an improved error bound, as expected.

Distribution of input: Although the statement of the theorem specifies the distribution of

the input to the generator as a uniform distribution parametrized by r, the proof only requires

to assume that the norm of the input is bounded. Therefore, the result applies to an input g

drawn from independent Gaussian or any other heavy-tailed distributions as this only prunes

an exponentially unlikely fraction of the possible outputs.
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6.3.3 Simulation Results

In this section, we evaluate the signal reconstruction performance of the proposed algorithm.

Let x∗ and x̂ represent the true signal and the estimated signal, respectively. We evaluate the

recovery performance using following two metrics:

• Mean Square Error (MSE):

MSE , ‖x∗ − x̂‖2 (6.7)

• Normalized Mean Square Error (NMSE):

NMSE ,

∥∥∥∥∥ x∗

‖x∗‖
− x̂

‖x̂‖

∥∥∥∥∥
2

(6.8)

We consider the MNIST handwritten digit dataset [59], the Fashion MNIST dataset [96],

and the Omniglot dataset [58] for training the generative models. We chose these image

datasets because they are sparse in pixel intensities and hence, we can compare the performance

with traditional compressed sensing algorithms. We compare the performance of our algorithm

with two traditional one-bit CS algorithms: convex optimization-based algorithm in (labeled as

YP) [78], and binary iterative hard thresholding (BIHT) [48] algorithm. The experimental setup

is as follows:

Generative model: We adopt the setup from [11] and train variational autoencoders (VAEs) [56]

as the generative model using training images from the MNIST, Fashion-MNIST, and Omniglot

datasets. The image size is 28× 28, and thus, the input dimension is N = 784. We choose the

size of the input to the generator as k = 40. The generator is a fully connected 40-500-500-746

neural network, and the encoder is also a fully connected 784-500-500-40 neural network. For

each of the datasets, VAE is trained for 200 epochs with a mini-batch size of 64 using the Adam

optimizer [54] with a learning rate of 0.001.
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Measurement model: The columns of measurement matrix A are drawn uniformly from

the surface of the m-dimensional unit hypersphere [73]. We use noisy one-bit compressed

measurements

yi = ηi sign (〈Aix
∗ + ni〉) ∈ {±1} , i = 1, 2, . . . ,M, (6.9)

where ni is the additive Gaussian noise with mean zero and variance vn. Similarly, ηi is

Rademacher distributed random variable that takes value 1 and −1 with probability α and

1− α, respectively.

We use 10 different images from the testing set and generate one-bit compressed measure-

ments. As the optimization problem we consider is a non-convex problem, we do 10 random

restarts with 100 gradient descent steps per restart for signal reconstruction and report the re-

sult with the least error. For all the experiments where noisy one-bit measurements are used,

we average the results over 50 Monte Carlo runs for each of ten images.

Noiseless Setting

In Figures 6.1 and 6.2, we provide the recovery performance of the proposed algorithm (la-

beled as GenModel), YP [78] and BIHT [47] in a noiseless scenarios, i.e., when vn = 0 and α

= 1. The performance of all the algorithms improves with the number of measurements M , as

more information about the sparse vector is available. However, when we look at MSE perfor-

mance and NMSE performance, we can see two different performance traits of the proposed

algorithm.

MSE Performance: The MSE performance of the proposed algorithm is less by one

order of magnitude for same M . Generative models, such as VAEs and GANs, when

pre-trained on a dataset, learn the distribution of the compressed signal. Hence, a well-

trained generative model has information on both the magnitude and direction of the
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Fig. 6.1: MSE of the proposed algorithm
compared with BIHT and YP as a function of
number of measurements M in a noiseless
setting.

Fig. 6.2: NMSE of the proposed algorithm
compared with BIHT and YP as a function of
number of measurements M in a noiseless
setting.

compressed signal. The proposed algorithm uses this well-trained generative model, and

recovers both the magnitude and the direction of the compressed signal. As BIHT and YP

estimate signals on the unit ball, the proposed method have superior MSE performance,

especially when the sparse signal does not lie on the unit ball.

NMSE Performance: The NMSE performance of the proposed algorithm depends on the

value of M and can be divided into following two regions in Figure 6.2:

M < 1500 : In this regime, the proposed algorithm has better reconstruction perfor-

mance. Usually, the range space of a well-trained generative model has more struc-

tural information on signal than just sparsity. Further, the range space is smaller

subspace than entire signal space, i.e., RN . Hence, the proposed algorithm eval-

uates a better estimate of the direction of the compressed signal than traditional

algorithm with a smaller number of one-bit measurements (M ).

M ≥ 1500 : When the number of measurements is sufficiently large, the traditional

algorithms either match or better the performance of the proposed algorithm. In

Figure 6.2, BIHT algorithm outperforms the proposed algorithm when M ≥ 1500.

It can be observed that the NMSE value of the proposed algorithm stagnates after
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Fig. 6.3: The first rows show the original images, the second, third and fourth rows are the
reconstruction images using BIHT, YP and proposed algorithms, respectively when m = 784 in
a noiseless setting for MNIST dataset.

Fig. 6.4: The first rows show the original images, the second, third and fourth rows are the
reconstruction images using BIHT, YP and proposed algorithms, respectively when m = 784 in
a noiseless setting for FashionMNIST dataset.

certain value ofM . This is because the proposed algorithm approximates the sparse

signal by some signal in the range space of the generator that minimizes the loss,

i.e., the NMSE of the proposed algorithm is always lower-bounded by the represen-

tation error. However, with the traditional algorithms, an increase in M will always

provide extra information and improves the reconstruction performance. Hence, we

see a monotonic decrease of NMSE values of the traditional algorithms with M .

Next, we study the effect of choice of the architecture of generative models on signal re-

construction performance. To investigate the effect of choice of architecture, we study the re-
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construction performance of MNIST and FashionMNIST dataset with same VAE architecture.

In [96], the data distribution of Fashion-MNIST is shown to be more complicated compared to

MNIST through tSNE visualization [70]. We train VAEs for these two datasets with the same

neural network structure, over the same number of epochs with the same learning rate, and with

the same optimizer. The data distribution of the testing set for MNIST and Fashion-MNIST

is similar to their training sets. In this setup, we consider noiseless one-bit measurements

for signal reconstruction. In Figure 6.3, we plot the reconstructed images of one-bit CS with

generative models for images from MNIST and Fashion-MNIST datasets. The reconstructed

image shows that with the MNIST dataset, the visual quality is better than that of the Fashion-

MNIST dataset. We can see that for the Fashion-MNIST dataset, the generative model learned

the distribution of the shape of the clothing images, but it did not learn the details in images

such as textures. Though the generative model learned the distribution of the MNIST dataset,

the architecture was not complex enough to learn the entire distribution of the Fashion-MNIST

dataset. So, the reconstruction performance with the images from Fashion-MNIST dataset is

not as good as of MNIST dataset. So, we should note that the neural network architecture

should be chosen appropriately to ensure better signal reconstruction performance.

Noisy setting

In our next experiment, we study the reconstruction performance in the presence of noise. In

Figures 6.5 and 6.6, we provide the recovery performance of our algorithm with YP and BIHT

in a noisy scenario, i.e., when vn = 0.1 and α = 0.85. We can see similar trends in the recovery

performance of the proposed algorithm, BIHT and YP with a few notable differences. First,

the reconstruction performance of all these algorithms has decreased with noise compared to

the noiseless scenario. Second, unlike in Figure 6.2, there does not exist a point or region in

Figure 6.6 where the NMSE performance of the BIHT algorithm or the YP algorithm is equal

to or better than the performance of the proposed algorithm for any value of M . This shows
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Fig. 6.5: MSE of the proposed algorithm
compared with BIHT, and YP as a function of
number of measurements m in a noisy setup
(vn = 0.1 and α = 0.85).

Fig. 6.6: NMSE of the proposed algorithm
compared with BIHT, and YP as a function of
number of measurements m in a noisy setup
(vn = 0.1 and α = 0.85).

that the performance of the traditional algorithms is more sensitive to noise. Also, the loss in

performance because of the representation error is minimal in comparison to the performance

degradation in recovery performance in the presence of noise. Hence, the proposed algorithm

outperforms the traditional algorithms in both MSE and NMSE metrics for the noisy setup.

Similarly, in Figures 6.7 and 6.8, we plot MSE and NMSE values for the proposed algorithm,

BIHT and YP as a function of sign-flip probability 1− α when M = 784. These results shows

that the proposed method has better reconstruction performance in presence of sign-flip noise

compared to BIHT, and YP.

Next, we compare the robustness of the proposed algorithm and traditional algorithms with

respect to the additive measurement matrix uncertainties. The receiver has noiseless one-bit

measurements, i.e., vn = 0 and α = 1. Let A′ be the measurement matrix at the receiver,

which is defined as

A′ = A+ ∆,

where ∆ is the unknown perturbation in the measurement matrix, A. We draw each element

of the perturbation, ∆, from i.i.d. Gaussian distribution with zero mean and v∆ variance. In

Figure 6.9, we plot the NMSE performance as the function of the uncertainties, i.e., v∆, when
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Fig. 6.7: MSE of the proposed algorithm
compared with BIHT, and YP as a function of
number of sign-flip probability when M =
784 and vn = 0.1.

Fig. 6.8: NMSE of the proposed algorithm
compared with BIHT, and YP as a function
of sign-flip probability when M = 784 and
vn = 0.1.

M = 1500. From the simulation result, we can see that the proposed algorithm has the least

rate of increase of NMSE with respect to v∆ which shows the proposed algorithm is more

robust to the additive measurement matrix uncertainties.

Limitation

In this subsection we study the limitation of using generative models to the task of compressed

sensing. Specifically, we look into the performance of the proposed algorithm when the range

space of the generative models does not faithfully represent the distribution of the compressed

signal. In this experiment, we use the Omniglot dataset, where the testing data does not follow

the exact distribution of the training data. So, the range space of the generative models does not

include the testing signals that we desire to reconstruct. The NMSE values of this experiment

is plotted in Figure 6.10. For Omniglot dataset, we can see that the NMSE value is higher

with the generative model compared to the MNIST, which is because of the high representation

error. Further, because of high representation error, BIHT outperforms Genmodel with a smaller

value of M , i.e., when M slightly greater than 300. However, for MNIST, the BIHT algorithm

matches up the performance of GenModel when M = 1500. Hence, it is crucial that the trained
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Fig. 6.9: Reconstruction performance of the proposed algorithm, BIHT and YP as a function of
measurement matrix uncertainty, v∆, when M = 1500 in a noiseless setting (α = 1 and, vn =
0).

generative model represents the signal distribution of the compressed signal. Any change in

the signal distribution over time may lead to degradation of reconstruction performance.

Comparison with Generative model based algorithm:

In this subsection, we compare the recovery performance of the proposed algorithm with gen-

erative model-based one-bit CS algorithm in the literature (labeled as projGen). From the

simulation result we can observe that the proposed algorithm has better MSE and NMSE re-

construction performance in a noiseless setting, i.e., when vn = 0 and α = 1. From MSE and

NMSE results in Figures 6.11 and 6.11, respectively, we can conclude that the proposed algo-

rithm has better estimation of the signal direction and amplitude than GenModel_pgd. Hence,

the proposed algorithm is better than the model-based and the competing generative model-

based CS algorithms from one-bit measurements.
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Fig. 6.10: NMSE values of proposed algorithm and BIHT for MNIST and Omniglot dataset as
a function of number of measurements

Application: Channel State Estimation Using One-bit Measurements

In this subsection, we investigate a potential application of one-bit CS with generative models

to estimate channel state information. Consider an FDD MIMO system. The downlink channel

from the base station to the mobile station is not symmetric with the uplink channel as different

spectral bands are used for the uplink and downlink communication. Hence, the base station

transmits a pilot sequence to the mobile user to estimate the downlink channel. The mobile

station estimates the channel and feedbacks the CSI to the base station. The channel in massive

MIMO is known to be sparse and hence can be compressed by a mobile station using the com-

pressed sensing paradigm. To decrease the uplink bandwidth resource, the CSI is compressed

and each element of the compressed vector is quantized to one-bit. These one-bit compressed

measurements could be further superimposed on the uplink user sequence to reduce overhead

on the uplink bandwidth resource. The process of superposition of one-bit measurements in

uplink user sequence and the recovery of one-bit compressed channel state information is dis-
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Fig. 6.11: MSE of the proposed algorithm
compared with GenModel_pgd as a function
of number of Measurements when vn = 0.1.

Fig. 6.12: NMSE of the proposed algorithm
compared with GenModel_pgd as a function
of number of Measurements when vn = 0.1.

cussed in detail in [79, 98]. Next, the base station recovers one-bit measurements from the

uplink user sequence. The final goal at the base station is to estimate the downlink CSI from

the recovered one-bit measurements.

In this experiment, we compare the work in [79] with the proposed algorithm after one-bit

compressed measurements have been recovered at the BS. We train a generative adversarial

network to learn the downlink channel distribution. The downlink channel is assumed to be

Rayleigh distributed. The channel vector is generated following the 3GPP protocol. We con-

sider 60000 channel vectors as the training set and 10000 channel vectors as the testing set.

We consider a generative adversarial network with a fully connected neural network as the

generator and a fully connected neural network as the discriminator. We train such generative

adversarial networks with the Adam optimizer with a learning rate of 0.001. We pick 100 data

points from the testing set and take one-bit compressed measurements. We consider a noisy

compressed sensing model for the generation of one-bit measurements with α = 0.90 and

vn = 0.05. The Gaussian noise represents the error in channel estimation by the mobile sta-

tion, and the sign-flip noise represents the uplink channel noise. The base station reconstructs

CSI from noisy one-bit measurements. In Figure 7, we plot the reconstruction performance

of channel estimation of the proposed algorithm with the algorithm in [79]. As the algorithm
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Fig. 6.13: Comparison of CSI estimation of the proposed algorithm with the state-of-the-art
algorithm from one-bit comprTessed measurements when α = 0.9 and vn = 0.05

in [79] is inspired by BIHT, we refer to this algorithm as BIHT in the figure. The NMSE per-

formance shows the proposed algorithm outperforms the BIHT algorithm. In addition to the

gain in performance, the proposed algorithm provides a saving in the number of bits required

to transmit from the mobile station to the BS compared to [79]. For the same number of one-bit

compressed measurements, [79] requires additional N bits to transmit support information to

the BS. Even with additional N bits, the existing algorithm performs worse compared to the

proposed algorithm.

6.4 Compressed Sensing using Untrained Network as a

Prior

In this section, we study the second approach to CS that uses an untrained network as a prior

on the signal. In the following subsections, we provide the details of the solution space, loss
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function, solution methodology and detailed experimental results.

6.4.1 Solution Space

In the approach, we assume that the set S represents the range space of a neural network

G(w; g). Here, w denotes the weights (parameters) of the network, and g ∈ Rk is the latent

(input) vector. Thus, any sparse vector x can be represented as x = G(w; g) for some g ∈ Rk

and w. Our approach considers an untrained network G(w; g) with a fixed latent vector g.

So the problem of estimating x̂ translates to evaluating an estimate ŵ of the neural network

weights. Therefore, the optimization problem in (6.2) can be rewritten as

min
w
L(AG(w; g),y). (6.10)

6.4.2 Design of the Loss Function L

We consider the following objective function for signal recovery from one-bit measurements:

L(AG(w; g),y) = −y
TAG(w; g)

‖G(w; g)‖2
2

. (6.11)

The numerator of the objective function measures the consistency between the sign measure-

ments y and the corresponding linear measurements. For a fixed l2 norm of G(w; g), the term

is maximized when sign(AG(w; g)) = y. Therefore, the numerator ensures the consistency

betweenAG(g) and y. However, the numerator decreases as the l2 norm ofG(w; g) increases,

and therefore, we use the term in the denominator to control the norm. Hence, the two terms

of the objective function jointly optimize the representation error.
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Network Architecture

We consider an untrained network G(w; g) that takes the form of an expansive neural network

as in [44] as the prior. The network transforms a randomly chosen fixed latent vector to output

signal by applying 1× 1 covolution, applying rectified linear units (ReLUs), upsampling oper-

ations and normalizating the channels. Let Z1 ∈ Rn0×k1 be input of the network. Specifically,

the tensor output of d-th layer is given by

Zd = bn(Ud−1σr(Zd−1Wd−1), d = 0, · · · , D − 1, (6.12)

where Wd ∈ R(d−1)×d is 1 × 1 convolution layer, Ud is an upsampling operator that perform

bi-linear upsampling, σr(·) is a ReLU activation function, and bn() is a batch normalization

layer. Finally the output of the untrained network is formed as

x = G(w; g) = σs(UD−1σ(ZD−1WD−1)WD)

= σs(ZDWD),

where σs(·) is a sigmoid function. We call any untrained network as a prior to signal x ∈ Rn

if the signal belongs to a set S defined as:

S = {x|x = G(w; g}, (6.13)

where g := vec(Z1) is a randomly chosen but fixed latent vector and G(w; g} is the untrained

neural network. The set S is called as the range space of the network. The untrained network

architecture G(w; g) should be chosen based on the signal x such that the signal lies in the

range space or has small representation error.
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Algorithm 6.1 Projection based gradient descent method for one-bit compressed sensing
1: Input: Data samples y,A, η.
2: Output: G(w; g).
3: for t = 0 to T − 1,
4: st = xt − η∇xL(w),
5: wt = argmin

w
‖st −G(wt; g))‖2,

6: xt+1 = G(wt; g)
7: end for
8: Output the x̂ = G(wT ; g).

6.5 Solution Methodology

We minimize the loss function in (6.11) using a projected gradient descent based algorithm.

The steps of the algorithms are outlined in Algorithm 1, which has three major steps. In the

first step, we evaluate the gradient of the loss function, L(·) with respect to x, i.e.,∇xL(x),

and minimize the objective by taking one step of gradient descent step in Step 4 of Algorithm

1. The updated variable gt may not lie on the range space of the untrained network, S. Next,

we project the signal, gt in the range space of the untrained network. The optimization problem

for the projection takes the form

wt = argmin
w

‖st −G(w; g)‖2. (6.14)

Note that the optimization problem is non-convex due to the structure of G(w; g). Hence,

the minimization of the loss function does not guarantee convergence to the globally optimal

solution. The minimization task is carried out by backpropagation. This minimization task

can be carried out using standard computational frameworks such as Tensorflow and Pytorch.

Finally, we compute the signal in S by the action of G(w; g) with updated weight, wt on

the fixed latent vector g, i.e. xt+1 = G(wt; g) . We repeat the algorithm until the stopping

condition is reached.

Initialization: The latent vector g is drawn from the uniform distribution and kept constant
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over entire minimization task.

6.5.1 Simulation Results

In this section, we evaluate the signal reconstruction performance of our algorithm. Let x∗ and

x̂ represent the true signal and the estimated signal respectively. We evaluate performances

using following two metrics

• Mean Square Error (MSE):

MSE , ‖x∗ − x̂‖2
2 (6.15)

• Normalized Mean Square Error (NMSE):

NMSE ,

∥∥∥∥∥ x

‖x∗‖2

− x̂

‖x̂‖2

∥∥∥∥∥
2

2

(6.16)

Dataset: We consider the MNIST handwritten digit dataset [59] for experimental validation

of the proposed algorithm. The images in the MNIST dataset are sparse in pixel values.

Baseline Algorithms: We compare the performance of our algorithm with two traditional one-

bit CS algorithms that requires sparsity on some basis: convex optimization-based algorithm

in (labeled as Convex), and binary iterative hard thresholding (labeled as BIHT ) algorithm.

Further, we compare the performance with [50] (labeled as TrainedNwk), which uses a trained

Generative model as the prior.

Untrained Network: The untrained network G(w; g) takes the form of an expansive network.

We adopt the setup from [49] where we fix the architecture to have 2 layer configuration with

k1 = 15, k2 = 15 and k3 = 10 and use bilinear upsampling operations. Both trained and un-

trained network are implemented in Pytorch with GPU support. We use the ADAM optimizer

to minimize the cost function with respect to model parameters. The latent variable, g, is drawn
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Fig. 6.14: Reconstruction performance of our algorithm compared with the state-of-the-art
algorithm.
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from uniform distribution.

Measurement model: The columns of measurement matrix A are drawn uniformly from the

surface of them-dimensional unit hypersphere [73]. We use one-bit compressed measurements

yi = sign (〈Ai,x
∗〉) ∈ {±1} , i = 1, 2, . . . ,M.

We average the results over ten different images from the testing set of MNIST dataset. As the

considered algorithm is not convex, we do three random restarts for each image and report the

average loss as the reconstruction loss.

In Figure 6.14, we provide the signal reconstruction performance of our algorithm (labeled

as UntrainedNwk) with Convex, BIHT, and TrainedNwk in a noiseless scenario. The key

observations are as follows:

• The MSE performance of our algorithm is comparable to BIHT and Convex and worse than

TrainedNwk for small number of measurements (M < 200). This behavior is because

TrainedNwk uses a generative model that is well-trained on a huge data set. On the other

hand, the other three algorithms have no prior information regarding the compressed signal

and require more measurements to ensure a similar accuracy level.

• For a slightly larger number of measurements (M > 200), the performance of our algorithm

becomes comparable to that of TrainedNwk, whereas the other two algorithms continue to

offer poor MSE performance. In other words, our algorithm recovers both magnitude and

direction information without pretraining the network on a huge dataset. Thus, our method

eliminates the need for pretraining without significantly compromising the recovery perfor-

mance.

• The NMSE performance shows that our algorithm estimates the direction of the sparse vector

with a similar accuracy level as that of TrainedNwk, when M is comparable to N or larger.

Note that TrainedNwk and UntrainedNwk output an estimate from their respective range

spaces that minimizes the loss. Thus, a limitation of these algorithms is that if the compressed
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First row : Original images
Second row : UntrainedNwk

Third row : Convex
Fourth row : BIHT

Fifth row : TrainedNwk

Fig. 6.15: Reconstruction when M = 1500.

signal lies outside S, they output a vector from the range space which is closest to the ground

truth. So the NMSE is always lower bounded by the distance between the true vector and

the range space, irrespective of the value of M . The NMSE value of our algorithm saturates

at M = 784 and does not significantly improve beyond that. However, the NMSE of BIHT

monotonically decreases with M .

• The NMSE of BIHT becomes similar to that of the proposed algorithm when M = 1500.

However, the proposed algorithm arrives at a reliable estimate of the sparse vector with almost

half of the measurement compared to that required by BIHT algorithm. We also note that the

MSE of BIHT is high for a large value of M , even when the NMSE is low. This observation

indicates that the direction information of the sparse vector is recovered with good accuracy,

but the magnitude is not accurate. This behavior is because BIHT estimates the signals on the

unit ball, and thus, it is unable to recover the magnitude of the sparse vector.

In the next experiment, we compare the images reconstructed by the proposed algorithm
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First row : Original images
Second row : UntrainedNwk

Third row : Convex
Fourth row : BIHT

Fifth row : TrainedNwk

Fig. 6.16: Reconstruction when M = 1500.

with the competing algorithm. Figures 6.15 and 6.16 compare the images reconstructed by

the above four algorithms from MNIST and Omniglot datasets using 1500 one-bit measure-

ments. For the untrained and trained network-based algorithm, we use the same network ar-

chitecture for both datasets. UntrainedNwk algorithm offers good reconstruction quality for

both datasets. Further, we observe that the visual quality of images reconstructed by BIHT

and Convex algorithms are worse compared to the other two algorithms. This is because these

model-based algorithms always output an estimate lying in the unit norm ball, and they provide

inaccurate estimates when the norm of the unknown vector (image in our case) is not unity. On

the contrary, the deep learning-based algorithms recover both the magnitude and the direction

of the unknown vector, and thus, offer a better visual quality. However, the visual quality of

TrainedNwk is better than that of UntrainedNwk for the MNIST dataset, and it is worse for

the Omniglot dataset. This is because the performance of TrainedNwk depends on the training

data, and for the Omniglot dataset, the distribution of test data is slightly different from that of

the training data. This observation confirms that if the distribution of data changes over time,
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the recovery performance of the TrainedNwk algorithm degrades while the performance of the

UntrainedNwk algorithm is relatively constant.

6.6 Summary

In this chapter, we proposed deep learning-based approaches for the problem of one-bit com-

pressed sensing using trained and untrained feed-forward neural networks as priors. We pro-

vided a lower bound on the sample complexity and quantified the reconstruction performance

of the one-bit compressed sensing algorithm when a trained network is used as a prior. We

provided detailed numerical results to demonstrate the superior performance compared to tra-

ditional algorithms such as BIHT. We also showed that the recovery performance of the pro-

posed algorithm is robust to noise. We further investigated one-bit compressed sensing with

an untrained neural network as a prior. We formulated an optimization problem and solved it

using the projected gradient descent-based method. We provided sufficient numerical exper-

iments to demonstrate the superior performance of the proposed algorithm compared to the

existing model-based approach. In contrast to the existing model-based algorithm, we showed

that both the proposed algorithms estimated both the magnitude and the direction of the signal

from one-bit measurements.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

7.1 Summary

In this dissertation, we investigated the performance of several algorithms for sparse signal

estimation or its parameter estimation from noisy one-bit measurements. We studied the sig-

nal recovery performance using both model-based sparse signal recovery algorithms and deep

learning-based signal recovery algorithm. We provided computationally tractable algorithms in

all of these problems and showed superior performance compared to the competing algorithms.

We studied the problem of joint sparse support estimation from one-bit noisy measure-

ments. We analyzed the error performance of ML-based support estimation and provided the

lower bounds on the number of one-bit measurements per node for vanishing probability of

error. As this ML-based method is computationally intractable, we proposed tractable cen-

tralized and decentralized algorithms for joint sparse support estimation. We showed that the

proposed algorithms are better than the competing algorithms and have good performance even

in the presence of noise.

We then considered sparse signal reconstruction problems from noisy one-bit measure-

ments. First, we developed an algorithm for sparse signal reconstruction from noisy one-bit
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measurements. We then extended this algorithm to the setup when the receiver has access

to some side-information. In the first problem, we considered the scenario where we do not

assume temporal dependence in sparse signals. We developed a GAMP-based algorithm to ap-

proximate the MMSE estimator of the signal. We provided closed-form expressions for all

the update equations, and hence the algorithms are computationally efficient. In the second

problem, we extended the setup of the first problem to the case where the receiver has access

to SI and inherent time-varying dynamics of the signal. We used the BDD model to capture

the dependence between the signals at consecutive time instances. We developed a GAMP-based

algorithm for this setup. In the third problem, we studied a case when the receiver has access

to heterogeneous SI. These signals and the heterogeneous SI are from different modalities and

may not share joint sparse representation. We used Copula functions to incorporate the depen-

dence information between the SI and the signal. We then developed a GAMP-based algorithm

to compute the MMSE estimator of the signal.

Finally, we studied data-driven-based approaches for one-bit compressed sensing. We de-

veloped algorithms for signal reconstruction from one-bit measurements using a trained net-

work and an untrained network as priors on the signal. We provided a lower bound on sample

complexity and an upper bound on the reconstruction performance when the trained network

was used as a prior. In contrast to the model-based algorithms such as BIHT, we showed that the

proposed algorithms estimate both amplitude and direction of sparse signals from the one-bit

measurements.

7.2 Future Directions

Some promising directions for future work are listed in the following:

1. Decentralized one-bit compressed sensing: The one-bit compressed sensing problem

has not been investigated much in a decentralized setup. In Chapter 2, we have proposed
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decentralized one-bit compressed sensing algorithms. The work assumes a joint-sparse

structure and independence among signal amplitudes which is not always the case. Fol-

lowing problems can be studied in the future for a better understanding of the decentral-

ized one-bit CS:

• The theoretical analysis of the algorithms in Chapter 2 for quantifying error perfor-

mance and sample complexity needs to be developed.

• The assumptions in Chapter 2 need to be extended to a more complex setting

where signals have joint support with some innovations and higher-order depen-

dence among the amplitudes.

• In Chapter 5, we developed a signal reconstruction algorithm from one-bit mea-

surements when we have heterogeneous side-information at the receiver. In this

dissertation, we assumed that the signal and the side-information are of the same

dimension. However, in several practical scenarios, the signal and heterogeneous

SI are likely to be of different dimensions. One should extend the work such that

the algorithm generalizes to this setup.

2. One-bit compressed sensing with network prior: A few works have scratched the sur-

face of using the deep learning-based method for one-bit compressed sensing. A detailed

understanding of the signal reconstruction from one-bit compressed measurements will

translate into some of the following problems:

• The theoretical results in Chapter 6 need to be extended to a setup when the mea-

surement matrix is deterministic or is realized from other distributions such as a

Sub-Gaussian distribution.

• In Chapter 6, we studied the empirical performance of the one-bit compressed sens-

ing using an untrained network prior. Theoretical performance guarantees of the
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proposed algorithm, i.e., the sample complexity for desired signal reconstruction

performance, need to be developed.

• In Chapter 6, we proposed two different algorithms, one for one-bit CS with a

trained prior and the other for one-bit CS with an untrained prior. In this setup, even

a slow change in signal distribution can cause the trained network-based method

to have increased error during signal reconstruction. In the future, one should

investigate possible neural network architectures and corresponding optimization

problems that can track the slow change of distribution of the signal and study the

reconstruction performance.



APPENDICES

A Proof of Theorem 2.2

Proof of Theorem 2.2 First, we compute E{ã0
pt} and E{ã1

pt} and use it to derive the desired

lower bound.

Let upk =
∑K

i=1

(
Ãp
Uk

)
1i
µi. When the entries of the projection matrix A are i.i.d. Gaus-

sian with mean zero and variance 1
N

, it can be shown that upk is a Gaussian random variable

with mean zero and variance 1
N
||µ||22. Then we have,

E{ã0
pt} = E{(1− λpj)

1
2 (1− λpk)

1
2 | |Uj ∩ Uk| = t}

=
∫ ∫

(1− λpj(upj))
1
2 (1− λpk(upk))

1
2 fUkUj (upk, upj)dupkdupj

which can be found by a 2-fold integration, where we write λpj(upj) = Q
(
−upj

σ2
v+K

N
σ2
s

)
. In the

high dimensional setting, given that |Uj ∩ Uk| = t, the joint pdf of (upk, upj), fUkUj(upk, upj)

tends to be a bi-variate Gaussian with mean 0 and covariance matrix Σt [94] given by

Σt =
µTµ

N

 1 ρt

ρt 1


where ρ0 = 0, ρt =

∑t
i=1 µ̃i
µTµ

for t = 1, · · · , K−1, µ̃t = {µmµn; if
(
Ãp
Uk

)
1m

=
(
Ãp
Uj

)
1n

for m,n =

1, 2, · · · , K} for |Uj ∩ Uk| = t and µ̃t = [µ̃1, · · · , µ̃t]T .

In the following, we evaluate E{ã0
pt} and E{ã1

pt}, and upper bound Perr. In contrast to [94],

where s̃ was assumed to be first order Gaussian, we do not make any assumptions on s̃. Let

139
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upk = x, upj = y and σ2
p = σ2

v + K
N
σ2
s and σ2 = 1

N
||µ||22. From Equations (2) and (14) in [20],

we have the following approximation

Q(x) ≈ 1

4

(
1

3
exp

(
− x2

2σ2
p

)
+ exp

(
−2x2

3σ2
p

))
(8.1)

for small x, where Q(x) =
∫∞
x

√
1

2π
exp(− z2

2
)dz. In [20], the authors have claimed that the

right hand side (R.H.S.) of (8.1) also acts as a tight upper bound for x > 0.5.

Accordingly, we also have

λpj(x) ≈


1
4

(
1
3
exp

(
− x2

2σ2
p

)
+ exp

(
− 2x2

3σ2
p

))
if x < 0

1− 1
4

(
1
3
exp

(
− x2

2σ2
p

)
+ exp

(
− 2x2

3σ2
p

))
if x > 0

and similar is the case with λpk(y). Then, we have,

E{ã0
pt} = E{(1− λpj)

1
2 (1− λpk)

1
2 | |Uj ∩ Uk| = t}

= (1− λpj(x < 0))(1− λpk(y < 0))× Pr(x < 0&y < 0| |Uj ∩ Uk| = t)

+(1− λpj(x < 0))(1− λpk(y > 0))× Pr(x < 0&y > 0| |Uj ∩ Uk| = t)

+(1− λpj(x > 0))(1− λpk(y < 0))× Pr(x > 0&y < 0| |Uj ∩ Uk| = t)

+(1− λpj(x > 0))(1− λpk(y > 0))× Pr(x > 0&y > 0| |Uj ∩ Uk| = t).

We need to find the following expression to calculate the upper bound on Perr.

E{ã0
pt} = E{ã1

pt} = 2(Ip1 + Ip2 − Ip3 − Ip4) +
1

4
+

1

2π
sin−1ρt (8.2)
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where

Ip1 =

∫ 0

−∞

∫ 0

−∞

1

4

(
1

3
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− x2

2σ2
p

)
+ exp

(
−2x2

3σ2
p
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4
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3
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∫ ∞
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)
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(
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(
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Ip4 =

∫ ∞
0

∫ ∞
0

1

4

(
1

3
exp

(
− x2

2σ2
p

)
+ exp

(
−2x2

3σ2
p
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× f(x, y)dxdy

and fUkUj(x, y) is bi-variate Gaussian with mean zero and the covariance matrix Σt

f(x, y) =
1

2πσ2
√

1− ρ2
exp

(
−x

2 + y2 − 2ρtxy

2σ2(1− ρ2
t )

)
.

Also, σ2 = 1
N
||µ||22. The solution to the above integral can easily be found using change of

variables to simplify it to the form

∫ 0

−∞

∫ 0

∞
fUkUj(uk, uj)dukduj =

1

4
+
arcsin(ρt)

2π
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and ∫ ∞
0

∫ 0

∞
fUkUj(uk, uj)dukduj =

1

4
− arcsin(ρt)

2π
.

The solution to (8.2) is

E{ã0
pt} = E{ã1

pt} = 2(Ip1 + Ip2 − Ip3 − Ip4) +
1

4
+

1

2π
sin−1ρt

=
σ2
p

√
1− ρ2

t

2π

[
1

4

(
sin−1ρt1

9
√

1− ρ2
t1
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2sin−1ρt2√

1− ρ2
t2

+
3sin−1ρt3√
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)

−
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sin−1ρt4

3
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1− ρ2
t4

+
sin−1ρt5√
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)]
+

1

4
+

1

2π
sin−1ρt (8.3)

Here,

ρpt1 =
ρtσ

2
p

σ2(1− ρ2
t ) + σ2

p

;

ρpt2 =
ρtσ

2
p√

σ2(1− ρ2
t ) + σ2

p

√
4
3
σ2(1− ρ2

t ) + σ2
p

;

ρpt3 =
ρtσ

2
p

4
3
σ2(1− ρ2

t ) + σ2
p

; ρpt4 =
ρtσp√

σ2(1− ρ2
t ) + σ2

p

;

and

ρpt5 =
ρtσp√

4
3
σ2(1− ρ2

t ) + σ2
p

.

If we assume the noise variances to be independent of p, we have the above solution for

āpt,2(γ,K) = E{ã0
pt} + E{ã1

pt} independent of p. With apt,2(γ,K), we upper bound Perr

in (2.6). Let max
0≤t≤K−1

āpt,2(γ,K) = aK(γ) where 0 < aK < 1. Then Perr with one-bit quanti-
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zation can be upper bounded as,

Perr ≤ 1
2

∑K−1
t=0

(
K
t

)(
N−K
K−t

)∏P
p=1

(
max

1≤t≤K
āpt,2(γ,K)

)M
= 1

2
(aK(γ))MP
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t=0

(
K
t

)(
N−K
K−t

)
− 1
]

= 1
2

(aK(γ))MP [(N
K

)
− 1
]
< 1

2
(aK(γ))MP (N

K

)
(8.4)

Thus, to have a vanishing probability of error it is required that, MP ≥ CKK log N
K
, where

CK = 1
log 1

aK (γ)

only depends on K.
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B Derivation of (3.16)

PI0(v, p̂, τ p) =

∫
Φ(x/

√
v)N (x; p̂, τ p)dx

=

∫ ∞
−∞

[∫ x

−∞
N(t|0, v)dt

]
N (x; p̂, τ p)dx

Using change of variable as u = t − x + p̂ and w = x − p̂, and changing the order of the

integration, we get
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N (u; 0, v + τ p)du

= Φ(
p̂√
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)

The above expression represents marginalization of w in the bi-variate normal density which is

followed by the integration over (∞ τ p] . From the property of bivariate Gaussian distribution,

marginalization of the bivariate normal density results in normal distribution. The mean and

variance can be shown to be zero and v + τ . Next, consider the equality

∫
Φ(x/

√
v)N (x; p̂, τ p)dx = Φ

( p̂√
v + τ p

)
(8.5)
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Differentiating both side of (8.5) with respect to p̂, we get,

∫
x− p̂
τ p

Φ(x/
√
v)N (x; p̂, τ p)dx =
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(8.6)

Finally, differentiating both side of (8.6) with respect to p̂, we get
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x
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√
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+ τ pp̂
N ( p̂√

v+τp
)

(v + τ p)1.5
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) + p̂P I1 +

τ p p̂ vN ( p̂√
v+τp

)

(v + τ p)1.5
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C Derivation of Result 3.1:

Let PX (x) ∝ N (x;mG, vG) × L(x;mL, vL) be a probability density function. We compute

mean of x as

E[x] =

∫
xPX (x)dx =

1

Z

∫
xN (x;mG, vG)× L(x;mL, vL)

=
1
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∫ ∞
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]

After some algebraic steps,
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). The normalization constant, Z, can be
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Next, we compute E[x2] using the definition

E[x2] =

∫
x2N (x;mG, vG)L(x;mL, vL)dx

= C1

∫ mL

−∞
x2N (x;mG +

vG
2vL

, vG) + C2

∫ ∞
−mL

x2N (x;mG −
vG
2vL

, vG)

=
C1

Z
I2(mL;mG +

vG
2vL

, vG) +
C2

Z

(
vG +

(
mG −

vG
2vL

)2 − I2(mL;mG −
vG
2vL

, vG

))
.

(8.8)

Using these results, we derive EXn|Y,X̃ [xn|y, x̃n; r̂n, τ
r
n], and EXn|Y;X̃ [x2

n|y, x̃n, r̂n, τ rn]. Note

that, the receiver has access to side-information which is assumed to be the actual signal cor-

rupted by Laplacian noise.

R̂n = Xn + Vn, X̃n = Xn +Wn

where Vn ∼ N (0, τ rn), Wn ∼ N (0, vs) and Xn ∼ pXn(xn) are independent. The GAMP

algorithm approximates the marginal posterior distribution as

pXn|Y(xn|y; r̂n, τ
r
n) =

pXn(xn)N (xn; r̂n, τ
r
n)L(xn; x̃n, 2vs)∫

xn
pXn(xn)N (x; r̂n, τ rn)L(xn; x̃n, 2vs)

.

Normalization Constant:

Z l
n =

∫ x̃n

−∞
N (xn; r̂n, τ

r
n) pXn(xn)

1

4vs
exp(
−|xn − x̃n|

2vs
)dx

=

∫ ∞
−∞

1− λ
4vs
N (xn; r̂n, τ

r
n) exp(

|xn − x̃n|
2vs

)δ(xn)dxn

+

∫ ∞
−∞

λ

4vs
N (xn; r̂n, τ

r
n)N (xn; 0, vx) exp(−|xn − x̃n|

2vs
)dxn

Using Gaussian product rule,N (xn; r̂n, τ
r
n)N (xn; 0, vx) = N (0; r̂n, τ

r
n+vx)N (x; vxr̂n

vx+τrn
, vxτrn
vx+τrn

),
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and (8.7), we get

=
1− λ

4vs
√

2πτ rn
exp(− r̂2

n

2τ rn
− |x̃n|

2vs
) + λN (0; r̂n, vx + τ rn)

(
C1,nΦ(

ml
n − (mg

n + vgn
2vln

)
√
vgn

) + C2,n

(
1− Φ(

ml
n − (mg

n − vgn
2vln

)
√
vgn

)

)

where mg
n = vxr̂

vx+τr
, vgn = vxτr

vx+τr
,ml

n = x̃n, v
l
n = vs. C1,n and C2,n depend on parameters

mg
n, v

g
n,m

l
n, and vln.

Derivation of EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n] :

EXn|Y,X̃ [xn|y, x̃n; r̂n, τ
r
n]

=
1

Z l
n

∫
xnN (xn; r̂n, τ

r
n)N (xn; 0, vx)L(xn; x̃n, 2vs)dxn

=
λN (0; r̂n, vx + τ rn)

Z l
n

(
C1,nI1(ml

n;mg
n +

vgn
2vln

, vgn) + C2,n

(
mg
n −

vgn
2vln
− I1(ml

n;mg
n −

vgn
2vln

, vgn)
))

Derivation of EXn|Y,X̃ [x2
n|y, x̃n, r̂n, τ rn] :

EXn|Y,X̃ [x2
n|y, x̃n; r̂n, τ

r
n]

=
λ

Z l
n

∫
x2
nN (x|r̂, τ rn)N (x; 0, vx)L(xn; x̃n, 2vs)dxn

=
λN (0; r̂n, vx + τ rn)

Z l
n

(
C1,nI2

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2,n

((
mg
n −

vgn
2vln

)2

+ vgn − I2

(
ml
n;mg

n −
vgn
2vl

, vgn

))
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D Derivation of Result 3.3

The receiver has access to side-information which is assumed to be the actual signal corrupted

by Gaussian noise.

R̂n = Xn + Vn, X̃n = Xn +Wn

where Vn ∼ N (0, τ rn),Wn ∼ N (0, vs) and Xn ∼ pXn(xn) are independent.

The GAMP algorithm approximates the marginal posterior distribution as

pXn|Y(xn|y; r̂n, τ
r
n) =

pXn(xn)N (xn; r̂n, τ
r
n)N (xn; x̃n, vs)∫

xn
pXn(xn)N (x; r̂n, τ rn)N (xn; x̃n, vs)

.

Next, we derive the posterior mean and variance.

Derivation of EXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n]

EXn|Y,X̃ [xn|y, x̃n; r̂n, τ
r
n] =

1

Zg
n

∫
xnN (xn|r̂n, τ rn)N (xn|0, vx)N (xn; x̃n, vs)dxn

=
λφ
(

r̂n√
τrn+vx

)
Zg
n

∫
xnN (xn;

r̂nvx
vx + r̂n

,
vxτ

r
n

vx + τ rn
)N (xn; x̃n, vs)dxn

=
λφ
(

r̂n√
τrn+vx

)
Zg
n

N (xn;
r̂nvx
vx + r̂n

,
vxτ

r
n

vx + τ rn
+ vs)∫

xN (xn;
r̂nvxvs + vxτ

r
nx̃n

vxτ rn + vxvs + vsτ rn
,

vsvxτ
r
n

vxτ rn + vxvs + vsτ rn
)dxn

=
λφ
(

r̂n√
τrn+vx

)
Zg
n

N (0;
r̂nvx
vx + r̂n

,
vxτ

r
n

vx + τ rn
+ vs)

r̂nvxvs + vxτ
r
nx̃n

vxτ rn + vxvs + vsτ rn
,

(8.9)
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where Zg
n is the normalization constant. The normalization constant is evaluated as

Zg
n =

∫
pXn(xn) N (xn; r̂n, τ

r
n) N (x; x̃n, vx)dx

=

∫
(1− λ)N (xn; x̃n, τ

r
n)N (xn; r̂n, τ

r
n)δ(x)+

λN (xn; r̂n, τ
r
n) N (x; x̃n, vx)N (xn; 0, vx)dx

= (1− λ)N (0; x̃n, τ
r
n)N (0; r̂n, τ

r
n) + λN (0;

r̂nvx
vx + r̂n

,
vxτ

r
n

vx + τ rn
+ vs)φ

( r̂n√
τ rn + vx

)
(8.10)

Replacing (8.10) in (8.9), and with some algebraic steps, we can show that

EXn|Y,X̃ [xn|y, x̃n; r̂n, τ
r
n] = πgn

r̂nvsvx + vxτ
r
nx̃

vxτ rn + τ rnvs + vsvx
, πgnm

g
n

where πgn = λ
λ+(1−λ)Zn

and Zn = N (0;x̂,τrn)N (0;x̂,τrn)

N (0;r̂n,vx+τrn)N (0; r̂nvx
vx+τ

r
n
−x̃, τ

r
nvx

vx+τ
r
n

+vs)
.

Derivation of EXn|Y,X̃ [x2
n|y, x̃n, r̂n, τ rn]

Using the definition of second-order moment and following the similar algebraic steps we can

write

EXn|Y,X̃ [x2
n|y, x̃n, r̂n, τ rn]

=
1

Zg
n

∫
x2
n N (xn; r̂n, τ

r
n)N (xn; 0, vx)N (xn; x̃n, vs)dxn

= πgn

( vsvxτ
r
n

vxτ rn + τ rnvs + vsvx
+ (mg

n)2
) (8.11)

Using the posterior first-order and second-order moments, the posterior variance can be
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expressed as

varXn|Y,X̃n [xn|y, x̃n; r̂n, τ
r
n]

= πgn
vsvxτ

r
n

vxτ rn + τ rnvs + vsvx
+ πgn(1− πgn)(mg

n)2
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E Evaluation of Result 4.1

At every iteration, the algorithm has access to R̂n = r̂n, and X̃ = x̃ which are defined as

R̂n = Xcn + Vn, X̃n = Xpn +Wn

where the additive noises Vn ∼ N (0, τ rn), andWn ∼ L(0, 2vs) are independent random vari-

ables. Remember Xcn and Xpn are random variables with joint distribution pXcn,Xpn(xpn,xcn)

in (4.1). The posterior joint distribution can be approximated as

pXcn,Xpn|Y,X̃n(xcn, xpn|y, x̃n) =

∑
i λipXcn,Xpn(xcn, xpn|i)pR̂n,X̃n(r̂n, x̃n|xcn, xpn, i)∫

xn

∑
i λipXcn,Xpn|i(xcn, xpn)pR̂n,X̃n(r̂n, x̃n|xcn, xpn, i)

Derivation of E[xcn|r̂n, x̃n], and E[x2cn|r̂n, x̃n]:

Note that EXcn,Xpn|Y,X̃n [(xcn)q|r̂n, x̃n, i] = 0, and for i = 1, 2 and q = 1, 2 as xcn ∝ δ(·). Next,

we consider events 3 and 4.

Event 3

xpn ∝ δ(·) and xcn ∝ N (xcn; 0, vx).

R̂n = Xcn + Vn, X̃n = Xpn +Wn

where Vn ∼ N (0, τ rn),Wn ∼ L(0, 2vs),Xcn ∼ N (0, vx) and Xpn ∼ δ(·) are independent ran-

dom variables. For simplicity, define Ẽ[xcn|r̂n, x̃n, i] , p(r̂n, x̃n|i)EXcn|Y,X̃n [xcn|y, x̃n, i; r̂n, τ rn].
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Ẽ[xcn|r̂n, x̃n, i = 3] = p(r̂n, x̃n|i = 3)

∫
xcn pXcn|Y,X̃n(xcn|y, x̃n, i = 3; r̂n, τ

r
n)

=

∫
xcn pXcn(xcn) p(r̂n|xcn, i = 3) p(x̃n|xcn, i = 3)

= L(0; x̃n, 2vs)

∫
xcnN (xcn; 0, vx)N (xcn; r̂n, τ

r
n)

= L(0; x̃n, 2vs)N (0; r̂n, vx + τ rn)
vxr̂n
vx + τ rn

Similarly,

Ẽ[x2
cn|r̂n, x̃n, i = 3] = p(r̂n, x̃n|i = 3)

∫
(xcn)2 pXcn|R̂n,x̃n(xcn|r̂n, x̃n, i = 3)

= L(0; x̃n, 2vs) N (0; r̂n, vx + τ rn)
( vxτ

r
n

vx + τ rn
+
( vxr̂n
vx + τ rn

)2
)
.

Let Z l
n be the normalization constant for n-th index. It is evaluated as

Z l
n =

∫
pXcn,Xpn|Y,X̃n(xcn, xpn|y, x̃n, ; r̂n, τ rn)

= λ1L(0; x̃n, 2vs)N (0; r̂n, τ
r
n) + λ3 φ̃ L(0; x̃n, 2vs) + λ2N (0; r̂n, τ

r
n)

∫
L(x; x̃n, 2vs)N (x; 0, vx)dx

+ λ4 φ̃

∫
N (x;

ρr̂nvx
vx + τ rn

,
vx(τ

r
n + v)

vx + τ rn
)L(x; x̃n, 2vs)dx

where the integrals can be evaluated in closed-form using results from Appendix C. We avoided

expressing here the closed-form expression to avoid extra notations without losing the essence

of the task.
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Event 4

When the signal is from event 4, we have xpn 6= 0 and xcn = ρxpn + u. The algorithm has

access to R̂n = r̂n, and X̃n = x̃n which are defined as

R̂n = ρXpn + Un + Vn, X̃n = Xpn +Wn

where Vn ∼ N (0, τ rn),Un ∼ N (0, v),Wn ∼ L(0, 2vs) and Xn ∼ pXn(xn) are independent ran-

dom variables. Note that r̂n and x̃n are dependent through Xp. Using linearity of expectation,

EXcn|Y,X̃n [xcn|y, x̃n; r̂n, τ
r
n] = ρEXpn|Y,X̃n [xpn|y, x̃n; r̂n, τ

r
n] + EUn|Y,X̃n [un|y, x̃n; r̂n, τ

r
n]

We compute the first term as

Ẽ[xpn|r̂n, x̃n, i = 4] = p(r̂n, x̃n|i = 4)

∫
xpnpXp|Y,X̃n(xpn|y, x̃n, i = 4; r̂n, τ

r
n) dxpn

=

∫
xpn
ρ
N (xpn; 0, vx)N (xpn;

r̂n
ρ
,
τ rn + v

ρ2
)L(xpn; x̃n, 2vs)dxpn

= φ̃

∫
xpnN (xpn;

ρr̂nvx
vx + τ rn

,
vx(τ

r
n + v)

vx + τ rn
)L(xpn; x̃n, 2vs) dxpn

= φ̃

(
C1nI1

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
mg
n −

vgn
4vln
− I1(ml

n;mg
n −

vgn
4vln

, vgn)
))

, J1n,

where φ̃ = N (0; r̂n, vx + τ rn),mg
n = ρr̂nvx

vx+τrn
, vgn = vx(τrn+v)

vx+τrn
,ml

n = x̃n, and vln = vs. Note that,

C1n and C2n are the function of ml
n, v

l
n,m

g
n, and vgn. Similarly, we can show the second-order
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moment to be

Ẽ[(xpn)2|r̂n, x̃n, i = 4] = p(r̂n, x̃n|i = 4)

∫
(xpn)2pXpn|Y,X̃n(xpn|y, x̃n, i = 4; r̂n, τ

r
n)

= N (0; r̂n, vx + τ rn)(
C1nI2

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
vgn + (mg

n −
vgn
4vln

)2 − I2(ml
n;mg

n −
vgn
4vln

, vgn)
))

, J2n.

(8.12)

Second,

Ẽ[un|y, x̃n, i = 4; r̂n, τ
r
n]

= p(r̂n, x̃n|i = 4)

∫
un pUn|Y,X̃n(un|y, x̃n, i = 4; r̂n, τ

r
n)dun

=

∫
un pUn(un)p(r̂n, x̃n|un, i = 4)dun

=

∫
un pUn(un)

∫
pXn(xn) p(r̂n, x̃n|un, x, i = 4)dxndun

=

∫
un pUn(un)

ρ

∫
N (xpn; 0, vx)N (xpn;

r̂n − un
ρ

,
τ rn
ρ2

)L(xpn; x̃pn, 2vs)dxndun

=

∫ un pUn(un)N (0; r̂n−un
ρ

, vx + τrn
ρ2

)

ρ

∫
N (xpn;mpn, vpn)L(x; x̃n, 2vs)dxn dun

=

∫
un pUn(un)N (un; r̂n, ρ

2vx + τ rn) dun

∫
N (xpn;mpn, vpn)L(xpn; x̃n, 2vs) dxpn

where mpn = ρvx(r̂n−un)
ρ2vx+τrn

, and vpn = vxτrn
ρ2vx+τrn

. Using result of Appendix A,

=

∫
dun un N (un; 0, v)N (un; r̂n, ρ

2vx + τ rn)

Cp1nΦ(
x̃n − (mpn + vpn

2vl
)

√
vpn

) + Cp2n

(
1− Φ(x̃n − (mpn −

vpn
2vl

))
)

= N (0; r̂n, vx + τ rn)

∫
dun un N (un;

r̂nv

vx + τ rn
,
(ρ2vx + τ rn)v

vx + τ rn
)

Cp1nΦ(
x̃n − (mpn + vpn

2vl
)

√
vpn

) + Cp2n

(
1− Φ(x̃n − (mpn −

vpn
2vln

))
)
,
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where Cp1n = 1
4vs

exp

(
− 1

2vs

(
x̃n −mpn − vpn

4vs

))
. Note that mpn and Cp1n are the functions

of variable un. After some algebraic steps, we rearrange the first term as

∫
dun un N (un;m′n, v1n)Cp1nΦ(

x̃n − (mpn + vpn
2vl

)
√
vpn

)

= c′1

∫
dun un N (un;m1n, v1n)Φ(

un −m2n√
v2n

)

= c′1nPI1(m2n, v2n,m1n, v1n),

where m1n = m′n − ucnv1n, m
′
n = r̂nv

vx+τrn
,

m2n = r̂n − (ρ+ τrn
ρvx

)(x̃n − vpn
2vln

),

v1n = (ρ2vx+τrn)v
vx+τrn

, v2n = (ρ+ τrn
ρvx

)2vpn, ucn = (2vs(ρ+ τrn
ρvx

))−1, and

c′1n = 1
4vs

exp
(
− ucn((x̃− vpn

4vs
)(ρ + τrn

ρvx
)− r̂n)

)
exp

(
−m′nucn + v1nu2cn

2

)
. The integral can

be evaluated in closed-form using (??).

With similar algebraic steps, the second term is rearranged as

∫
dunun N (un; r̂n, ρ

2vx + τ rn)C2n

(
1− Φ(

ml
n − (mg

n −
vg

2vln
)

√
vg

)
)

= c′2n

∫
dun un N (un;m3n, v3n)

(
1− Φ(

un −m4n√
v4n

)
)

= c′2n(m3n − PI1(m4n, v4n,m3n, v3n)),

where m3n = m′n + ucnv1n, m4n = r̂n − (ρ+ τrn
ρvx

)(x̃n + vpn
2vln

),

v3n = (ρ2vx+τrn)v
vx+τrn

, v4n = (ρ+ τrn
ρvx

)2vpn,

c′2n = 1
4vs

exp
(
− ucn

(
(−x̃n − vpn

4vs
)(ρ+ τrn

ρvx
) + r̂n

))
exp

(
m′nucn + v1nu2cn

2

)
.

Thus,

Ẽ[un|r̂n, x̃n, i = 4] = φ̃
(
c′1n PI1(m2n, v2n,m1n, v1n) + c′2n

(
m3n − PI1(m3n, v3n,m4n, v4n)

))
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Similarly, we evaluate EUn|Y,X̃n [u2
n|y, x̃n; r̂n, τ

r
n] as

Ẽ[u2
n|r̂n, x̃n] = p(r̂n, x̃n)

∫
u2
npUn|Y,X̃n(un|y, x̃n; r̂n, τ

n
r )

= N (0; r̂n, vx + τ rn)
(
c′1nPI2(m2n, v2n,m1n, v1n) + c′2n

(
m2

3n + v3n − PI2(m4n, v4n,m3n, v3n)
))

Combining all the results, we get

Ẽ[xcn|r̂n, , x̃n] = N (0; r̂n, vx + τ rn)

[
ρ

(
C1nI1

(
ml
n;mg

n +
vgn
2vln

, vgn

)
+ C2n

(
mg
n −

vgn
4vln
− I1(ml

n;mg
n −

vgn
4vln

, vgn)
))

+
(
c′1n PI1(m2n, v2n,m1n, v1n)

+ c′2n
(
m3n − PI1(m4n, v4n,m3n, v3n)

))]

Next, we evaluate Ẽ[(xcn)2|r̂n, x̃n, i = 4] as

Ẽ[(xcn)2|r̂n, x̃n, i = 4] = Ẽ[(ρxpn + un)2|r̂n, x̃n, i = 4]

= ρ2Ẽ[(xpn)2|r̂n, x̃n, i = 4] + Ẽ[u2
n|r̂n, x̃n, i = 4] + 2ρẼ[xpn un|r̂n, x̃n, i = 4]

Since we already evaluated ρ2E[(xpn)2|r̂n, x̃n, i = 4], and E[u2
n|r̂n, x̃n, i = 4], we evaluate

Ẽ[xpn un|r̂n, x̃n, i = 4]

= p(r̂n, x̃n|i = 4)

∫
xpn un pXp,Un|Y,X̃n(xpn, un|r̂n, x̃n, i = 4)

=

∫
xpnunpXp,U(xpn, un|i = 4)pXp,Un|Y,X̃n(r̂n, x̃n|xpn, un, i = 4)

=

∫
xpnN (xpn; 0, vx)L(xpn; x̃n, 2vs)

∫
un N (un; 0, v)N (un; r̂n − ρxpn, τ rn)dun dxpn

=
1

ρ

∫
xpnN (xpn; 0, vx)L(xpn; x̃n, 2vs)N (xpn;

r̂n
ρ
,
τ rn + v

ρ2
)
((r̂n − ρxpn)v

τ rn + v

)
dxpn

Using the notations of (22) and (23), the expectation takes the form Ẽ[xpnun|r̂n, x̃n] =
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J1n
r̂nv
τrn+v
− J2n

ρv
τrn+v

.

Finally, we obtain (4.13) by combining all these results as

E[xcn|r̂n, x̃n] =
1

Z l
n

(λ3Ẽ[xcn|r̂n, x̃n, 3] + λ4Ẽ[xcn|r̂n, x̃n, 4]),

E[x2
cn|r̂n, x̃n] =

1

Z l
n

(λ3Ẽ[x2
cn|r̂n, x̃n, 3] + λ4Ẽ[x2

cn|r̂n, x̃n, 4]).

(8.13)
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F Results for 1bitdynG

Result 8.1. Let Zg
n,1 = N (0; x̃n, vs)N (0; r̂n, τ

r
n),

Zg
n,2 = N (0; r̂n, τ

r
n)N (0; x̃n, vs + vx),

Zg
n,3 = N (0; x̃n, vs)N (0; r̂n, vx + τ rn),

and Zg
n,4 = N (0; x̃n, vx + vs)N (r̂n; ρx̃nvx

vx+vs
, vx(vs+v)

vx+vs
+ τ rn).

The posterior first-order and second-order moments of the signal given side-information,

x̃, are

EXcn,Xpn|Y,X̃n [xcn|y, x̃n; r̂n, τ
r
n] =

1

Zg
n

{
λ3Z

g
n,3

r̂nvx
vx + τ rn

+ λ4Z
g
n,4

r̂nvx(vs + v) + ρx̃vxτ
r
n

(vs + τ rn + v)vx + vsτ rn

}

EXcn,Xpn|Y,X̃n [x2
cn|y, x̃n; r̂n, τ

r
n] =

1

Zg
n

{
λ3Z

g
n,3

(
(
r̂nvx
vx + τ rn

)2 +
vxτ

r
n

vx + τ rn

)
+ λ4Z

g
n,4

(
ρ2
(ρvxvsr̂n + x̃vx(τ

r
n + v)

(vs + τ rn + v)vx + vsτ rn

)2

+
vsvx(τ

r
n + v)

(vs + τ rn + v)vx + vsτ rn

)
+
(v(r̂n(vx + vs)− ρvxx̃n

)
vx(vs + τ rn + v) + vsτ rn

)2

+
v(ρ2vxvs + τ rnvs + τ rnvx)

vx(vs + τ rn + v) + vsτ rn

+ 2ρ
(r̂nm

′
n − ρ((mg′

n )2 + v
g′)
n )

τ rn + v

)}
,

(8.14)

whereZg
n = λ1Z

g
n,1+λ2Z

g
n,2+λ3Z

g
n,3+λ4Z

g
n,4,m

g′
n = ρr̂nvxvs+x̃nvs(v+τrn)

vx(vs+v+τrn)+τrnvs
, and vg′n = vsvx(v+τrn)

vx(vs+v+τrn)+τrnvs
.

Since the derivation of the first-order and the second-order moment is similar to that of the pro-

posed algorithm, we omit the derivation. Next, we estimate the side-information parameter

vs using the expectation-maximization (EM) algorithm. Following the steps as in the case of

proposed algorithm, we can show that

vk+1
s =

1

2N

N∑
n=1

EXcn,Xpn|Y,X̃n;vks
(xpn − x̃n)2 (8.15)
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The expectation can be evaluated in closed-form as

EXcn,Xpn|Y,X̃n;vks
(xpn − x̃n)2 =

EXcn,Xpn|Y,X̃n;vks
(xpn)2 − 2x̃pnEXcn,Xpn|Y,X̃n;vks

xpn + x̃2
n

(8.16)

While evaluating the expectation, we require to evaluate integral for all four cases: (1) xp = 0,

xc = 0, (2) xp 6= 0, xc = 0, (3) xp = 0, xc 6= 0, and (4) xp 6= 0, xc 6= 0. Using notations from

Result 1, we can express the expectation as

EXcn,Xpn|Y,X̃n;vks
(xpn − x̃n)2 =

1

Zg
n

(
λ1 Z

g
n,1x̃

2
n + λ3 Z

g
n,3x̃

2
n + λ2 Z

g
n,2

(( ( r̂nv
k
svx + x̃vxτ

r
n

vxvks + vks τ
r
n + τ rnvx

)2

+
vxv

k
s τ

r
n

vxvks + vks τ
r
n + τ rnvx

)
− 2 x̃n

r̂nv
k
svx + x̃vxτ

r
n

vxvks + vks τ
r
n + τ rnvx

+ x̃2
n

)
+ λ4 Z

g
n,4

((( r̂nv
k
svx + x̃vxτ

r
n

vxvks + vks τ
r
n + τ rnvx

)2

+
vxv

k
s τ

r
n

vxvks + vks τ
r
n + τ rnvx

)
− 2x̃n

r̂nv
k
svx + x̃vxτ

r
n

vxvks + vks τ
r
n + τ rnvx

+ x̃2
n

))
(8.17)

Using (8.17) in (8.15), we can evaluate the estimate of vs analytically.
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G Proof of Theorem 6.1

Proof. Let x̄ = arg min
x∈S

‖x∗ − x‖2. At a high level, the main steps of the proof are as follows:

A . We first prove that, for any β > 0, the following holds with probability at least 1 −

4 exp (−2β2),

‖x̂− x∗‖2
2 ≤ ‖x̄− x

∗‖2
2 + δ + 4

√
2π

M
(W(S) + β) , (8.18)

where W(S) is the Gaussian mean width (See [78, Section 1.3] for the definition) of the

range S.

B . Next, we show that there exists a constant C ′ > 0 such that W(S) satisfies the following for

any r > 0:

W(S) ≤ 8r
√
k + C ′

√
kd log(LNwmax). (8.19)

C . Finally, we combine the above two steps to bound ‖x̂− x∗‖2
2 using an appropriately choice

of β.

Step A: The proof of Step A is based on the concentration of the random function f(x) ,

1
M

∑M
i=1 yiA

T
i x around its expectation, which is given in [78, Proposition 4.2]. By assumption,

x̂ = G(ĝ) minimizes the cost function in (6.11) over S to within additive δ of the optimum.
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Thus, we get that

−δ≤ min
x∈S

(
‖x‖2

2−
√

2π

M
yTAx

)
−

(
‖x̂‖2

2 −
√

2π

M
yTAx̂

)

≤

(
‖x̄‖2

2 −
√

2π

M
yTAx̄

)
−

(
‖x̂‖2

2 −
√

2π

M
yTAx̂

)

≤ ‖x̄‖2
2 − ‖x̂‖

2
2 +
√

2πf(x̂− x̄) (8.20)

≤ ‖x̄‖2
2 − ‖x̂‖

2
2 +
√

2πE {f(x̂− x̄)}

+ 4

√
2π

M
(W(S) + β) (8.21)

= ‖x̄‖2
2 − ‖x̂‖

2
2 + 2 (x̂− x̄)T x∗ + 4

√
2π

M
(W(S) + β) (8.22)

= ‖x̄− x∗‖2
2 − ‖x̂− x

∗‖2
2 + 4

√
2π

M
(W(S) + β) ,

with probability at least 1 − 4 exp (−2β2). Also, we use [78, Proposition 4.2] with parameter

t = 4β√
M

, and [78, Lemma 4.1] to get (8.21) and (8.22), respectively. On rearranging the terms,

we get the desired result.

Step B: The input to the generator g follows a uniform distribution and therefore, we get that

‖g‖2 ≤ r. This in turn implies that S ⊆ G(Bkr ),where Bkr =
{
g ∈ Rk : ‖g‖2 ≤ r

}
denote

a ball of radius r. Next, we construct a t
(Lnwmax)d

−cover T of Bkr such that its cardinality is

upper bounded by
(

4r(Lnwmax)d

t

)k
[90, Section 4.2.1]. Further, we use [11, Lemma 8.5.] to

assert that G is (LNwmax)d−Lipschitz. Hence, G (T ) is a t−cover of G(Bkr ), and thus, G (T )

is a t−cover of S. Thus,

|G (T )‖2 ≤ |T ‖2 ≤
(

4r(LNwmax)d

t

)k
(8.23)

Therefore, for anyx ∈ S, there exists a point T (x) = arg min
t∈G(T )

‖t− x‖2 such that ‖x− T (x)‖2 ≤

t.

Having constructed a finite coverG (T ), we next bound the Gaussian mean width of S. For
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any vector b ∼ N (0, I),

W(S) , E
{

sup
x1,x2∈S

〈b, (x1 − x2)〉
}

(8.24)

≤ E
{

sup
x1,x2∈S

〈b, (x1 − T (x1)+T (x2)− x2)〉
}

+ E
{

sup
x1,x2∈S

〈b, (T (x1)− T (x2))〉
}
. (8.25)

We further simplify the first term of the inequality as follows:

E
{

sup
x1,x2∈S

〈b, (x1 − T (x1)+T (x2)− x2)〉
}

≤ E {‖b‖2} sup
x1,x2∈S

‖x1 − T (x1) + T (x2)− x2‖2 (8.26)

≤ 2
√
s sup
x∈S
‖x− T (x)‖2 ≤ 2t

√
s. (8.27)

Here, (8.26) follows from Cauchy-Schwarz inequality, and (8.27) uses the fact that E {‖b‖2} ≤√
E
{
‖b‖2

2

}
=
√
k. Similarly, simplifying the second term of (8.25),

E
{

sup
x1,x2∈S

〈b, (T (x1)− T (x2))〉
}

≤ E

 sup
x1,x2∈G(Bkr)

〈b, (x1 − x2)〉

 (8.28)

≤ W(G (T )) (8.29)

= C ′

√
2k log

(
4r(Lnwmax)d

t

)
. (8.30)

Here, (8.29) follows because T (x1), T (x2) ∈ G
(
Bkr
)
, and thus, supremum in (8.29) is over a

larger set. Also, (8.30) follows from (8.23) and [78, Section 2.1]. Finally, using (8.25), (8.27),
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(8.30), we get the following:

W(S) ≤ 2t
√
k + C ′

√
2k log

(
4r(Lnwmax)d

t

)
. (8.31)

Finally, we choose t = 4r to complete Step B.

Step C: Combining Steps A and B, we get that with probability at least 1− 4 exp(−2β2)

‖x̂− x∗‖2
2 ≤ ‖x̄− x∗‖2

2 + δ + 4

√
2π

m

(
8r
√
r + C ′

√
kd logLNwmax + β

)
. (8.32)

As given in the statement of the theorem, let the following lower bound on M holds for C1 >

64π,

M ≥ C1ε
−2k

(
8r2 + C ′d logLNwmax

)
(8.33)

≥ C1

2ε2

(
8r
√
k + C ′

√
kd logLNwmax

)2

(8.34)

If we choose β = C2ε
√
M with C2 = 1

4
√

2π
−
√

2
C1
> 0,

‖x̂− x∗‖2
2 ≤ ‖x̄− x

∗‖2
2 + ε+ δ. (8.35)

with probability at least 1− 4 exp (−cε2M). Finally, we also have

‖x̄− x∗‖2
2 = min

g∈Rk
‖g‖∞≤r

‖G(g)− x∗‖2
2 ≤ min

g∈Rk
‖g‖2≤r

‖G(g)− x∗‖2
2 .

Thus, the proof is complete.
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