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Abstract 

In this thesis, the problem of robust variable structure control for non-linear rigid 

robotic manipulators is investigated. Robustness and convergence results are 

presented for variable structure control systems of robotic manipulators with bounded 

unknown disturbances, nonlinearities, dynamical couplings and parameter 

uncertainties. The major outcomes of the work described in this thesis are 

summarised as given below. 

The basic variable structure theory is surveyed, and some basic ideas such as sliding 

mode designs, robustness analysis and control1er design methods for linear or non-Jinear 

systems are reviewed. Three recent variable structure control schemes for robotic 

manipulators are discussed and compared to highlight the research developments in this 

area. 

A decentralised variable structure model reference adaptive control scheme is proposed 

for a class of large scale systems. It is shown that, unlike previous decentralised variable 

structure control schemes, the local variable structure controller design in this scheme 

requires only three bounds of the subsystem matrices and dynamical interactions instead 

of the upper and the lower bounds of all unknown subsystem parameters. Using this 

scheme, not only asymptotic convergence of the output tracking error can be guaranteed, 

but also the controller design is greatly simplified. In order to eliminate chattering caused 

by the variable structure technique, local boundary layer controiJers are presented. 

Furthermore, the scheme is applied to the tracking control of robotic manipulators with 

the result that strong robustness and asymptotic convergence of the output tracking error 

are obtained. 

iii 
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Chapter 1 

Introduction· 

1.1 Background 

First computer-controlled robotic manipulator was designed thirty-four years ago, and 

still, it is a very active research field in both theory and applications. A number of 

books and survey papers have been published (Craig, 1986, 1988; Warwick and 

Pugh, 1988; Rehg, 1985; Ortega and Spong, 1988; Abdallah, et al., 1991). This thesis 

··'contributes to a further study on the control of robotic manipulators. 

The control of robotic manipulators, in general, is concerned with the efficient 

managements of robotic manipulator systems. Due to the fact that robotic 

manipulators have high nonlinearity, large system uncertainties, strong dynamical 

couplings and external disturbances, it is generally difficult to design a simple 

controller which can guarantee high quality performance for robotic manipulators. 

In the early days, low-level control of industrial robots was accomplished through the 

simple servo control of individual joints (Horn and Railbert, 1978; Van Brussel and 

Vastrnan, 1984; Silva, 1984, 1989). This approarh has several disadvantages. 

Primarily, since servo parameters are set at constant values during each cycle of robot 

operation, these control parameters cannot adapt to compensate for robot 
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nonlinearities and parameter variations. Furthennore, an effective compensation for 

dynamical coupling among the joints of a robotic manipulator is Impossible through 

the simple servo control. 

To deal with the above difficulties, some linearization control techniques were 

developed. For example, In' the work of Desa and Roth (1985), Whitehead et al. 

(1985) and Luh (1983), a Taylor series expansion is used to linearize the nonlinear 

dynamic equation for a general robotic manipulator. A feedback controller is then 

designed to compensate the nonlinearities and dynamical couplings so that good 

system perfonnance can be achieved. Later, however, the physics and the special 

structure of the robotic manipulator equation, coupled with the fact that the 

generalised torque input vector provides an independent input for each degree of 

freedom, led to the global feedback linearization for robotic manipulators (Kreutz, 

1989). However, it came to be realised that these linearization control schemes are 

based on some very restrictive assumptions. For example, it is assumed that 

symmetric positive-defmite inertia matrix and the vector containing coriolis, 

centrifugal forces and gravity torques in the robotic dynamical equation are exactly 

··' known. Unfortunately, these assumptions are rarely satisfied in real robotic systems, 

and the violation of the ideal conditions can lead to failure of the linearization control 

schemes. 

Later, several modified linearization control schemes were proposed by a number of 

researchers (Spong and Vidyasagar, 1987; Abdallah and Jordan, 1990; Ar;dcrson et 

al., 1989; Tarn eta!., 1984; Shoureshi, 1990; Craig, 1988). In these control schemes, 

the known system dynamics is used to build up a nominal system model, and a 

nominal feedback controller is then designed. In order to deal with system 

uncertainties and external disturbances, a feedback compensator is designed so that 

the poles of the closed loop system are placed sufficiently far in the left-half-plane. 

The advantages of these modified control schemes are that large system uncertainties 

can be considered and the wealth of linear feedback techniques can be used in the 



... 

3 

linear outer loop. However, the output tracking error cannot converge to zero and the 

high-gain control law may be the outcome in order to achieve robustness by the use of 

these control schemes. 

With the rapid developments of adaptive control theory, many adaptive control 

approaches were developed 'for robotic manipulators where some useful structuJral 

properties of robotic manipulators are exploited to devise a suitable adaptive 

controller which does not necessarily linearize the plants. In Craig et al.(l987), the 

dynamic equation of a robotic manipulator is expressed in a linear function of 

unknown parameters, and controller is then designed by the use of parameler 

estimates so that the output tracking error can asymptotically converge to zero with all 

signals remaining bounded. The main drawbacks of this scheme are that the 

estimates of inertia matrix need to remain uniformly positive-defmite, and the 

measurement of the acceleration is needed in order to realise the adaptive update law. 

In Spong and Ortega (1988), the requirement that the estimates of inertia matrix 

remains uniformly positive definite in Craig (1986) is removed. The estimates of 

inertia matrix and other unknown parameters, which have the fixed values, are used in 

the feedback control. An additive signal that compensates for the deviation of the 

estimates of inertia matrix and other parameters is then adoptively adjusted so that the 

output tracking error can asymptotically converge to zero with all signals remaining 

bounded. During this same period, many other adaptive control schemes were 

developed. For example, in Amestegui eta!. (1987), the requirement on boundedness 

of the estimated inertia matrix is removed but a different parameter update law is 

used. In Middleton and Goodwin (1988), the measurement of the joint acceleration is 

not required but the boundedness of the inverse of the estimates inertia matrix is still 

needed. 

However, some practical issues for the use of the above adaptive control schemes 

have been noted by many researchers. First, the transient error performance can not 
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be specified. Second, since asymptotic stability has not been proved to be unifonn, 

small changes in the dynamics or small unmodeled bounded disturbances may result 

in loss of stability and cause unacceptably large deviations from the desired response ( 

Rohrs et al., 1985; Ortega and Spong, 1988). 

A remarkable development' in robotic control field is the use of variable structure 

control technique. The variable structure control technique was fust ured to solve 

control problems in Soviet Union in the 1960s (Emelyanov, 1962, 1966), and has 

been largely investigated by many researchers (Utkin, 1971, 1977, 1978, 1983; ltks, 

1976; Young, 1978, 1988; Slotine and Sastry, 1983) in both theoretical and applied 

aspects. 

A variable structure control system is characterised by a control structure which is 

switched as the system states cross certain discontinuous surfaces in the state space. 

The intersection of these surfaces fonns a sliding mode which is intended to constrain 

the dynamics of the system trajectories. When the sliding occurs, the trajectory is 

kept on the sliding mode resulting in the desired system dynamics that is insensitive to 

parameter variations, nonlinearities and disturbances. It is due to the above 

advantages that the theory of variable structure systems has been widely used in the 

control of robotic manipulators. 

The frrst application of the variable structure control theory to robot control seems to 

be the work of Young (1978), where the variable structure controller eliminates the 

nonlinear coupling of joints by forcing the system into the sliding mode after which 

the output tracking error asymptotically converges to zero. Later modifications of 

the Young controller were presented by Morgan and Ozguner (1985) and Abbass and 

Ozguner (1985), in which decentralised variable structure control schemes are 

developed and the controller designs are simplified. Unfortunately, for most of the 

above variable structure control schemes, chattering occur in the control input, which 

may excite undesired high-frequency dynamics. To solve this problem, a modified 



••• 

' 5 

variable structure controller using boundary layer technique was developed by Slotine 

and Sastry (1983). Using the boundary layer technique, the control input signal can be 

smoothed inside a possibly boundary layer. This wiD achieve optimal trade-off 

between control bandwidth and tracking precision, and therefore eliminate chattering 

and sensitivity of the controller to unmodeled high frequency dynamics. 

More recently, the worl< of Yeung and Chen (1988) presented a new approach which 

takes advantage of an imponant propeny of the inertia matrix, namely its symmetric 

positive-definiteness, and allows a development of the control law without having to 

take the inverse of the inertia matrix in the variable structure controller design. 

In the above variable structure control schemes, the upper and the lower bOunds of 

unknown system parameters are required in controller designs. However, in some 

situations, it is difficult to know the upper and lower bounds of all unknown system 

parameters because robotic manipulators have high nonlinearity and large system 

uncenainties. On the other hand, a physical robotic manipulator is a partially known 

system, and the known knowledge and some useful structural properties are not fully 

used for the variable structure controller designs in these schemes . 

The recent work of Leung et a!. (1991) has made a great progress for the robust 

variable structure control of robotic manipulators. In this control scheme, the 

controlled robotic manipulator is assumed to be completely unknown, and the 

controller is designed based only on several uncenain system matrix bounds. 

Theoretically, robustness and convergence can be obtained. However, still there are 

some problems needed to be funher improved. For example, when the boundary layer 

controller is cartied out and the sampling interval is nonzero, the controller parameters 

will tend to infmity due to the fact that the switching plane variables and output 

tracking error cnn not converge to zero. 
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This thesis will further investigate variable structure control systems for robotic 

manipulators and presents a new robust decentralised variable structure control 

scheme. 

1.2 Contributions of this thesis 

In this thesis we focus our attention on the decentralised variable structure model 

reference adaptive control and control following terminal sliding mode. 

The main contents of this thesis are organised as follow. 

Chapter 2 gives a brief survey for the basic variable structure theory. Some basic 

ideas such as sliding mode designs, robustness analysis and controller design methods 

for linear or nonlinear systems are reviewed. 

Chapter 3 discusses and compares three recent variable structure control schemes for 

robotic manipulators to highlight the research developments in this area. 

Chapter 4 follows the line of chapter 4, a decentralised variable structure model 

···' reference adaptive control scheme is proposed for a class of large scale systems. It is 

shown that, unlike previous decentralised variable structure control schemes in 

Abbass and Ozguner (1985), Ozguner et al. (1987), Xu et ill. (1990) and Morgan and 

Ozguner (1985), a set of adaptive mechanisms are introduced to estimate the 

uncertainty bounds. The local variable structure controller can then be designed 

without prior information of the bounds of the subsystem matrices and dynamical 

interactions. Therefore by the use of this adaptive sliding mode control scheme, not 

only asymptotic convergence of the output tracking error can be guaranteed, but also 

the controller design is greatly simplified. In order to eliminate chuttering caused by 

the variable structure technique, local boundary layer controllers are presented. 

Furthermore, the scheme is applied to the tracking control of robotic manipulators 
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with the result that strong robustness and asymptotic convergence of the output 

tracking error are obtained 

Chapter 5 proposes a decentralised terminal sliding mode control for rigid robotic 

manipulators. It is shown that, by the use of the lerminal sliding mode technique, the 

output tracking error can converge to zero in a fmite time. A theoretical analysis on 

the finite error convergence and robusmess with respect to uncertain dynamics is 

carried out tin detail.. 

Chapter 6 gives concli!Slons and further research. 

-
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Chapter2 

A Survey of The Variable Structure 
' · Control Theory and Its Applications to 

Robotic Manipulators 

··' 

2.1 Introduction 

We have mentioned in chapter one and two the basic ideas of the variable structure 

control theory and the recent developments in the variable structure control for robotic 

manipulators. As we know from the previous chapter, variable structure control can be 

considered to be an extension of conventional feedback control in the sense that the 

structure of a state feedback regulator is allowed to change a1 its states cross 

discontinuity surfaces, which results in discontinuous feedback control input on one or 

more manifolds in the state space. From the point of the conventional feedback 

control theory, a variable structure control system can be treated as a combination of 

subsystems. Each subsystem has a fixed structure and operates in a specified region of 

the state space. The combination of these subsystems according to some prescribed 

i· 
' ' ( 
' ' f'. 
I 
I 
i." 
i' 

I 
' 
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rules results in a new system which is different from the individual subsystems and 

has the desired system response. 

The main feature of a variable structure control system is the sliding motion. For the 

design of a variable structure controller, the flfSt thing is to define a set of switching 

plane variables which are a function of the system states. The intersection of these 

switching planes forms a sliding mode. The purpose of the variable structure 

controller is to drive the system states into the sliding mode on which the sliding 

motion occurs and the motion of the system is thus formally equivalent to a system of 

low order, called as equivalent system. Actually, the sliding motion on the sliding 

mode is the convergence motion of the system states from arbitrary initial values to the 

origin. The convergence rate depends on the design of sliding mode parameters. It is 

due to this feature that the variable structure control is also called sliding mode 

control. 

-··' 

Another feature of a variable structure system is that the transient response can be 

divided into two parts. First, the motion in which the variable structure controller 

drives the switching plane variables to reach the sliding mode. Second, the sliding 

motion in which the system states constrained on the sliding mode asymptotically 

converge to the origin. Usually, the sliding motion is determined only by the sliding 

mode parameters. However, the convergence of the switching plane variables are 

affected by the sliding mode parameters because the sliding mode parameters are 

involved in the controller gain matrices. 

In this chapter, we will flfSt review the basic variable structure control theory that has 
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been useful in establishing robust variable structure control algorithms. In view of the 

focus of the thesis, we will then restrict our discussion to recent research results on the 

robust variable structure control for robotic manipulators with uncertain dynamics. 

In section 2.2 of this chapter, !he basic variable structure control theory Is briefly 

reviewed. The basic ideas and defmitions such as system model, the sliding mode, the 

condition for existence of sliding mode, robustness property and an overview of four 

variable structure controllers are discussed. Tn section 2.3, we deviate to address more 

complicated variable structure control for a class of nonlinear systems. 

2.2 Basic variable structure control study 

2.2.1 System model and the sliding mode 

··' 
We are going to consider a linear time invariant system . 

x(t) = Ax(t) + Bu(t) (2.1) 

where x(t) = and u(t) = represent the state and contrnl vectors, 

x.(t) u.(t) 

A e R- and B e R- are constant system matrices. It assumed that n > m, B is of 

full rank m and pair (A,B) is completely controllable. 
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Now we defme a set of variables called the switching plane variables s1 ( i = l...m) 

passing through the state space origin. I s1 = C1X, s, = c,x ............ , sm = cmx I 

where C1 e R' is a constant vector and X is the state vector. 

C = [C1r ........ C~]r is a nxm constant matrix. 

Sliding mode is achieved when the state vector X reaches and remains on the 

intersection (s = 0) of the m switching plane variables. 

m 
S, = ns1 = {X:C1X = O,i= l.. .... m} 

I• I 

(2.2) 

(2.3) 

Now considering the input vectoru(t), it can be expanded and it is usually of the form 

u(t) = KX + 1j/X (2.4) 

In the equation above KX is the linear feedback and 1j/X determines the switching 

component. We already know what X is, wherelse K and 1jl are controller gain matrices 

The task of the control input u(t) is to drive the switching plane variables to reach 

sliding mode (2.3) by suitable design of matrices (gain matrices) K and II'· By doing 

so, and after reaching the sliding mode, the system performance will be deter.mined by 

the sliding motion on the sliding mode. The sliding mode is designed such that the 

system response is restricted on the sliding mode and has a desired behaviour such as 

asymptotic stability and prescribed linear transient response. This can be achieved by 
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designing the switching plane variables as linea< functions of the system states. This is 

done as it is easier or convenient for the design and analysis of a variable structure 

control system. 

The next objective is to design the controller parameters to guarantee that the switching 

··' 

plane variables will remain on the sliding mode. 

Switching plane variables are ( s1 = C1X, s, = c,x, ........... , s. = c.x}. 

Utkin and Young (1982) manage to prove that the time derivative of the switching 

plane variables always point toward the sliding mode surfaces, then the switching plane 

variables s, ( i = l ... m) asymptotically converges to zero and the system states can 

remain on the sliding mode. The second Lyapunov method is chosen because the 

problem is a convergence problem. 

ll = .!.sTs 
2 

(2.5) 

In eqution the constant is included as to cancel the constant generated by derivation of 

sTs. 

To reach sliding mode surface it must be 

sTs < o or s,s, < o (i=l....m) 

(2.6) 

Note equation (2.6) is the derivative of equation (2.5). 

Most of structure control algorithms are designed based on the sufficient conditions in 

expression (2.6) (Utkin 1978 and Decarlo 1988). 
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2.2.2 Equivalent control 

First we will define a general equation for the switching plane variables. 

S= ex (2.7) 

Then using equation (2.1) and combining these two equations and differentiating S, we 

have 

. . 
s =ex (2.8) 

Combining the equations we have 

S = CAX(t) + CBu,. = 0 (2.9) 

where u., is called the equivalent control. 

If the CB is non-singular then u., from (2.9) can be writren as 

u., =- (CB)'1CAX 

(2.10) 

= -KX 

_ •• t 

by equating both sides we can get the expression of X 

where K = (CB)'1CA (2.11) 

Now using the equivalent control equation ie equation (2.1 0) , substitute into the linear 

time-invariant system ie equation (2.1) we get 

X = AX(t) - B(CB)'1CAX(t) (2.12) 

Factorising AX(t) we get 

X = AX(t)[ I - B(CB)'1C] (2.13) 
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The system in equation (2.13) is called the equivalent system. This system has 

characteristics noted below. 

• The dynamical behaviour of this system is independent of the conb'Ol input and 

depends only on the choice of matrix C from the expressionS= ex. 

• The control input here is used to drive the system states into sliding mode and 

therefore maintain it on the sliding mode. 

• The determination of matrix C may thus be completed with prior knowledge of the 

form of the control input 

• With CB being non-singular; the equivalent system has an Independent motion from 

the control input. 
I. 

• When sliding motion occurs on the sliding mode or within N(C), the behaviour of 

the equivalent system is unaffected by the control input. This happen due to the 

above reasons. If CB was to be singular Utkin(1977) said that the equivalent 

control is either not unique or does not exists and sliding mode cannot be reached . 

•. ~ (2.13) is a (n-m)th order system. Darling and Zinober (1986) has shown that for the 

matrix B with f\111 rank m, there exists an othorgonal nxn transformation matrix T 

such that: 

(2.14) 

where B, mxm nonsingular matrix and Tr = T"1 (Tis an othorgonal matrix) 

Lets define : 

Y=TX (2.15) 

Using equation (2.1) and (2.15) we can have a relationship between X andY 
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' 

X= TTY 

T T"1 Y · = TAT"1Y + TBu 

Y = TAT"'Y + TBu 

= TATT = [Au 
A" 

CfT = [C1 C,] 

on the sliding mode , we have 

let F = ( -C1 )C;' 

15 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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The equivalent system can be written in the following fonn 

Y = (A 11 • A 12F)Y1 

16 

(2.22) 

From the above we can see from expression (2.22) that the equivalent system is (n-m)th 

order system, ie the system dynamics is simplified on the sliding mode. 

2.2.3 Robustness Property 

In this secti.on, we are going to include uncertai11ty in matrix A and external 

disturbances. 

This will result in a modified version of (2.1). 

X = (A0 + M)X(t) + Bu + Df (2.23) 

where A0 is the nominal system malrix, M is the uncertainty, f e R L is a bounded 

··'external disturbance vector and matrix D is compatibility dimensioned. Without loss of 

generality, it is assumed that matrices B and Dare full rank and the uncertainty 

presented in the input distribution matrix B is incorporated in the system disturbance 

tenn. During the sliding motion, the state vector of the system satisfies the following 

equations. 

fonn (2.7) S =CX=O. 

Using equation (2.23) we have 

C(A + !J.A)X + CBu"' + CDf = 0 (2.24) 

Using the same steps as the previous section we can arrive at this equation 
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X. = [ 1 - B(CB)"'CJ(AX + MX + or, (2.25) 

Using these conditions of rank relation~ 

rank[B: D) = rank [B:MT] = rank [B) (2.26) 

From Spurgen (1991) it was said that with these conditions, the sliding mode syslem 

in (2.25) is insensitive to parameter variations and the external disturbances. 

Expression (2.26) is called the invariance condition. Other researchers like Gutman 

(1979) and Bormish and Leitman(l983) have shown that if system uncertainties and 

disturbances satisfy the "matching conditions", then the system is completely 

insensitive on the sliding mode and the effect of disturbances and parameter variations 

can be minimised by minimising the time required to attain the sliding mode. 

··' 

2.2.4 Methods of Sliding Mode Design 

Ail we know now from (2.15) that the choice of parameter matrix C, can detemiine 

the behaviour of the system on the sliding mode. The asymptotic convergence and 

desired transient response is also determined by a suitable design of matrix C. 

There are 2 methods for the design of sliding mode . They are 

• quadratic minimisation method 

• the eigenstructure assignment method. 

-
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Quadratic Minimisation Method 

This method for sliding mode design was first proposed by Utkin and Young (1978) 

First lets defme the cost function to be used 

J(u) = ~JX(t)TQX(t) dt (2.30) 

where Q is a symmetric positive definite matrix and t, denotes the time at which the 

sliding mode starts. 

Partitioning the following matrix compatibility with Y 

(2.31) 

where matrix T is defmed earlier as an orthogonal matrix. 

··' By substitution we have the cost function in the fonn 

1~ 

J(v) = 2 J I YtTQ'Yt + vTQ22v) dt (2.32) 
t, 

(2.33) 

(2.34) 

(2.35) 
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(2.36) 

The expression (2.32) is In the fonn of standard linear quadratic optimal regulator 

problem. 

• 
By minimising expression (232), the optimal control v(t) is given by 

Using expression (2.36) in expression (2.34) we have 

(2.37) 

where the matrix P satisfies the following Ricati equation 

··' 
(2.38) 

and matrix 

(2.39) 

can be detennined as required. 

Elgenstructure assignment rneUtod 

Utkin and Young(l978) used this method to design sliding mode. To begin with in 

this section lets recall (2.2) , which is the systems equation. 
' ' '· ( 

1 
' ' : 
' 
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a) 

x(t) = Ax(t) + Bu(t) 

and detennine the matrix K of the optip!al control vector 

u(t) = -Kx(t) 

. 
Solving the optimisation problem ie substituting (2.40) into (2.2) 

. 
X(t) = (A - BK)X(t) 

c) 

where matrix K is detennined in expression (2.13) 

During the sliding motion, the state variables must remain in N(C) so that 

... 

Expression in the above shows that either 

' 20 

(2.40-

(2.40-b) 

(2.40-

(2.41) 

1.-i is zero or vi e N(C). Since A- BK = Aeq has m zero-valued eigenvalues, we can 

set { 1.-i: i = 1, ... , n- m} to be the non-zero eigenvalue and therefore , specifying the 

corresponding eigenvalues { vi:i = l, ... ,n-m} fix the null space ofC(dim[N(C)] = n-

m). 

It is noted that C is not uniquely detennined because of the equation 
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CV = 0, V = [Vt ..... V0.ml (2.42) 

has m2 degree of freedom, which may be easily seen if we defme 

w = [:~]=1V (2.43) 

Where the partitioning of W is compatible with that of Y, then the expression 

(2.42) becomes 

O=CTT.1V=[C1 C2 {:~]=Cz[F (2.44) 

Therefore, F can be detennined by the following equation 

(2.45) 

The work of Dorling and Zinober (1986) has shown that this approach has the 

drawback that the eigenvector may be assigned arbitrarily, after which the 

.•remaining n·m elements are fully detenninetl by the assigned elements. Thus one 

approach to eigenvector assignment is to select m elements according to some 

scheme and accept the remaining elements as detennined. This may allow a 

degree of adjustment to be carried out by inspection. Some other eigenvector 

assignment methods have also been proposed, and the details given can be 

found 

in Moore (1976), Klein and Moore (1977) and Sinswat and Fallside (1977). 
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2.2.5 ControUer designs 

In most of the variable structure control schemes, the control law usually consists of a 

linear component uL and a nonlinear component uNL which are assumed to form 

control input u. The linear part is merely a state feedback 

L 
u = KX (2.45) 

While the nonlinear signal incorporates the discontinuous elements of the control. 

Some examples of possible types of nonlinearity are as given below. 

(a) A nonlinear component with constant gains 

NL 
u1 = ~sgn( C1X), Mj > o (2.46) 

(b) A nonlinear component with state-dependent gains 

m1(.) > 0 (2.47) 

(c) A linear feedback with switching gains 

UNL = '!'X (2.48-a) 

(2.48-b) 

(d) A unit vector nonlinearity with scale factor 



' 

UNL = NX 
IIMXII 

where the null spaces of N, M and Care coincident 
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(2.49) 

The nonlinear control component is discontinuous on the individual hyperplane in 

cases (a) - (c). This may result in wasted control effort as the system state pien:es one 

hyperplane, and is forced into another surface. In case (d), the individual controls are 

continuous, except on the intersection of the switching plane variables where all the 

nonlinear control elements become discontinuous together. The details of cases (a) -

(d) are shown in Utkin (1978), Ryan (1983), Young (1977) and Dorling and Zinober 

(1983). Some special properties and behaviours of a system with control type (d) has 

been discussed in Surgeon (1991). 

··' 
2.3 Variable structure control of nonlinear system 

2.3.1 System model 

In section (2.2) we have briefly reviewed the basic variable structure control theory of 

linear systems. Most of these ideas can be extended to the variable structure control of 

nonlinear systems. However, the complexity of the analysis and the controller designs 

may be increased due to the nonlinearity in the nonlinear system model. From the 

engineering point of view, the following nonlinear system is often considered 

(DeCarlo, et al., 1988). 

X(t) = f(~ X) + B(~ X)u(t) (2.50) 
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where the state vector X(t)e R", the control input vector u(t) e Rm, f(t, X) e R" and 

B(t, X) e Roxm. Funher, each entry in f(t, X) and B(t, X) is assumed to be continuous 

with contiuuous bounded derivative with respect to X. 

Each entry u1(t) of the control input vector has the following form 

with O';(X) > 0 

with O';(X) < 0 
i= 1 ... m (2.51) 

where O';(x) is the ith switching surface associated with the (n-m) dimensional 

switching surfaces 
T 

O'(X) = [a,(X), ... , O'm(X)] 

2.3.2 Sliding mode and equivalent control 

(2.52) 

·''Following the sliding mode design for linear systems in section 2.2.4, the method of 

equ)valent control is a way to determine the system motion restricted to the sliding 

mode a(X) = 0. Suppose that there exists a time 1o > 0, and the state of the system 

reaches the sliding mode after t :2: Ia· On the sliding mode, the following two equations 

are satisfied 

O'(X(t)) = 0 t :2: Ia (2.53-a) 

(2.53-b) 

Using system equation (2.50), expression (2.53-b) can be expressed as follows 

' 
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.:.;aa(:.,;X...:.) ( f(t, X) ;, B(t, X)u ] = 0 
ax "' 

(2.54) 

where u is the so called equivalent control which can be obtained from expression cq . 

(2.54) as follows 

(2.55) 

Using expression (2.55) in system model (2.50), the dynamics of the closed loop 

system on the sliding mode is given by 

x = [ r - B(t. XJ< aa(XJB<t. x>r1 aa(XJ ]f<t. x> <2.56) ax •X 

Therefore, the problem of the sliding mode design is to choose the parameters in a(X) 

= 0 such that the equivalent system (2.56) is stable. In most of variable structure 

control schemes for nonlinear systems, the linear sliding modes are often used. 

Therefore, some methods of sliding mode design in sections 2.2.4 can also be used. 

2.3.3 Controller design 

In general, for nonlinear system equation (2.50), the control input is a m dimensional 

vector and each entry has the structure of the form 

u. = { u7<t. X) 

' u;(t. X) 

for a;(Xl > 0 

for a;(Xl < 0 
(2.57) 

To determine the switched feedback gains in control law (2.57), the following 

diagonalization method is often used (DeCarlo et al., 1988). 

;, ... 
.;· 
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First, a new control vector is considered in tenns of a nonsingular transfonnation 

u*(t) = Q"1 (~ X) ( aa(X) ]B(~ X)u(t) 
ax 

(2.58) 

where Q"1(t, X)(aataX)B(t, X) is a nonsingular transfonnation, and Q(t, X) is an 

arbitrary mxm diagonal matrix with elements qi(t, X) (i = l, ... , m) such that infl 

qi(t, X) I > o. 

Using expression (2.58) in expression (2.50), the system dynantics becomes 

-··' 

a (l(J ·I X = f(t, X) + B(~ X)( a B(t, X)] Q(~ X)u*(t) 
ax 

If u~ is selected such that 

then, 

(2.59) 

(2.60-a) 

(2.60-b) 

(2.61) 

Expression (2.61) is the reaching condition for the system states to reach the sliding 

mode surfaces a(X) = 0. On the sliding mode, the desired system dynamics can be 

obtained. Also, the control input u(t) can be obtained from equation (2.58). 

In addition to the above diagnalization method, other methods which are similar to the 

ones in section 2.2.5 have been used by many researchers. The details can be found in 

DeCarlo eta!. (1988). 

' 
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2.3.4 Robust control of nonlinear systems 

In practical situations, the system dynamics of a nonlinear system is different from its 

nominal system model due to parameter uncertainties. To represent parameter 

uncertainties in the plant, the following state equation is considered (DeCarlo,l988). 

X= [ f(~ X) + M(~ X, r(t))] + [ B(~ X) + 6B(~ X, r(t)) ]u(t) (2.62-a) 

where r(t) is a vector function of uncertain parameters. 

In most of researches (Corless and Leiunann, 1981; Guunan and Palmor, 1982; 

Peterson, 1985), the plant uncertainties M and dB are assumed to lie in the image of 

B(t, X) for all variables t and X (this is called "matching condition'). Then dynamic 

equation (2.62) csn be expressed as follows 

X = f(~ X) + B(~ X)u + B(~ X)e(~ X, r, u) (2.62-b) 

where e(t, X, r, u) represents system uncertainties. 

DeCarlo et al. (1988) shows that if e(t, X, r, u) is bounded by a positive function p(t) 

11 e(~ X, r, u) 11
2 

,;; p(t) (2.63) 

and control input has the following form 

u = u + u eq n 
(2.64-a) 

where 

(2.64-b) 



u = -n 

• 

. ,,, 

B T(~ X) V x V(~ X) p(~ X) 

II B T(t, X) V x V(t, X) 11
2 

p(t, X)= a+ p(t, X) 
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(2.64-c) 

(2.64-d) 

(2.64-e) 

then system state can reach the sliding mode surfaces a(X) = 0, and the desired system 

dynamics can be obtained by the suitable choice of the sliding mode parameters. 

The results discussed in this section fonns the foundation of the variable structure 

control theory for nonlinear systems. Although there are many classes of nonlinear 

systems, robustness and convergence of variable structure control systems may be 

established based on the results in this section (Utkin, 1978; Young, 1978 and 

DeCarlo et a!., 1988) . 

••• 

r: 
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Chapter3 

.. Application of Variable Structure Control 
for Robotic Manipulators 

3.1 Introduction 

_., .... 
''• 
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.. •Research has been done over the past few decades to investigate the control algorithms 

of robotic manipulators and to improve the closed loop system performance. Generally, 

a robotic manipulator is a non-linear system. Control schemes such as feedback control 

and adaptive control have been modelled and have been the prime area of research in 

robotic manipulators. However they cannot deal with systems that have 

• large uncertainties 

• bounded disturbances 

• non-linearlties 



' •.,b 

31 

With the Variable Structure technique, it is the most powerful and most importantly, 

deal with the above three effectively. The design of robost variable structure control 

laws for rigid robotic manipulators ensores roboshless and asymptotic trajectory 

tracking. The results on the robusbless and convergence have been obtained by many 

researchers namely Young ( 1978, 1988 ), Morgan and Ozguner(l985), Slotine and 

Sasatry (1983), Yeung (1988) and Leung et al (1991). 

In the next section , the dynamics of the robotic manipulator and some recent variable 

structure control schemes will be briefly reviewed. 

3.2 Dynamics of Robotic Manipulators 

The robotic manipulator controls the movement of the robot. To move, the robot needs 

to know the position to move to and to control this we need to know the dynamic 

··' properties of the manipulator in order to know how much force is needed to move (be 

robot to its desired position. Accuracy Is vital, and deriving the dynamic equation is 

not simple, especially for large number of degrees of freedom and non-linearities 

present in the system. 

In a perfect environment ie without friction and other disturbances, (Spong anrl 

Vidyasagar , 1988) derived the joint space dynamics of an n-link robotic martipulator 

using Langranian equations. 
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~ are the coefficients of the inertia matrix D(q) 

~(q) are the grevitational forces 

\ are the input torques 

fijk is the coefficient of the coriolis and centrifugal tenns 

flJk can be defmed as 

(3.2) 

The above equation can also be written as this 

D(q) ij + F(q, q) q + G(q) = t (3.3) 

where the kJth element of the matrix F is defined as 

··' 

(3.4) 

and the component ofG(q) is <l>k· 

Equation (3.3) is very complex and non-linear for most robotic manipulators. This is 

not so for simple robotic manipulators. (Ortega and Spong 1989) found that there are 

several fundamental properties can be used to facilitate the design of control system. 

These are 



33 

I. The inertia matrix D(q) is symmetric, positive-definite , and both D(q) and D(q)"1 

are unifonnly bounded as a function of q. 

2. There is an independent control input for each degree of freedom. 

3. The Euler-Lagrange equation for the robotic manipulator is linear in the unknown 

parameters. All the unknown parameters are constant (eg. link masses, link lengths, 

moments of inertia, etc.) and appear as coefficients of known functions of the 

generalised coordinates. By defming each coefficient or a linear combination of 

them as a separate parameter, a linear relationship results so that we may write 

equation (3.3) as 

D(q) q + F(q, q) q + G(q) = Y(q, q, q)9 = ~ (3.5) 

where Y is an nxr matrix of known functions, known as the regressor, and q is a 

n-dimensionai vector of unknown parameters as shown in Spong and Vidyasagar 

··'(1989). 

It can be seen later that the manipulator system (3.3) can also be expressed into the 

genemlised fonn in expression (2.40). Therefore, the basic variable strncture theory 

can be used to design robust controllers and the strnctural properties mentioned in 

the 

above can then be used to simplify co~troller designs. 

3.3 The Young Controller 
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In 1978, Young was a pioneer in using variable structure control theory to control 

robotic manipulators. He later, In 1988 modified and generalised the robust variable 

structure control scheme. In this section, the Young controller scheme is shown 

Given that the state variable is defmed as 

Using 

D(q) ij + F(q, q) q + G(q) = t 

we can obtain that 

q = -D'1(q)[F(q,q)q + G(q)] +D"1(q)t 

and therefore 

. 
X= 

Using the reference model we have 

[ 
T ·T ]T where we know that X = q q m r r 

and [ 
0 

A = 
m Ami 

matrix Am Is stable. 

-

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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In Young's revised paper in 1988, he defmed the output tracking error to be the 

difference between the reference angle and the systems angle or actual angle. He 

defined the error vector to be 

e=q,-q, (3.10) 

in the above equation e is the output tracking error variable. This also means that the 

diflerence between the reference state vector and the system state vector would give us 

the error vector. 

The sliding mode surfaces are chosen as 

a(e) = G e + G e = 0 p v (3.11) 

with Re1..( • GvGp) < 0 (3.12) 

··'and the control input is designed such that it takes into consideration the states(x), 

error( e) and the reference model (r). 

(3.13) 

where ljlx = ijixdiag(sgn(x1), ••• , sgn("l.)) (3.14) 

lj/
0 

= iji
0
diag(sgn(e1), ••• , sgn("2.)) (3.15) 

ljl, = iji,diag(sgn(r1), ••• , sgn(rP)) (3.16) 



••• 

ljlj= 

for i=l, ..... ,m andj = x, e, r 

{ 
~i 
- k.. 

Jl 

ai(e) > 0 

ai(e) < 0 
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(3.17) 

(3.18) 

This will force the switching plane variables be driven into the sliding mode surfaces 

a( e) = 0 and the desired error dynamics can be obtained on the sliding mode as follows 

• -1 
£=-00£ v p 

(3.19) 

(3.20) 

The switched controller gains are designed based on the upper and lower bounds of the 

unknown system parameters. In this control scheme the exact knowledge of the system 

Is not required, the controller forces the whole system into sliding mode and this allows 

for good tracking performance on the sliding mode. 

Similar techniques are produced in papers by Nicosia and Tomei (1984), Morgan and 

Ozguner (1985), Bailey (1987) and finally Bartolini and Zolezzi (1985). 

;-: 
' 
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3.4 Suction Control 

The drawback in these techniques were that the schemes had control torques that were 

excessive and this caused chattering along the switching line. These chatterings are 

bad as they cause high-frequency dynamics that are not considered in the modelling. 

To overcome this problem, in 1983 Slotine and Sastry proposed a suction control. 

This control technique contains two parts. In the first step, the trajectory is forced 

.,. -.< . towards the sliding surfaces. In the second step, the controller is restricted to a smaller•.· · •. 

region or layer that is bounded. This will achieve optimal trade-off between control 

bandwidth and tracking precision. It will also eliminate chatterings as the controller is 

trapped in this boundary. Due to this smaller region, the sensitivity of the controller is 

reduced and is not affected by the unmodelled high frequency dynamics. 

··'3.5 The Leung Controller 

It can be seen from the above discussion that most of variable structure control 

schemes are proposed based on the restrictive assumption that the upper and the lower 

bounds of all unknown system parameters are known. However, in some situations, it 

is difficult to know the upper and the lower bounds of all unknown system parameters 

due to large uncertainties, disturbances and nonlinearities in robotic martipulators. To 

overcome this difficulty, Leung et al. (1991) proposed a new adaptive variable 

structure model following control scheme in which only several uncertain bounds of 

system matrices are used in the controller design. 
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In Leung et al. (1991), the roboCc manipulator (3.3) or state equation (3.8) and the 

reference model (3.9) are considered. The state equation (3.8) is written io the 

followiog form 

. 
X=AX+B~ (3.21) 

[ 
0 

A-
where A1 

(3.22) 

It is shown that if the sliding mode is defmed as in expression (3.19) and the 

followiog matching conditions and uncertaio bound conditions are satisfied 

(1 - BB"')B = 0 
m 

(3.23) 

(I - BB"')(A - A) = 0 
m 

(3.24) 

••• 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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(3.29) 

(3.30) 

. 
liB+( Am+ An)- K3 11 < n5 

(3.31) 

where n1 >0, P1 > 0 are some positive numbers 

and the control law is designed such that 

(3.32) 

where K1, IS and IS are constant matrices, and 'l'p '1'2 and '1'3 are discontinuous gain 

matrices given by 

T 
• . 1 Ga T L c) ell, . ....!.... sgn(X) llall,. 0 ... 

'1'1 = i=I llall 

(3.33) 
0 II all= 0 

T 
G a T 

~ ....!....sgn(r) llall,. 0 
II all 

ljl2 = (3.34) 

0 II all= o 

T 
- 0 2 0" T 

II all ,. 0 c5 -sgn(e) 
II all 

ljl3= 
(3.35) 

0 II all = 0 
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(3.36) 

(3.37) 

(3.38) 

i = 1, ... ,5 

then the output angular position vector asymptotically converges to the desired 

reference signal vector. 

Theoretically, this scheme has many advantages. For example, the exact knowledge of 

•.• the robotic manipulator are not required and only some uncertain system matrix 

bounds are used in the controller design. However, it can be easily seen that it is 

difficult to use this scheme in some situations where the boundary layer technique is 

utilised or the sampling interval is not zero. Because, in these cases, the output 

tracking error e(t) and the switching plane variables a(t) cannot converge to zero, and 

-
thereafter the adaptive parameters C; (i = I, ... , 5) in expressions (3.36) - (3.38) may 

tend to infinity as time tends to infinity. 

However, an important feature of the variable structure control system for the robotic 

manipulator has been revealed in this scheme, ie, the system matrix bounds can 
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provide enough structural infonnation for the variable structure controller design. 

Such a system matrix bounds-based variable structure control technique may not only 

simplify the controller design, but also further improve the robustness with respect to 

large parameter uncertainties and nonlinearities .. 

3.6 Man Controller 

This model was included as a chapter of his thesis that was submitted for his Doctorate 

at the University of Melbourne in 1992. 

He found that the variable Structure control had many good features. For instance, its 

ease of use in linear or non-linear systems. In this chapter, he modified the control 

scheme to deal with more practical control problems. He also included the nominal 

systems model and the systems uncenainties to simplify the variable structure 

··'controller design. Another feature of his paper was that the bounds of the structure 

uncenainties was used In the design of the robust variable structure controller. 

In his paper a class of large scale time-varying system with n number of 

interconnected system was considered. 

Each subsystem was represented as 

~(!) = ~(X(I)) x1(t) + B1(x(t)) u1(t) + 1111(xpJ. xpJ, I) i = I, .•. , n. (3.39) 

-



< 

0 

-\(X(t)) = 

where 

·,\.·. 

0 

. . 

I 0 ... 0 

4>-(X., X., t) 
0 1 J ' 

I 

cf> is the dynamical interaction tenn. 
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0 

I 

A reference model was also specified for purpose of obtaining the output tracking error 

and it was defmed as 

··' (3.40) 

r is a piecewise unifonnly bounded ith reference in put . 

Using these assumptions 

The subsystem (I) and its reference model (2) structurally satisfy the 

following so called matching conditions (Xu, Wu and Huang, 1990) 
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(3.41) 

(3.42) 

(3.43) 

The dynamical interaction tenn of each subsystem is upper bounded 

by an unknown positive number. This is treated as a bounded uncertainties 

c1B1 is lower bounded by a known positive number 

c.B. > k21 I I • 

The nonn of Ami • A1 is upper bounded by a known positive number 

(3.44) 

(3.45) 

(3.46) 

The last three assumptions were used as the subsystem structural infonnation in the 

local controller design. 

The control law for each subsystem is designed as follows 

U. =k .e. +k .X. +k.r. +B. 
1 ell XII Dl 1 

(3.47) 

where 
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II c111 II A,m II T 
lle1 cr1 II¢ 0 e1 cr. 

k.i = 
~~ II '1 cr111 

1 

(3.48) 

olxnl lle1cr111 = 0 

~~ llc.1 11 T 
II"' cr111 ¢ 0 x. cr1 

~~ II"' cr1 II 
1 

kxi = (3.49) 

olxni llx1cr111 = 0 

llc.IIIIB .11 
1 mt r. a. 

1 1 
~~ lr1 cr1 I (3.50) 

0 
··' 

lfJli 
k211rr~ ~~II" o (3.51) 

a.= 
1 

0 lr~l=o 

where kri, kxi, keJ are adaptive gain matrices and & is a discontinuous compensator. 
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In this paper Man only needed three uncertain bounds of subsystem matrices and the 

dynamical interaction term to be used in the local controller design for each 

subsystem. This is unlike other decentrlillsed variable structure schemes where there is 

a requirement to compute and obtain controller gain matrices. This increases the 

simplicity in design. Moreover there is strong robustness with respect to large system 

uncertainties and asymptotic convergence of output tracking error • 

••• 
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3.7 Concluding Remarks 

In this chapter, the dynamics of the robotic manipulator and some variable structure 

control schemes were briefly reviewed to highlight the research developments in this 

area. Although many variable structure control algorithms have been developed for 

robotic manipulators, still there are many issues that need fwther investigation. For 

example, the dymu)lical interaction term in the control scheme of Man (1992) Is taken 

as a constsnt There is a need for an adaptive mechanism to estimate this term as the 

dynamical interaction term varies for different tracking problems. Some terminal 

sliding mode techniques can also be used in the robust variable structure controller 

design to further improve the transient response and robustness. 

In the following chapter of the thesis, some problems mentioned in the above will be 

•. .Cully investigated. Two new robust decentralised variable structure control schemes for 

robotic manipulators will be proposed, and it will be shown to enhance the robust 

control of robotic manipulators. 
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Chapter4 

A Decentralised Variable Structure Model 
Reference Adaptive Control for Robotic 
Manipulators 

4.1 Introduction 

Decentralised variable structure control is a powerful method for the control of large 

··'scale systems. The general principle of this method is that the upper and the lower 

bounds of all unknown system parameters are assumed to be known, and a set of local 

sliding modes are selected for the controlled system to describe the desired system 

response. The local variable structure controllers are then designed which drive 

subsystems to move in their local sliding modes. In the sliding modes, the desired 

system dynamics can be achieved for the overall system, which is completely 

insensitive to system uncertainties, dynamical interactions and bounded external 

disturbances (Abbass and Ozgunner, 1984; Ozguner, Yurkovich and Abbass, 1987; 

Xu, Wu and Huang, 1990; Morgan and Ozguner, 1985). However, in many practical 

situations, where the contrOlled system has many unknown parameters, the designs of 

real time local variable structure controllers based on the upper and the lower bmmds 
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of unknown parameters will be very complicated aod time-consuming by using the 

above control schemes. 

In this chapter, a robust decentralised. variable structure model following control for a 

class of large scale systems is proposed based on Leung aod Zhou (1991). It is shown 

that two uncertain matrices in the error dynamics are assumed to be upper bounded by 

two known constants according to the structural properties of each subsystem, aod the 

dynamical interaction term is upper bounded by an unknown constan~ which is 

adaptively estimated in Lyapunov sense. A local variable structure controller cao then 

be designed for each subsystem. It is easily seen that the local controller design is 

greatly simplified in this paper due to the fact that only two uncertain matrix bounds 

aod ao estimated upper bound of the dynamical interaction term as the subsystem 

structural information are used in the local variable structure controller design for each 

subsystem, which are independent of the subsystem order and the number of the 

unknown parameters. Also, asymptotic error convergence aod strong robustness with 

respect to large system uncertainties can be obtained for the overall system. 

It is well known that, in practical situations, some uncertain bounds of subsystem 

matrices cao be obtained from experiments according to the structural properties of the 

controlled system. However, the upper bound of the dynamical interaction term of 

each subsystem is hardly known because the maximum value of the norm of the 

dynamical interaction term of each subsystem is varying for different trajectory 

tracking problems. To avoid the requirement of the prior knowledge of the upper 

bound of the dynamical interaction term, an adaptive mechaoism is introduced to 

estimate this uncertain bound in Lyapunov sense. The estimate is then used as a 

controller parameter in the sense that the effects of dynamical interactions cao be 

eliminated aod asymptotic error convergence cao be guaraoteed. Furthermore, the 

scheme is applied to the tracking control of rigid robotic manipulators with the result 

that good tracking performaoce is obtained. 
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This chapter is organised as follows: In section 4.2, the system model and control 

objectives are formulated and an adaptive mechanism to estimate the upper bound of 

the dynamical interaction term of each subsystem is introduced. In section 4.3, a 

robust decentralised variable structure model following control scheme is developed. 

The error convergence and robustness are discussed in detail. In section 4.4, the 

scheme is applied to the tracking control of rigid robotic manipulator systems. In 

section 4.5, a simulation example on a two-link robotic manipulator is given in support 

of the theoretical results. Section 4.6 gives conclusions. 

4.2 Problem formulation 

Consider a class of large scale multi variable systems consisting of n interconnected 

subsystems. Each subsystem can be represented as 

x1(t) = A,(x(t)) x1(t) + B1(x(t)) u1(t) + <1>1(x}t), xp), I) i = !, ... , n. (4.1) 

"(x(t)) = 

0 I 

a11 (x(t)) 

0 

. . 

0 

<jl.(x., X., t) 
0 ' J J 

1 

0 

0 

a101(x(t)) I 

where x1e R ni is the state vector of the ith subsystem, u; e R 1 is the local control 

T 

input, and x(t) = [ x1 (t), ... x.(t)] is the state vector of the overall system. 

A1(x(t)) e Rnlml and B;(x(t)) e Roix1 are unknown subsystem parameter matrices. 
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a.lk(x(t)) ( i = I, ... , nand k = I , •.. , n1) and b1(x(t)) ( i = I, .•. , n) are bounded 

parameters of subsystem matrices ~(x(t)) and B1(x(t)), respectively. Further, the sign 

of b1(x(t)) is assumed to be known (b1 :" 0). C!li( xi' x1, t )e Rni and $1( xi' ~· t )e R1 

( j = I, ..• , n and j "# i ) are linear or nonlinear functions representing dynamical 

interactions of subsystems. · 

The desired perfonnance of the ith subsystem (4.1) is embodied in the definition of a 

local reference model specified by the designer as 

(4.2) 

0 I 0 ,.,. 0 0 

. . 
A.= B . - bmi "" I "" 0 

a a mini I mil 

where Xmi e R01 is the state vector of the ith local reference model, r1 e R1 is a 

··'piecewise continuous and unifonnly bounded ith reference input, Ami e Rnbmi and Bmi 

e Rnixt are the known constant matrices and Ami is stable. 

The local output tracking error vector of each subsystem is defmed as 

[ ]
T [ . (n1. I) ]T 

e.=x .-x. = e. 1, ... ,e.. = e.
1
, e. 1, ... , e. 1 lmll I tnl 11 I (4.3) 

and a set of local switching plane variables which are assumed to exist in the local 
error space passing through the origin are defined as 

i=l, ... ,n (4.4) 
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where c1 = [ '11' ... , C101 ] is a constant vector to describe the desired ell'Or dynamics 

in the sliding mode 

. 1 n 1 = , ... , 

or 

(4.5) 

(4.6) 

If the constant paramelel' vector Ci are selected such that the eigenvalues of the 

differential equation (4.6) are negative, then, the output error "' converges to zero 

asymptotically. 

Expre.'Sion (4.4) can also be expressed in the folhwing form 
T T 

a(t) = [ a1(t), ... , CJ0(t) ] = [ c1e1(t), ... , c0e0(t) ] (4.7) 

Expression ( 4.7) is called as the switching plane variable vector of the overall system. 

It is well known that the sufficient condition for the switching plane variable vector in 

expression (4.7) to be globally stable is given by (Abbao;s and Ozgunner, 1985; 

Ozguner, Yurkovich and Abbass, 1987; Xu, Wu and Huang, 1990; Morgan and 

Ozguner, 1985) 

... i=l, ... ,n 

For the further discussion, the following assumptions are made 

(A4.1) The subsystem (4.1) and local reference model (4.2) are controllable 

(Abbass and Ozgunner, 1985; Ozguner, Yurkovich and Abbass, 1987). 

(A4.2) The local state vectors x1 and xmi a.-e measurable for feedback to the ith 

input (Abbass and Ozgunner, !985; Ozguner, Yurkovich and Abbass, 

1987; Morgan and Ozguner, 1985). 

(A4.3) The subsystem(!) and its reference model (2) structurally satisfy the 

following so called matching conditions (Xu, Wu and Huang, 1990) 

(4.8) 



... 

(11 - s,s;>Bmi = o 

( ~ - s,s;>< Ami - A;> = o 
(I. - B.B~)4>. = 0 . 

1 I I I 

where B+ ( BT n)-l BT ;= 1"1 i· 
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(4.9) 

(4.10) 

(4.11) 

(A4.4) The dynamical interaction term of each subsystem is upper bounded 

by an unknown positive number 

(A4.5) c1B1 is lower bounded by a known positive number 

c.B. > k2·1 
I I · 

(4.12) 

(4.13) 

(A4.6) The norm of Ami - A1 is upper bounded by a known positive number 

II A,ru - A; II < k3;, (4.14) 

Remark 4.1: According to the structural properties of the control systems, k21 and ~~ 

in A4.5 and A4.6 can be obtained in experiments. However, it is hard to know kli' the 

upper bound of the dynamical interactions of each subsystem in A4.4, because L'le 

maximum value of II <1>1( xi' xi' t) II is varying for different tracking problems. 

In this paper, we avoid the requirement on the prior knowledge of kli and the 

following adaptive mechanisms used to estimate kli: 

k 
1
• =a. II c. Ill a. I 
1 1 I I 

(4.15) 

• where a; is a positive number and k li is the estimate of kli with an arbitrary positive 

initial value. 

• It will be shown later that k 11 is the estimate of kli in Lyapunov sense. The detailed 

cfucussion of expression (4.15) is given in remark 6. 
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R~!iillrk 4.2: Since expression (4.5) multiplied by any arbitrary nonzero scaler does not 

change the position of the sliding mode, and the sign of b,(x(t)) of matrix Bi is 

as.umed to be known, assumption A4.5 can always be valid (Khurana, Ahson and 

Lamba, 1986). 

Remark 4.3: The general principle of the decentralised variable structure control for 

large scale systems has been investigated by (Abbass and Ozgunner, 1985; Xu, Wu 

and Huang, 1990). However, as mentioned in the introduction of this paper, if each 

subsystem has many unknown parameters, the local variable structure contruller 

design in.Abbass and Ozgunner (1985) and Xu, Wu and Huang (1990) based on the 

lower and the upper bounds of all unknown parameters will be very complicated and 

time-consuming. However, the objective of this paper is to design a local variable 

structure controller for each subsystem based on assumptions A4.4 - A4.6 and the 

adaptive mechanism in expression (4.15), which is independent of the subsystem order 

and the number of the unknown system parameters, so that the local controller design 

can be simplified and asymptotic error convergence and strong robustness with respect 

to large system uncertainties can be guaranteed for the overall system .. 

-
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4.3 A decentralised variable structure control scheme 

-·' 

In this paper, the following control law, similar to the one in Abbass and OzguMer 

(1985), Xu, Wu and Huang (1990), is used for each subsystem: 

u. = k~e. +,. .x. +,. .r. +a. 
1 Rl -xaa -ria 1 

(4.16) 

where kc! e R1"", kxi e R1
""

1 and kri e R1 are adaptive gain matrices which are 

determined later. 8; e R1 is an adaptive compensator to eliminate the effects the 

dynamical interactions. 

In order to design control law (4.16) ·based on assumptions A4.4 · A4.6 and the 

adaptive mechanism (4.15) to guarantee the robustness and the asymptotic error 

convergence, we have the following main theorem. 

Theorem : The motion of the switching plane variable vector of the overall system in 

expression (4.7) is globally stable and the output error in expression (4.3) 

asymptotically converges to zero if the gain matrices and the compensator in the 

control law (4.16) are chosen as given below 
llc.IIIIA .11 T 

1 au e. CJ, II e1 cr1 II ;e 0 
1 1 

k.i = 
k21 lle1 cr1 II (4.17) 

olxni lle.cr.II=O 
1 1 

rs. llc,ll T II x1 cr1 II ;e 0 x. (1. 

~~ llx1 cr1 II 
1 1 

k,.; = (4.18) 

olxni llx1 cr1 II= 0 

llc1IIIIB
0
)1 

lr1 cr11;e0 r. cr. 
~1 1r1 cr1 1 

1 1 

kn= (4.19) 

0 lr1 cr11 = 0 

-
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~u II c111 a. la11 ¢ o 
&I= 

~~I all I 

0 Ia. I = 0 
. I 

A 
where k 11 is updated according to expression (4.15). 
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(4.20) 

Proof. Using expressions (4.1), (4.2) and (4.3), we get the error dynamics of the ith 

subsystem in the following form 

(4.21) 

Selecting a scalar positive-definite Lyapunov function 

I (,;. ·I -2 ) v. = 2 . +a. k1. I 1 I 1 (4.22) 

with ku = ku 
A 

- kli (4.23) 

. A 
and Ku = -kli (4.24) 

and differentiating v1 with respect to time, and using expressions (4.4), (4.16) and 

(4.21), we have 

. . -1- kA 
vi= aia i - a· k 1i li 

= c.(A . - B.k .)e. a. +c. [(A . -A)- B.k . ]x.a. 
I IIU ICIII I Dll I 1,;1 II 

(4.25) 

Using expressions (4.17)-(4.20), four terms in expression (4.25) satisfy the following 

inequalities 

ci(<\u - Bikoi)eiCJI 

c1B. 
= c1Amle1a1 - ~1

1 llc11111Am11111e1a111 

< c1 Amle1a1 - II c11111 Am11111 e1a111 s 0 (4.26) 



··' 

Then 

~((Ami--\)- B1kxi Jx;a1 

~BI 
= c1(Ami- A;>x1a1- ~~ ~1 11c1 1111x1a1 11 

. 
< c1<A.m - A;>x1a1 - ~~ llc1 llllx1 a1 II s 0 

s- < k
1
.- II<!>. II > II c. Ill a. I < o a,."' o 
1 I I I 

v.=a.cr.<O 
• • • 
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(4.27) 

(4.28) 

(4.29) 

(4.30) 

Expression (4.30) means that the global reaching condition in expression (4.8) is 

satisfied and therefore the motion of the switching plane variable vector of the overall 

system is globally stable. 

On the sliding mode, expressions (4.5) or (4.6) is satisfied, then, the output error 01 

converges to zero asymptotically. 
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Remark 4.4: One can show, from expressions (4.25)- (4.30), that the derivative of a; 

satisfies the following inequalities: 

(4.31) 

This together with expression (4.30) means that a1 goes to zero in a fmite time, and 

then the sliding motion is started on the sliding mode surface a1 = 0. 

Remark 4.5: Expressions (4.17) - (4.20) show that, unlike the schemes in (Abbass and 

Ozgunner, 1985; Xu, Wu and Huang, 1990), the local variable structure controller 

design in this paper requires only two uncertain matrix bounds and an adaptive 

estimate of the norm of the dynamical interaction term of each subsystem, and the 

involved computations in Abbass and Ozgunner (1985), Ozguner, Yurkovich and 

Abbass (1987), Xu, Wu and Huang (1990) and Morgan and Ozguner (1985), to obtain 

the real time local controller gain matrices are not required here. Therefore, the local 

variable structure controller design is greatly simplified. 

Remark 4.6: The adaptive mechanism in expression (4.15) can also written as the 

following form: 
t 

~ li = ~li(O) + Ja1llc1illa1 ldt (4.32) 

0 

with arbitrary positive initial value~ li(O). 

It can be seen from expression (4.32) that the upper bound of the norm of the 

dynamical interaction term in each subsystem is estimated in Lyapunov sense, and it is 

not necessary for the estimate to converge to the true upper bound of the nonn of the 

dynamical interaction term of each subsystem because the value of the estimate in 

expression (4.32) is increased until the local sliding variable a1 converges to zero. 

Therefore, how large the true upper bound of the norm of the dynamical interaction 

term in each subsystem is not required . 
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In addition, Assumption A4.4 is made for the local controller design using only the 

local information. If the states from other subsystems can be used in local controller 

design, the expression (4.12) in A4.4 can be modified into the following form: 

(4.33) 

where k01 and kli are unknown positive numbers to be adaptively estimated "''d f(.) is 

a known positive function. 

In this case, an adaptive mechanism, which is similar to expression (4.15), can be used 

. '. to estimate kOi and ku in expression (4.33) and the similar results for the controller 

design and the stability analysis can then be obtained. 

Remark 4.7: The strong robustness property of the proposed control scheme is 

obvious. First, although the large scale system in expression (4.1) has high 

nonlinearities, dynamical couplings and uncertain dynamics, the proposed 

decentralised controller can make the switching plane variable vector in expression 

(4.7) converge to zero in a finite time (see remark 4.4). Second, in the sliding mode, 

··'the system is completely insensitive to nonlinearities, dynamical couplings and 

uncertain dynamics. The behaviour of the error dynamics is determined only by the 

sliding mode parameters ,n expression ( 4.6). 

Remark 4.8: If the system in expression ( 4.1) has the bounded input disturbance, The 

dynamical couplings together with the input disturbance can be treated the bounded 

uncertainties (see expression (4.12)). Then the decentralised controller for each 

subsystem has the same structure as in expressions (4.16)- (4.20). 

Remark 4.9: While the local control law ui in expression (4.16) crosses the sliding 

mode ciai = 0, chattering occurs in the system and undesired system dynamics may 

be excited. To eliminate the problem of chattering, the controller gain matrices and the 
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compensator in expressions (4.17) - (4.20) can be modified using boundary layer 

technique as: 

-··' 

k.= 
" 

~= 

k. = 
n 

a.= 
' 

A 
k1• llc.ll 

I I (1. 

' Js1 I a1 I 

~1 • llc.ll 
I I (1, 

Is, s4, ' 
where oli, 52i' 83i and 04i are positive numbers 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

The above local boundary layer control law offers a continuous approximation to the 

discontinuous local control Jaw inside the local boundary layer and guarantees 

attractiveness to the boundary layer and ultimate boundedness of the output tracking 

error to within a neighbourhood of the origin. This will achieve optimal trade-off 

between the control bandwidth and tracking precision. Therefore, the chattering and 

sensitivity of the local controller to parameter uncertainties and dynamical interactions 

can be eliminated. But the drawback is that nonzero error exists. The detailed 

discussion on the boundary layer technique can be found in Corless and Leitman 

(1981). 
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4.4 Application of the scheme to robotic manipulators 

In this section, the controi 8cheme derived in section 4.3 is applied to the robust 

trscking control of rigid robotic manipulators. 

The dynamics of an n-jotnt rigid robotic manipulator can be described by the 

following second-order nonlinear vector differential equation 

M(q) q + F(q, q) + G(q) = U(t) (4.38) 

where q is the nxl vector of joint angular positions, U(t) is the nxl vector of applied 

joint torques (control inputs), M(q) is the nxn symmetric positive-defmite inertial 

matrix, F(q, q) is the vector of coriolis and centrifugal forces, and G(q) is the vector 

of gravi!ational torques. 

For the use of the decentralised control scheme proposed in section 4.3, it is 

convenient to treat each joint as a subsystem. The manipulator dynamic equation 

(4.38) is therefore represented by a collection of n second·order nonlinear scalar 

differential equations 

(4.39) 

n 

m,,(q) ij i + ( ~ m,i(q) ij p>] + f,(q, q) + g,(q) = u, i =I, ... , n 
J=l 
j¢i 

where the subscript "i" refers to the ith element, mu(q) is the time varying effective 

inertia seen at the ith joint, and is always positive due to the positive-definiteness of 

M(q). 
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Defining xi = [ ql 

variables: 

T 

ci 1 ] • expression· (4.40) can be written in tenns of state 

. 0 0 qi n 

X. = + u. - I,m.. ij. 
I -I -I 

I 
-I IJ J 

-mil (fi + gi) m .. m .. j=l 
II II j~i 

= [ :21 I] [0] [0] X·+ -IU·+ 
~22 I ~~ I ljli 

i = 1, ... n 

and the ith local reference model is given in the following fonn: 

x .=A .x .+B .r. nu • "l:ni rru nu 1 

(4.40) 

(4.41) 

where ami21 , ami22 and b mil are known constant numbers determined from an 

engineering point of view. 

The error dynamics is then given by 

e i = Amiei + (Ami- At)xi + B nli- Biui - ~i 

T 
where el·=[£., e.] and£.= q .-q. 

II lmtl, 

In this case, a set of local sliding manifolds are defined as: 

a. = c,el 
I I i = 1, ... , n 

where c1 = [cu Cj:z], whose parameters are positive constant numbers 

(4.42) 

(4.43) 
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If the conditions in expressions (4.12), (4.13) and (4.14) are satisfied for all q and q, 

the global reaching condition (4.8) can then be satisfied by the use of control law 

(4.16) and the controller gain matrices and the compensator in expressions (4.17) -

(4.20). 

On the sliding mode, the desired error dynamics is given by 
. ·I 
t; = ~ '12 '11 t; (4.44) 

Therefore, the output tracking error 8; (i = I, ... n) converges to zero asymptotically . 
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4.5 A simulation example 

In this section, a simple two-link ·robotic manipulator is simulated to test the 

decentralised variable structure model following control scheme derived in section 4.3. 

The full dynamic equations uied in this simulation are given as follows. 

,, .. ·2 . ' 
mil (q2) ql + ml2(q2) q2 = ~12(q2) q 1 + 2 ~12<q2) ql q2 + Y1 (ql' q2) g + ul 

m1lq2) ii1 + m22 ii2 = • ~12<q2) <i; + Y2(ql' q2) g + u2 

2 2 
mil (q2) = (ml +~)II +~I; + 2~llcos(q2) + J I 

where 
2 

~2 =m2I; + 12 

2 
m1iq2) =~I;+ ~~~~cos(q2) + ~~cos(ql+ q2) 

~12(q2) = ~lll:!sin(q2) 

Y1(ql' q2) = • ((m1 + ~)11cos(q2) + m2l:!cos(q1 + q2)) 

Y2(ql' q2) = • ~l:!cos(ql + q2) 

··'The parameter values are 

11 = lm, ~ = O.Sm 

J1 = 5kg.m, J
2 

= 5kg.m 

m1 = 0.5kg, m2 = !.5kg 

Now, each link is considered as a subsystem 
T 

sl ~ xl = [ ql' <U 

The reference model used for each subsystem has the following fonm: 

-
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[ qmi] = r 0 'lr qmi l /lo]r.(t) 

ijmi L-4 -5JL<imiJ 1 ' 

i = I, 2 

where r1(t) = 5 t > 0 

In this example, we let each subsystem and its local reference model have different 

initial values. 
T T 

(qm1(0), ~1(0)] = [0.2, 0] 

T T 
(q

1
(0), q

1
(0)] = (0.4, 0] 

T T 
[ qm2(0), ~2(0)] = [ 2, 0] 

T T 
[ q

2
(0), q2(0) ] = [ I. 8, 0] 

The initial values of the estimates of the upper bounds of dynamical interaction terms 

in expression (4.15) and two uncertain system matrix bounds in expressions (4.13) and 

(4.14) for subsystems S
1 

and S2 are chosen as 

A 

k 11(0) = 1.5, kzi = 2, k,l = 2 
A 

k 1z(O) = 1.5, kzz = 2, 1<,2 = 2 

Switching plane variables are prescribed as 

a! = 5 el + el 

The computer simulation with a sampling interval aT= O.Qls is performed. Fig.4.1 -

Fig.4.3 show the output trackings, tracking errors and the control inputs by the use of 

control law (4.16) with the gain matrices and the compensator in expressions (4.17)

(4.20). It can be seen that good tracking performance has been achieved, but the 

control inputs have undesired chatterings. To eliminate the chatterings, the boundary 

layer scheme using control law (4.16) with the gain matrices and thr compensator in 

expressions (4.34) - (4.37) is implemented. The simulation results are sho'Nll in Fig.4.4 
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- Fig.4.6. It is shown that not only the problem of chattering is eliminated, but also the 

amplitude of the control inputs is greatly reduced. 

X 
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Fig.S. 7-(a) The control input of joint I with local boundaty layer controller 

60,---~--~---r--~--------~--~--, 

40 

20 

0 

-20 

-40 

-G00~---71----~2----~3----~4----~5~--~6~--~7~----;8 

Time t (sec) 

Fig. 5. 7-(b) The control input of joint 2 with local boundary layer controller 



80 

0.05,----~----~--~-~--~--, 

0 

-0.05 

-0.1 

-0.15 

-o.zo:---:1---2:---:3:---4-:----:5:---G:----:7:----:'s 

Time t (sec) 

Fig.5.6-(a) The tracking error of joint 1 with local boundary layer controller 

0.2,--~-~----~--~-~--~--, 

0.15 

0.1 

0.05 

0 

-O.o5;----;-----;;-----;----c,----::------:---=--__J 
012 3 4 56 7 8 

Time t (sec) 

Fig.5.6-(b) The tracking error of joint 2 with local boundary layer controller 



1.4,--~------~-~_:-------, 

1.2 

1 

0.8 

0.6 

0·2o~ :..__~1---:2:---:3~--4;---~5;;--~6;;----;-7----;8 

Time t (sec) 

Fig.5.2-(a) The output tracking of joint 1 

2 

1.J\ 
/''\ 

1.8 I ' 

\ 1.7 

1.6 

1.5 

1.4 
•• 
··~ 

1.20 
1 2 3 4 5 G 7 8 

Time t (sec) 

Fig .5.2-(b) The output tracking of joint 2 

76 

fj 

r 



0.05r----~--~---~-~----, 

0 

-0.05 

-0.1 

-0.15 

- 0·20!-------;-1 --;:;2---;;,----:4:---,5;----,G:----:7~---ts 

Time t (sec) 

Fig.5.3-(a) The tracking error of joint 1 

0.2.---~-~-~-~-~-~-~-, 

0.15 

0.1 

0,05 

0 

-o.os0L_----71 ----~2----~3;-----4;-----~5-----cG----~7~---ss 

Time t (sec) 

Fig.5.3-(b) The tracking error of joint 2 

77 



78 

60r---~--------~--~------------------, 

Time t (sec) 

Fig.5.4-(a) The control input of joint 1 

Time t (sec) 

Fig.5.4-(b) The control input of joint 2 
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4.6 Concluding remarks 

A robust decentralised model following control scheme using variable structure theory 

for a class of large scale systems is investigated in this chapter. The main contributions 

of this chapter are that only iwo uncertain bounds of the subsystem matrices and an 

Lyapunov estimate of the norm of the dyoamical interaction term are required in the 

local controller design for each subsystem. The controller design is greatly simplified 

and robustness and asymptotic error convergence are guaranteed for the overall 

system. The scheme has been successfully applied to the tracking control of robotic 

manipulators. 



ChapterS 

Decentra/ised Model Following Control Using 
Terminal Sliding Mode Technique 

5.1 Introduction 

73 

fu this chapter, we investigate a new tenninal sliding mode technique to improve the 

errm· convergence developed by (Man. Z. eta!, 1992). It is shown that a multi variable 

tenninal sliding mode is first defined for the model following control of rigid robotic ... 
manipulators, and the relationship between the tenninal sliding variable vector and the 

error dynamics of the closed loop system is established in order for the stability analysis 

of the error dynamics for each subsystem. The robust local tenninal sliding controller 

can be designed based on a few structural properties of rigid robotic manipulators. 

Unlike the linear sliding mode control schemeS, the tenninal sliding variable vector has 

a non linear tenn of the velocity error. By suitably designing a controller, the local 

tenninal sliding variable vector can converge to zero in a finite time, and the output 

tracking error can then converge to zero on the tenninal sliding mode in a finite time. 
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Similar to the conventional linear sliding mode control schemes, the proposed tenninal 

sliding mode control scheme can also provide the strong robusmess with respect to 

large uncenaln dynamics and bounded disturbances for the overall system. FUrther, the 

controller design is greatly simplified in the sense that only a few uncertain bounds of 

the controlled robot system are used as the controller parameter. 

This chapter is organised as follows: In section 5.2, the system model and control 

objectives are fonnulated for each subsystem is introduced. In section 5.3, a robust 

decentralised variable strocture model following control scheme is developed.. In 

section 5.4, the scheme is applied to the tracking control of rigid robotic manipulator 

.Section 5.5 gives conclusions. 

5.2 Problem Formulation 

Consider a class of large scale multivariable systems consisting of n interconnected 

subsystems. Each subsystem can be represented as 

··' xi(t) = <\(x(t)) xi(t) + Bi(x(t)) ui(t) + <l>i(x}!J, xpJ. t) i =I, ... , n. (5.1) 

0 I 0 

<\(X(t)) = 

0 

· ~.(x., x., t) 
0 1 J J 

I 

0 

I 

"ini(x(t)) 

0 

Bi(x(t)) = 
0 

bi(x(t)) 

I 
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where Xje Rni is !he state vector of lh~ ith subsystem, Ui e R 1 is !he local control 
T 

input, and x(t) = [ x
1 
(t), x. (t) ] is !he state vector of the overall system. 

A;_(x(t)) e Rnixni and Bi(X(t)) e Rnixl are unknown subsystem parameter matrices. 

sn.:<x(t)) ( i = 1, ... , n and k = 1 , ... , ni ) and bi(x(t)) ( i = 1, ... , n ) are bounded 

parameters of subsystem matiices A;_(x(t)) and Bi(x(t)), respectively. Further, !he sign 

of bi(x(t)) is assumed to be known (b1• > 0). <!>.( x., X., t )e Rni and q,.( x., X., t )e 
IJJ IJJ 

R1 ( j = 1, ... , n and j '# i) are linear or nonlinear functions representing dynamical 

interactions of subsystems. 

The desired performance of !he ilh subsystem (1) is embodied in !he definition of a 

local reference model specified by !he designer as 

(5.2) 

0 1 0 ... 0 0 

··' 
A,;= 

1 
Bmr= 

0 
bmi 

a mil ... l\runi 1 

where xmi e Rni is !he state vector of !he ilh local reference model, ri e R 1 Is a 

piecewise continuous and uniformly bounded ith reference inpul, Ami e Rnixni and 

Bmi e Rnixl are !he known constant matrices and Ami is stable. 

The local output tracking error vector of each subsystem is defmed as 
T 

ei=xmi~xi = [ Etl'"''l:1ni] (5.3) 
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and a set of local switching plane variables which are assumed to exist in the local 
error space passing through the origin are defmed as 

i = 1, ... , n (5.4) 

T 
where C; = [ '11' 1,Q. .. 0 ] is a constant vector to describe the desired error 

.. ; 

dynamics in the sliding mode 

c1e1 + c11 (e11'- e11 ) = 0 
or 

c11e11 P + e11 = 0 

(5.5) 

(5.6) 

If the constant parameter vector Ci are selected such that the eigenvalues of the 

differential equation (5.6) are negative, then, the output error ei converges to zero in 

afmite time . 

Expression (5.4) can also be expressed in the following form 
T T 

cr(t) = [ cr1(t), ... , cr,(t) ] = [ c1e1
(t), ... , c,e,(t) ] (5.7) 

Remaric 5.1 :In expression 5.4- 5.6, where c11 > 0, p = p, I p, and p1 and p, which 

are positive integers which are selected such that 

p1 = 2m - 1, m = 1,2, ..... . (5.8-a) 

p2 = 2m + 1 m = 1,2, .... (5.8-b) 

Remarlc 5.2: It bas been shown in (Zak 1988 & 1989) that ei = 0 is the terminal 

attractor of the system (5.6). Let the initial value of e; at time t = 0 be 1!;(0) and 

parameter p be chosen as shown in remark 5.1, then the relaxation time ~ for a 

solution of the system (5.5) is given as follow: 
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(5.9) 

Expression (5.9) also means that, on the tenninal sliding mode in expression (5.6), the 

output tracking error converges to zero in a finite time. The details on the tenninal 

anractor and its applications can be found in(Zak 1988 & 1989). 

Expression (5.7) is called as the switching plane variable vector of the overall system. 

It is well known that the sufficient condition for the switching plane variable vector in 

expression (5.7) to be globally stable is given by (Abbass and Ozgunner, 1985; 

Ozguner, Yurkovich and Abbass, 1987; Xu, Wu and Huang, 1990; Morgan and 

··' 

Ozguner, 1985) 

i = l, ...... ,n (5.10) 

For further discussion, the following asumptions are made. 

A.6.1 The subsystem and local reference model are controllable 

A.6.2 The local state vectors xi and xmi are measurable for feedback for the ith input 

A.6.3 The subsystem and its reference model structurally satisfy the following matching ~o1 

(Xu eta!., 1990; Ieung eta!., 1991 ). 
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(I. 
I 

(I. 
I 

- BiBt)Bmi 

. •'' 
' 

= 0 

- BiBt)(Ami- Ai) = 0 

- BiBt)<l>i = 0 

(5.11-a) 

(5.11-b) 

(5.11-c) 

A.6.4 The dynamkal interaction term in each subsystem is upper bounded 

A.6.5 c1 B1 Is lower bounded 

A.6.6 The norm of Ami- Ai is upper bounded 

~A . - A. ~ < k
3
. 

~ Dnl 1 ~ 1 

A.5.7 The non-linearity term for each subsystem is upper bounded 

where k11 , k21 , k31 , k41 are constant positive numbers. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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Remark 5.3 : Assumption A.5.4 means that the dynamical interactions between 

subsystems and assumption A.5.5 which is the non-linearities in each subsystem are 

treated as bodnded uncertainties. 

78 



... 

79 

Remark 5.4 : Since expression (5.9) multiplied by any arbitraiy nonzero scalar does 

not change the position of the sliding mode, and the element b,(t) ofmatrixB1 is a 

bounded positive ( or negative ) time varying p1Callleters, assumption A.5.5. can 

always be assumed (Khurana eta!., 1985 ). 

Remark 5.5 : Assumptions A.5.5. and A.5.6 show that two uncertain subsystem matrix 

bounds, together with the upper bound of dynamical interaction in assumption A.5.4, 

will be used as the subsystem sbUctural information in the local controller design. 

5.3. A decentralised variable structure control 

In this part, the following contro11aw, similar to similar to chapter 5, is used for each 

subsystem 

(5.16) 

where ke1 e Rb111
, k~ e R1

xnl and kn e R1 are determined later, 01 e R1 is a 

discontinuous compensator picked according to the bound of the dynamical interactions 

&nd fmal!yy, e R' is non -linearity compensator picked according to the bound of the 

non -linearity for each subsystem 
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In order to design control law ( 5.16) by using three uncertain bounds in A.5.4- A.5.7, 

and guarantee finite time convergence of the output tracking error, we have the 

following new results. 

Theorem 5.1 : The motion of the switching plane variable vector of the composite 

system in expression (5.9) is globally stable, and the output tracking error in expression 

(5.3) converges in a finite time to zero if the gain matrices and the compensator in the 

control law (5.15 ) are designed as 

_,,; 

k.= 
el 

k ·= XI 

k3ilhl T 
llxicrill " 0 I II'" "· k2i 'i"i I I 

01 . xm llxicri ~ " 0 

(5.17) 

(5.18) 
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lcijlsmil 
hail "' 0 II r. a. 

k2i riai I I 
(5.19) 

k.= n 

o,xni . lhaill "' 0 

ifillku 

~~J~ri Ifill .. o 

B.= (5.20) 
I 

0 I . xru llai I=O 

lhllk4i 

k2ilffi 
ifJI .. o 

y.= 
··' 1 

(5.21 ) 

0 lxni llaii=o 

Proof: Using expressions (5.1), (5.2) and (5.3), we get the error dynamics of the ith 

subsystem in the following fonn 

. 
e.= (A .e. +(A . -A.)x. +B .r. -B.u. -<!>. 

1 mtt mt 1 1 mtt 1 1 1 

selecting the scalar positive defmite Lyapunov function 

(5.22) 
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V _.!. '· 0- <rt 
I 2 

' 

and differentiating it with respect to time we have, 

(5.23) 

=c.(A . -B.k .)e.cr. +c.[(A .A.)-B.k .]x.cr. +c.(B . -B.k .)r.cr. 
1 mt tettt 1 m11 tXltt 1 mt tntt 

-ci(ci>i +Biai)- ci{(l- c1per')e1+ Biyi)cri 

c(A.-Bk )ecr 
I I ol I I 

<c. A .e. cr. -~c.I~IA . mle.cr) , o 
1 mt 1 1 II til mtll 1 til 

(5.24) 

(5.24-a) 
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c. (B . -B.k .)r.a. 
tmt tntt 

c.B .r.a.- c.B.~~Bmi~~~~r.a.jj2 
lffi111 llk 11 

2
. r.a. 
1 1 1 

c.(<l>.)a. + c.(B.B.)a
1 l 11 111 

= c.(<l>.)a. + c,B,ku/lc,J/Jicr,JJ' 
1 1 1 c,B,Jp,/1 

..... 
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(5.24-b) 

(5.24-c) 

(5.24-d) 
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(5.24-e) 

Then v, =cr,a, <0 (5.25) 

Expression (5.25) means that the global reaching condition in expression (5.7) is 

satisfied, and therefore , the motion of the switching plane variable vector of the 

composite state is globally sable. 

On the sliding mode, expression (5.6) is satisfied, the output error can the converge to 

zero in a finite time. 

··' 

Remark 5.6: Expression (5.17)-(5.21) show that, unlike the decentralised variable 

structure schemes in Abbas and Ozgner (1985) and Khurana (1986), local variable 

structure controller design requires only four uncertain bounds of subsystem matrices 

and dynamical interactions. The involved computation in Abbass and Ozguner 

(1985), Ozgunner et a!. (1987) and Xu et a!. (1990) to obtain the controller gain 

matrices are not required here. Therefore, the local variable structure controller design 

is simplified and strong robustness with respect to large system uncertainties 

dynamical interactions and non-linearities can be obtained. I addition, the controller 
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gain matrices and the compensator in expression (5.17)-(5.21) can be calculated 

directly from the measurements according to assumption A5.2 and the definition of <li· 

Remark 5. 7 From equation 5.6, on the tenninal sliding mode, the tenn can be replaced 

b ( 2 ,,., ') Th' ·, b h lid' d . ' H y c11 pe11 - c11e11 • 1S 1s ecause on t e s mg mo e e = -c11e11 . ere we can 

show that finite time convergence can still be guaranteed because 0 < p < 1. 

Remark 5.8 while the local control law u1 in expression (5.16) crosses the local 

sliding mode ci <ri = 0, chattering occur in the system and undesired system dynamics 

may be excited. To eliminate the effects of chattering , the controller gain matrices and 

the compensatory expression (5.17)- (5.21) can be modified using boundary layer 

technique as follow. 

llcJIAmill T ~~iaill " ali k2i[leiaJ ei O'i 
···' 

kei = (5.26) 

llcJIAmi II r 
lleiai II< ali a e. a. 

k2ili l l 

(5.27) 
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" 

B.= 
I 

,,,yi = 

~cih cr. 
~· 
Jhhcr 
k2iB 4i i 

lf;/Jk 4i 
~FP 
0 lxni 
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(5.28) 

lfJ~a4i 
(5.29) 

if; I<B4i 

ifJ' B" 

(5.30) 

h 1/<B" 

using the above local boundary layer controller law, the local switching plane variables 

can be forced to move toward the local sliding mode surfaces and then the local control 

input can be smoothed in a boundary layer neighbouring the local sliding mode. This 
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will achieve optimal trade-off between control bandwidth and tracking precision. 

Therefore, dynamic interactions can be eliminated, but the drawback is that non-zero 

error exists ( Slotine and Sastry, 1983; Slotine 1984) 
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5.4 Application of the scheme to robotic 
manipulators 

88 

In this section, the control scheme derived in section 5.3 is applied to the robust 

tracking control of rigid robotic manipulators. 

The dynamics of an n-joint rigid robotic manipulator can be described by the 

following second-order nonlinear vector differential equation 

M(q) q + F(q, q) + G(q) = U(t) (5.31) 

where q is the nxl vector of joint angular positions, U(t) is the nxl vector of applied 

joint torques (control inputs), M(q) is the nxn symmetric positive-defmite inertial 

matrix, F(q, q) is the vector of coriolis and centrifugal forces, and G(q) is the vector 

of gravitational torques. 

For the use of the decentralised control scheme proposed in section 5.3, it is 

convenient to treat each joint as a subsystem. The manipulator dynamic equation 

···'(5.31) is therefore represented by a collection of n second-order nonlinear scalar 

differential equations 

I 0 

mii(q) q 
1 
+ [ ~ m

1
/q) q i(t)] + f

1
(q, q) + g

1
(q) = u

1 
i = !, ... , n (5.32) 

j=l 
j¢i 

where the subscript "i" refers to the ith element, mii(q) is the time varying effective 

inertia seen at the ith joint, and is always positive due to the positive-definiteness of 

M(q). 

Defining 

variables: 

T 

q i ] • expression (5.32) can be written in tenns of state 
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q, 0 0 
" 

X. = + u. - ·~::,mij qj 
I 

·1 f ·1 
I 

·1 
- mii ( i + g,J mii mil 

]=1 
j¢i 

= ~~21 I] (0] (0] X. + -l U. + 
.1\22 I ffijj I q,j 

i = 1, ... n (5.33) 

and !he ilh local reference model is given in !he following fonn: 

X mi = Amixmi + B oli (5.34) 

where ami21• ami22 and bmilare known constant numbers detennined from an 

engineering point of view. 

The error dynamics is !hen given by 

e.= A .e.+ (A . -A)x. +B .r.- B1·u·1 - <I>· 
1 ·w 1 nu 1 1 nu 1 1 

(5.35) 

T 
where ei = [ei, e1 ] and ei = qmi- Q;, 

In !his case, a set of local sliding manifolds are defmed as: 

i=l, ... ,n (5.36) 

where Ci = [Cil I], whose parameters are positive constant numbers 
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If the conditions In expressions (5.12), (5.13) (5.14) and (5.15) are satisfied for all q 

and q, the global reaching condition (5.10) can then be satisfied by the use of 

control law (5.16) and the controller $ain matrices and the compensator In expressions 

(5.17)- (5.21). 

On the sliding mode, the desired error dynamics is given by 

(5.37) 

Therefore, the output tracking error llj (i = I, ... n) converges to zero in a fmite time. 
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5.6 Concluding remarks 

A decentralised model reference tenn'inal sliding mode control scheme using variable 

structure theory for a class of large scale systems is investigated in this chapter. The 

main contribution of this chapter is the usage of a nonlinear sliding mode and 

convergence of error faster than the ones of the linear sliding mode scheme . Similar to 

the discussion in Chapter 5, there are only 4 uncertain bounds, are required with local 

controller design and therefore the controller design is greatly simplified, strong 

robustness to large system uncertainties and strong dynamical interactions is obtained 

and finite time convergence of output tracking error is guaranteed. The chattering 

problem is eliminated by using the boundary layer technique. 
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Chapter 7 

Conclusions 

Variable structure technique is a powerful approach for the control of nonlinear robotic 

manipulators. It is advocated to solve complex control problems that are not within 

the scope of simple linear feedback controllers and adaptive controllers. A number of 

factors, such as nonlinearities, parameter uncertainties, nonlinear couplings and 

disturbances, are known to affect performance of robotic control systems. Therefore, 

this thesis has been mainly concerned with the study and improvements of robust 

control schemes for rigid robotic manipulators in the presence of these non-ideal 

.·•conditions. 

Chapter three and chapter four of this thesis has provided a survey for the basic 

variable structure control theory and recent significant results on variable structure 

control for robotic manipulators. The limitations of these results in non-ideal 

conditions have also bean highlighted. 

Chapter five have provided a robust decentralised variable structure control schemes. 

It has been shown that variable structure controllers can be designed based on several 

uncertain system matrix bounds, and the controller gain matrices are adaptively 

adjusted by input and output measurements so that strong robustness and asymptotic 

convergence of the output tracking error can be achieved. 
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In chapter 5, the linear sliding mode technique was replaced with a terminal sliding 

mode technique so that the output tracking error has a fmite time convergence. It is 

seen that only theoretical analysis of the terminal sliding mode controller for rigid 

robotic manipulators are carried out. ti>e simulation and further investigation need to 

be done. 

In summary, the thesis has provided two new and improved robust variable structure 

control scheme aimed at achieving robustness and convergence against nonlinearities, 

parameter uncertainties, nonlinear couplings and external distnrbances in the control of 

robotic manipulators. We believe that the result has potential to improve the 

performance of the robust control of robotic manipulator. 
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