4 research outputs found

    Distributed Gibbs: A memory-bounded sampling-based DCOP algorithm

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Decentralised Coordination of Continuously Valued Control Parameters using the Max-Sum Algorithm

    Get PDF
    In this paper we address the problem of decentralised coordination for agents that must make coordinated decisions over continuously valued control parameters (as is required in many real world applications). In particular, we tackle the social welfare maximisation problem, and derive a novel continuous version of the max-sum algorithm. In order to do so, we represent the utility function of the agents by multivariate piecewise linear functions, which in turn are encoded as simplexes. We then derive analytical solutions for the fundamental operations required to implement the max-sum algorithm (specifically, addition and marginal maximisation of general n-ary piecewise linear functions). We empirically evaluate our approach on a simulated network of wireless, energy constrained sensors that must coordinate their sense/sleep cycles in order to maximise the system-wide probability of event detection. We compare the conventional discrete max-sum algorithm with our novel continuous version, and show that the continuous approach obtains more accurate solutions (up to a 10 % increase) with a lower communication overhead (up to half of the total message size)

    An adaptive multi-agent system for self-organizing continuous optimization

    Get PDF
    Cette thèse présente une nouvelle approche pour la distribution de processus d'optimisation continue dans un réseau d'agents coopératifs. Dans le but de résoudre de tels problèmes, le domaine de l'optimisation multidisciplinaire a été proposé. Les méthodes d'optimisation multidisciplinaire proposent de distribuer le processus d'optimisation, généralement en reformulant le problème original d'une manière qui réduit les interconnexions entre les disciplines. Cependant, ces méthodes présentent des désavantages en ce qui concerne la difficulté de les appliquer correctement, ainsi que leur manque de flexibilité. En se basant sur la théorie des AMAS (Adaptive Multi-Agent Systems), nous proposent une représentation générique à base d'agents des problèmes d'optimisation continue. A partir de cette représentation, nous proposons un comportement nominal pour les agents afin d'exécuter le processus d'optimisation. Nous identifions ensuite certaines configurations spécifiques qui pourraient perturber le processus, et présentons un ensemble de comportements coopératifs pour les agents afin d'identifier et de résoudre ces configurations problématiques. Enfin, nous utilisons les mécanismes de coopération que nous avons introduit comme base à des patterns de résolution coopérative de problèmes. Ces patterns sont des recommandations de haut niveau pour identifier et résoudre des configurations potentiellement problématiques qui peuvent survenir au sein de systèmes de résolution collective de problèmes. Ils fournissent chacun un mécanisme de résolution coopérative pour les agents, en utilisant des indicateurs abstraits qui doivent être instanciés pour le problème en cours.In an effort to tackle such complex problems, the field of multidisciplinary optimization methods was proposed. Multidisciplinary optimization methods propose to distribute the optimization process, often by reformulating the original problem is a way that reduce the interconnections between the disciplines. However these methods present several drawbacks regarding the difficulty to correctly apply them, as well as their lack of flexibility. Based on the AMAS (Adaptive Multi-Agent Systems) theory, we propose a general agent-based representation of continuous optimization problems. From this representation we propose a nominal behavior for the agents in order to do the optimization process. We then identify some specific configurations which would disturb this nominal optimization process, and present a set of cooperative behaviors for the agents to identify and solve these problematic configurations. At last, we use the cooperation mechanisms we introduced as the basis for more general Collective Problem Solving Patterns. These patterns are high-level guideline to identify and solve potential problematic configurations which can arise in distributed problem solving systems. They provide a specific cooperative mechanism for the agents, using abstract indicators that are to be instantiated on the problem at hand

    Managing distributed situation awareness in a team of agents

    Get PDF
    The research presented in this thesis investigates the best ways to manage Distributed Situation Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources (battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the aim of supporting efficient, adaptable, scalable, and predictable search. Results from simulation and physical experiments with UAVs show good performance in terms of resources utilisation, adaptability, scalability, and predictability of the developed method in comparison with the existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information obtained from the agents' search activity. Algorithms and methods were developed to describe how agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor agents’ interactions, and maintains adaptable BBN for DSA management using structural learning. The evaluation uses environment situation information obtained from agents’ sensors during search activity, and the results proved superior performance over well-known alternative methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. Therefore, the thesis’s main contributions are (i) the development of a simple search planning algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using BBN that can be updated and learnt during the mission; (iii) investigation of the relationship between agents search coordination and DSA management
    corecore