3,209 research outputs found

    Robust decentralised variable structure control for rigid robotic manipulators

    Get PDF
    In this thesis, the problem of robust variable structure control for non-linear rigid robotic manipulators is investigated. Robustness and convergence results are presented for variable structure control systems of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The major outcomes of the work described in this thesis are summarised as given below. The basic variable structure theory is surveyed, and some basic ideas such as sliding mode designs, robustness analysis and control1er design methods for linear or non-linear systems are reviewed. Three recent variable structure control schemes for robotic manipulators are discussed and compared to highlight the research developments in this area. A decentralised variable structure model reference adaptive control scheme is proposed for a class of large scale systems. It is shown that, unlike previous decentralised variable structure control schemes, the local variable structure controller design in this scheme requires only three bounds of the subsystem matrices and dynamical interactions instead of the upper and the lower bounds of all unknown subsystem parameters. Using this scheme, not only asymptotic convergence of the output tracking error can be guaranteed, but also the controller design is greatly simplified. In order to eliminate chattering caused by the variable structure technique, local boundary layer controllers are presented. Furthermore, the scheme is applied to the tracking control of robotic manipulators with the result that strong robustness and asymptotic convergence of the output tracking error are obtained

    Nonlinear Sliding Mode Control for Interconnected Systems with Application to Automated Highway Systems

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems. Both matched uncertainties in the isolated subsystems and mismatched uncertainties associated with the interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed in a decentralised manner by only employing local information. Conditions are determined which enable information on the interconnections to be employed within the decentralised controller design to reduce conservatism. The developed results are applied to an automated highway system. Simulation results pertaining to a high-speed following system are presented to demonstrate the effectiveness of the approach

    Some issues in the sliding mode control of rigid robotic manipulators

    Get PDF
    This thesis investigates the problem of robust adaptive sliding mode control for nonlinear rigid robotic manipulators. A number of robustness and convergence results are presented for sliding mode control of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The highlights of the research work are summarized below : • A robust adaptive tracking control for rigid robotic manipulators is proposed. In this scheme, the parameters of the upper bound of system uncertainty are adaptively estimated. The controller estimates are then used as controller parameters to eliminate the effects of system uncertainty and guarantee asymptotic error convergence. • A decentralised adaptive sliding mode control scheme for rigid robotic manipulators is proposed. The known dynamics of the partially known robotic manipulator are separated out to perform linearization. A local feedback controller is then designed to stabilize each subsystem and an adaptive sliding mode compensator is used to handle the effects of uncertain system dynamics. The developed scheme guarantees that the effects of system dynamics are eliminated and that asymptotic error convergence is obtained with respect to the overall robotic control system. • A model reference adaptive control using the terminal sliding mode technique is proposed. A multivariable terminal sliding mode is defined for a model following control system for rigid robotic manipulators. A terminal sliding mode controller is then designed based on only a few uncertain system matrix bounds. The result is a simple and robust controller design that guarantees convergence of the output tracking error in a finite time on the terminal sliding mode

    A Survey of Decentralized Adaptive Control

    Get PDF

    Output feedback sliding mode FTC for a class of nonlinear inter-connected systems

    Get PDF
    This paper is concerned with the challenge of developing a fault-tolerant control (FTC) scheme for an inter-connected decentralised system in which the individual subsystems are linear but the inter-connections are non-linear functions of the subsystem states and controls. It is assumed that the subsystems are disturbed by matched faults. The purpose of the decentralised control is to de-couple the subsystems with global and local control objectives as well as de-coupling the effects of uncertainties and faults. The paper describes the LMI-based sliding mode control (SMC) design, including Lemmas and proofs were appropriate and the main properties of the design approach, control objectives, stability, fault-tolerance and robustness are outlined. Results are given to illustrate the properties of the control design, meeting the desired objectives of stability, local and global control performance, subsystem de-coupling and fault-tolerance for a 3 electrical machine interconnected system with non-linear inter-connections that are functions of machine rotor angle deviation

    Stabilisation of Time Delay Systems with Nonlinear Disturbances Using Sliding Mode Control

    Get PDF
    This paper focuses on a class of control systems with delayed states and nonlinear disturbances using sliding mode techniques. Both matched and mismatched uncertainties are considered which are assumed to be bounded by known nonlinear functions. The bounds are used in the control design and analysis to reduce conservatism. A sliding function is designed and a set of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the system to the sliding surface in finite time and maintain a sliding motion thereafter. Effectiveness of the proposed method is demonstrated via a case study on a continuous stirred tank reactor system
    • …
    corecore