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ABSTRACT 

This thesis investigates the problem of robust adaptive sliding mode control for 

: .. onlinear rigid robotic manipulators. A number of robustness and convergence 

results are presented for sliding mode control of robotic manipulators with 

bounded unknown disturbances, nonlinearities, dynamical couplings and parameter 

uncertainties. The highlights of the research work are summarized below: 

• A robust adaptive tracking control for rigid robotic manipulators is proposed. In 

this scheme, the parameters of the upper bound of system uncertainty are 

adaptively estimated. The controller estimates are then used as controller 

parameters to eliminate the effects of system uncertainty and guarantee 
>­
~' 

asymptotic error convergence. 

• A decentralised adaptive sliding mode control scheme for rigid robotic 

manipulators is proposed. The known dynamics of the partially known robotic 

manipulator are separated out to perform linearization. A local feedback 

controller is then designed to stabilize each subsystem and an adaptive sliding 

mode compensator is used to handle the effects of uncertain system dynamics. 

The developed scheme guarantees that the effects of system dynamics are 

eliminated and that asymptotic error convergence is obtained with respect to the 

overall robotic control system. 

• A model reference adaptive control using the terminal sliding mode technique is 

proposed. A multivariable terminal sliding mode is defined for a model 

following control system for rigid robotic manipulators. A terminal sliding 

mode controller is then designed based on only a few uncertain system matrix 

bounds. The result is a simple and robust controller design that guarante.es 

convergence of the output tracking error in a finite time on the terminal sliding 

mode. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

In the past few decades, robots have played a significant role in the ever-escalating 

need for automation. Most applications are limited to simple, low-precision and 

low-speed tasks. Low-speed robots offer a more pragmatic solution today as they 

have minimal dynamic interaction which allows the control model to be effectively 

linearized and decoupled. 

Most of the present-day industrial robots use PID-type controllers which are 

generally completely error-driven. The PID control scheme uses independent joint­

controllers for each link of the robotic manipulator (Craig, 1986). The main 

drawback of this scheme comes from the inherent lack of an adequate decoupling 

mechanism for errors that are caused due to joint couplings and other link 

interactions. The errors caused by these dynamical interactions are suppressed by 

the control law. 



A robot controller used in high-speed operations must be able to handle system 

nonlinearities and dynamical joint couplings. An adequate compensation 

mechanism must be provided for unmodelled errors, external disturbances and 

noise. The controller must also be capable of handling parameter variations like 

unplanned payload changes and cater for real-time control at high control 

bandwidths. 

In order to overcome the control problem associated with a highly nonlinrar plant 

like, a robot manipulator, several Jinearization schemes were developed in Luh 

( 1983), Desa and Roth ( 1985), Whitehead et al. ( 1985), Kreutz ( 1989). However, 

these schemes were based on several restrictive assumptions. The symmetric 

positive-definite inertia matrix and the vector of coriolis, gravitational nncl 

centrifugal forces were assumed to be exactly known and any violation of these 

assumptions could result in the failure of the Iinearization control. 

The computed torque input method uses an independent input for each degree of 

freedom and provides a global feedback linearization scheme for robotic 

manipulators. But this approach did not provide good results when the difference 

between the computed torque and the actual robot dynamic parameters were 

significant. (Silva de and MacFarlane, 1984) 

Spong and Vidyasagar ( 1987) used a feedback compensator to deal with system 

uncertainties and external disturbances. This is ensured by placing the poles of the 

closed loop system sufficiently far in the left half-plane. The known dynamics are 

then used to design a nominal system model. However, the output tracking error 

still cannot converge to zero. 
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Adaptive control is useful when the dynamics of the manipulator are unknown, or 

change due to uncertainties. Adaptive control uses an on-line adjustment 

mechanism, based on several useful properties of the robotic manipulator, to 

change its parameters depending upon the changes detected in the system 

dynamics. Various adaptive control schemes have been proposed (Crag et al., 

1986., Slotine and L, 1987, 1988., Middleton and Goodwin, 1988). 

In Dubowski and Des Forges ( 1979), a model-reference adaptive control scheme 

was proposed. The error between a reference model, and the actual robot response 

is used by the adaptive controller to upJate the servo parameters in real-time. This 

scheme has several disadvantages. Firstly, the feedback control must be realised 

through some independent means. Also, the adaptive law, which is independent of 

the robot model, assumes that some nonlinear terms of the robotic manipulator are 

constant (Silva de and Macfarlane, 1984 ). 

The work in Crag et al. ( 1986) proposed the use of a dynamical equation of the 

robotic manipulator within a linear function of the unknown parameters. The 

estimated parameters are then used to design the controller. This scheme ensures 

convergence of the output tracking error to zero with all signals constrained within 

established bounds. But, it still needs a measurement of the acceleration for the 

adaptive mechanism. Furthermore, the estimate of the inertia matrix must remain 

uniformly positive-definite. This latter constraint is removed in Ortega and Spong 

( 1989) where an estimate of the inertia matrix and other unknown parameters 

which have a fixed value are used for feedback. The output tracking error 

convergence is ensured by an adaptive additive signal that compensates for the 

3 



error in the estimates. However, it still requires all signals to remain bounded. 

Amestegui et al. (1987) use a different parameter estimation technique which does 

not require the bounded condition of the above schemes. Middleton and Goodwin 

( 1988) proposed a scheme which does not require measurement of the joint 

acceleration but it still requires boundedness of the inverse of the estimates of the 

inertia matrix. 

In all the above adaptive schemes no mechanism is provicled to specify the 

transient error. In addition, it is well-known that the non-uniform nature of 

asymptotic stability can lead to a loss of stability and a large deviation from the 

desired response, due to small changes in dynamics or the presence of small 

unmodelled disturbances 

Sliding mode control or variable structure control was pioneered by Emelyanov 

and several other researchers in the early I 960's in the Soviet Union (Emelyanov, 

1962. 1966). The plant under consideration was a linear, second-order system 

modelled in phase variable fonn. Sliding mode control has been used for robot 

control since the late 1970's (Young, K-K.D., 1978) and has since evolved to be an 

effective method for the control of robotic manipulators with large system 

uncertainties and bounded input disturbances. 

In the work of Young ( 1978, 1988), Abbass and Chen ( 1988) and Morgan and 

Ozguner ( 1985) it is shown that robustness and convergence can be obtained by 

using linear sliding mode techniques based on the upper and lower bounds of all 

unknown system parameters. 
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Morgan and Ozguner ( 1985) and Abbass and Ozguner ( 1985) presented 

decentralised sliding mode control schemes. These schemes were modifications to 

the Young controller and use a simplified controller design where local controllers 

are used for each subsystem. Unfortunately, the chattering that occurs in the 

control input due to the control action can cause excitation of undesired high­

frequency dynamics. To counter the chattering problem, Slotine and Sastry (1983) 

proposed the boundary layer technique. Further details of the boundary layer 

controller can be found in chapter 2. 

Further research in decentralised sliding mode control yielded several new and 

improved schemes. In the scheme of Fu and Liao ( 1990), five parameters of the 

uncertain bounds need to be adaptively estimated in each local controller. 

However, as the number of links increase, the controller design gets increasingly 

complicated. Leung et ai. ( 1991) proposed a generalised scheme where only five 

parameters are estimated for any n-link robotic manipulator. However, it does not 

address the problem of eliminating the effects of bounded input disturbances. In 

the work of Man and Palaniswami ( 1994), a sliding mode controller is designed for 

any n-link rigid robotic manipulator using only four uncertain system matrix 

bounds. Robustness and asymptotic convergence properties are obtained using an 

upper bound of the input disturbances. 

The terminal sliding mode technique has been developed based on the idea of 

terminal attractor in Zak ( 1988, 1989). Unlike the linear sliding mode control in 

Utkin (1977), Young (I 978, 1988) and Man and Palaniswami ( 1993, 1994), the 

terminal sliding mode technique has a nonlinear term of the velocity error. By 
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suitably designing the controller, the terminal sliding variables can reach the 

terminal sliding mode in a finite time and the output tracking error can then 

converge to zero in a finite time on the terminal sliding mode. 

1.2 Contributions of the thesis: 

The thesis investigates the foIJowing three control algorithms for rigid robotic 

manipulator control using linear and terminal sliding mode control techniques. 

• A robust adaptive tracking control for rigid robotic manipulators. 

• A decentralised adaptive sliding mode control scheme for rigid robotic 

manipulators. 

• Model following control using tenninal sliding mode control technique for rigid 

robotic manipulator. 

The contents of the thesis are organised as follows: 

Chapter 2 provides a brief survey of variable structure theory and its application 

to robotic manipulators. The fundamentals of sliding mode control design, 

robustness analysis for linear and nonlinear systems are reviewed. 

Chapter 3 considers a robust adaptive tracking control for rigid robotic 

rnanipulators. A linearised error system, based on a nominal system model is 

described, and a robust sliding mode control scheme using an uncertain bound is 

briefly reviewed. A new robust adaptive tracking control scheme for rigid robotic 

manipulators is proposed where an adaptive tracking mechanism is used for the 

estimation of the uncertain bound. The estimate is then used as a controller 
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parameter to eliminate the effects of large system uncertainties and tc, obtain 

asymptotic error convergence. Error convergence and robustness with respect to 

uncertain system dynamics are discussed in detail. 

Chapter 4 considers a decentralised adaptive sliding mode control scheme for 

rigid robotic manipulators. An adaptive mechanism is proposed to estimate the 

upper bound of system uncertainties. This estimate, which is updated in the 

Lyapunov sense in each subsystem, is then used as a local controller parameter to 

guarantee asymptotic convergence and eliminate the effects of uncertain dynamics. 

This results in a simple and robust design for the sliding mode controller. 

Chapter 5 considers a new model following control using terminal sliding mode 

technique for rigid robotic manipulators. A new model following control scheme 

using terminal sliding technique is investigated based on the idea of terminal 

attractors in Zak (Zak, M., 1988, 1989). A multi variable terminal sliding mode is 

defined for a model following control system of rigid robotic manipulators. A 

controller is then designed based on only a few uncertain system matrix bounds. 

This scheme results in a simplified robust controller design that guarantees 

convergence of the output tracking en-or in a finite time on the tem1inal sliding 

mode. 

Ch~pter 6 provides a brief overview of the results of the three schemes proposed 

in chnpters 3, 4 and 5 respectively. 
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Chapter2 

A Survey of Sliding Mode Control Theory and its 

Application to Robotic Manipulators 

2.1 INTRODUCTION 

In Chapter I we briefly discussed various schemes applied in the control of 11gid 

robotic manipulators. This chapter provides a survey of sliding mode control 

theory and its application to the control of robotic manipulators. In broad terms, a 

sliding mode control system may be regardec as a combination of subsystems, 

where each subsystem has a fixed structure and its own region of operation in the 

system space. The control law defines a time-varying surface embedded within the 

state space of the dynamical system such that the system trajectories are forced to 

remain in the vicinity of this imaginary surface. 

Sliding motion occurs when a system state is repeatedly forced across the 

switching surface that passes through the state of equilibrium, the origin. The 

system trajectory then appears to "slide" asymptotically to the origin. When sliding 
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motion occurs on all the sliding surfaces, together, the system is said to be on the 

sliding mode. 

The main objective of the sliding mode controller is to force every trajectory to 

come in contact with and remain at the intersec.tion of m sliding surfaces in the n­

dimensional joint space, where n>m. The motion of the system on the sliding 

mode is effectively confined to a certain subspace of the full state space, thus 

making the system equivalent to a lower order system called the equivalent system. 

Once on the sliding mode, the system response is robust to parameter variations or 

unmodelled system characteristics. (Utkin and Young, 1978). 

In this chapter, sections (2.2)-(2.4) discuss the conditions for existence of a sliding 

mode using a linear system model and provides a brief discussion on the 

implications of using sliding modes on non-linear systems. Section (2.5) gives an 

insight into the robustness of sliding mode control systems. Section (2.6) explains 

the boundary layer control. Section (2.7) reviews the terminal sliding mode control 

technique which ensures finite-time convergenc~ on the sliding mode. Section 

(2.8) explains the application of sJiding mode control to rigid robotic manipulator 

control. 

2.2 SLIDING MODE CONTROL FOR LINEAR SYSTEMS 

The primary function of the sliding mode controller is to ensure convergence of 

every trajectory towards and onto the intersection of the sliding surfaces. The 

design of the controller consists of 3 ~t{';:s (Thukral and Innocenti, J 994) 

1. Choice of a set of switching surfaces. 
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2. Determination of the behaviour of the control law. 

3. Determination of the switching logic to be used with the sliding surfaces which 

passes through the origin. 

The following sections discuss the application of the sliding mode technique to 

linear systems. 

2.2.1 The Linear System Model 

Consider the linear, time-invariant plant 

X(t) = AX(t) + Bu(t) (2.1) 

where X E R" and u E R01 represent state and control vectors respectively and 

n>m. A and B are constant system matrices and B is assumed to be of full rank m. 

The pair (A, B) are assumed to be completely controllable. 

The function of the sliding mode controller is to perform the following tasks: 

I. To drive the system trajectories from any arbitrary initial position towards the 

sliding mode. (reaching mode) 

2. To guarantee that that all motion therein, remains on the sliding mode. (sliding 

mode) 

The reaching mode is realised using a suitable high-gain control action. The high­

gain switch action forces the control from any arbitrary initial condition onto the 

sliding surfaces. 

10 



This control law is of the fonn 

u = -k wizen S(X)::?: 0 

u = k when S(X) < 0 

where k is a positive constant, such that, the reaching mode attains the reaching 

condition S(X)=O. 

The constant k must ensure that the trajectory reaches the sliding mode in the 

shortest time possible. The value of k generally depends on the upper bound of the 

system input that would fully compensate the dynamics of the controlled system 

and achieve the desired state while providing robustness to parameter 

uncertainties. 

The application of the sliding mode technique begins with the design of a set of 

switching plane variables such that system response is asymptotically stable and 

has the required transient characteristics. The switching plane variables generally 

used are linear functions of the system states. This scheme called the linear sliding 

mode technique, is based on the assumption that asymptotic convergence to the 

origin can be guaranteed by ensuring that the tangential component of the 

switching variable always points towards the switching surfaces. (Utkin, 1977) 

The sliding mode design defines m sliding surfaces which fonn a set of 

intersecting hyperplanes that pass through the origin. These switching surfaces can 

be defined as: 

i=l..m 

11 



or S=CX 

where, qe R" is a constant vector, called the switching plane variable vector and 

X e Rn is the state vector in phase variable form. 

The system (2.1) is said to be on the sliding mode when the state reaches and 

remains on the intersection of the m hyperplanes. 

Once on the sliding mode, the switching control law is de-activated and the 

trajectories converge asymptotically to the origin, governed only by the sliding 

mode parameters. Sliding mode control is thus a means of ensuring asymptotic 

convergence of the system trajectory on the sliding mode. 

The Lyapunov second or direct method is a generalised means of proving system 

stability. It provides a time-domain method based on the system model. In the 

time-invariant case, the stability problem becomes one of determining the stability 

of the equilibrium state which is assumed to be the origin of the system space. 

For analysis of sliding mode control systems, the Lyapunov candidate function 

is generally used. 

According to the Lyapunov direct method 

V>O 

12 



• T. T. • 
V = S S < 0 or S; S1 < 0 l = I..m, 

V(O) =0 

is a sufficient but not necessary condition for asymptotic convergence of the state 

trajectories of the system. 

2.2.2 Equivalent Control 

Equivalent control is used for describing the system dynamics on the sliding mode 

(Hung et al., 1993 ). It is based on the fact that S(x) = 0 is a necessary condition 

for the state trajectories to stay on the sliding surface S(X)=O. 

The origin, where the intersecting hyperplanes meet, i.e. where 

S1 = 0 and S1 = 0 (i=l..m) can be expressed as: 

s= ex =O (2.2) 

substituting (2. I) in (2.2) we get: 

S = C(AX + Bu) = 0 (2.3) 

u,q = -(CB)-' CAX(t) where ICBl*O. 

and Ucq is called equivalent control. 

Equivalent control represents the state of the input required to ensure that the state 

trajectory stays on the sliding surface S=O. 

The system response on the sliding mode can now be described as: 

13 



X(t) = AX(t)-B(CB)-1CAX(t) 

= [/-B(CB)-1C]AX(t) 

The system defined in (2.4) is called the equivalent system. 

(2.4) 

From the above discussion it is clear that the equivalent system is independent of 

the control input X. The sliding variable vector Ci uses the control input only as a 

varameter to drive the system from an arbitrary initial condition onto the sliding 

mode. The matrix C can therefore be designed with no prior knowledge of the 

control inputs. 

The non-singularity property of CB (ICBl:;c()) implies that N(C) (null space of C) 

and R(B) (range space of B) are complementary regions of the state space i.e. 

N(C) n R(B) = {o}. Therefore, the behaviour of ~he equivalent system is 

unaffected by the control input when sliding motion occurs within N(C). On the 

other hand, if ICBl=O then N(C)nR(B)-::t {o}and the resulting motion depends 

on Bu in (2.1 ). Utkin ( 1977) has shown that if ICBl=O then equivalent control is 

either not unique or does not exist. Therefore sliding motion cannot be achieved if 

the non-singularity condition is not satisfied. 

2.3 A SIMPLIFIED HYPERPLANE J\,10DEL 

The system model defined in (2.1) assumes that the input B is of full rank m. 

Darling and Zinober (1986) proposed a scheme which simplifies the design of 

sliding mode control systems. 

There exists an orthogonal nxn transformation matrix T such that: 

14 



TB = [ :, ] where B2 is mxm and non-singular. 

Define a transformed state variable y = Tx such that 

Y(t) = TAT7 Y(t) + Bu(t) (2.5) 

and the sliding condition is 

CT7 y(t) = 0 (2.6) 

If Y is partitioned such that 

Y7 = [l/ Y/] where r; E Rn-m, Y2 ER'" 

TAT 7 and CT 7 are partitioned as: 

(2.7) 

(2.8) 

then (2.5) and (2.6) can be written as: 

(2.9) 

(2.10) 

On the sliding mode: 

(2.11) 
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(2.12) 

C 
where, F=-1 

C2 

The equation may be represented as: 

(2.13) 

The equivalent system is an (n-m)th order system thereby simplifying the system 

dynamics on the sliding mode. 

From (2.12) and (2.13) we can say that the system dynamics are governed by C. 

A suitable choice C can guarantee desirable performance. The following section 

discusses two methods of designing the sliding mode parameter matrix C. 

2.3.1 Hyperplane design schemes 

The equivalent system behaviour on the sliding mode depends on an appropriate 

choice of F, where F=C 1/C2 and consequently of the sliding mode parameter 

matrix C. This section discusses two methods of sliding mode parameter design. 

By Quadratic Minimisation: 

Utkin and Young (1978) proposed a design in which a cost functional is 

minimised. This cost functional consists of an integrand which is a linear quadratic 

regulator (LQR) of the state X(·). 

16 



If t5 denotes the time at which sliding motion begins, then the cost functional is 

defined as: 

I -
J(u) = - j X 7 (t)QX(t) dt 

2 I 
I 

(2.14) 

where Q>O is a constant, symmetric matrix. 

The main objective is to minimise J, assuming a known initial condition X(ts) such 

that X(t) ~ 0 as t ~ oo. 

The performance index 1s then reduced to the transformed state space q by 

partitioning the product 

(2.15) 

compatibly with Y and defining 

(2.16) 

(2. I 7) 

(2.18) 

The LQR is now in the standard form: 

j = i j[r.T Q•r. + VT Q22VJft 
t, 

(2.19) 

(2.20) 
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After solving the appropriate Riccati matrix P from (2.19) we get 

(2.21) 

By Eigenstructure Assignment: 

The equivalent system can be written as: 

X(t) = (A - BK)X(t) (2.22) 

where K = (CB)- 1 CA. 

Assuming that the sliding motion has commenced on N(C), the state variables 

must remain in N(C) during the sliding motion such that 

C[A-BK] =0 (2.23) 

R(A- BK) h N(C) 

Let Ai(i= I •• n) be the eigenvalues of the equivalent system with corresponding 

eigenvectors Vi then we have 

(1A-BKJV, =1~,CV, =0 (2.24) 

Therefore, either A j = 0 or V, e N( C) 

Assuming that the motion on the equivalent system, A-BK=Acq, has n-m distinct, 

non-zero eigenvalues then the corresponding eigenvectors { V,: i = 1.. n - m} 

determine the null space of C, since dim[N(C)]=n-m. 

i.e. CV=O V=[v,, ... ,Yn-ml 

18 



But, C is not uniquely detennined because the equation CV=(), (Vi: i=l .. n-m) 

has m2 degrees of freedom. 

This is clear if we define, 

W=[~]=TV 

where the partitioning of W is compatible with that of Y 

where F = S and Im is an m-dimensional unit matrix 
C2 

thereby yielding the equation 

(2.25) 

(2.26) 

(2.27) 

Therefore, if ~ is non-singular then a unique value of F is detem1ined by the 

expression (2.26). 

Darling and Zinober ( 1986) have shown that the eigenvectors of matrix (A-BK) 

are not freely assignable. At most m elements may be arbitrarily assigned. The 

remaining (n-m) elements must be detennined using the assigned elements 

allowing a degree of adjustment to be carried out by inspection. Other eigenvector 

assignment schemes can be found in Moore( I 976), Klein and Moore( 1977) and 

Sinswat and Fallside( 1977). 
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2.4 SLIDING MODE CONTROL OF NONLINEAR SYSTEMS 

In the previous sections we discussed the application of the sliding mode control 

technique to a linear, time-invariant system. In the nonlinear case, the 

fundamentals of sliding mode control are similar to those of linear systems. The 

control law is also easily derived. However, sliding mode analysis and the 

corresponding switching function derivation become a difficult problem. The 

following sub-~ections discuss the implications of applying the technique to 

nonlinear systems. 

2.4.1 The Nonlinear System Model 

Con:;ider the nonlinear, time-varying plant. 

X(t) = J(l, X) + B(t, X)u(t) (2.28) 

where, X(t) E R" is the state vector and u(l) E R111
• f(t,X) E R" and B(t,X) E Rnxm 

are control input vectors. Further. each entry in f(t.X) and B(t.X) is assumed to be 

continuous, with continuous bounded derivatives with respect to X. 

In sliding mode control of non-linear systems, the fundamental problem lies in the 

derivation of the switching law. One possibility is to subject the dynamical system 

to various state transformations, whereby, the differential equations of the system 

are expressed in simple canonical forms. The reaching law can then take advantage 

of the characteristics of the canonical forms. The next section explains two such 

canonical transformations for sliding mode stability analysis. Further details may 

be found in Hung et al. ( 1993). 
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2.4.2 Canonical forms for sliding modes 

Reduced form: 

The state vector X is partitioned into X1 and X2 , where X1 E R"-m and X2 E Rm. 

The input matrix B takes the form: 

B = [o s· r where s· is an invertible mxm matrix. 

The reduced form of the system model is then given as: 

(2.29) 

(2.30) 

Consider a general m-dimensional sliding equation: 

(2.31) 

Theoretically, it is possible to :..olve for X2 in tenns of X1 using X2=W(Xi). 

where, W is a constant. 

Therefore, (2.32) 

The problem of defining a switching function S(X) is to find W(Xi) such that the 

sliding motion is asymptotically stable. 

Controllability form: 

The state vector is in the form: 

21 



X= 
m 

X; e Rn,, where i=l..m, and In1 = n 
i=I 

(2.33) 

The m system inputs are partitioned into m subsystems, each represented in 

controllable canonical form. 

The controlled canonical form of each subsystem is: 

P;(X) = 

0 

0 

0 

a,0 (X) 

0 

P;o(X) 

where A E Rn,,n, 
I 

where a 
I 

E R"·"'· 

I A Rn"' w ze re I-' , E ' ' 

The overall system dynamics are given by: 

X =AX+ a(X) + P(X)u 

22 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 



where, 

A, 0 0 

0 Ai 0 
A= 

0 0 0 

a(X)= 

P,(X) 

P(X) = P2(X) 

Pm(X) 

(2.39) 

A'" 

(2.40) 

(2.41) 

This canonical fonn where the system is decomposed into m subsystems facilitates 

the use of a decentralised sliding mode scheme with decoupled sliding functions of 

the fonn: 

S; = C,X;, i = i..m (2.42) 

where, Xi is a substate vector in phase variable form. 

The equations of the subsystems are: 

(2.43) 
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where, 

(2.44) 

:. c,x; = 0 becomes 

(n;) + (n,-1)+ + + _ 0 
Xii c,lxil " Ci(n;-l)Xl C;n,Xi -

(2.45) 

The stability of the sliding mode in each of the m subsystems is guaranteed by 

choosing the elements of Ci to match the desired characteristic equation. 

2.5 ROBUSTNESS ANALYSIS OF SLIDING MODE CONTROL 

The main objective of sliding mode control system design is to ensure convergence 

on the sliding mode. Even the basic task of transferring objects of variable masses 

and inertial properties, along a prescribed trajectory can introduce a large 

perturbation of the dynamic model parameters of the manipulator. The function of 

reducing sensitivity to external disturbances and parameter uncertainties lies with 

the controller. 

Assuming that the nominal system matrix A has an uncertainty 11A due to external 

disturbances, then the state equation may be expressed as: 

X(t) =(A+ M)X(t) + Bu + DJ (2.46) 

where f E W is a bounded external disturbance vector and D is compatibly 

dimensioned. 

Spurgeon ( 1991) has shown that the robustness of (2.28) can be ensured only if 

the following rank condition is satisfied. 
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rank[D:D]=rank[B:MT]=rank[B] (2.47) 

where T is the matrix of the basis vectors of the equivalent system's subspace. 

On the sliding mode, 

CX=O 

C(A + M)X + CBueq + CDJ = 0 

ueq = -( CB)-1 C(AX + MX + DJ) (2.48) 

the equivalent system can be expressed as: 

X(t) = [/ -B(CB)-1 C](AX + MX + DJ) (2.49) 

CX=O 

(2.49) is also called the invariance condition. 

If there exists M and t::.J, where M and t::.J are estimates of !::.A and t::.f 

- -respectively, such that the matching conditions M = BM and f(t) = Bt::.f are 

satisfied then the sliding mode is invariant. 

For nonlinear systems: 

X = A(X,t) + M(X,P,t) + B(X)u + !::.B(X, P,t)u + f(X, P,t) (2.50) 

where t::.B is the uncertainty in B and P is an uncertain parameter vector, then it 

has been shown in Gao and Hung ( 1993) that invariance holds true if the following 

matching conditions are satisfied: 
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M(X,P,t) = B(X,t)M(X,t) (2.51) 

!iB(X,P,t) = B(X,t)M(X,P,t) (2.52) 

f(X,P,t) = B(x,t)8f(X,P,t) (2.53) 

For certain M , !iB and 8] 

2.6 BOUNDARY LAYER CONTROL 

Sliding mode theory is based on the assumption that the sliding mode control law 

is operated at continuous switching times which are theoretically infinite, thereby 

ensuring that the trajectory stays on the switching surface. In practice, however, 

finite sampling rates are possible wltich causes the state to move away from the 

switching surface until the end of the sampling interval. The control action then 

forces the trajectory back onto the switching surface. The net result is a chattering 

input, which has a detrimental effect on the overall system performance. In 

ap9lications where, for example, the robot has to perform an autonomous sampling 

operation, this chattering could cause extensive tool wear, sample degradation and 

actuator saturation. (Venkataraman and Gulati, 1993). 

The "boundary layer" technique (Slotine and Sastry, 1983) defines a region around 

the switching surface such that any trajectory starting outside the region has the 

full amplitude of control applied to it, but within the boundary layer, it receives a 

proportionally reduced control amplitude. The discontinuous control signals 

therefore have the effect of being smoothed out within the boundary layer and 
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thereby reduces the chattering of the state trajectory close to the sliding surface. 

Robust tracking can therefore be achieved to within a predefined accuracy. 

The main drawback of boundary layer control is that the trajectories within the 

boundary layer are only an approximation of the desired dynamics on the sliding 

surface. The conditions for guaranteed accuracy are provided in Slotine (1984) for 

continuous control. However, in the discrete-time case, the deviation of the 

trajectory from the switching line is a function of the width of the boundary layer 

and the sampling frequency (Richards and Reay, 1991 ). Another drawback of this 

scheme is that the manifolds must be designed off-line, using bounds on the 

uncertainties and the expected system response in the vicinity of the sliding 

surface. In the following section we discuss the terminal sliding mode control 

technique which eliminates the input chattering problem. 

2.7 TERMINAL SLIDING MODE TECHNIQUE 

Linear sliding mode uses a high-gain control switch to force convergence towards 

the sliding surface to satisfy the condition S=O. However. the system does not 

actually stay on the sliding surface since S <> 0, thus resulting in the chattering 

effect explained in the previous section. Linear sliding mode ensures exponential 

stability with full model information and asymptotic stability on the presence of 

uncertainties. 

The terminal sliding mode technique (Venkataraman and Gulati ( 1993)) takes into 

consideration the rate of change of system nonlinearities rather than magnitude. 

The chief advantage of using terminal sliding mode instead of linear sliding mode 
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can be attributed to its convergence time which is controllable and finite, while 

providing improved precision. Convergence to equilibrium is achieved without 

applying the high-gain switching laws used in the linear sliding mode technique. 

2.7.1 Terminal Attractors 

The idea of using terminal attractors was proposed by Zak, M. ( 1988) to enhance 

the convergence properties of dynamical systems. Venkataraman and Gulati (1993) 

proposed a scheme which applies the idea of terminal attractors to the design of 

sliding mode control of robotic manipulators. 

The idea of a terminal attractor can be demonstrated using a cubic parabola: 

i=-x 113 (2.54) 

with its equilibrium point defined at Xcquii=O 

Integrating between limits t,mr and r,,r,,,r 

This implies that the system settles to equilibrium in finite time. 

For the system (2.54), Xcquil is the terminal attractor. 

Consider a first-order terminal attractor: 

x+X(x)=O (2.55) 

where x is bounded for bounded X and Sgn(X)=Sgn(x). 
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Also. 
ax 
-~ooasx~O ax 

For Lyapunov analysis, the Lyapunov function candidate V is assumed to be 

bounded for bounded x. 

i.e. IIV(x -:t: 0)11 > 0 and IIV(x = 0)11 =0 , if 

v + V(v) = 0, such that V(·) has the terminal attractor property, then the dynamical 

system is considered to be terminally stable. 

2.7.2 Terminal Sliding Control 

Consider the system 

x=J(x)+u (2.56) 

The terminal attractors are of the form: 

~ 
.i: = axr1., (2.57) 

where a.> 0 and P,,, P" = (2i + I) wlze re i E / and P" > P,, 

The control law is of the form: 

(2.58) 

Substituting (2.56) in (2.58) we get the closed-loop system 
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(2.59) 

where e=(x-xd) and where x and xd are the actual and desired trajectories 

respectively. 

The sliding surface for the above system is defined as: 

~ 
s. = e. +ae.11

d = o 
I I I 

(2.60) 

where i denotes initial conditions. 

(2.59) and (2.60) represent the terminal stchility of the system defined in ('.L..56). 

The surface Si is called the terminal slider and the control law u is called the 

Terminal Slider Control. 

Substituting e in (2.58), in terms of e. we have 

p 211,_1 

II = X + a 2 _n e IIJ - f 
" Pn . 

(2.61) 

For the control u to be bounded for a bounded e, 

(2.62) 

The initial condition S; must always be zero. This is ensured by a continuous 

redesign of each trajectory. In linear sliding mode control, the reaching mode is 

implemented using a high-gain switch which forces the trajectories from =in 
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arbitrary initial state onto the sliding surf ace. The terminal sliding mode models 

the behaviour between the initial condition and the sliding surface as a dynamical 

system. 

Consider a control law of the form: 

•• ~n • : f u = xd -a-e-ys -
~d 

(2.63) 

Sustituting (2.63) in (2.56) we get: 

cln 

p = i,·+yscld = 0 (2.64) 

(2.64) specifies the finite time steady state convergence of s from any arbitrary 

initial condition s,, after which the system reaches e=O on the terminal sliding 

mode similar to the linear sliding mode. 

2.8 SLIDING MODE CONTROL OF MANIPULATORS 

The previous sections provided a brief overview of sliding mode control for linear 

and nonlinear sy~tcms. A robotic manipulator plant is a typical example of a 

nonlinear system. In recent years, many researchers have investigated the 

application of sliding mode technique to robotic manipulators. Robustness and 

convergence results have been provided by Young (1978), Morgan and Ozguner 

( 1985), Slotine and Sastry ( 1983). 
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2.8.1 Robot Link Dynamics 

The dynamic model of an n-link rigid robotic manipulator can be expressed in 

Euler-Lagrange formulation as: 

"ldt/q)41 + "'It;jk (q)iJ/11 +<Pk <q) = t k k = l..n (2.65) 
j i.j 

where dkj are the coefficients of the inertia matrix D(q), tP t (q) are the gravitational 

forces and t k are the input torques. The coefficients J;1k of the coriolis and 

centrifugal terms are defined as: 

t -- --+-"-' +-'' J;·1. -
I { rJd ki cJd. cJd . } 

11· 2 cJqi cJqj cJqt 

and J;1,. are known as Christoffel symbols. 

In matrix form the expression (2.65) is written as: 

D(q)q + F(q,q)q + G(q) = t 

(2.66) 

(2.67) 

where D(q) E Rn is the symmetric, positive-definite manipulator inertia matrix, 

q ER" is the joint angle/displacement vector, F(q,q)q ER" represents the 

coriolis and centripetal torques, G(q) E R" is the vector of gravitational torques. 

The k,jth element of the matrix F is written as 

(2.68) 
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and the component of G (q) is <I> k. 

The nonlinear model defined above have some fundamental properties which can 

be exploited to facilitate control system design. 

Property 1: The inertia matrix D(q) is symmetric. positive-definite and both D(q) 

and D(qf1 are uniformly bounded as a function of q. 

Property 2: There is an independent control input for each degree of freedom. 

Property 3: The Euler-Lagrange equation for the robotic manipulator is linear in 

the unknown parameters. All the unknown parameters are constant (for example. 

link masses. link lengths, moments of inertia, etc.) and ~ppear as coefficients of 

known functions of the generalised co~ordinates. By defining each coefficient or a 

linear combination of them as a separate parameter, a linear relationship results so 

that we may write the matrix equation as: 

D(q)ij + F(q,(i)q + G(q) = Y(q.(i,ij)S = T (2.69) 

where Y is an nxr matrix of known functions called as regressor functions, and q is 

an n-dirnensional vector of unknown parameters as shown in Spong and 

Vidyasagar ( 1989). The robotic manipulator system in (2.67) can be expressed in 

the generalised form X =AX+ Bu. Therefore, the basic sliding mode theory can 

be used to simplify controller designs which exhibit robustness, by usmg the 

structural properties mentioned above. 
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2.9 CONCLUSION 

In this chapter we have briefly surveyed sliding mode control theory and its 

application to linear and nonlinear systems with an emphasis on its application to 

robotic manipulators. Though sliding mode control has been researched 

extensively in the area of robotic manipulator control. there are many issues still 

left unresolved before it can be practically feasible. 

The following chapters of the thesis propose several new and improved schemes 

for sliding mode control of rigid robotic manipulators. These schemes show 

improved robustness on the sliding mode. 
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Chapter3 

A Robust Adaptive Sliding Mode Tracking Control 

for Rigid Robotic Manipulators 

3.1 INTRODUCTI01'i 

Sliding mode control is one of the most important approaches for dealing with 

rigid robotic manipulators with nonlinearities, uncertain dynamics, and bounded 

input disturbances. The most distinguished feature of the sliding mode control 

technique is its ability to provide strong robustness for control systems that renders 

closed loop systems completely insensitive to nonlinearities, uncertain dynamics 

and bounded input disturbances in the sliding mode. In Young ( 1978, 1988), 

Abbass and Chen ( 1988) and Morgan and Ozguner ( 1985) it is shown that 

robustness and convergence can be obtained for robotic manipulators by using 

sliding mode technique ba~cd on the upper and the lower bounds of all unknown 

system parameters. The main drawback of using the above control schemes is that 

all the upper and the lo,•:cr bounds of unknown parameters need to be obtained 

prior to controller design. This could result in the sliding mode controller design 

becoming complicated if the controlled systems have many unknown parameters. 
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The design of the sliding mode controller is greatly simplified in Man and 

Palaniswami (1994), where, for any n-link rigid robotic manipulator which may 

have many uncertain parameters, only four uncertain system matrix bounds and an 

upper bound of the input disturbance are required in the sliding mode controller 

design to obtain robustness and convergence. Also, only one uncertain bound is 

used in the design of the sliding mode compensator for rigid robotic manipulators 

with uncertain dynamics. 

Various schemes for the design of sliding mode controller without requirement of 

the prior knowledge of the uncertain bounds have been investigated by many 

researchers. For example, in Fu and Liao ( 1990) and Leung, Zhou and Su ( 1991 ), 

an adaptive mechanism is developed to estimate the uncertain bound parameters 

and the estimates are then used as controller parameters to guarantee that the 

effects of the system uncertainties can be elimmated and asymptotic error 

convergence can be obtained for robot control systems. However, the drawback of 

the scheme in Fu and Liao (1990) is that five parameters of the uncertain bounds 

need to be adaptively estimated in each local controller design. The use of this 

scheme in a controlled robot having many links complicates the controller design 

of the overall system and increases processing time. In the adaptive sliding mode 

control scheme of Leung, Zhou and Su ( 1991 ), although only five uncertain system 

matrix bounds are estimated for any n-link robotic manipulator, it does not address 

the problem of eliminating the effects of bounded input disturbanct!s. Therefore, 

for practical applications, the above adaptive sliding mode tracking control 

schemes still needs further improvements. 
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In this chapter, a new robust adaptive sliding mode tracking control scheme is 

proposed for rigid robotic manipulators with both uncertain dynamics and bounded 

input disturbances for achieving robustness and asymptotic error convergence 

based on Fu and Liao (1990), Man and Palanaiswami (1994) and Leung, Zhou and 

Su (1991). The robotic manipulator is treated as a partially known system, the 

known dynamics are separated out to perform linearization, and the dynamical 

uncertainties are assumed to be upper bounded by an unknown positive function. 

Then, a nominal feedback controller is designed to stabilise the nominal system 

model and an adaptive sliding mode compensator is introduced to eliminate the 

effects of the unknown parameters of the plant. A key feature of this scheme is that 

only three uncertain parameters of the upper bound of the system uncertainties are 

estimated for any n-link rigid robotic manipulators with both uncertain dynamics 

and bounded input disturbances. The estimates are then used as compensator 

parameters to guarantee that the effects of the system uncertainties are eliminated 

and asymptotic error convergence are obtained for robot control systems. It can 

also be seen that the proposed scheme in this chapter can be easily used for 

practical implementation as opposed to the schemes in Man and Palaniswami 

(l 994) and Leung, Zhou and Su (1991 ). In addition, simulation results show that 

the estimated uncertain bound using the proposed adaptive mechanism is non­

conservative and that the amplitude of the control signal is greatly reduced. 

This chapter is organised as follows: In section 3.2, an n-Iink rigid robotic 

manipulator as a partially known system is formulated and a robust sliding mode 

control using only one uncertain bound in Man and Palaniswami ( 1994) is briefly 
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discussed. In section 3.3, a new robust adaptive tracking control scheme for rigid 

robotic manipulators is proposed where an adaptive mechanism for the estimation 

of only three parameters of the uncertain bound is introduced. Error convergence 

and robustness with respect to uncertain dynamics are discussed in detail. In 

section 3.4, a two-link rigid robotic manipulators is simulated in order to examine 

the proposed control scheme. 

3.2 PROBLEM FORMULATION 

Consider the dynamics of an n-joint rigid robotic manipulator system described by 

the following second order nonlinear vector differential equation 

M(q)q + h(q, q) = u(t) + d(t) (3.1) 

where q(t) is the nx I vector of joint angular positions, M(q) is the nxn symmetric 

positive definite inertia matrix, h(q, q ) is the nx I vector containing coriolis, 

centrifugal forces and gravity torques, u(t) is the nx I vector of applied joint 

torques (control inputs) and d(t) is the nx I vector of the bounded input 

disturbances. 

Let a robotic manipulator system described by equation (3.1) have some known 

parts and some unknown parts, which can be expressed as: 

M(q) = M
0
(q) + LlM(q) (3.2) 

h(q, q) = h
0
(q, q) + Llh(q, q) (3.3) 
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where M0(q) and h0 (q,q) are the known parts, fl.M(q) and l.ih(q,q) are the 

unknown parts. Using expressions (3.2) and (3.3), dynamic equation (3.1) can be 

written in the following form: 

(3.4) 

where p(t) = - 8M(q)q - 8h(q, q) + d(t) (3.5) 

The following system with no uncertainties is defined as the "nominal system" 

(3.6) 

In this chapter, the following assumptions are made: 

Assumption 3.1: M
0
(q) is invertible for all q. 

Assumption 3.2: The nominal system in expression (3.6) is stabilizable. 

Assumptioll 3.3: The system uncertainty r(t) is bounded by a positive function: 

. ., 
llp(t)II < b

0 
+ b111q(t)II + b2 1lq(t)II- (3.7) 

where b
0

, b
1 

U'.ld b
2 

are positive numbers. 

Two steps are considered in the development of the robust tracking control for 

robotic manipulators in expressions (3.1 )-(3.3) in this chapter. First, a nominal 

feedback controller is designed to stabilise the nominal system and a sliding mode 

compensator is then designed to eliminate the effects of both uncertain dynamics, 
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and the bounded input disturbances, so that the output tracking error of the closed 

loop system with large system uncertainties asymptotically converges to zero. 

Let qr represent the desired trajectory that the robotic manipulator system must 

follow and the output tracking error be defined as e(t) = q - q . r 

Using nominal system equation (3.6), we get the following linearized error system: 

e = Ae+ Bv (3.8) 

where 
T T T 

e=[e, E] (3.9) 

(3.10) 

(3.1 I) 

(3. 12) 

Lemma 3.1: The error e(t) in error dynamics equation (3.8) for nominal system 

(3.6) asymptotically converges to zero if the following nominal feedback control 

law is used 

(3.13) 

where K = [ - K
1
, - K

2 
], K

1
CE Rnxn. K

2 
CE Rnxn, and matrix K is designed such 

that 
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A1 = A+BK (3.14) 

is an asymptotically stable matrix. 

Proof: See Singh (1986) and Man (1993). 

Next, let the control input in dynamic equation (3.1) have the following form: 

(3.15) 

where u
1 

is designed for the nominal system of expression (3.6). u
0 

is a 

compensator to be used to eliminate the effects of the system uncertainties in 

expression (3.5). 

Using expressions (3.4), (3.6), (3.8) and (3.13), we get the error dynamic equation 

for the closed loop robotic manipulator system in the following form: 

(3.16) 

In order to use the sliding mode technique to design the compensator u
0

, we define 

a set of sliding variables in the error space passing through the origin. 

S = Ce (3.17) 

h C [ C C ] . C CE Rnxn d C CE Rnxn . I d w ere = 
1
, 

2 
, matnces 1 an 

2 
are nonsmgu ar an 

(3.18) 

Remark 3.1: It has been seen that the key problem for the design of the controller 

in expression (3.15) is how to design the compensator u
0 

for achieving robustness 

and convergence. If the upper bound of the system uncertainties in expression 
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(3.7) is known, the design of robust sliding mode compensator can be summarised 

in the following theorem Man and Palaniswami ( 1994). 

Theorem 3.1: Consider the error dynamics in expression (3.16) for the robotic 

manipulator system in expression (3. J) with assumptions 3.1-3.3. If the 

compensator u
0 

is designed such that 

( ST Cz Mo(q)°1 { 
II S II -:t:- 0 w 

II ST C M ( )°111
2 

2 0 q 
u -0 - (3. 19) 

0 IISII = 0 

where 

(3.20) 

and S is the sliding variable vector defined in expression (3.17) and (3.18), 

then the output tracking error e(t) asymptotically converges to zero. 

Proof: See Man and Palaniswami (1994) or Man (1993). 

Remark 3.2: It can be seen from theorem I that prior knowledge of the uncertain 

bound in expression (3.7) is required in the compensator design. Although a 

method for off-line estimation of the bound parameters in expression (3.7) was 

developed in Grimm ( 1990) and Man ( 1993), the estimates of the uncertain bound 

42 



parameters were very conservative, and the control input signals, using the 

conservative estimate as the controller parameters, are then very large. Therefore, 

application of the above robust control scheme in practical situations are still 

difficult. 

3.3 A ROBUST ADAPTIVE TRACKING CONTROL SCHEME 

In this section, we propose a novel approach to avoid the requirement of the prior 

knowledge of the upper bound of the system uncertainties r(t) in expression (3.7). 

I\ I\ I\ 

Now we Jet b 
0

, b 
1
and b 

2
,be the estimates of b

0
, b

1
and b

2 
in expression (3.7) 

which are updated by the following adaptive Jaws: 

(3.21) 

(3.22) 

(3.23) 

I\ 

where k. (i = 0, 1, 2) are arbitrary positive numbers and b . (i = 0, l, 2) have 
I I 

arbitrary positive initial values. Then we have the following convergence and 

robustness results. 
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Theorem 3.2: Consider the error dynamics in expression (3.16) for the robotic 

manipulator system in expression (3.1) with assumptions 3. 1-3.3. If the 

compensator u
0 

is designed such that 

( ST C
2 
M/qf1 l 

11ST C
2
M/qf

1
11

2 
w IISII * 0 

uo = (3.24) 

0 IISII = 0 

K; and h; (i = 0, I, 2) are updated by the adaptive laws in expressions (3. 12) 

- (3.23), 

then, the output tracking error e(t) can asymptotically converge to zero. 

Proof: Defining a Lyapunov function 

(3.25) 

- /\ 

where b i = bi - b i (3.26) 

(3.27) 

and differentiating V with respect to time, we have 
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2 

• T· ~ -1- f. 
V = S S - .£..i ki bi b 1 

i=O 

2 • 

= S7 [CA1e+ CBM0 (q)-'u0 + CBM0 (qr 1 p{t)]- L,1C;1h;h; 
i=O 

2 • 

= S7 CA;e+S7 CzMo(q)- 1 "o +S7 C2Mo(qr1 p(t)- L,1C;1b;h; 
i=O 

2 • 

= S7 CA;e + W + sr C2Mo(q)-1 p(t)- L,K'. ;1b/}; 
i=O 

2 • 

=-IIS1I IIC2Mo(q)-1 II u;o + hollqll + bJllqf) + S7 C2Mo(q)-1 
p(t)- L,K'. ;' ;;J;i 

;~o 

-IIC2Mo(q)-1II IISII (ho+ h1 llqll + h2lkill2
) + l!C1Mo(q)-' II IISII IIPU)jj 

= - 11 11 s Ii < o For 11 s 11 > o (3.28) 

where. 
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Expression (3.28) is the reaching condition for the sliding variable vector S to 

reach the sliding mode in a finite time 

S = Ce = 0 
(3.30) 

On the sliding mode, error dynamics of the closed loop system has the fol1owing 

form 

(3.31) 

Therefore, the tracking error e{t) converges to zero asymptotically. 

Remark 3.4: Unlike sliding mode control schemes in Young (1978, 1988), 

Abbas and Chen (1988), Morgan and Ozguner (1985), Fu and Liao (1990), Man et 

al. ( I 992, 1993, 1994 ), Slotine and Sastry ( 1983). Corless and Leitmann ( 1981) the 

prior knowledge of the upper bound of the system uncertainty is not required in the 

sliding compensator design in this scheme. An adaptive mechanism is introduced 

to estimate the upper bound of the system uncertainty and the estimates are then 

used ac; controller parameters to guarantee that the effects of large system 

uncertainties can be eliminated and asymptotic error convergence can be obtained 

for rigid robotic control systems. 

Remark 3.5: It can be seen that, compared with Fu and Liao ( 1990) and Leung, 

Zhou and Su ( 1991 ), the proposed scheme in this chapter can be easily 

implemented for practical application because, for any n-link rigid robotic 

manipulator, only three parameters of the upper bound of system uncertainties are 
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adaptively estimated in the Lyapunov sense to guarantee the good tracking 

performance and strong robustness. 

Remark 3.6: The adaptive and robust properties of the sliding mode compensator 

in expression (3.23) can be explained as follows: When the output tracking error 

is large due to the effects of system uncertainties r(t) in expression (3.5), the 

I\ 

estimates of b . (i = 0, I, 2) can be automatically increased according to the update 
1 

law in expressions (3.21) - (3.23). The control gain can be increased in expression 

(3.23). Therefore, the effects of uncertain dynamics can be eliminated, the sliding 

variable vector S driven to zero, and the output tracking error can then 

asymptotically converge to zero in the sliding mode. 

Remark 3.7: It can be seen from expressions (3.21) to (3.23) that three parameters 

of the upper bound of the system uncertainties are estimated in the Lyapunov 

sense. It is not necessary for the estimates to converge to their true values because 

the values of the estimates are increased until the sliding variable vector S 

converges to zero. Therefore, the true value or the upper bound of system 

uncertainties is not required. 

Remark 3.8: To eliminate chattering in the control input. the following boundary 

layer compensator can be used in place · .f the sliding mode compensator in 

expr~ssion (3.24). 
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( ST C2 Mo(qfl? 

11ST C2Mo(q}°1112 w 

where d is a positive number. 

(3.32} 

T -1 s: 
IIS C2 M0(q) II< o 

The above boundary layer compensator offers a continuous approximation to the 

discontinuous variable structure compensator in expression (3.24) inside the 

boundary layer and guarantees attractiveness to the boundary layer and ultimate 

boundedness of the output tracking error to within any neighbourhood of the 

origin. This will achieve optimal trade-off between the control bandwidth and 

tracking precision. Therefore, the chattering and sensitivity of the controller to 

parameter uncertainties and input disturbances can be eliminated. But the 

drawback is that nonzero error exists. The detailed discussion on the boundary 

layer technique can be found in Slotine and Sastry ( 1983) and Corless and 

Leitmann ( 1981 ). 

3.4 A Sll\,!ULATION EXAMPLE 

A simulation example with « two-link robotic manipulator is perfom1ed for the 

purpose of evaluating the performance 0f the proposed control scheme. The 

dynamic equation the two-link robotic manipulator model is given by 
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The parameter values are 

P1,<q2lci: + 2P1/q2l<i1ci2 I 
- ~1/q2) q 2 

+ 

r1 = I m, r2 = 0.8 m 

11 = 5 kg.m, 12 = 5 kg.m 

m 1 = 0.5 kg, m2 = I .5 kg 

Desired reference signals are given by 

7 - 4 t 
+ -e 

20 
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(3.33) 

(3.34) 

(3.35) 



- t 
qr2 = 1.25 + e 

1 - 4 t 
- -e 

4 (3.36) 

In order to constrain the error dynamics in the sliding mode from the start to the 

end, we consider a situation characterised by the same initial values on the system 

and its reference signal Young (1978). In this example, the initial angular positions 

and velocities are selected as 

[ ql(O), qiCO) ]T = [ qr,(0), qr/0) ]T = [ 0.2, 2 ]T 

T .T T 
q/0) ] = [ qr! (0), qr2(0) ] = [ 0, 0 ] (3.37) 

The nominal values of m 1 and m2 are assumed to be 

I\ I\ 

m
1 

= 0.4kg, m
2 

= 1.2kg (3.38) 

and the other system parameters are assumed to be known. The nominal system is 

then built from the known system dynamics. 

In this example, we let the desired error dynamics of the closed loop nominal 

system have the following form: 

i::. + 5 i::. + 4 E. = 0 
I I I 

= 1, 2 l3.39) 

Then, using pole placement method for expression (3.14) in lemma 3.1, the 

feedback matrix K can be designed as follows 

(3.40) 
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Sliding mode is prescribed as 

s = [~ 0 ~ ~} = [~] (3.41) 

Runge-Kutta method with a sampling interval DT = 0.01 s is used to solve the 

nonlinear differential equation numerically. Figures 3.2(a) and 3.2(b) show the 

output trackings and Figures 3.3(a) and 3.3(b) show the control inputs of joint l 

and joint 2, respectively, using the proposed robust adaptive tracking controller. 

The effects of the system uncertainties are eliminated and good tracking 

performance is obtained. Figures 3.4(a) and 3.4(b) show good performance of the 

closed loop system using the boundary layer compensator in expression (3.33) 

with the adaptive update law in expression (3.14) (cl= 0.05). Figures 3.5(a) and 

3.5(b) amply demonstrate the good output tracking capability of the boundary layer 

controller. 

y 

X 

0 

Fig. 3.1 Two-link robotic manipulator model 
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Fig. 3.2 (a) The output tracking error of joint I with input disturbances 
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Fig.3.2 (b) The output tracking error of joint 2 with input disturbances 
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Fig. 3.3 (a) The control input of joint I 
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Fig. 3.3 (b) The control input of joint 2 
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Fig.3. 4 (a) The output tracking of joint I using a boundary layer controller 
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Fig. 3.4 (b) The output tracking of joint 2 using a boundary layer controller 
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Fig. 3.5 (a) The control input of joint I using a boundary layer controller 
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Fig. 3.5 (b) The control input of joint 2 using a boundary layer controller 
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3.5 CONCLUSION 

A new robust adaptive tracking control scheme using sliding mode technique for rigid 

robotic manipulators was developed. Unlike most sliding mode control schemes, this 

scheme requires no prior knowledge of the uncertain bound. By adaptively estimating only 

three parameters of the uncertain bound in the control gain, the effects of system 

uncertainties can be eliminated, asymptotic error convergence can be obtained, and the 

amplitude of the control signals can be significantly reduced. The scheme can easily be 

implemented for practical applications. The results of a simulation performed on a two­

link rigid robotic manipulator were presented to demonstrate the effectiveness of the 

proposed control scheme. 
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Chapter4 

A Decentralised Adaptive Sliding Mode Control for Rigid 

Robotic Manipulators 

4.1 INTRODUCTION 

Decentralised sliding mode control is a powerful method for the control of rigid 

robotic manipulators. The basic principle of the decentralised sliding mode control 

developed in Abbass and Ozguner ( 1985), Ozguner. Yurkovich and Abbass ( 1987), 

and Xu, et al. ( 1990), Morgan and Ozgunner ( 1985) is that the upper bound of 

dynamical interactions and the upper and the lower bounds of all unknown parameters 

in each subsystem are assumed to be known. A set of local sliding mode controllers 

are then designed to drive subsystems to move in their local sliding modes. In the 

local sliding modes, the desired system dynamics for the overall system, are 

completely insensitive to system uncertainties, dynamical interactions and bounded 

external disturbances. 

However, in many practical situations, the following problems using the above 

decentralised sliding mode control schemes have been noted. First, the designs of real 

time local sliding mode controllers basc:d on the upper and the lower bounds of 
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unknown parameters are very complicated and time-consuming if the controlled 

system has many unknown parameters. Second, the upper bound of the dynamical 

interactions in each subsystem is unknown because the maximum value of the norm 

of the dynamical interactions is variable in different cases. Although a conservative 

bound of the norm of the dynamical interactions can be used, the result is a set of high 

gain local sliding mode controllers which are not suitable for practical applications. 

Therefore, the issue of removing the requirement of the prior knowledge of uncertain 

bounds of both dynamical interactions and unknown parameters in the local sliding 

mode controller design has been a challenging topic in the area of decentralised 

sliding mode control for rigid robotic manipulators. 

In this chapter, a decentralised adaptive sliding mode control for rigid robotic 

manipulators is proposed. A rigid robotic manipulator is treated as a partially known 

system and the known dynamics of each subsystem are separated out to perfo1111 

linearisation. The nominal model of each subsystem is then stabilised by a local 

feedback controller, and the effects of uncertain dynamics are then compensated by a 

local adaptive sliding mode compensator. A key feature of this scheme is that prior 

knowledge of the uncertain dynamics in each subsystem is not required. An adaptive 

mechanism is introduced to estimate the uncertain bound for each subsystem. The 

estimate is then used as a parameter of the local sliding mode compensator to 

guarantee that effects of the uncertain system dynamics are eliminated and asymptotic 

error convergence is obtained for the overall robotic control system. In addition, the 

estimate of the uncertain bound in each subsystem is updated in Lyapunov sense. 

After the local sliding variable in each subsystem reaches its sliding mode, the 

estimate is held constant to keep the local error dynamics in its local sliding mode. 
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Unlike the schemes in Abbass and Ozgunner (1985), Ozgunner, Yurkovich and 

Abbass (1987), and Xu, et al. (1990), Morgan and Ozgunner (1985), the local 

controller design is greatly simplified in this scheme due to the fact that only one on­

line estimated uncertain bound is used in the local sliding mode compensator design, 

rather than the upper and the lower bounds of all unknown parameters. 

This chapter is organised as follows: In section 4.2, the system model and control 

objectives are formulated. In section 4.3, a decentralised adaptive sliding mode 

control scheme is developed. The error convergence and robustness are discussed in 

detail. In section 4.4, a simulation example on a two-link robotic manipulator is given 

in support of the theoretical results. 

4.2 PROBLEM FORMULATION 

The dynamics of a rigid robotic manipulator are generally described by the following 

second-order nonlinear differential equation 

M(q)q + h(q, q) = u(t) (4.1) 

where q(t) is the nx I vector of joint angular positions, M(q) is the nxn symmetric 

positive-definite inertia matrix, h(q, cj) is the nx I vector containing coriolis, 

centrifugal forces and gravity torques, and u(t) is the nx I vector of applied joint 

torques ( control inputs ). 

The robotic manipulator system described by expression (4.1) can be decoupled into 

the following n interconnected subsystems. 
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n 

m)ii + L mijqj + hi = ui 
j=I 
j;ti 

= 1, ... , n (4.2) 

where m .. is the ith diagonal element of matrix M(q) and is always positive due to the 
II 

positive-definiteness of M(q). 

h. and u. are the ith elements of h(q,q) and u(t), resp.ectively. 
I I 

n 

'Im/ii (where j :;ti) represents the dynamical interconnections. 
j=I 

Considering the imprecise knowledge of system parameters, m .. and h. can be written 
II I 

as: 

m .. = m .. 
0 

+ .6.m.. 
11 11 11 (4.3) 

h. = b.0 + .6.h. 
I I 1 

(4.4) 

where m .. 
0 

(> 0) and h.c> are the known parts, Dm .. and Dh. arc the unknown parts. 
11 I II I 

Using expressions ( 4.3) and ( 4.4) in expression ( 4.2 ). we have 

where 

= I\ ... ., n 

n 

di = I, mijqj + .6.m)1i + Dhi 
j=I 
j>'ci 

represents uncertain dynamics of the ith subsystem. 
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Remark 4.1: It has been noted from expression ( 4.6) that the uncertain term d. is 
l 

not only related to the ith local subsystem, but also related to other interconnected 

subsystems. In this scheme, the uncertain term d. is assumed to be upper bounded. 
I 

A.4.1 (4.7) 

where d . is an unknown positive number. 
I 

It will be seen in the next section that the prior knowledge of the above uncertain 

bound is not required in the local controller design, and a new adaptive mechanism is 

introduced to estimate the above uncertain bound in the Lyapunov sense in order to 

guarantee good tracking performance. 

4.3 CONTROLLER DESIGN 

Based on the known parts of subsystem in expression (4.5). the ith nominal subsystem 

model is defined as 

.. 
miiOq i + l\o = ui 1 (4.8) 

and the output tracking error is defined as 

(4.9) 
£, = q, -q,, 

where q. is the ith desired reference signal for q. to follow. 
If I 

The local controller design for each subsystem is divided into two parts in this 

chapter. First. a local nominal feedback controller is designed to make the output 

tracking error of the nominal subsystem asymptotically converge to zero. Then, a 

local sliding mode compensator is introduced to deal with the effects of system 
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uncertainties in each subsystem so that the output tracking error of each subsystem 

asymptotically converges to zero. 

Now, defining an error vector ej = [c;, C; )7 and using expression (4.8), we get the 

linearized error dynamic equation for the ith nominal subsystem as follows. 

e.= A.e. + B.v. 
I • °i I : I (4.1'0) 

where 

(4.11) 

T 
B.= [ 0, I ] 

I 
(4. 12) 

(4. 13) 

Lemma 4.1: Error vector e.(t) in error dynamics equation (4.1 OJ for \he ith nominal 
I 

subsystem asymptotically converges to zero if the following local nominal feedback 

control law is used 

rU4) 

where k. is designed such that 
I 

A.
1 

= A + B.k. 
I I I I 

is a asymptotically stable matrix. 

proof: See Leitman ( 1981 ), Bremer ( 1985) and Singh ( 1986). 

Next, we consider the local sliding mode compensator design. 
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Let (4.16) 

where uil is the local nominal feedback controller given in expression (4.14), and uiO 

is the local sliding mode compensator. 

Using expressions ( 4.14) and ( 4.16) in expression ( 4.5), the error dynamic equation 

for the ith local subsystem can be written in the following form 

-1 
B.m..od. 

I II I (4. I 7) 

For the design of the local sliding mode compensator, a set of local switching plane 

variables are defined as 

S. = C.e 
l I I 

i =I ... n <4. I 8) 

where C.= [ c.
1
, c . .., ], c

1
.
1 

> 0 and c, > 0. 
I I 1- 1-

In addition, as mentioned in section 4.2. the upper bound of the uncertain term d. in 
I 

each subsystem is unknown. To avoid the requirement of the prior knowledge of the 

upper bound of the uncertain dynamics in the local controller design. the following 

adaptive mechanism is used to estimate the uncertain bound. 

/\ - I I I d . = a. c . ., m .. 
0 

S 
I I 1- II I 

(4.19) 

/\ -
where d . is the estimate of d .. which has an arbitrary positive initial condition and a. 

I I I 

is a positive constant number. Then we have the following robustness and 

convergence results. 
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Theorem : Consider the error dynamics in expression ( 4.17) for the ith subsystem 

in expression (4.5). If the ith local sliding mode compensator um is designed such that 

(4.20) 

Then the output tracking error asymptotically converge to zero in view of the overall 

system. 

Proof: Defining a Lyapunov function 

I s~ I -t - -
V. = 2 + 2 a. d.d. 

I I 1 I I 

- " where d. = d. d. 
I I I 

d.= " d. 
I I 

and differentiating V with respect to time, we have 

V = S.S. 
I I 

-1 - " a. d. d. 
I l I 

-I -1 
= s.c.A.le. + S.c . .,m .. oU·o - S.c . .,rn .. od· -1 - A 

1 I I I I 1- II I I 1- II I _a. d. d. 
l I 1 

- " -I " ;... d.d. +a. d.d. 
I 1 1 I 1 
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£ - h. Is. I 
I I 

(4.24) 

(4.25) 

Expression (4.24) is the sufficient condition for the local switching plane variable Si 

to reach the local sliding mode 

S. = C.e. = 0 
I I I 

(4.26) 

On the local sliding mode, we have 

Expression (4.27) means that the output Lracking errors ci (i = ... n) asymptotically 

converge zero. 

It is well known that sliding variable vector S in view of the overall system is given 

by (4.28) 

The sufficient condition for the switching plane variable vector S to be globally stable 

is given by 

S.S. < o 
1 I 

I= J ••• 11 (4.29) 

Therefore, asymptotic error convergence can be guaranteed in view of the overall 

system. 
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Remark 4.2: Unlike the decentralised sliding mode control schemes in Abbass 

and Ozguner (1985), Ozguner, Yurkovich and Abbass (1987), and Xu, et al. (1990), 

Morgan and Ozguner ( 1985), prior knowledge of the uncertain dynamics of each 

subsystem is not required in the sliding compensator design used in this scheme. An 

adaptive mechanism is introduced to estimate the upper bound of the local uncertain 

dynamics. The estimate is then used as a control parameter of the local sliding mode 

compensator to guarantee that effects of the large system uncertainties are eliminated 

and asymptotic error convergence is obtained for the overall rigid robotic control 

systems 

Remark 4.3: The adaptive property of the local sliding mode compensator in 

expression (4.20) can be explained as follows: 

When the output tracking error e. 1s large clue to the effects of arbitrary bounded 
1 

uncertainties, the estimate of d can be automatically increased according to the 

update law in expression (4.19) or the following expression. 

l 

a. = a .(O) + a-.
1J m.-.

1

1
) c . ., I s I dr 

1 1 I 11 1- 1 
(4.30) 

() 

The control gain can then be increased. Therefore, the effects of uncertain dynamics 

can be eliminated, the local sliding variable vector S. can be driven to zero, and the 
1 

output tracking error ei can then asymptotically converge to zero on the local sliding 

mode. 
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Remark 4.4: It can be seen from expression (4.30) that the estimate of the uncertain 

boundand in each subsystem is not directly related to the uncertain dynamics and it is 

updated in the Lyapunov sense. After the local sliding variable reaches its sliding 

mode, the estimate of the uncertain boundand in each subsystem will be a constant to 

keep the local error dynamics in the local sliding mode. 

Remark 4.5: The robustness property of the proposed control scheme is obvious. 

First, although each subsystem in expression (4.5) has uncertain dynamics, the 

proposed decentralised controller can make the sliding variable vector in expression 

(4.28) converge to zero in a finite time (see expression (4.24)). Secondly, in the 

sliding modes, the overall system is completely insensitive to nonlinearities, 

dynamical couplings and parameter uncertainties. The behaviour of the error 

dynamics is determined only by the sliding mode parameters in expression (4.18). 

Remark 4.6: Compared with the decentralised sliding mode control schemes in 

Abbass and Ozguner ( 1985). Ozguncr. Yurkovich and Abbass ( 1987), and Xu, et al. 

( 1990), Morgan and Ozguner ( 1985). the design of the local controller in this scheme 

is greatly simplified in the sense that only an on-line estimated, uncertain bound is 

used as a control parameter in the local sliding mode compensator rather than the 

upper and the lower bounds of all known system parameters. 

Remark 4. 7: If the robot system in expression ( 4.1) has bounded input disturbance 

vector, the ith clement of the input disturbance vector can be combined into the 

uncertain term in expression (4.6). Then the sliding mode compensator has the same 

form as in expression (4.20). The difference is that the control parameter a . in 
I 

67 



expression (4.30) will be larger in order to eliminate the effects of the input 

disturbances. 

Remark 4.8: The local sliding mode compensator in expression (4.20) gives a 

discontinuous chattering signal across the local sliding mode S. = 0, which may excite 
I 

undesirable high-frequency dynamics. To eliminate the chattering, the following local 

boundary layer compensator can be used in place of the sliding mode compensator in 

expression (4.20). 

! 
- I I\ 

- c.,m..
0
C.A

1
e. - di sign(Si) IS. I 2: 

1- II I I I I 

UOi = 
.) I!-. 

IS. I< - c.'Jm.. 0C.A 1e. - d. (SJ 8.) 
l- II I I I I I I 

{

a. c.~ m.".
0

1 I S. I I s I 3 <l. 
i,. 

where, d. 
I 

I IL II I 

0 

I 1 

Is. I< d 
1 I 

and d. is a positive number. 
I 

o. 
I 

(4.31) 

o. 
I 

(4.32) 

The above boundary layer control law offers a continuous approximation to the 

discontinuous control law inside the boundary layer and guarantees attractiveness to 

the boundary layer and ultimate boundedness of the output tracking error to within a 

neighbourhood of the origin. But the drawback is that nonzero error exists (Corless 

and Leitrnann ( I 981) and Slotine and Sastry ( I 983)). 
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4.4 A S™ULATION EXAMPLE 

A simulation example with a two-link robotic manipulator is performed for the 

purpose of evaluating the performance of the proposed control scheme. The full 

dynamic equation of the simulated manipulator model is given by 

[ 

CX.11 (q2) 

cx.1i<q2) 

where, 

P1,<q,l 'I~ + 2 P1

0

,<q,l '11 'I, l 
- ~12<q2) q; 

") ., 
a

11 
(q

2
) = (m

1 
+ m

2
) r~ + m

2 
r; + 2 m

2 
r

1 
r
2 

cos(q
2

) + J 
1 

') 

a
1
/q2) = rn2 r; + m2 r1 r2 cos(q2 ) 

The parameter values are 

r1 = I m, r2 = 0.8 m 

11 = 5 kg.m, 12 = 5 kg.m 
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m1 = 0.5 kg, m2 = 1.5 kg 

For the use of the decentralised control scheme proposed in section 4.3, each link is 

considered as a subsystem. Desired reference signals for two subsystems to follow are 

given by 

7 - 1 
q = 1.25 - -

5 
e 

rl 

7 - 4 I 

+ 20 e 

- t I - 4 t 
q = 1. 25 + e - - e 

r2 4 

In order to constrain the error dynamics of each subsystem in its sliding mode from 

the start to the end, we consider a situation characterised by the same initial values on 

each subsystem and its local reference signal, Man ( 1993) and Young ( 1988). In this 

example, the initial angular positions and velocities are selected as 

The estimates of m
1 

and m
2 

are assumed to be 

I\ I\ 

m 1 = 0.4kg, m2 = I. 2kg 

and tne other system parameters are assumed to be known. The nominal model of 

each subsystem is then built from the known subsystem dynamics. 

The nominal feedback matrices k1 and k2 in expression (4.14) or (4.15) are designed 

as 
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k, = [ - 4, - 5 ] 

k2 = [ -4, - 5 ] 

The local sliding variables S
I 

and S
2 

are defined as 

The initial values of the estimates of the uncertain bounds for two subsystems are 

selected as Q 1(0) = 15 and ~ iCO) = 20 

The computer simulation with a sampling interval 11T = 0.001 s is performed. 

Fig.4. I (a) - Fig.4.2 (b)show the output trackings and the control inputs by the use of 

the local sliding mode compensator in expression (4.20). It can be seen that, although 

each subsystem has uncertain dynamics. good tracking performance is achieved, 

where the dashed lines indicate the reference trajectories and the actual trajectory are 

indicated by the solid lines. 

To eliminate the chatterings observed in Fig.4.2 (a and b). the local boundary layer 

compensator in expression (4.31) is implemented. The simulation results in Fig.4.3(a) 

- Fig.4.4(b) show that not only the problem of chattering is eliminated, but also the 

amplitude of the control inputs is greatly reduced by using the boundary layer 

controller. 
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Fig.4.1 (a) The output tracking of joint I using a sliding mode compensator 
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Fig. 4.1. (b) The output tracking of joint 2 using a sliding mode compensator 

72 



80,-----,----,---~----,----,----,---....----

60 

E 40 
~ 

.'§ 

.2. 20 
0 
'5 
a. 
.$: e o 
'E 
0 u 
ID 

1= -20 

-40 

-600~-----~2----'---......_ ________ ...._ _ ___J 
J 4 5 5 7 8 

"limo I (sec) 

Fig.4.2(a) The control inputs of joint I t,sing a local sliding mode compensator 

40 

30 

20 

I 
~ 10 
5 
.2. 
0 
:i 0 
a. .s 
~ !ill 
~ -10 
u 
CD 
.t::. 
1-

-20 

-30 

-40 
0 

I 

I 

l 

WI 
y 

2 

I 
11 I I !TI 1:'lill! I' I I ' I ' 

I 
• '. i Ii I' 1 

11 ! 11 I I ! I . 

' 

,/11''1'1 ~:, 
I 

I ii I ir ,/if,/ {j "' 
,, 

rr 
l 

3 4 5 6 7 8 
T,mo t (sec) 

Fig. 4.2 (b) The control inputs of joint 2 using a local sliding mode compensator 
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Fig. 4.3 (a) The output tracking of joint I using a local boundary layer compensator 
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Fig. 4.3(b) The output tracking of joint 2 using a local boundary layer compensator 
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4.5 CONCLUSION 

A decentralised adaptive sliding mode control scheme for rigid robotic manipulator is 

investigated in this chapter. The main contribution of this scheme comes from the fact that 

prior knowledge of the uncertain dynamics in each subsystem is not required. An adaptive 

mechanism is introduced to estimate the uncertain bound for each subsystem. The estimate 

is then used as a local controller parameter to guarantee that effects of the uncertain 

dynamics can be eliminated and asymptotic error convergence can be obtained in view of 

the overall robotic control system. A simulation example is used in support of the 

proposed control scheme. 
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Chapters 

A Model Following Control Using Terminal Sliding Mode 

Technique for Rigid Robotic Manipulators 

5.1 INTRODUCTION: 

In robot control engineering, problems such as unmodelled dynamics. parameter 

uncertainties and external disturbances affect the control system design and the 

quality of control. In order to improve the performance of robot control sy-.tems, 

many robust adaptive control schemes have been developed for rigid robotic 

manipulators in Crag et al. ( 1986). Spong and Ortega ( 1990), Amestegui et al. 

( 1987). and Middleton and Goodwin ( 1988 ). These adaptive control schemes are 

designed under the condition that all signals remain bounded (011ega and Spong 

( 1989)). Considering the fact that asymptotic stability has not been proven to be 

uniform, small changes in dynamic-; may result in loss of stability. These adaptive 

control schemes are therefore inadequate for satisfactory performance of robot 

control systems with u11certainti~s and disturbances. 

In r«"cent years. the sliding mode technique has provided an efficient method for 

the control of robotic manipulators with large uncertainties and bounded input 

disturbances. The work in Morgan and Ozguner ( 1985), Young ( 1978, 1988), and 

Yeung and Chen ( 1988) has shown that the robustness and convergence can be 

established for robotic manipulators with large system uncertainties by using the 
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sliding control theory, based on the upper and the lower bounds of unknown 

parameters. Leung et al. (1991) and Man and Palaniswami (1993) show that 

asymptotic error convergence of the sliding mode control system for robotic 

manipulators can still be designed based on only a few uncertain system matrix 

bounds rather than on the upper and the lower bounds of all unknown parameters. 

In this chapter, we present a model following control scheme using the terminal 

sliding mode technique for rigid robotic manipulators based on the idea of 

terminal attractor in Zak ( 1988, 1989). A multi variable terminal sliding mode is 

first defined for the model following control system of rigid robotic manipulators, 

and the relationship between the terminal sliding variable vector and the error 

dynamics of the closed loop system is established for the stability analysis of the 

error dynamics. Then a robust terminal sliding controller is designed based on a 

few structural properties of rigid robotic manipulators. Unlike the linear sliding 

mode control schemes in Utkin (1977). Young (1977, 1988), and Man and 

Palaniswami ( 1993, 1994), the terminal sliding variable vector has a nonlinear 

term of the velocity error. By suitably designing the controller, the terminal sliding 

variable vector can converge to zero in a finite time, and the output tracking error 

can then converge to zero in the terminal sliding mode in a finite time. 

Similar to the conventional linear sliding mode control schemes, the proposed 

terminal sliding mode control scheme is robust to large uncertain dynamics and 

bounded disturbances. Further, the controller design is greatly simplified such that 

only a few uncertain bounds of the controlled robot system are required as the 

controller parameters. 
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In section 5.2, the dynamics of rigid robotic manipulators and definition of the 

terminal sliding mode are formulated. Section 5.3 describes the proposed model 

following control scheme using terminal sliding mode technique for rigid robotic 

manipulators with uncertain dynamics, and the controller design and convergence 

and robustness analysis are discussed in detail. Section 5.4 presents a modified 

scheme to handle robotic manipulators with both uncertain dynamics and 

bounded unknown disturbances in the control input. Section 5.5 presents a 

simulation example based on a two-link robotic manipulator in support of the 

proposed control schemes, and section 5.6 gives conclusions. 

5.2 PROBLEM FORMULATION: 

A rigid robotic manipulator is defined as an open kinematic chain of rigid links, 

where each degree-of-freedom of the manipulator is powered by an independent 

torque. Using the Lagrnngian formulation, the dynamic equation of an n-degree of 

freedom rigid robotic manipulator can be described as follows: 

J(q) q + F(q, q) + G(q) = u(t) (5.1) 

where q (E R11
) is the vector of n joint angular positions as the system output, J(q) 

(E Rnxn ) is a symmetric positive-definite inertia matrix, F(q,q) (E Rn ) is the 

vector of coriolis and centrifugal forces, G(q) (E Rn ) is the vector of gravitational 

torques and u(t) (E Rn) is the vector of input torques ( control inputs). 
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Define expression (5.1) can be written in terms of state 

variables as: 

X=AX+Bu (5.2-a) 

(5.2-b) 

where A (E R2nx2n ) is a system matrix, A 1 and A2 are nxn matrices, B (E R2nxn) 

is an input matrix and B 1 = J(qf 1. Considering the classical dynamics of nonlinear 

robotic systems, it is easily seen that the matrix A is a function of q and its 

derivative, and the symmetric positive-definite matrix B I is a function of q whose 

norm is uniformly bounded independent of q. The parameters in matrices A 1• A2 

and B1 are assumed to be unknown. 

For model following control design, the following linear reference model is used 

(5.3-a) 

A 111 =[~ 
ml 

1 

] [

0 
] Bn- = 

Am2 , Bml 
(5.3-b) 

where Ami = - diag(aii), Am2 = - diag(ai2) and Bm1 = - diag(bi1 ) (1 $ i $ n) are 

known constant matrices determined from an engineering point of view, and r(t) is 

a nx I reference input vector assumed to be nonzero. 
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To ensure the equality X = Xm for an arbitrary reference input vector r(t), the 

following matching conditions are assumed to be satisfied (Miyasato and Oshima 

(1989)) 

A.5.1 + 
(l-BB )B =0 m 

(5.4-a) 

A.5.2 + 
( I - B B )( An -A ) = 0 (5.4-b) 

where, 

(5.4-c) 

and the control input for the perfect model following is then given by 

u=-K X+Kr 
X r 

(5.5) 

where 

+ K =-B (A -A) 
X Ill (5.6-a) 

(5.6-b) 

(5.6-c) 

In order to design the model following control system using terminal sliding mode 

technique for the rigid robotic manipulator in expression (5.1 ), we set the control 

input in the following form: 

(5.7) 
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where 0 1(e R0 x2n ), 82 (e Rnxn ), 84 (e R0 x2n) and 0s (e R0
) are discontinuous 

controller gain matrices and e(t) is the output tracking error defined by 

e(t) = Xm - X (5.8) 

Now, differentiating equation (5.8) with respect to time, we have 

e=X -X m 
(5.9) 

The dynamics of the output tracking error can then be obtained by using 

expressions (5.2) - (5.9) as follows: 

e = A X + B r - AX - Bu 
m m m 

=A e-[o 
Ill 

(5.10) 

A set of terminal sliding variables in the etTor space passing through the origin can 

be defined as: 

S =C e (5.11) 

where C - [ C - I 

(5.12) 

c,111 
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e = [ ef (5.13) 

Remark 5.1: In expression (5.13), p = p/p
2

, where positive integers p
1 

and p
2 

are selected such that: 

p1 = (21 + I), I = 0, I, 2, .. . (5.14-a) 

p2 = (2m +I), m = I, 2, .. . (5.14-b) 

(5.15) 

It is shown later that the selections of p
1 

and p
2 

in expressions (5.14) and (5.15) 

can guarantee O < p < I and the tracking error£. can then converge lo zero in the 
I 

terminal sliding mode in a finite time. for all bounded initial conditions. 

Remark 5.2: Vector e in expression (5.11) can also be written into the 

following form: 

e =e+~e (5.16) 

where 

A-e =[cP_c
1
, ... ,cP _c O o]T 

l.l C, l C C n ell, ' ••• , (5.17) 

Using expr~ssions (5. I 3), (5.16) and (5.17), the multi variable terminal sliding 

variable vector S in expression (5.11) can be written into the following form: 
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S =C e 

=C(e+~e) 

(5.18) 

where E = [ (5.19) 

It will be seen later that it is convenient to use expression (5.18) of the terminal 

sliding variable vector S in controller design and convergence analysis. 

Remark 5.3: The ith element of S in expression (5.1 I) can be written into the 

following form: 

S. = C.. t p + £1. 
I II i 

C > 0 
ii 

(5.20) 

Similar to the conventional sliding mode control technique, if the controller is 

designed such that s. (i = I, .. n ) converge to zero, then we say that the 
I 

terminal sliding variables s. (i = I •... n ) reach the terminal sliding mode 
1 

c .. E !i + E. 
II I I 

= 0 (i = I, ... n) (5.21) 

It is shown in Zak ( 1988, 1989) that Ei = 0 is the tem1inal attractor of the system 

(5.21 ). Let the •nitial value of£. at time t.(0) = 0 be E.(O) (;c 0) and parameter p be 
I I I 
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chosen as shown in remark I, then the relaxation time t. for a solution of the 
I 

system (5.21) is given as follows: 

c.(O)l·P 
I 

(5.22) 
c .. ( I - p ) 

II 

Expression (5.22) also means that, on the terminal sliding mode in expression 

(5.21 ), the output tracking error converges to zero in a finite time. The details on 

the terminal attractor and its applications can be found in Zak ( 1988, 1989). 

Remark 5.4: For the sake of simplicity, the terminal sliding mode parameter 

matrix C
2 

in expression (5.12) is chosen as a unity matrix. However, matrix C
2 

can 

be chosen to be a different diagonal matrix for different convergence requirements 

of the error dynamics in the terminal sliding mode. 

For further analysis. the following assumptions on system matrix bounds are used 

(Leung, et al. ( 1991 ). Miyasato and Oshima ( 1989). Man and Palaniswami 

(1993)). 

A.5.3 (5.23) 

A.5.4 (5.24) 

A.5.5 11 B + ( A - A ) II :::; k:i 
Ill ~ 

(5.25) 

A.5.6 (5.26) 

where k
1
, k

2
, k

3 
and k

4 
are positive numbers. 
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Remark 5.5: According to the mechanical characteristics of rigid robGtic 

manipulators and the boundedness of the reference model, the above assumptions 

are valid. 

5.3 TERMINAL SLIDING MODE CONTROLLER DESIGN: 

For the design of the terminal sliding mode control system for robotic manipulator 

(5.1 ), we have the following theorem. 

Theorem 5.1: Consider the error dynamics in expression (5.10) where the 

matching conditions in expressions (5.4-a)-(5.4-b) and the assumptions of 

uncertain system matrix bounds in expressions (5.23) - (5.26) are satisfied. If the 

controller gain matrices in expression (5.7) are designed such that 

k,k,IIC,11 T T 
- · - CSX 

k
1 

!ISII IIX II 2 
;;Sii llXI!,;:. O 

(5.27) 

!iSil ilX!I = 0 

1 

k, k 4 11 c., 11 T T 
11 S 11 ii rll .t 0 - - C, S r 

e - k 11 S 1111 rll -,- I (5.28) 

0 IIS II II rll = 0 
nxn 

1 

!ICII IIA II T T 
m C SC IISll llell *- 0 

84= k
1 

11 S 11 llcll 2 
(5.29) 

0 nx2n 
IIS 11 llell = 0 
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e = 
5 

ilC
1

1111 Er-£ II 

k
1 

IIS 11 S II S II -:t 0 

Qnxl IISll=O 

(5.30) 

where parameter pin expression (5.13) satisfies expression (5.14) and (5.15) as 

well as expression (5.31) 

p > 0.5 

and l\ = diag( p E P·/ , p-1 
PE n 

then the output tracking error E(t) will converge lo zero in a finite time. 

Proof- Consider the following Lyapunov function 

I T 
V = - S S 

2 

and differentiating v with respect to lime. we have 

= ST [ C e + CLi c ] 

T 
=S (CA e-C B Ge) 

m 2 I 4 
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(5.32) 

(5.33) 



(5.34) 

Using expressions (5.27) - (5.30), four terms in expression (5.34) satisfy the 

following inequalities 

T T IICIIIIA II T T 
= S CA e - S C B 111 C S e e 

111 2 I k
1 
l:Sii !lcll 2 

<STCAe- !ISIIIICl!\iA llllcl! m m 

$ 0 r 5.35-a) 

T k,LIIC.,11 T T 
S C B - -' - C SX X 

2 I klllSlll!Xil 2 

$ 0 (5.35-b) 
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< 0 (5.35-c) 

= ST C 
1 
[ £r - E ] - k

1 
II S II IIC' I! ii£ - E :1 

I I 

,. ,; 

- C ' 

~ 0 (.5.35-d) 

Then using expressions (5.35-a) - (5.35-d) in expression (5.34).wc have 

V < ST C A c - ! I S 11 i i C 11 i I A i I 11 c Ii 
111 111 

+ ST B B\A - A) X - k_, k, IISI! IIXII 
I m _ ., 
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= - K IISII (5.36) 

where 

ST 
K = ( k k 11 C 11 11 r 11 --- C

2
B B +B r ) > 0 for I S 11 :t- 0 

2 4 2 IISII I m 
(5.37) 

Expression (5.36) is the sufficient condition for the terminal sliding variables S to 

reach the terminal sliding mode S = 0 in a finite time. On the terminal sliding 

mode, the output tracking error can then converge to zero in a finite time 

according to expressions (5.21) and (5.22). 

Remark 5.6: Theorem 5.1 shows that, although the parameter uncertainties. 

nonlinearities and dynamical couplings exist m the rc•botic manipulator system in 

expression (5.1 ), the controller can still be designed by using a few uncertain 

svstem matrix buunds in A.5.3 - A.5.6 to !.!uarantce tha1 the terminal sli<li11~ - .... .... 

variable vector S converges to zero in a finite time and then 1he output tracking 

error converges to z<:ro in a finite time on the terminal .,liding mode .. 

Remark 5.7: The proposed terminal sliding mode control system exhibits good 

robustness to large system uncertainties, nonlincarities and dynamical interactions 

due to the fact that only a few uncertain system matrix bou11ds arc u~1'.d in the 

controller design instead of the upper and the lower bounds of all unknown system 

parameters, 
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Remark 5.8: After the error dynamics reach the terminal sliding mode in 

expression (5.21), the signal vector Er in expression (5.32) can be written as 

follows: 

= 

p-1 
PE 1 

p-1 
.... , p C n 

p-1 
p £ n 

[ 
2p-l 

= -c,1pc i .•• 
2p-lJ T c E - nn p n (5.38) 

Expression (5.38) shows thal. mathematically the positive number p 111 expressi11n 

(5.13) satisfies expressions (5.14) and (5.15J. But. in order to guarantee the 

terminal convergence of variable c .. tlw number p must satisfy expression (5.31) 
I 

such that the signal vector £ in expression (5.38) must be bounded as the output 
r 

tracking error Ei converges to zero on the tem1inal sliding mode. 

5.4 A MODIFIED CONTROL SCHEME: 

In this section. we modify the controller in section 5.3 to handle the case of a 

robotic manipulator with both uncertain dynamics and bounded unknown 

disturbances in the control input. In this case, the system model in expression (5.1) 

can be expressed in the following state variable form 
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X =AX+ Bu + h (5.39) 

where A and B are defined as before, h = [0 1ztr, h1 (E R" ) is a vector of 

disturbances and matrix h is assumed to satisfy the following inequality 

A.5.7 (5.40) 

where k
5 

is a positive number. 

To ensure the equality X = Xm for an arbitrary reference input r(t) in system 

(5.39), the following matching condition is assumed to be satisfied together with 

A.5.1 and A.5.2. 

A.5.8 + 
( I - BB ) h = 0 (5.41) 

Control input for the perfect model following is then given by 

u = - K X + K r + Khh (5.42) 
X r 

where Kx and Kr are defined as before and k = -B'. 
' I, 

in a similar way with the control law (5.7), the following control law is proposed 

to hr1ndle the case with bounded unknown input disturbances 

u - 0 X + 0 r + 0 + 0 e(t) + 0 - I 2 3 4 5 (5.43) 
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where controller gain matrices 81, 82. 84 and 0s are obtained as in equations 

(5.27) - (5.30), and 0 3 ( e R" ) will be designed to eliminate the effects of 

disturbances. 

Similar to expression (5.10), the error dynamics in this case is written as 

e=X -X m 

= A X + B r- AX - Bu - h m m m 

=A e-[O m 

T 
I] B

1 
[ B\ A - A) - 0 ] X 

m 1 

+ [ 0 
T 

I ] B 
1 
( B +B m - 0 

2 
) r + [ 0 

T + 
I ] B ( -B h - 0 ) 

I 3 

(5.44) 

For the stability analysis of error dynamics (5.44) and the design of the controller 

gain matrix in control law (5.43), we have the following theorem. 

Theorem 5.2: Consider the error dynamics (5.44) for non linear robotic system 

(5.1) with bounded unknown input disturbances. If the matching conditions in 

(5.4-a), (5.4-b) and (5.41), and the assumptions on the uncertain system matrix 

bounds in (5.23) - (5.26) and (5.40) are satisfied, and if the control law (5.43) with 

col'ltroller gain matrices (5.27) - (5.30) and (5.45) is used 
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IISll;c 0 

IISII = 0 

then the output tracking error E(t) converges to zero in a finite time. 

Proof· Using 2v = ST S, we have 

, T· T · 
v=SS=SCe 

+ ST [ C
2 

B
I
B+ ( Am - A ) X - C

2 
B 

1 
0

1 
X ] 

T + -s < c2 B I B 11 + c2 B I e 
3 

) 

Noting that 
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(5.46) 



< 0 (5.47) 

then, using expression (5.27) - (5.30) and (5.47), we have 

v < - K II S II (5.48) 

Expression (5.48) is the sufficient condition for the terminal sliding variable vector 

S to reach the sliding mode in a finite time. The output tracking error E(t) can 

converge to zero in a finite time on the terminal sliding mode. 

5.5 A SIMULATION EXAMPLE: 

Consider a two-link robotic manipulator model as shown in Figure 5. I. The links 

are of length r1 and r2, the mass m1 and 1112, respectively. The mass is assumed to 

be concentrated at a point at the end 0f each link. The position state variables are 

the angles q I and q2. Additional moments of inertia J 1 and h. about the centres of 

gravity of each link are also included in the model. The dynamic equation is given 

by (Young (1988)) 

95 



The parameter values are: 

r1 = I m, r2 = 0.8 m 

11 = 5 kg.m, 12 = 5 kg.m 

m1 = 0.5 kg, m2 = 1.5 kg 

The reference model fur the manipulator to follow is given as: 

X =AX +Br m m m m 

where, 
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0 0 I 0 0 0 

0 0 0 I 0 0 
i\n = B = 

-4 0 -5 0 m 
I 0 

0 -4 0 -5 0 

[ 5 ]
T 

and r(t) = 5 

Since we are interested in trajectory tracking and hope that the transient response 

is detennined entirely by the sliding motion, we consider a situation characterised 

by the same initial values of both, the reference model state and the plant state. In 

the simulation, we assume the initial values of X(t) and X (t) to be 
rn 

T 
X(O) = Xrn(O) = [ 0.2 2 0 0 ] 

The terminal sliding mode is defined as 

3/5 

£ + £I = Q 
I 

315 

E. + E.2 = 0 
2 

The matrix bounds in assumptions A.5.3 - A.5.7 are chosen as 
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Runge - Kutta method with a sampling interval LiT = 0.0Is is used to solve the 

above nonlinear differential equations numerically. Fig.5.2 - Fig.5.4 show the 

output trackings, tracking errors, and input torques by the use of control law (5.7) 

with controller gain matrices (5.27) - (5.30). Fig.5.5 - Fig.5.7 show the trajectories 

of the same signals in the case of input disturbances ( h
1 
(t) = [sin( I Ot) sin( l Ot)]T 

) with control law (5.43) with controller gain matrices (5.27) - (5.30) and (5.44). It 

is easy to see that good tracking performance is achieved. The effect of chattering, 

and thereby, amplitude of the control inputs is reduced by the use of boundary 

layer controller (Slotine and Sastray (1983), and Slotine (1984)) ((\ = 0.1, o
2 

= 

0.15, o
4 

= 0.025) as can be seen in Fig.5.8 - Fig.5. I O for the case of system with 

disturbances in Fig.5. I I - Fig.5.13 (o
3 

= 0.05, 8
5 

= 0.05). The boundary layer 

controller offers a continuous approximation to the discontinuous control law 

inside the boundary layer, and guarantees attractiveness to the boundary layer and 

ultimate boundedness of the output tracking error to within a neighbourhood of the 

origin depending on o, (i = I, ... 5). 

y 

X 

0 

Fig.5.1 Two-link robotic manipulator model 
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5.6 CONCLUSION 

In this chapter, a model following control scheme using terminal sliding mode technique 

for rigid robotic manipulators is exploited. The main feature of this chapter is the design 

and definition of a terminal sliding mode controller using only a few uncertain system 

matrix bounds. It guarantees robustness to large uncertainties and bounded input 

disturbances, and the error convergence in a finite time is obtained on the terminal sliding 

mode. Simulation results are provided to demonstrate the effectiveness, simplicity and 

practicality of the proposed control schemes. 



Chapter6 

Conclusion 

6.1 Summary 

The sliding mode control technique has proved to be a powerful technique in the 

control of highly nonlinear systems like robotic manipulators. Chapter l of this thesis 

shows the evolution of control schemes in the field of robotics where simple feedback 

and adptive controllers were insufficient to solve the control problems in robotic 

manipulators. The main factors affecting this were the nonlinearities, parameter 

uncertainties, nonlinear couplings and disturbances. Sliding mode control proved to be 

a powerful technique in the solution to the robot control problem and has instigated 

considerable research efforts in the field. The terminal sliding mode technique based 

on the idea of tenrinal attractors in Zak ( 1988) has s:1own great promise due to its 

finite-time convergence and robustness properties. 

Chapter 2 provides a brief survey of sliding mode control theory and its application to 

linear and nonlinear systems. It also provides a discussion of the terminal sliding 

mode control and its application to the control of robotic manipulators. 

Chapter 3 proposes a new robust adaptive tracking controller for rigid robotic 

manipulators. The chief advantage of using this scheme is that it does not require prior 



knowl~dge of the uncetain bound. The scheme uses adaptively estimated values of 

only 3 parameters of the uncertain bound in the control gain. These parameters are 

then used to eliminate system uncertainties, obtain asymptotic convergence and 

reduce the amplitude of the control signal. 

In Chapter 4, a decentralised adaptive sliding mode control scheme is proposed. This 

scheme requires no prior k: 1wledge of the uncertain dynamics of each subsystem. 

This scheme guarantees elimination of the effects of uncertain system dynamics and 

asymptotic error convergence using local feedback controllers to stabilize each 

subsystem and an adaptive compensator to handle the effects of system uncertainties. 

Chapter 5 proposes a new terminal sliding mode technique. A terminal sliding mode 

controller is designed based. This scheme uses only a few uncertain system matrix 

bounds for the design of the controller. The result is a simple and 1obust controller 

that guarantees finite-time output tracking error convergence on the terminal sliding 

mode. The result is a simple, effective and practical control scheme. 

In summary, this thesis has provided several new and improved linear and terminal 

sliding mode control schemes aimed at achieving robustness and convergence against 

system nonlinearities, parameter uncertainties, nonlinear couplings and external 

disturbances in the control of robotic manipulators. Robustness and Lyapunov 

stability analyses were provided for each of these schemes. Simulation results were 

used to demonstrate the tracking and convergence capabilities of the schemes. 
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