4,920 research outputs found

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes

    Neural Feedback Scheduling of Real-Time Control Tasks

    Full text link
    Many embedded real-time control systems suffer from resource constraints and dynamic workload variations. Although optimal feedback scheduling schemes are in principle capable of maximizing the overall control performance of multitasking control systems, most of them induce excessively large computational overheads associated with the mathematical optimization routines involved and hence are not directly applicable to practical systems. To optimize the overall control performance while minimizing the overhead of feedback scheduling, this paper proposes an efficient feedback scheduling scheme based on feedforward neural networks. Using the optimal solutions obtained offline by mathematical optimization methods, a back-propagation (BP) neural network is designed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. Numerical simulation results show that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    On the Modeling of Correct Service Flows with BPEL4WS

    Get PDF
    Frameworks for composing Web Services offer a promising approach for realizing enterprise-wide and cross-organizational business applications. With BPEL4WS a powerful composition language exists. BPEL implementations allow orchestrating complex, stateful interactions among Web Services in a process-oriented way. One important task in this context is to ensure that respective flow specifications can be correctly processed, i.e., there will be no bad surprises (e.g., deadlocks, invocation of service operations with missing input data) at runtime. In this paper we subdivide BPEL schemes into different classes and discuss to which extent instances of these classes can be analyzed for the absence of control flow errors and inconsistencies. Altogether our work shall contribute to a more systematic evolution of the BPEL standard instead of overloading it with too many features

    Beyond C<i>max</i>: an optimization-oriented framework for constraint-based scheduling

    Get PDF
    This paper presents a framework taking advantage of both the flexibility of constraint programming and the efficiency of operations research algorithms for solving scheduling problems under various objectives and constraints. Built upon a constraint programming engine, the framework allows the use of scheduling global constraints, and it offers, in addition, a modular and simplified way to perform optimality reasoning based on well-known scheduling relaxations. We present a first instantiation on the single machine problem with release dates and lateness minimization. Beyond the simplicity of use, the ptimizationoriented framework appears to be, from the experiments, effective for dealing with such a pure problem even without any ad-hoc heuristics

    Beyond C<i>max</i>: an optimization-oriented framework for constraint-based scheduling

    Get PDF
    This paper presents a framework taking advantage of both the flexibility of constraint programming and the efficiency of operations research algorithms for solving scheduling problems under various objectives and constraints. Built upon a constraint programming engine, the framework allows the use of scheduling global constraints, and it offers, in addition, a modular and simplified way to perform optimality reasoning based on well-known scheduling relaxations. We present a first instantiation on the single machine problem with release dates and lateness minimization. Beyond the simplicity of use, the ptimizationoriented framework appears to be, from the experiments, effective for dealing with such a pure problem even without any ad-hoc heuristics

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres
    • …
    corecore